1. Field of the Invention
The present invention relates to a tracking and handling device for transferring a workpiece, from a conveyor to another place, using a robot.
2. Description of the Related Art
In a work handling system having an industrial robot and a vision sensor of the prior art, workpieces conveyed by a conveyor are gripped by one of a plurality of robots positioned along the conveying path and, then, transferred from on the conveyor to another place or process. In such a system, it is very important to properly control the tracking motion of the plurality of robots.
For example, Japanese Unexamined Patent Publication No. 9-131683 discloses a robot system having a plurality of robots arranged on the path of a conveyor and a camera for imaging the workpieces on the conveyor. In the system, a robot controller has a means for previously ordering the motion of the robots for every workpiece based on the detection result of the workpieces by the camera. The robots operate according to the order.
Also, Japanese Patent Publication No. 3077564 discloses a handling device having a plurality of robots arranged on the path of a conveyor and a camera for imaging the workpieces on the conveyor. In the device, the number of workpieces which should not be gripped by (or should pass in front of) a robot located on an upstream side of the conveyor is predetermined and the robot on the upstream side grips a workpiece based on the predetermined number. Accordingly, another robot, located on a downstream side of the conveyor, grips any workpiece which has passed in front of the robot on the upstream side.
In the robot system described in Japanese Unexamined Patent Publication No. 9-131683, the gripping motion of the robot is programmed based on the operable time of each robot. Therefore, even when the time of conveyance of the workpieces is nonregular, the robot on the upstream side can effectively grip the workpiece without entering a wait state. In this system, however, the order of the gripping motion of the robot is based on the operable time from the beginning of the tracking motion of the robot to the completion of one cycle of the motion. Therefore, when the path of the motion of the robot or the waiting time for a confirmation signal is changed, it is difficult to estimate the operable time.
On the other hand, in the handling device described in Japanese Patent Publication No. 3077564, the number of workpieces which are not gripped by the robot on the upstream side of the conveyor is predetermined. Therefore, the device can effectively handle each workpiece when the time of conveyance of a workpiece is a generally constant. However, when the interval time is nonregular, there may be a situation in which the robot on the upstream side is in a wait state, without gripping the workpiece, although the robot has enough capacity to grip the workpiece. Accordingly, the handling device may be inefficient in this case.
Accordingly, it is an object of the present invention to provide a tracking and handling device capable of effectively handling a workpiece even when the time of conveyance of a workpiece is nonregular or a path of the motion of the robot is changed.
To this end, according to the present invention, there is provided a tracking and handling device comprising: a conveying means for conveying a plurality of workpieces which are continuously supplied; a travel distance detecting means for detecting a travel distance of the conveying means; a workpiece position detecting means for detecting the positions of the workpieces conveyed by the conveying means; a plurality of robots including first and second robots arranged along the conveying means; a plurality of robot controllers including first and second robot controllers for controlling the first and second robots; and a communication means which connects the workpiece position detecting means and each robot controller, the tracking and handling device being configured such that each workpiece on the conveying means is handled by one of the robots, without stoppage the conveying means, based on the travel distance of the conveying means detected by the travel distance detecting means, wherein the workpiece position detecting means transmits position data, of the detected workpiece, via the communication means, to the first controller for controlling the first robot located on the most up stream side of the conveying means in relation to the conveying direction of the conveying means, the first robot controller judges whether the first robot should handle the detected workpiece when the first controller has received position data of the workpiece from the workpiece position detecting means and, then, transmits position data of the workpiece, which is not to be handled by the first robot, to the second robot controller for controlling the second robot located on the downstream side in relation to the first robot.
The tracking and handling device may include one or more second robots, which are located downstream in relation to the first robot but not at the most downstream side of the conveying means in relation to the conveying direction of the conveying means, and a third robot, which is located on the most downstream side of the conveying means. In this case, the second robot controller may judge whether the second robot should handle the detected workpiece when the second controller has received position data of the workpiece from the robot controller for controlling the robot located on the upstream side in relation to the second robot and, then, transmits position data of the workpiece, which is not to be handled by the second robot, to the robot controller for controlling the robot located on the downstream side in relation to the second robot. Further, a third robot controller may control the third robot such that the third robot handles the detected workpiece based on the position data of the workpiece received, via the communication means, from the robot controller for controlling the robot located on the upstream side in relation to the third robot.
The judgment of each robot controller is preferably performed based on the position data at the moment of the judgment.
The judgment of each robot controller may be performed based on the maximum handling capacity of the robot controlled by the corresponding robot controller.
Alternatively, each robot controller may previously determine the number of the workpiece which should be handled and the number of the workpiece which should not be handled by the robot controlled by the corresponding robot controller, and controls the robot based on the predetermined numbers.
The conveying means may be wide. In this case, the robots are preferably located on both sides of the conveying means.
In addition, the tracking and handling device may further include a discharging conveyor for discharging the workpiece to a set place after a robot has handled the workpiece.
The above and other objects, features and advantages of the present invention will be made more apparent by the following description, of the preferred embodiments thereof, with reference to the accompanying drawings wherein:
The present invention will be described below with reference to the drawings.
A workpiece position detecting means or a vision sensor 30 detects the positions of the workpieces to enable the tracking motion of the robots. The vision sensor 30 is constituted by a camera 32 and a vision control part 34 for processing an image captured by the camera 32. In this embodiment, the vision control part 34 is incorporated within the first robot controller 22. However, the vision control part 34 need not be incorporated within the robot controller and may be separated from the robot controller.
As shown in
The CPU 341 is connected to a CPU 361 of the first control part 36 via a bus 221 of the first robot controller 22. A RAM 362, a ROM 363, a non-volatile memory 364, a digital signal processor (DSP) 366 and a data memory 365 for the DSP are connected to the CPU 361 via a bus 367. The ROM 363 stores a program for controlling a whole system and the RAM 362 temporarily stores data to be processed by the CPU 361. The non-volatile memory 364 stores a motion program, setting data and a data transfer program (as described below) for the first robot 16. The DSP 366 is a processor for processing an output signal of a count of the pulse coder 28. The data memory 365 for the DSP stores data processed by the DSP 366 and setting parameters. The DSP 366 detects the count of the pulse coder 28 according to a command of the CPU 361 and writes the count in a predetermined area of the data memory 365. The CPU 341 of the vision control part 34 may also access the data memory 365 via the CPU 361 of the first robot controller 22. Further, the first control part 36 has an axis control unit 368, for controlling the first robot 16, connected to the first robot 16 via a servo circuit 369. Similarly, each of the second and third control parts 38 and 40 for controlling the second and third robots 18 and 20 may have the same constitution as that of the first control part 36, therefore, the details are omitted.
Next, with reference to
On the other hand, when a workpiece is detected in step S5, the process progresses to step S8 so as to check whether the image data of one workpiece is doubly detected or not in the detecting process of the position of the workpiece. When it is confirmed that the image data is not doubly detected, the detected result is stored in the memory and associated with the count value N1 of the pulse coder (step S9). Then, the resister value W is incremented by one in step S10 and the image of the next workpiece is extracted in step S11. On the other hand, when the image data of one workpiece is doubly detected, the process progresses to step S11 without incrementing the resister value. In the next step S12, the extracted result is checked. When the extraction is success, i.e., another workpiece is detected, the process returns to step S8. On the other hand, when the extraction is failure, it means that there is no workpiece to be detected. Therefore, the process progresses to step S13 so as to sort all data in a data buffer, based on an X-coordinate of each data. In other words, the process from step S8 to S12 is repeated the number of times equal to the number of detected data.
Next, with reference to
According to the flowchart of
First, similarly to step S21 in the flowchart of
In the second robot controller 24 of the second robot 18, the procedure progresses from step S35 to step S36. In step S36, the second controller 24 does not execute the process as shown in
Finally, in the third robot controller 26 of the third robot 20, the procedure progresses from step S37 to step S38. In step S38, the third controller 26 executes the process as shown in
In other words, according to the flowchart as shown in
The above embodiment includes three robots, however, it is obvious that the present invention may be performed even when two, four or more robots are used. In calculating of the movement of each workpiece, the vision sensor reads the count value of the travel distance detecting means such as the pulse coder of the conveyor and, then, data including the travel distance of the conveyor is used. However, the movement of each workpiece can also be calculated by using a device such as a photoelectric tube and a signal thereof.
A tracking and handling device 10′ as shown in
The workpiece supplying means is described above. However, a means for discharging handled workpieces to another place may be also necessary in a system such as shown in
Due to the tracking and handling device according to the above embodiment, the process for specifying a workpiece which can be handled by each robot is repeated. Therefore, an optimum number of robots may be arranged along the conveyor for handling workpieces, corresponding to transportation volume of the workpieces on the conveyor. Further, in any embodiment above, each robot may handle one workpiece or several workpieces together.
According to the tracking and handling device of the present invention, when a plurality of workpieces are supplied at random intervals and randomly positioned on the conveyor and when one robot cannot be handle all of the workpieces, the tracking and handling operation may be effectively performed at low cost by means of a combination of one vision sensor and a plurality of robots.
While the invention has been described with reference to specific embodiments chosen for the purpose of illustration, it should be apparent that numerous modifications could be made thereto, by one skilled in the art, without departing from the basic concept and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
2005-215454(PAT.) | Jul 2005 | JP | national |