The present invention relates to tracking with optical discs, and more particularly to preserving tracking error signals in optical discs that have a very small track pitch.
Optical disc storage systems commonly employ run-length limited (RLL) modulation code that is used in optical disc storage systems to improve the transmission performance according to the optical channel characteristics. A run is defined as a consecutive sequence of binary bits of the same type (zeros or ones) recorded on the disc. The length is the number of bits in the sequence. For example the binary sequence of bits, 00100 is illegal while the binary sequence 001100 is legal. In Blu-ray disc format, the shortest sequence has a length of 2, referred to as I2, and the longest sequence has a length of 9, referred to as I9. It should be noted that I8 is the longest run length for data and the maximum run length of I9 is only employed for frame syncs to indicate the beginning and the end of a data frame.
Diffraction occurs within light from a laser spot that is reflected by the disc information layer having a grating structure, specifically, the lands and pits contained within an information track in the tangential direction and the periodic track structure in the radial direction. The reflected light will be split into bundles, called diffraction orders, which propagate back onto the detector in a diverging manner. The light intensity variation during the spot scanning along tracks, for the purpose of data detection, and crossing tracks, for the purpose of tracking, needs overlap of the 0-th diffraction order and +1/−1 diffraction orders. In cases for very high spatial frequencies, for example in the case of very small track pitches, the overlap in the radial direction disappears for all practical purposes and any tracking method requiring radial diffraction will fail. DPD tracking uses the combination of tangential and radial diffractions and PP tracking relies purely on radial diffraction.
Optical disc technology has been a constantly evolving art that continues to increase the storage capacity of optical disc media. An example of the evolving optical disc technology that is increasing the density of optical media, is the Blu-ray format. The Blu-ray format illustrates the concept that storage capacity on optical disc media can be increased by further reducing the wavelength and enlarging the numerical aperture (NA). By doing so, the bit length (tangential density) and track pitch (radial density) can be squeezed compared to those in CD and DVD formats due to a smaller focused laser spot. Optical disc media conforming to the Blu-ray format places tracks closer together at a track-pitch of 320 nm (740 nm for DVD).
Reducing the track pitch further can lead to an even higher capacity. However, some side effects will take place. Employing track pitches that are less than 320 nm has resulted in more cross-talk from the data being close together. Eliminating cross-talk has been a major focus in more recent optical disc media formats.
Employing track pitches below 320 nm greatly reduces the tracking error signal resulting in substantial deterioration in tracking performance and cross talk. The reduction in the tracking error signal results in tracking degradation to the point that the optical beam often drifts off-track.
Cross-talk results in the central aperture channel. A central aperture channel as used herein is defined as the summation of signals from multiple detectors that receive reflected light from a light spot, typically four detectors. The prior art has shown that cross talk can be reduced using 3-spot cross talk cancellation techniques. Unfortunately, these prior art references do not satisfactorily address degradations in the tracking error signal that also results from using track pitches below 320 nm.
A single-spot Differential Phase Detection (DPD) signal relies on both tangential diffraction and radial diffraction. Tangential diffraction is diffraction from the data marks within the tracks, specifically, the I2-I8 marks contained on discs within Blu-ray format. Tangential diffraction is typically only available when there is written data on the disc. Radial diffraction is diffraction that results from the grating structure of the tracks. The grating structure of the tracks is a very periodic structure, in which the track-pitch determines the diffraction angles. Both diffraction types should interfere with the 0-th order reflection (no diffraction) in order to obtain a reliable DPD signal. Therefore this method has problems at reduced track-pitches. Using push-pull tracking, based solely on radial diffraction is even worse.
From the foregoing discussion, it should be readily apparent mat there remains a need within the art for a method and apparatus that preserve the tracking error signal for optical discs having small track pitches.
This invention addresses the shortcomings within the prior art by providing a method and apparatus for tracking that scales more effectively at short track-pitches compared to DPD and Push-Pull tracking methods. The Blu-ray disc format has been already standardized such that there are currently three capacities, namely, 23.3 GB, 25 GB and 27 GB. In all three cases, the track pitch is set to 320 nm. The present invention also addresses needs in current capacities as well addressing the aforementioned problems to further reducing track pitches to increase the capacity. The invention generates a plurality of optical tracking spots (preferably the use of 3 optical spots), which can be obtained by employing a grating in front of the laser, and a plurality (preferably 3) of photo-detectors to detect reflections from the spots. A simple formula is employed to calculate the tracking error signal from the 3-detectors. The equation employed by the invention determines from the reflection of the spots the tangential diffraction only resulting in tracking that scales more effectively for short track-pitches compared to DPD and Push-Pull tracking methods.
These objects of the invention are provided for by: generating a tracking error signal from a plurality of light spots, wherein the light spots are incident so that they are spaced apart in a radial direction by a predetermined distance on a spinning optical media disc, the radial direction being measured from a center of the disc to an outside edge of the disc, receiving light reflected from each of the light spots, and correlating respective positions of the light spots in a tangential direction orthogonal to the radial direction to obtain the tracking error signal.
a is an illustration for positioning 3-spots with a central spot of the central track and adjacent left and right spots on the land areas between the central track and adjacent left and right tracks;
b is an illustration for positioning 3-spots with a central spot of the central track and adjacent left and right spots on adjacent left and right tracks;
c is an illustration of a laser with a grating to form multiple spots on a disc;
a is a diagram for full bandwidth implementation of correlating three light spots; and
b is a diagram for a half bandwidth implementation of correlating three light spots.
Referring to
a and 2b illustrate the inventive concept of positioning 3-spots to obtain a tracking error (TE) signal from a laser 10. The light beam from laser 10 is directed towards disc 5 and split into 3 three beams of light through grating 9 and focused on the desired area of disc 5 by optics 8 to form multiple spots 22, 24, 26. A collimating lens can be employed to the beam of light from laser 10 before grating 9, after grating 9 or incorporated into optics 8. The invention employs a plurality of optical tracking spots, preferably 3 optical tracking spots, to generate the TE signal. Multiple spots can be obtained by employing a grating in front of the laser as illustrated in
The present embodiment employs 3-spots in a configuration as shown in
The calculation of the correlation according to the preferred embodiment of the invention is done on sample-per-sample bases, as illustrated in Equation 1.
TE(t)=y0(t)*[y+(t+Δ)−y−(t−Δ)] Equation 1
TE(t) is calculated on a sample basis and, therefore, is a high frequency signal. In order to use TE(t) for tracking purposes, it is preferably lowpass filtered to remove high frequency noise. The lowpass filtered version of TE(t) results in a DC-component, referred to herein as TELPF(t). It is the DC-component in this signal (TELPF(t)) that is preferably used as the tracking error.
In Equation 1, y0(t) denotes the central aperture signal 25 from the central spot 24, and y+(t+Δ) denotes the central aperture signals 27 for the respective right spot 26, y−(t−Δ) denotes the central aperture signals 23 for the respective left spot 22 and Δ represents the time-shift. The central aperture signals 23, 27 of the left and right side-spots 22, 26 are preferably electronically shifted (delayed/advanced) to be in phase with the central spot 24. The time-shift is referred to in Equation 1 as Δ, and Δ is preferably given by the vertical (along the track direction) spot separation divided by the disc velocity.
A software simulation based on scalar diffraction is illustrated in
In
Low pass filters 66, 68 that limit the bandwidth by one half can be implemented using a single A/D converter 61 that receives the output of multiplexer 60. Demultiplexer 64 can select the digitized, low pass filtered version of side spots y+, y− for correlation within main spot y0. The correlations as described above can be implemented by the synchronization block 65 phase matching y+, y−, y0 in a first step by correlating a first of the side spots y+, y− (for example the left beam) with the central spot y0, and in a second step by correlating a second of the side spots y+, y− (for example the right spot) with the central spot y0. Subtractor 67 then takes the difference of side spots y+, y− which is multiplied by multiplier 68 to arrive at the complete correlation as described in Equation 1. This correlation is then low pass filtered by LPF 69 in a manner similar to that described above in
It will be readily understood by those skilled in the art that in
The preferred embodiments of the invention are for use in the newer generation of optical storage discs such as Blu-ray disc of extended formats and near field discs, where both tangential and radial densities will be pushed close to or beyond the resolution of the optical spot. It will be readily apparent to those skilled in the art that implementations other than these preferred embodiments are possible. Therefore, the scope of the invention should be measured by the appended claims.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/54106 | 12/7/2005 | WO | 00 | 6/21/2007 |
Number | Date | Country | |
---|---|---|---|
60639449 | Dec 2004 | US |