The invention relates generally to monitoring network files and more particularly to a method and system for tracking hits of requested network files transmitted over the Internet.
With the growth of the World Wide Web, an increasingly large fraction of available bandwidth on the Internet is used to transfer Web documents. Often, a Web document is formed of a number of files, such as text files, image files, audio files and video files. When an end-user at a requesting device, such as a personal computer, designates a particular Web document, a request may be made to an originating server to download the corresponding file. The total latency in downloading the requested file depends upon a number of factors, including the transmission speeds of communication links between the requesting device and the originating server in which the requested file is stored, delays that are incurred at the originating server in accessing the file, and delays incurred at any device located between the requesting device and the originating server.
One approach to reducing the total latency in downloading the requested file is the use of proxy servers. Proxy servers function as intermediaries between browsers at the end-user side of an Internet connection and the originating servers at the opposite side. An important benefit provided by the proxy server is its ability to cache frequently requested files, so that the need to continuously retrieve the same requested files is eliminated.
While caching is beneficial to the end-users, a concern is that it offsets inability of a Web site administrator of the originating server to accurately count the number of hits for the requested file, since at least some of the requests may be intercepted and serviced by the proxy server. A “hit” is an instance of accessing a network file, which may be temporary in nature, such as a “visit” to a Web site, or which may be more permanent in nature, such as a download of an executable file. There are advantages to enabling a Web site administrator to accurately count the number of hits for a particular file. For example, an accurate count may determine a popularity level of the Web site, so that the Web site administrator can determine how much to charge advertisers to present commercial banners that are displayed with each visit to the site.
U.S. Pat. No. 5,935,207 to Logue et al. describes a method for counting a number of hits made to a proxy server. According to the method, a hit is recorded for every request that is satisfied by a transfer of one or more cached files from an accessible proxy server (i.e., proxy server in which the Web site administrator has access to a hit report for the number of hits made for the requested file), if the requested file was pre-selected for tracking. There may be many of these accessible proxy servers. The total number of hits for the requested file is reported to the administrator when a request to report is made by the administrator to the accessible proxy server. While the Logue et al. method works well for its intended purpose, a concern is that the method loses its ability to accurately count the total number of hits for the requested file, since the administrator does not have access to a hit report for requests made to non-accessible proxy servers. As an example, the non-accessible proxy server may be located in a local-area network between multiple end-users and the accessible proxy server. The end-users may make multiple requests for a same requested file that is downloaded from the accessible proxy server to the non-accessible proxy server, and finally, to the end-users. While there are multiple hits for the same request, only the hit by the accessible proxy server is recorded, since the administrator does not have access to a hit report for requests satisfied by the non-accessible proxy server. Consequently, the number of hits for the requested file is inaccurate.
Another concern is that a same request made by one end-user may be counted more than once if the request is reported by more than one accessible proxy servers. As an example, an end-user may make a single request for a file that is downloaded from a first accessible proxy server to a second accessible proxy, and finally, to the end-user. During the hit reporting process, the same request may be reported twice if a hit is reported by the first accessible proxy server and another hit is reported by the second accessible proxy server.
What is needed is a method and system to accurately count the total number of hits for requested files made over a network.
A method and system for tracking hits of a requested network file include embedding or attaching an instruction within the network file that directs the requesting device to transmit an indicator subsequent to the requesting device receiving the network file. In one embodiment of the invention, there is a different file-specific indicator that is transmitted for every network file received by the requesting device of the end-user. The indicator is transmitted to a remote processor. Each indicator is counted by the remote processor for tracking a total number of hits.
The request for the network file may be transmitted over the global communications network referred to as the Internet from an end-user at the requesting device. The instruction embedded within the Internet file may be compatible with JavaScript and transparent to the end-user. The instruction to transmit the indicator can only be executed by an end-user browser. Thus, the indicator is transmitted from the requesting device only when the end-user has received the requested file. The instruction includes an address (e.g., Universal Resource Locator) of the remote processor, so that the indicator can be sent over the Internet from the requesting device of the end-user to the remote processor for counting. The indicator includes the URL of the requested file for identifying the requested file to enable tracking of the file.
The Internet file may be a text file, image file, audio file, or video file. In a conventional manner, the Internet file may be cached at an intermediate proxy server. In a case in which the request for the Internet file is received at the proxy server, a cached copy of the requested Internet file is transmitted to the end-user. The cached copy includes the instruction that directs the requesting device to transmit the indicator to the remote processor for counting. In one embodiment, the remote processor is included within the originating server. In another embodiment, the remote processor is within a component that is separate from the originating server.
In one possible application, the Internet file is a Web page stored at a Web server with other Web pages. The instruction is embedded within the Web page, so that if the Web page is cached at a proxy server, as is conventional in the art, the instruction is also cached. Thus, the instruction will reach the end-users (e.g., clients) regardless of whether the Web page is downloaded directly from the Web server or is downloaded from the proxy server. When the Web page reaches the client, the instruction triggers transmission of a count-inducing message that is the indicator. This message is sent from the client to the remote processor that is programmed to tally the hit count for the Web page. The transmission path may pass through any proxy server that functions as the intermediary or may follow a path separate from the proxy server.
An advantage of the invention is that by counting one count-inducing message for every requested Web page received by clients, a Web site administrator can more accurately track the total number of hits for the requested Web page.
With reference to
The system 10 includes a requesting device 14, an intermediate proxy server 16, an originating server 18 and a remote processor 20. The requesting device includes a Web browser 22 to enable an end-user to interact with the Internet 12. Common examples of a Web browser include Netscape Communicators® and Internet Explorer®. When the end-user performs actions enabled by the Web browser, such as a mouse click after a cursor has been positioned in alignment with a hypertext link, the requesting device generates a request 24 for a particular Internet file. If the proxy server receives the request intended for the originating server, cache storage 26 of the proxy server 16 is searched to determine whether a cached copy 28 of the requested file is stored at the proxy server. The cache storage is used for temporary storage of Internet files, such as text files, image files, audio files and video files, that are downloaded from the originating server 18 and from many other originating servers. If the requested file is found in the cache storage, the request is serviced by the proxy server. The cached copy 28 is transmitted from the proxy server to the requesting device, via a return path as indicated by an arrow 30. The Web browser 22 at the requesting device enables the end-user to view the requested file.
On the other hand, if the requested file is not found in the cache storage 26 of the intermediate proxy server 16, the request 24 is forwarded by the proxy server to the originating server 18, via a forward path as indicated by a dashed arrow 32. While not shown, the originating server may include multiple internal databases for storing a variety of network files. Subsequent to receiving the request at the originating server, a server copy 34 of the requested file is sent from the originating server to the requesting device, via a return path as indicated by a dashed arrow 36. The requested file may be designated by a Web site administrator of the originating server as a cachable file or a non-cachable file. If the requested file is designated as a cachable file, the intermediate proxy server 16 may store a copy (i.e., cached copy 28) at the cache storage 26 in anticipation of future requests. Conversely, if the requested file is designated as a non-cachable file, the intermediate proxy server is barred from storing a copy of the requested file. It should also be noted that in some situations, the server copy is sent directly to the requesting device without passing through the intermediate proxy server.
In accordance with one embodiment of the invention, an instruction 37 is embedded or otherwise attached within the requested Internet file. The instruction is designed to direct the requesting device 14 to transmit an indicator 38 to the remote processor 20 subsequent to the requesting device receiving the requested file. The instruction may be embedded within the Internet file by the Web site administrator of the originating server 18, so that if the file is cached at the proxy server 16, the instruction is also cached. Consequently, the instruction will reach the requesting device regardless of whether the requested file is the cached copy 28 downloaded from the intermediate proxy server 16 via the return path 30 or the server copy 34 downloaded from the originating server 18 via the return path 36.
After the requested file is received at the requesting device 14, the instruction to transmit the indicator 38 is executed by the Web browser 22 at the requesting device. In one embodiment, the instruction to transmit is executable only by the Web browser at the requesting device of the end-user. This is consistent with an event-driven type of performance monitoring, since the instruction triggers transmission of the indicator to the remote processor 20 for counting subsequent to receiving the requested file by the end-user.
The indicator 38 is a count-inducing message and includes a Universal Resource Locator (URL) of the requested file. As will be described in more detail below, the URL of the requested file enables tracking of the file by the remote processor 20. In one embodiment, there is one indicator that is transmitted for every requested file received by the requesting device 14. The indicator is transmitted to the remote processor 20 for tallying the hit count of the associated requested Internet file. In this manner, an accurate count of every requested file is made. The indicator may pass through the intermediate proxy server 16 on its way to the remote processor 20 or proceed directly to the remote processor.
The instruction 37 to transmit one indicator by the Web browser 22 at the requesting device 14 of the end-user is consistent with avoiding the problem of double counting of the same requested Internet file. As an example of double counting that would occur if the instruction is not programmed or embedded in the preferred manner, a single request made by the end-user at the requesting device may be counted twice when the cache storage 26 of the intermediate proxy server 16 does not contain a cached copy 28 and: (1) a first indicator 38 is sent to the remote processor 20 by the intermediate proxy server after receiving the server copy 34 from the originating server 18, and (2) a second indicator is sent to the remote processor by the requesting device 14 after receiving the cached copy from the proxy server. Thus, by formulating and embedding the instruction to transmit one indicator to the remote processor for counting only when the requested file is received by the requesting device of the end-user, the problem of double counting is avoided.
Additionally, the instruction 37 enables tracking of the requested file in real-time, since the indicator 38 is transmitted to the remote processor 20 for counting as soon as the requested file is received by the requesting device 14. As opposed to an approach in which a tally of a subtotal count is sent to the processor for counting after a certain threshold is reached, the system of the present invention enables tracking of every request received by the requesting device in close to real-time.
The instruction 37 to transmit the indicator 38 by the requesting device 14 of the end-user subsequent to the requesting device receiving the requested Internet file is included as part of a monitoring tool for monitoring client transactions performed over a communications network, such as the Internet 12. While other machine-executable instructions and languages, such as C++ functions, can be used, one example of a JavaScript sequence is as follows:
The instruction 37 of
Moreover, to enable tracking of a specific requested Internet file, a URL of the requested file is transmitted as part of the indicator 38 to the remote processor 20, as specified by the “document.URL” function in line 45 of the JavaScript example. In the embodiment shown in
The instruction 37 that is embedded within the requested file is transparent to the end-user at the requesting device 14.
While the system 10 of
The method for tracking hits of a requested Internet file is described with reference to the process flow diagram of
In step 46, a request for the network file is generated at the requesting device 14. In one embodiment, the request is generated at the requesting device of an end-user over the Internet 12. In step 48, the request for the network file is received. The request may be received by the intermediate proxy server 16. If the cache storage 26 of the intermediate proxy server includes a cached copy 28 of the requested file, the cached copy is sent to the requesting device in step 50. However, if the cache storage does not include the cached copy, the request is forwarded to the originating server 18, where a server copy 34 is subsequently sent to the requesting device in the same step 50. Both the server copy and the cached copy include the instruction 37 to transmit the indicator subsequent to the requesting device receiving the requested file. The instruction is transparent to the end-user of the requesting device.
In step 52, the instruction 37 is executed by the end-user Web browser at the requesting device subsequent to the requesting device receiving the requested file. In step 54, the indicator 38 is transmitted to the remote processor 20 as specified in the instruction. The indicator may pass through the intermediate proxy server 16 or proceed directly to the remote processor. In step 56, the indicator is processed. The indicator is counted for updating a tally of a total number of hits for the requested file.
Number | Name | Date | Kind |
---|---|---|---|
4500954 | Duke et al. | Feb 1985 | A |
5247615 | Mori et al. | Sep 1993 | A |
5581684 | Dudzik et al. | Dec 1996 | A |
5796393 | MacNaughton et al. | Aug 1998 | A |
5796952 | Davis et al. | Aug 1998 | A |
5809248 | Vidovic | Sep 1998 | A |
5844497 | Gray | Dec 1998 | A |
5935207 | Logue et al. | Aug 1999 | A |
6026440 | Shrader et al. | Feb 2000 | A |
6081665 | Nilsen et al. | Jun 2000 | A |
6161113 | Mora et al. | Dec 2000 | A |
6247064 | Alferness et al. | Jun 2001 | B1 |
6269392 | Cotichini et al. | Jul 2001 | B1 |
6279112 | O'Toole et al. | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6304651 | Cramer et al. | Oct 2001 | B1 |
6311190 | Bayer et al. | Oct 2001 | B1 |
6321310 | McCarthy et al. | Nov 2001 | B1 |
6351467 | Dillon | Feb 2002 | B1 |
6442594 | Ouchi | Aug 2002 | B1 |
6442600 | Anderson | Aug 2002 | B1 |
6453356 | Sheard et al. | Sep 2002 | B1 |
6496878 | Azevedo et al. | Dec 2002 | B1 |
6502099 | Rampy | Dec 2002 | B1 |
6504838 | Kwan | Jan 2003 | B1 |
6549944 | Weinberg et al. | Apr 2003 | B1 |
6596030 | Ball et al. | Jul 2003 | B2 |
6647534 | Graham | Nov 2003 | B1 |
6681282 | Golden et al. | Jan 2004 | B1 |
6704772 | Ahmed et al. | Mar 2004 | B1 |
6757533 | Lampela et al. | Jun 2004 | B2 |
6766420 | Rawson, III | Jul 2004 | B2 |
6769016 | Rothwell et al. | Jul 2004 | B2 |
6775695 | Sarukkai | Aug 2004 | B1 |
6819785 | Vining et al. | Nov 2004 | B1 |
6967946 | Tackin et al. | Nov 2005 | B1 |
7032007 | Fellenstein et al. | Apr 2006 | B2 |
20020046273 | Lahr et al. | Apr 2002 | A1 |
20020120697 | Generous et al. | Aug 2002 | A1 |
20020129051 | Abdelhadi et al. | Sep 2002 | A1 |
20020129064 | Guthrie | Sep 2002 | A1 |
20020143759 | Yu | Oct 2002 | A1 |
20030009496 | McBrearty et al. | Jan 2003 | A1 |
20030033283 | Evans et al. | Feb 2003 | A1 |
20030055883 | Wiles, Jr. | Mar 2003 | A1 |
20030105815 | Gusler et al. | Jun 2003 | A1 |
20030105924 | Spencer et al. | Jun 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20030177226 A1 | Sep 2003 | US |