Tracking large numbers of moving objects in an event processing system

Information

  • Patent Grant
  • 9189280
  • Patent Number
    9,189,280
  • Date Filed
    Friday, May 13, 2011
    13 years ago
  • Date Issued
    Tuesday, November 17, 2015
    9 years ago
Abstract
Techniques for tracking large numbers of moving objects in an event processing system are provided. An input event stream can be received, where the events in the input event stream represent the movement of a plurality of geometries or objects. The input event stream can then be partitioned among a number of processing nodes of the event processing system, thereby enabling parallel processing of one or more continuous queries for tracking the objects. The partitioning can be performed such that each processing node is configured to track objects in a predefined spatial region, and the spatial regions for at least two nodes overlap. This overlapping window enables a single node to find, e.g., all of the objects within a particular distance of a target object, even if the target object is in the process of moving from the region of that node to the overlapping region of another node.
Description
CROSS-REFERENCES TO RELATED APPLICATIONS

The present application is related to U.S. patent application Ser. No. 12/949,081, filed Nov. 18, 2010, titled “SPATIAL DATA CARTRIDGE FOR EVENT PROCESSING SYSTEMS,” the entire contents of which are incorporated herein by reference for all purposes.


BACKGROUND

Embodiments of the present invention relate in general to event processing, and in particular to techniques for tracking large numbers of moving objects in an event processing system.


Traditional database management systems (DBMSs) execute queries in a “one-off” fashion over finite, stored data sets. For example, a traditional DBMS will receive a request to execute a query from a client, execute the query exactly once against one or more stored database tables, and return a result set to the client.


In recent years, event processing systems have been developed that can execute queries over streams of data rather than finite data sets. Since these streams (referred to herein as “event streams”) can comprise a potentially unbounded sequence of input events, an event processing system can execute a query over the streams in a continuous (rather than one-off) manner. This allows the system to continually process new events as they are received. Based on this processing, the event processing system can provide an ongoing stream of results to a client. One example of such an event processing system is the Oracle Complex Event Processing (CEP) Server developed by Oracle Corporation.


Given their unique capabilities, event processing systems are well-suited for enabling applications that require real-time or near real-time processing of streaming data. For instance, event processing systems are particularly well-suited for building “spatial” applications (i.e., applications that require analysis of streams of spatial or geographic location data). Examples of such spatial applications include geographic information systems (GIS), location-enabled business intelligence solutions, geomatics/telematics applications, and the like. Some event processing systems, such as the Oracle CEP Server, provide an extension mechanism for supporting specific spatial features/operations (e.g., spatial data indexing, proximity and overlap determinations, etc.). Information regarding such an extension mechanism can be found in U.S. patent application Ser. No. 12/949,081, filed Nov. 18, 2010, titled “SPATIAL DATA CARTRIDGE FOR EVENT PROCESSING SYSTEMS,” the entire contents of which are incorporated herein by reference for all purposes.


One limitation with existing event processing systems that allow spatial operations is that they generally cannot support the tracking of a very large number (e.g., greater than one million) of moving geometries or objects. For example, consider use cases from the telematics market where an application needs to (1) determine all of the vehicles impacted by certain traffic events, or (2) detect “buddies” close to a moving vehicle position, where there is an m to n relation between the number of vehicles and buddies using other vehicles. If the total number of vehicles in these use cases is in the range of millions, a conventional event processing system generally cannot index and keep track of all of the vehicles in an efficient manner.


BRIEF SUMMARY

Embodiments of the present invention provide techniques for tracking large numbers of moving objects in an event processing system. In one set of embodiments, an input event stream can be received, where the events in the input event stream represent the movement of a plurality of geometries or objects. The input event stream can then be partitioned among a number of processing nodes of the event processing system, thereby enabling parallel processing of one or more continuous queries for tracking the objects. In a particular embodiment, the partitioning can be performed such that (1) each processing node is configured to track objects in a predefined spatial region, and (2) the spatial regions for at least two nodes overlap. This overlapping window enables a single node to find, e.g., all of the objects within a particular distance of a target object, even if the target object is in the process of moving from the region of that node to the overlapping region of another node.


According to one embodiment of the present invention, a method is provided that includes receiving, by a computer system, an input event stream comprising a sequence of events, the sequence of events representing the movement of a plurality of objects. The method further includes partitioning, by the computer system, the input event stream among a plurality of processing nodes to facilitate parallel tracking of the objects, where each processing node is configured to track objects in a predefined spatial region, and where the predefined spatial regions for at least two processing nodes in the plurality of processing nodes overlap.


In one embodiment, each event includes an identifier of an object and a current position of the object.


In one embodiment, partitioning the input event stream includes, for each event, determining a subset of processing nodes in the plurality of processing nodes configured to track objects in a predefined spatial region that encompasses the current position of the object; and for each processing node in the plurality of processing nodes: determining whether the processing node is in the subset; if the processing node is in the subset, determining whether to insert or update the event in a relation operated on by the processing node; and if the processing node is not in the subset, determining whether to delete the event from the relation operated on by the processing node.


In one embodiment, determining whether to insert or update the event in the relation operated on by the processing node includes retrieving, from a bit vector stored for the processing node, a bit value associated with the object; if the bit value is zero, transmitting to the processing node a command for inserting the event into the relation and setting the bit value to one; and if the bit value is one, transmitting to the processing node a command for updating the event in the stream.


In one embodiment, determining whether to delete the event from the relation operated on by the processing node includes retrieving, from a bit vector stored for the processing node, a bit value associated with the object; and if the bit value is one, transmitting to the processing node a command for deleting the event from the relation and clearing the bit value to zero.


In one embodiment, the predefined spatial regions for the plurality of processing nodes are indexed using an R-tree index.


In one embodiment, determining the subset of processing nodes includes performing, based on the current position of the object, a search into the R-tree index.


In one embodiment, the computer system is a load balancing node of an event processing system.


In one embodiment, the sequence of events represent the movement of more than one million distinct objects.


In one embodiment, the plurality of objects are motor vehicles.


In one embodiment, the predefined spatial regions for the plurality of processing nodes are one-dimensional, two-dimensional, or three-dimensional regions.


According to another embodiment of the present invention, a non-transitory computer readable medium having stored thereon program code executable by a processor is provided. The program code includes code that causes the processor to receive an input event stream comprising a sequence of events, the sequence of events representing the movement of a plurality of objects; and code that causes the processor to partition the input event stream among a plurality of processing nodes to facilitate parallel tracking of the objects, where each processing node is configured to track objects in a predefined spatial region, and where the predefined spatial regions for at least two processing nodes in the plurality of processing nodes overlap.


According to another embodiment of the present invention, an event processing system that comprises a load balancer node and a plurality of processing nodes. The load balance node is configured to receive an input event stream comprising a sequence of events, the sequence of events representing the movement of a plurality of objects; and partition the input event stream among the plurality of processing nodes to facilitate parallel tracking of the objects, wherein each processing node is configured to track objects in a predefined spatial region, and wherein the predefined spatial regions for at least two processing nodes in the plurality of processing nodes overlap.


The foregoing, together with other features and embodiments, will become more apparent when referring to the following specification, claims, and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified block diagram of an event processing system in accordance with an embodiment of the present invention.



FIG. 2 is a simplified block diagram of a load balancing node in accordance with an embodiment of the present invention.



FIGS. 3-6 are flow diagrams of a process for partitioning an input event stream among a plurality of processing nodes in accordance with an embodiment of the present invention.



FIG. 7 is a simplified block diagram of a system environment in accordance with an embodiment of the present invention.



FIG. 8 is a simplified block diagram of a computer system in accordance with an embodiment of the present invention.





DETAILED DESCRIPTION

In the following description, for the purposes of explanation, numerous details are set forth in order to provide an understanding of embodiments of the present invention. It will be apparent, however, to one of ordinary skill in the art that certain embodiments can be practiced without some of these details.


Embodiments of the present invention provide techniques for tracking large numbers of moving objects in an event processing system. In one set of embodiments, an input event stream can be received, where the events in the input event stream represent the movement of a plurality of geometries or objects. The input event stream can then be partitioned among a number of processing nodes of the event processing system, thereby enabling parallel processing of one or more continuous queries for tracking the objects. In a particular embodiment, the partitioning can be performed such that (1) each processing node is configured to track objects in a predefined spatial region, and (2) the spatial regions for at least two nodes overlap. This overlapping window enables a single node to find, e.g., all of the objects within a particular distance of a target object, even if the target object is in the process of moving from the region of that node to the overlapping region of another node.



FIG. 1 is a simplified block diagram of an event processing system 100 according to an embodiment of the present invention. Event processing system 100 can be implemented in hardware, software, or a combination thereof. Unlike traditional DBMSs, event processing system 100 can process queries (i.e., “continuous queries”) in a continuous manner over potentially unbounded, real-time event streams. For example, event processing system 100 can receive one or more input event streams from a source (e.g., source 102), execute continuous queries against the input event streams, and generate one or more output event streams destined for a client (e.g., application 104). In a particular embodiment, event processing system 100 can include a mechanism (such as the spatial data cartridge described in U.S. patent application Ser. No. 12/949,081 titled “SPATIAL DATA CARTRIDGE FOR EVENT PROCESSING SYSTEMS”) that enables the system to process continuous queries that reference spatial data types, method, fields, and the like.


As shown, event processing system 100 can include a load balancing node 106 and one or more processing nodes 108-112. Although only a single load balancing node and three processing nodes are depicted in FIG. 1, any number of such nodes can be supported.


In one set of embodiments, load balancing node 106 can be configured to partition an input event stream received from source 102 among processing nodes 108-112, thereby enabling the processing nodes to execute one or more continuous queries over the event stream in parallel. By way of example, if the input event stream comprises events E1 through E9, load balancing node 106 might decide to partition the stream such that events E1-E3 are handled by processing node 108, events E4-E6 are handled by processing node 110, and events E7-E9 are handled by processing node 112. In one embodiment, this partitioning can be accomplished by inserting, updating, or deleting events into/from relations maintained by each processing node.


In the context of a spatial application, the input event stream received by load balancing node 106 from source 102 can include events that correspond to the movement of a plurality of geometries or objects (e.g., people, motor vehicles, airplanes, etc.). In these embodiments, load balancing node 106 can partition the events among processing nodes 108-112 based on location information, such that each processing node is responsible for executing queries against a relation representing a predefined spatial region. In various embodiments, the predefined spatial region can be a one-dimensional, two-dimensional, or three-dimensional region. If the spatial application simply requires the identification of non-moving objects in an area of interest (e.g., a geo-fencing use case), the spatial regions handled by each processing node can be disjoint, and no special processing needs to be performed by load balancing node 106 to insert/update/delete events into the relations associated with the processing nodes—the relations will generally be static.


However, if the spatial application requires the tracking of moving objects across an area of interest, the spatial regions handled by adjacent processing nodes can overlap to some extent. This overlapping window enables a single processing node to find, e.g., all of the objects within a particular distance of a target object, even if the target object is in the process of moving from the region of that node to the overlapping region of another node. The processing performed by load balancing node 106 to enable partitioning across overlapping regions is described in greater detail below.


As described above, processing nodes 108-112 can each be configured to execute one more continuous queries over some partition or subset of the input event stream received from source 102. In the spatial context, processing nodes 108-112 can each be configured to execute one more continuous queries with respect to objects located in a predefined spatial region. Further, to accommodate the tracking of moving objects, the spatial regions for two more processing nodes can overlap. In one embodiment, processing nodes 108-112 can each correspond to a separate processor in a single machine. In other embodiments, processing nodes 108-112 can each correspond to an event processing server instance running on a separate machine.


It should be appreciated that event processing system 100 of FIG. 1 is illustrative and not intended to limit embodiments of the present invention. For example, event processing system 100 can have other capabilities or include other components that are not specifically described. One of ordinary skill in the art will recognize many variations, modifications, and alternatives.



FIG. 2 is a simplified block diagram that illustrates a functional representation of load balancing node 106 according to an embodiment of the present invention. As shown, load balancing node 106 can including an overlapping partition adapter 200 and a sparse partitioner 202.


In various embodiments, overlapping partition adapter 200 is configured to receive input events from source 102 and efficiently partition the events among processing nodes 108-112 in a manner that takes into account overlapping regions between the processing nodes. By way of example, consider an object moving across a 2D area, where a first portion of the area is handled by processing node 108 and a second, overlapping portion of the area is handled by processing node 110. Assume that the object starts out at time T1 within the region handled by processing node 108, and at time T2 moves into the overlap area between node 108 and node 110. When this occurs, the event corresponding to the object should be inserted into the relation maintained by processing node 110 (so that it is “visible” to processing node 110), while also being updating in the relation maintained by processing node 108. Further, assume that the object moves at time T3 entirely into the region handled by node 110. At this point, the event corresponding to the object should be deleted from the relation maintained by node 108 while be updated in the relation maintained by node 110.


To accomplish the above, overlapping partition adapter 200 can carry out an algorithm in load balancing node 106 that appropriately inserts, updates, or deletes events to/from the relations maintained by processing nodes 108-112 to ensure that the processing nodes are correctly updated to track the movement of objects across the nodes. In certain cases, this algorithm can cause an event corresponding to an object to be inserted/updated in the relations of two or more processing nodes (if it is determined that the object is in an overlapping area between the nodes).


In a particular embodiment, overlapping partition adapter 200 can maintain a bit vector for each processing node, where each bit vector includes a bit entry for each unique object being processing by system 100. If the bit entry for a given object is set, that indicates that an event corresponding to the object was previously inserted into the relation being handled by the processing node (and it is still there). If the bit entry is not set, that indicates that an event corresponding to the object has not yet been inserted into (or was deleted from) the relation being handled by the processing node. These bit vectors allow overlapping partition adapter 200 to keep track of which processing nodes it has inserted events into, and which processing nodes it needs to update or delete a given event/object from. The details of the algorithm performed by overlapping partition adapter 200 (and how it updates these bit vectors) is described with respect to FIGS. 3-6 below.


Sparse partitioner 202 is an auxiliary component of load balancing node 106 that is configured to identify “participating” processing nodes for a given input event/object. In other words, sparse partitioner 202 can determine which processing nodes handle a spatial region that covers the current location of a given object. In various embodiments, overlapping partition adapter 200 can invoke sparse partitioner 202 to obtain a list of participating processing nodes for each input event or object and use the list within its partitioning algorithm.


In one set of embodiments, sparse partitioner 202 can maintain an Rtree index that indexes bounding rectangles associated with the processing nodes. Each bounding rectangle can represent the spatial region handled by a particular node. Accordingly, when an input event is received, sparse partitioner 202 can use the coordinates for the object associated with the event to perform a search into the Rtree index and return a list or array of processing nodes whose bounding rectangle covers the coordinates.


It should be appreciated that load balancing node 106 of FIG. 2 is illustrative and not intended to limit embodiments of the present invention. For example, load balancing node 106 can have other capabilities or include other components that are not specifically described. One of ordinary skill in the art will recognize many variations, modifications, and alternatives.



FIG. 3 is a flow diagram illustrating a process 300 for partitioning an input event stream among a plurality of processing nodes according to an embodiment of the present invention. In one set of embodiments, process 300 can be carried out by overlapping partition adapter 200 of FIG. 2. Process 300 can be implemented in hardware, software, or a combination thereof. As software, process 300 can be encoded as program code stored on a machine-readable storage medium.


At block 302, overlapping partition adapter 200 can receive an input event stream comprising a sequence of events, where the events represent the movement of a plurality of objects. For example, each event can include an identifier of an object, a current position (e.g., coordinates) of the object, and a timestamp. In a particular embodiment, the events in the event stream can represent the movement of a very large number of objects (e.g., greater than one million).


At block 304, overlapping partition adapter 200 can partition the input event stream among a plurality of processing nodes (e.g., nodes 108-112 of FIG. 1), where each node is configured to track objects within a predefined spatial region, and where the spatial regions for at least two processing nodes overlap. As discussed above, this overlap enables a single node to find, e.g., all of the objects within a particular distance of a target object, even if the target object is in the process of moving from the region of that node to the overlapping region of another node.



FIG. 4 illustrates a flow 400 that can be executed by overlapping partition adapter 200 as part of the processing of block 304 of FIG. 3. As shown in FIG. 4, for each event received in the event stream, overlapping partition adapter 200 can determine a list of participating processing nodes for the object identified in the event (blocks 402, 404). As discussed above, this determination can be carried out by passing the position of the object to sparse partitioner 202 of FIG. 2. Sparse partitioner 202 can then use the object's position to perform a search (e.g., an Rtree index search) of processing nodes whose spatial region covers the object's position.


Upon receiving the list of participating processing nodes from sparse partitioner 202, overlapping partition adapter 200 can iterate through all of the processing nodes in the system and determine whether a given node is a participating node (e.g., is in the list returned by sparse partitioner 202) (blocks 406, 408). If a given node is a participating node, that means the object identified by the current event should be tracked by the node. Accordingly, overlapping partition adapter 200 can determine whether to insert or update the event into the relation maintained by the node (block 410). If the node is not a participating node, that means the object identified by the event should not (or should no longer) be tracked by the node. Accordingly, overlapping partition adapter 200 can determine whether to delete the event from the relation maintained by the node (block 412).


Once the determination at block 410 or 412 is made, overlapping partition adapter 200 can continue to iterate through all of the processing nodes, and repeat this loop for each incoming event (blocks 414, 416).



FIG. 5 illustrates a flow 500 that can be executed by overlapping partition adapter 200 as part of the processing of block 410 of FIG. 4. At block 502, overlapping partition adapter 200 can retrieve, from a bit vector stored for the current processing node, a bit value associated with the current object. As discussed above with respect to FIG. 2, a bit vector is stored for each processing node in the system and reflects which objects are currently being tracked by the node.


If the bit value for the object is set (i.e., has a value of one), overlapping partition adapter 200 can transmit an updateevent command to the processing node for updating the event in the relation (blocks 504, 506). If the bit value for the object is not set (i.e., has a value of zero), overlapping partition adapter 200 can transmit an insertevent command to the processing node for inserting the event into the relation (blocks 504, 508). Adapter 200 can then set the bit value (i.e., change the value to one) to indicate that the processing node is now tracking the object (block 510).



FIG. 6 illustrates a flow 600 that can be executed by overlapping partition adapter 200 as part of the processing of block 412 of FIG. 4. Like block 502 of FIG. 5, overlapping partition adapter 200 can retrieve, from a bit vector stored for the current processing node, a bit value associated with the current object (block 602). If the bit value for the object is set (i.e., has a value of one), overlapping partition adapter 200 can transmit a deleteevent command to the processing node for deleting the event in the relation (blocks 604, 606). The adapter can then clear the bit value (i.e., change the value to zero) to indicate that the processing node is no longer tracking the object (block 608). If the bit value for the object is not set (i.e., has a value of zero), overlapping partition adapter 200 can do nothing (block 610).


It should be appreciated that the flow diagrams depicted in FIGS. 3-6 are illustrative and that variations and modifications are possible. Steps described as sequential can be executed in parallel, order of steps can be varied, and steps can be modified, combined, added, or omitted. One of ordinary skill in the art would recognize many variations, modifications, and alternatives.


Using the techniques described above, embodiments of the present invention can support very large scale moving object tracking in an event processing system (e.g., greater than one million objects), while using a relatively small amount of working memory. For example, only 128 Kilobytes of memory are needed per processing node (for the bit vector) for handling one million unique moving objects. Further, note that the module for identifying participating nodes (i.e., sparse partitioner 202) is separate from the insert/update/delete event processing performed by overlapping partition adapter 200. Accordingly different types of partitioning policies can be plugged into the system to support different spatial use cases.



FIG. 7 is a simplified block diagram illustrating a system environment 700 that can be used in accordance with an embodiment of the present invention. As shown, system environment 700 can include one or more client computing devices 702, 704, 706, 708, which can be configured to operate a client application such as a web browser, a UNIX/SOLARIS terminal application, and/or the like. In one set of embodiments, client computing devices 702, 704, 706, 708 may be configured to run one or more client applications that interact with event processing system 100 of FIG. 1.


Client computing devices 702, 704, 706, 708 can be general purpose personal computers (e.g., personal computers and/or laptop computers running various versions of MICROSOFT WINDOWS and/or APPLE MACINTOSH operating systems), cell phones or PDAs (running software such as Microsoft Windows Mobile and being Internet, e-mail, SMS, Blackberry, or other communication protocol enabled), and/or workstation computers running any of a variety of commercially-available UNIX or UNIX-like operating systems (including without limitation the variety of GNU/Linux operating systems). Alternatively, client computing devices 702, 704, 706, 708 can be any other electronic device capable of communicating over a network, such as network 712 described below. Although system environment 700 is shown with four client computing devices, it should be appreciated that any number of client computing devices can be supported.


System environment 700 can further include a network 712. Network 712 can be any type of network familiar to those skilled in the art that can support data communications using a network protocol, such as TCP/IP, SNA, IPX, AppleTalk, and the like. Merely by way of example, network 712 can be a local area network (LAN), such as an Ethernet network, a Token-Ring network and/or the like; a wide-area network; a virtual network, including without limitation a virtual private network (VPN); the Internet; an intranet; an extranet; a public switched telephone network (PSTN); an infra-red network; a wireless network (e.g., a network operating under any of the IEEE 802.11 suite of protocols, the Bluetooth protocol known in the art, and/or any other wireless protocol); and/or any combination of these and/or other networks.


System environment 700 can further include one or more server computers 710 which can be general purpose computers, specialized server computers (including, e.g., PC servers, UNIX servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms, server clusters, or any other appropriate arrangement and/or combination. Server 710 can run an operating system including any of those discussed above, as well as any commercially available server operating system. Server 710 can also run any of a variety of server applications and/or mid-tier applications, including web servers, FTP servers, CGI servers, JAVA virtual machines, and the like. In one set of embodiments, server 710 may correspond to a machine configured to run event processing system 100 of FIG. 1.


System environment 700 can further include one or more databases 714. In one set of embodiments, databases 714 can include databases that are managed by server 710 (e.g., database 108 of FIG. 1). Databases 714 can reside in a variety of locations. By way of example, databases 714 can reside on a storage medium local to (and/or resident in) one or more of computers 702, 704, 706, 708, and 710. Alternatively, databases 714 can be remote from any or all of computers 702, 704, 706, 708, and 710, and/or in communication (e.g., via network 712) with one or more of these. In one set of embodiments, databases 714 can reside in a storage-area network (SAN) familiar to those skilled in the art.



FIG. 8 is a simplified block diagram illustrating a computer system 800 that can be used in accordance with an embodiment of the present invention. In various embodiments, computer system 800 can be used to implement any of computers 702, 704, 706, 708, and 710 described with respect to system environment 700 above. As shown, computer system 800 can include hardware elements that are electrically coupled via a bus 824. The hardware elements can include one or more central processing units (CPUs) 802, one or more input devices 804 (e.g., a mouse, a keyboard, etc.), and one or more output devices 806 (e.g., a display device, a printer, etc.). Computer system 800 can also include one or more storage devices 808. By way of example, the storage device(s) 808 can include devices such as disk drives, optical storage devices, and solid-state storage devices such as a random access memory (RAM) and/or a read-only memory (ROM), which can be programmable, flash-updateable and/or the like.


Computer system 800 can additionally include a computer-readable storage media reader 812, a communications subsystem 814 (e.g., a modem, a network card (wireless or wired), an infra-red communication device, etc.), and working memory 818, which can include RAM and ROM devices as described above. In some embodiments, computer system 800 can also include a processing acceleration unit 816, which can include a digital signal processor (DSP), a special-purpose processor, and/or the like.


Computer-readable storage media reader 812 can be connected to a computer-readable storage medium 810, together (and, optionally, in combination with storage device(s) 808) comprehensively representing remote, local, fixed, and/or removable storage devices plus storage media for temporarily and/or more permanently containing computer-readable information. Communications system 814 can permit data to be exchanged with network 712 and/or any other computer described above with respect to system environment 700.


Computer system 800 can also comprise software elements, shown as being currently located within working memory 818, including an operating system 820 and/or other code 822, such as an application program (which may be a client application, Web browser, middle tier/server application, etc.). It should be appreciated that alternative embodiments of computer system 800 can have numerous variations from that described above. For example, customized hardware can be used and particular elements can be implemented in hardware, software, or both. Further, connection to other computing devices such as network input/output devices can be employed.


Computer readable storage media for containing code, or portions of code, executable by computer system 800 can include any appropriate media known or used in the art, such as but not limited to volatile/non-volatile and removable/non-removable media. Examples of computer-readable storage media include RAM, ROM, EEPROM, flash memory, CD-ROM, digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, an any other medium that can be used to store data and/or program code and that can be accessed by a computer.


Although specific embodiments of the invention have been described above, various modifications, alterations, alternative constructions, and equivalents are within the scope of the invention. For example, embodiments of the present invention are not restricted to operation within certain specific data processing environments, but are free to operate within a plurality of data processing environments. Further, although embodiments of the present invention have been described with respect to certain flow diagrams and steps, it should be apparent to those skilled in the art that the scope of the present invention is not limited to the described diagrams/steps.


Yet further, although embodiments of the present invention have been described using a particular combination of hardware and software, it should be recognized that other combinations of hardware and software are also within the scope of the present invention.


The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense. It will be evident that additions, subtractions, and other modifications may be made thereunto without departing from the broader spirit and scope of the invention as set forth in the following claims.

Claims
  • 1. A method comprising: receiving, by a computer system, an input event stream comprising a sequence of events, the sequence of events representing movement of a plurality of objects, wherein the input event stream includes a first event of the sequence of events, the first event being associated with a first object of the plurality of objects; andpartitioning, by the computer system, the input event stream among a plurality of processing nodes to facilitate parallel tracking of the plurality of objects using a plurality of bit vectors that correspond to the plurality of processing nodes, wherein each of the plurality of bit vectors comprises a plurality of bit values corresponding to the plurality of objects, wherein each processing node of the plurality of processing nodes is configured to track those of the plurality of objects having spatial positions in a predefined spatial region, and wherein the predefined spatial regions for at least two processing nodes in the plurality of processing nodes overlap, wherein the partitioning for the first event includes: determining, by the computer system, a spatial position of the first object based upon the first event;determining, by the computer system, that the spatial position of the first object is in the predefined spatial region tracked by a first processing node of the plurality of processing nodes;determining, by the computer system using a first bit value of a first bit vector of the plurality of bit vectors that is associated with the first processing node, that the first processing node is not currently tracking the first object, wherein the first bit value is associated with the first object;changing, by the computer system, the first bit value from a first value to a second value that is different than the first value; andtransmitting, by the computer system, a command to the first processing node for inserting the first event into a first spatial-region-representing relation that is operated upon by the first processing node.
  • 2. The method of claim 1 wherein: the plurality of processing nodes operate upon a plurality of spatial-region-representing relations, the plurality of spatial-region-representing relations including the first spatial-region-representing relation;each event of the sequence of events includes an identifier of the associated object and a current spatial position of the object; andthe partitioning the input event stream comprises, for each received event: determining a subset of processing nodes in the plurality of processing nodes configured to track objects in the predefined spatial region that encompasses the current position of the object; andfor each processing node in the plurality of processing nodes: determining whether the processing node is in the subset;when the processing node is in the subset, determining whether to cause the event to be inserted or updated in the spatial-region-representing relation operated on by the processing node; andwhen the processing node is not in the subset, determining whether to cause the event to be deleted from the spatial-region-representing relation operated on by the processing node.
  • 3. The method of claim 2 wherein determining whether to insert or update the event in the relation operated on by the processing node comprises: retrieving, from the bit vector associated with the processing node, the bit value associated with the object;when the bit value is the first value: transmitting to the processing node a command for inserting the event into the spatial-region-representing relation; andsetting the bit value to the second value; andwhen the bit value is the second value, transmitting a command to the processing node for updating the event in the spatial-region-representing relation.
  • 4. The method of claim 2 wherein determining whether to delete the event from the relation operated on by the processing node comprises: retrieving, from the bit vector stored for the processing node, the bit value associated with the object; andwhen the bit value is the second value: transmitting to the processing node a command for deleting the event from the relation; andsetting the bit value to the first value.
  • 5. The method of claim 2 wherein: the predefined spatial regions for the plurality of processing nodes are indexed using an R-tree index; andthe determining the subset of processing nodes comprises performing, based on the current position of the object, a search into the R-tree index.
  • 6. The method of claim 1 wherein the computer system is a load balancing node of an event processing system.
  • 7. The method of claim 1 wherein the sequence of events represent the movement of more than one million distinct objects.
  • 8. The method of claim 1 wherein the plurality of objects are motor vehicles.
  • 9. The method of claim 1 wherein the predefined spatial regions for the plurality of processing nodes are one-dimensional, two-dimensional, or three-dimensional regions.
  • 10. The method of claim 1, wherein the input event stream further includes a second event of the sequence of events that is associated with a second object of the plurality of objects, and wherein the partitioning for the second event includes: determining, by the computer system, a second spatial position of the second object based upon the second event;determining, by the computer system, that the second spatial position of the second object is in a second predefined spatial region tracked by a second processing node of the plurality of processing nodes and a third predefined spatial region tracked by a third processing node of the plurality of processing nodes;determining, by the computer system using a second bit value of a second bit vector of the plurality of bit vectors that is associated with the second processing node, that the second processing node is currently tracking the second object, wherein the second bit value is associated with the second object;transmitting, by the computer system, a second command to the second processing node for updating the second event in a second spatial-region-representing relation that is operated upon by the second processing node;determining, by the computer system using a third bit value of a third bit vector of the plurality of bit vectors that is associated with the third processing node, that the third processing node is not currently tracking the second object, wherein the third bit value is associated with the second object;changing, by the computer system, the third bit value from the first value to the second value; andtransmitting, by the computer system, a third command to the third processing node for inserting the second event into a third spatial-region-representing relation that is operated upon by the third processing node.
  • 11. The method of claim 1, wherein the partitioning for the first event further includes: prior to the changing the first bit value, identifying, by the computer system, from the first bit vector corresponding to the first processing node, the first bit value;determining, by the computer system, a type of the command to be sent to the first processing node based on the first bit value.
  • 12. The method of claim 1, wherein the input event stream further includes a second event of the sequence of events that is also associated with the first object, wherein the partitioning further includes: determining, by the computer system, a second spatial position of the first object based upon the second event;determining, by the computer system, that the second spatial position of the second object is not in the first predefined spatial region tracked by the first processing node;determining, by the computer system using a second bit value of a first bit vector, that the first processing node is currently tracking the first object;changing, by the computer system, the first bit value from the second value to the first value; andtransmitting, by the computer system, another command to the first processing node for deleting one or more events associated with the first object from the first spatial-region-representing relation operated upon by the first processing node.
  • 13. A non-transitory computer readable medium having stored thereon program code executable by a processor, the program code comprising: code that causes the processor to receive an input event stream comprising a sequence of events, the sequence of events representing movement of a plurality of objects, wherein the input event stream includes a first event of the sequence of events, the first event being associated with a first object of the plurality of objects; andcode that causes the processor to partition the input event stream among a plurality of processing nodes to facilitate parallel tracking of the plurality of objects using a plurality of bit vectors that correspond to the plurality of processing nodes, wherein each of the plurality of bit vectors comprises a plurality of bit values corresponding to the plurality of objects, wherein each processing node of the plurality of processing nodes is configured to track those of the plurality of objects having spatial positions in a predefined spatial region, and wherein the predefined spatial regions for at least two processing nodes in the plurality of processing nodes overlap, wherein the partitioning for the first event includes: determining a spatial position of the first object based upon the first event;determining that the spatial position of the first object is in the predefined spatial region tracked by a first processing node of the plurality of processing nodes;determining, using a first bit value of a first bit vector of the plurality of bit vectors that is associated with the first processing node, that the first processing node is not currently tracking the first object, wherein the first bit value is associated with the first object;changing the first bit value from a first value to a second value that is different than the first value; andtransmitting a command to the first processing node for inserting the first event into a first spatial-region-representing relation that is operated upon by the first processing node.
  • 14. The non-transitory computer readable medium of claim 13, wherein: the plurality of processing nodes operate upon a plurality of spatial-region-representing relations, the plurality of spatial-region-representing relations including the first spatial-region-representing relation;each event of the sequence of events includes an identifier of the associated object and a current spatial position of the object; andthe partitioning the input event stream comprises, for each received event: determining a subset of processing nodes in the plurality of processing nodes configured to track objects in the predefined spatial region that encompasses the current position of the object; andfor each processing node in the plurality of processing nodes: determining whether the processing node is in the subset;when the processing node is in the subset, determining whether to cause the event to be inserted or updated in the spatial-region-representing relation operated on by the processing node; andwhen the processing node is not in the subset, determining whether to cause the event to be deleted from the spatial-region-representing relation operated on by the processing node.
  • 15. The non-transitory computer readable medium of claim 13, wherein the partitioning for the first event further includes: prior to the changing the first bit value, identifying, from the first bit vector corresponding to the first processing node, the first bit value;determining a type of the command to be sent to the first processing node based on the first bit value.
  • 16. The non-transitory computer readable medium of claim 13, wherein the input event stream further includes a second event of the sequence of events that is also associated with the first object, wherein the partitioning further includes: determining a second spatial position of the first object based upon the second event;determining that the second spatial position of the second object is not in the first predefined spatial region tracked by the first processing node;determining, using a second bit value of a first bit vector, that the first processing node is currently tracking the first object;changing the first bit value from the second value to the first value; andtransmitting another command to the first processing node for deleting one or more events associated with the first object from the first spatial-region-representing relation operated upon by the first processing node.
  • 17. An event processing system, comprising: a load balancer node; anda plurality of processing nodes,wherein the load balancer node is configured to: receive an input event stream comprising a sequence of events, the sequence of events representing movement of a plurality of objects, wherein the input event stream includes a first event of the sequence of events, the first event being associated with a first object of the plurality of objects; andpartition the input event stream among the plurality of processing nodes to facilitate parallel tracking of the plurality of objects using a plurality of bit vectors that correspond to the plurality of processing nodes, wherein each of the plurality of bit vectors comprises a plurality of bit values corresponding to the plurality of objects, wherein each processing node of the plurality of processing nodes is configured to track those of the plurality of objects having spatial positions in a predefined spatial region, and wherein the predefined spatial regions for at least two processing nodes in the plurality of processing nodes overlap, wherein the partitioning for the first event includes:determining a spatial position of the first object based upon the first event;determining that the spatial position of the first object is in the predefined spatial region tracked by a first processing node of the plurality of processing nodes;determining, using a first bit value of a first bit vector of the plurality of bit vectors that is associated with the first processing node, that the first processing node is not currently tracking the first object, wherein the first bit value is associated with the first object;changing the first bit value from a first value to a second value that is different than the first value; andtransmitting a command to the first processing node for inserting the first event into a first spatial-region-representing relation that is operated upon by the first processing node.
  • 18. The event processing system of claim 17, wherein: the plurality of processing nodes operate upon a plurality of spatial-region-representing relations, the plurality of spatial-region-representing relations including the first spatial-region-representing relation;each event of the sequence of events includes an identifier of the associated object and a current spatial position of the object; andthe partitioning the input event stream comprises, for each received event: determining a subset of processing nodes in the plurality of processing nodes configured to track objects in the predefined spatial region that encompasses the current position of the object; andfor each processing node in the plurality of processing nodes: determining whether the processing node is in the subset;when the processing node is in the subset, determining whether to cause the event to be inserted or updated in the spatial-region-representing relation operated on by the processing node; andwhen the processing node is not in the subset, determining whether to cause the event to be deleted from the spatial-region-representing relation operated on by the processing node.
  • 19. The event processing system of claim 17, wherein the partitioning for the first event further includes: prior to the changing the first bit value, identifying, from the first bit vector corresponding to the first processing node, the first bit value;determining a type of the command to be sent to the first processing node based on the first bit value.
  • 20. The event processing system of claim 17, wherein the input event stream further includes a second event of the sequence of events that is also associated with the first object, wherein the partitioning further includes: determining a second spatial position of the first object based upon the second event;determining that the second spatial position of the second object is not in the first predefined spatial region tracked by the first processing node;determining, using a second bit value of a first bit vector, that the first processing node is currently tracking the first object;changing the first bit value from the second value to the first value; andtransmitting another command to the first processing node for deleting one or more events associated with the first object from the first spatial-region-representing relation operated upon by the first processing node.
US Referenced Citations (429)
Number Name Date Kind
4996687 Hess et al. Feb 1991 A
5051947 Messenger et al. Sep 1991 A
5339392 Risberg et al. Aug 1994 A
5495600 Terry et al. Feb 1996 A
5706494 Cochrane et al. Jan 1998 A
5802262 Van De Vanter Sep 1998 A
5802523 Jasuja et al. Sep 1998 A
5822750 Jou et al. Oct 1998 A
5826077 Blakeley et al. Oct 1998 A
5850544 Parvathaneny et al. Dec 1998 A
5857182 DeMichiel et al. Jan 1999 A
5918225 White et al. Jun 1999 A
5920716 Johnson et al. Jul 1999 A
5937195 Ju et al. Aug 1999 A
5937401 Hillegas Aug 1999 A
6006235 Macdonald et al. Dec 1999 A
6011916 Moore et al. Jan 2000 A
6041344 Bodamer et al. Mar 2000 A
6081801 Cochrane et al. Jun 2000 A
6092065 Floratos et al. Jul 2000 A
6108666 Floratos et al. Aug 2000 A
6112198 Lohman et al. Aug 2000 A
6128610 Srinivasan et al. Oct 2000 A
6158045 You Dec 2000 A
6219660 Haderle et al. Apr 2001 B1
6263332 Nasr et al. Jul 2001 B1
6278994 Fuh et al. Aug 2001 B1
6282537 Madnick et al. Aug 2001 B1
6341281 MacNicol et al. Jan 2002 B1
6353821 Gray Mar 2002 B1
6367034 Novik et al. Apr 2002 B1
6370537 Gilbert et al. Apr 2002 B1
6389436 Chakrabarti et al. May 2002 B1
6397262 Hayden et al. May 2002 B1
6418448 Sarkar Jul 2002 B1
6438540 Nasr et al. Aug 2002 B2
6438559 White et al. Aug 2002 B1
6439783 Antoshenkov Aug 2002 B1
6449620 Draper et al. Sep 2002 B1
6453314 Chan et al. Sep 2002 B1
6507834 Kabra et al. Jan 2003 B1
6523102 Dye et al. Feb 2003 B1
6546381 Subramanian et al. Apr 2003 B1
6615203 Lin et al. Sep 2003 B1
6681343 Nakabo Jan 2004 B1
6708186 Claborn et al. Mar 2004 B1
6718278 Steggles Apr 2004 B1
6748386 Li Jun 2004 B1
6751619 Rowstron et al. Jun 2004 B1
6766330 Chen et al. Jul 2004 B1
6785677 Fritchman Aug 2004 B1
6826566 Lewak et al. Nov 2004 B2
6836778 Manikutty et al. Dec 2004 B2
6850925 Chaudhuri et al. Feb 2005 B2
6856981 Wyschogrod et al. Feb 2005 B2
6985904 Kaluskar et al. Jan 2006 B1
6996557 Leung et al. Feb 2006 B1
7020696 Perry et al. Mar 2006 B1
7047249 Vincent May 2006 B1
7051034 Ghosh et al. May 2006 B1
7062749 Cyr et al. Jun 2006 B2
7080062 Leung et al. Jul 2006 B1
7093023 Lockwood et al. Aug 2006 B2
7145938 Takeuchi et al. Dec 2006 B2
7146352 Brundage et al. Dec 2006 B2
7167848 Boukouvalas et al. Jan 2007 B2
7203927 Al-Azzawe et al. Apr 2007 B2
7224185 Campbell et al. May 2007 B2
7225188 Gai et al. May 2007 B1
7236972 Lewak et al. Jun 2007 B2
7305391 Wyschogrod et al. Dec 2007 B2
7308561 Cornet et al. Dec 2007 B2
7310638 Blair Dec 2007 B1
7376656 Blakeley et al. May 2008 B2
7383253 Tsimelzon et al. Jun 2008 B1
7403959 Nishizawa et al. Jul 2008 B2
7430549 Zane et al. Sep 2008 B2
7451143 Sharangpani et al. Nov 2008 B2
7475058 Kakivaya et al. Jan 2009 B2
7483976 Ross Jan 2009 B2
7516121 Liu et al. Apr 2009 B2
7519577 Brundage et al. Apr 2009 B2
7519962 Aman Apr 2009 B2
7533087 Liu et al. May 2009 B2
7546284 Martinez et al. Jun 2009 B1
7552365 Marsh et al. Jun 2009 B1
7567953 Kadayam et al. Jul 2009 B2
7580946 Mansour et al. Aug 2009 B2
7587383 Koo et al. Sep 2009 B2
7603674 Cyr et al. Oct 2009 B2
7613848 Amini et al. Nov 2009 B2
7620851 Leavy et al. Nov 2009 B1
7630982 Boyce Dec 2009 B2
7634501 Yabloko Dec 2009 B2
7636703 Taylor Dec 2009 B2
7644066 Krishnaprasad et al. Jan 2010 B2
7653645 Stokes Jan 2010 B1
7672964 Yan et al. Mar 2010 B1
7673065 Srinivasan et al. Mar 2010 B2
7676461 Chkodrov et al. Mar 2010 B2
7689622 Liu et al. Mar 2010 B2
7693891 Stokes et al. Apr 2010 B2
7702629 Cytron et al. Apr 2010 B2
7702639 Stanley et al. Apr 2010 B2
7711782 Kim et al. May 2010 B2
7716210 Ozcan et al. May 2010 B2
7739265 Jain et al. Jun 2010 B2
7805445 Boyer et al. Sep 2010 B2
7814111 Levin Oct 2010 B2
7818313 Tsimelzon Oct 2010 B1
7823066 Kuramura Oct 2010 B1
7827146 De Landstheer et al. Nov 2010 B1
7827190 Pandya Nov 2010 B2
7844829 Meenakshisundaram Nov 2010 B2
7870124 Liu et al. Jan 2011 B2
7877381 Ewen et al. Jan 2011 B2
7895187 Bowman Feb 2011 B2
7912853 Agrawal Mar 2011 B2
7917299 Buhler et al. Mar 2011 B2
7930322 MacLennan Apr 2011 B2
7945540 Park et al. May 2011 B2
7953728 Hu et al. May 2011 B2
7954109 Durham et al. May 2011 B1
7979420 Jain et al. Jul 2011 B2
7987204 Stokes Jul 2011 B2
7988817 Son Aug 2011 B2
7991766 Srinivasan et al. Aug 2011 B2
7996388 Jain et al. Aug 2011 B2
8019747 Srinivasan et al. Sep 2011 B2
8032544 Jing et al. Oct 2011 B2
8046747 Cyr et al. Oct 2011 B2
8073826 Srinivasan et al. Dec 2011 B2
8099400 Haub et al. Jan 2012 B2
8103655 Srinivasan et al. Jan 2012 B2
8134184 Becker et al. Mar 2012 B2
8155880 Patel et al. Apr 2012 B2
8195648 Zabback et al. Jun 2012 B2
8204873 Chavan Jun 2012 B2
8204875 Srinivasan et al. Jun 2012 B2
8260803 Hsu et al. Sep 2012 B2
8290776 Moriwaki et al. Oct 2012 B2
8296316 Jain et al. Oct 2012 B2
8315990 Barga et al. Nov 2012 B2
8316012 Abouzied et al. Nov 2012 B2
8346511 Schoning et al. Jan 2013 B2
8370812 Feblowitz et al. Feb 2013 B2
8392402 Mihaila et al. Mar 2013 B2
8447744 Alves et al. May 2013 B2
8458175 Stokes Jun 2013 B2
8498956 Srinivasan et al. Jul 2013 B2
8521867 Srinivasan et al. Aug 2013 B2
8527458 Park et al. Sep 2013 B2
8543558 Srinivasan et al. Sep 2013 B2
8572589 Cataldo et al. Oct 2013 B2
8589436 Srinivasan et al. Nov 2013 B2
8676841 Srinivasan et al. Mar 2014 B2
8713049 Jain et al. Apr 2014 B2
8745070 Krisnamurthy Jun 2014 B2
8762369 Macho et al. Jun 2014 B2
8775412 Day et al. Jul 2014 B2
20020023211 Roth et al. Feb 2002 A1
20020032804 Hunt Mar 2002 A1
20020038313 Klein et al. Mar 2002 A1
20020049788 Lipkin et al. Apr 2002 A1
20020056004 Smith et al. May 2002 A1
20020116362 Li et al. Aug 2002 A1
20020116371 Dodds et al. Aug 2002 A1
20020133484 Chau et al. Sep 2002 A1
20020169788 Lee et al. Nov 2002 A1
20030014408 Robertson Jan 2003 A1
20030037048 Kabra et al. Feb 2003 A1
20030046673 Copeland et al. Mar 2003 A1
20030065655 Syeda-Mahmood Apr 2003 A1
20030065659 Agarwal et al. Apr 2003 A1
20030120682 Bestgen et al. Jun 2003 A1
20030135304 Sroub et al. Jul 2003 A1
20030200198 Chandrasekar et al. Oct 2003 A1
20030229652 Bakalash et al. Dec 2003 A1
20030236766 Fortuna et al. Dec 2003 A1
20040010496 Behrendt et al. Jan 2004 A1
20040019592 Crabtree Jan 2004 A1
20040024773 Stoffel et al. Feb 2004 A1
20040064466 Manikutty et al. Apr 2004 A1
20040073534 Robson Apr 2004 A1
20040088404 Aggarwal May 2004 A1
20040117359 Snodgrass et al. Jun 2004 A1
20040136598 Le Leannec et al. Jul 2004 A1
20040151382 Stellenberg et al. Aug 2004 A1
20040153329 Casati et al. Aug 2004 A1
20040167864 Wang et al. Aug 2004 A1
20040168107 Sharp et al. Aug 2004 A1
20040177053 Donoho et al. Sep 2004 A1
20040201612 Hild et al. Oct 2004 A1
20040205082 Fontoura et al. Oct 2004 A1
20040220896 Finlay et al. Nov 2004 A1
20040220912 Manikutty et al. Nov 2004 A1
20040220927 Murthy et al. Nov 2004 A1
20040243590 Gu et al. Dec 2004 A1
20040267760 Brundage et al. Dec 2004 A1
20040268314 Kollman et al. Dec 2004 A1
20050010896 Meliksetian et al. Jan 2005 A1
20050055338 Warner et al. Mar 2005 A1
20050065949 Warner et al. Mar 2005 A1
20050096124 Stronach May 2005 A1
20050097128 Ryan et al. May 2005 A1
20050120016 Midgley Jun 2005 A1
20050154740 Day et al. Jul 2005 A1
20050174940 Iny Aug 2005 A1
20050177579 Blakeley et al. Aug 2005 A1
20050192921 Chaudhuri et al. Sep 2005 A1
20050204340 Ruminer et al. Sep 2005 A1
20050229158 Thusoo et al. Oct 2005 A1
20050273352 Moffat et al. Dec 2005 A1
20050273450 McMillen et al. Dec 2005 A1
20050289125 Liu et al. Dec 2005 A1
20060007308 Ide et al. Jan 2006 A1
20060015482 Beyer et al. Jan 2006 A1
20060031204 Liu et al. Feb 2006 A1
20060047696 Larson et al. Mar 2006 A1
20060064487 Ross Mar 2006 A1
20060080646 Aman Apr 2006 A1
20060085592 Ganguly et al. Apr 2006 A1
20060089939 Broda et al. Apr 2006 A1
20060100957 Buttler et al. May 2006 A1
20060100969 Wang et al. May 2006 A1
20060106786 Day et al. May 2006 A1
20060106797 Srinivasa et al. May 2006 A1
20060129554 Suyama et al. Jun 2006 A1
20060155719 Mihaeli et al. Jul 2006 A1
20060167704 Nicholls et al. Jul 2006 A1
20060167856 Angele et al. Jul 2006 A1
20060212441 Tang et al. Sep 2006 A1
20060224576 Liu et al. Oct 2006 A1
20060230029 Yan Oct 2006 A1
20060235840 Manikutty et al. Oct 2006 A1
20060242180 Graf et al. Oct 2006 A1
20060282429 Hernandez-Sherrington et al. Dec 2006 A1
20060294095 Berk et al. Dec 2006 A1
20070016467 John et al. Jan 2007 A1
20070022092 Nishizawa et al. Jan 2007 A1
20070039049 Kupferman et al. Feb 2007 A1
20070050340 von Kaenel et al. Mar 2007 A1
20070076314 Rigney Apr 2007 A1
20070118600 Arora May 2007 A1
20070136239 Lee et al. Jun 2007 A1
20070136254 Choi et al. Jun 2007 A1
20070156787 MacGregor Jul 2007 A1
20070156964 Sistla Jul 2007 A1
20070192301 Posner Aug 2007 A1
20070198479 Cai et al. Aug 2007 A1
20070226188 Johnson et al. Sep 2007 A1
20070226239 Johnson et al. Sep 2007 A1
20070271280 Chandasekaran Nov 2007 A1
20070294217 Chen et al. Dec 2007 A1
20080005093 Liu et al. Jan 2008 A1
20080010093 LaPlante et al. Jan 2008 A1
20080010241 McGoveran Jan 2008 A1
20080016095 Bhatnagar et al. Jan 2008 A1
20080028095 Lang et al. Jan 2008 A1
20080033914 Cherniack et al. Feb 2008 A1
20080034427 Cadambi et al. Feb 2008 A1
20080046401 Lee et al. Feb 2008 A1
20080071904 Schuba et al. Mar 2008 A1
20080077570 Tang et al. Mar 2008 A1
20080077587 Wyschogrod et al. Mar 2008 A1
20080077780 Zingher Mar 2008 A1
20080082484 Averbuch et al. Apr 2008 A1
20080082514 Khorlin et al. Apr 2008 A1
20080086321 Walton Apr 2008 A1
20080098359 Ivanov et al. Apr 2008 A1
20080110397 Son May 2008 A1
20080114787 Kashiyama et al. May 2008 A1
20080120283 Liu et al. May 2008 A1
20080162583 Brown et al. Jul 2008 A1
20080195577 Fan et al. Aug 2008 A1
20080235298 Lin et al. Sep 2008 A1
20080243451 Feblowitz et al. Oct 2008 A1
20080243675 Parsons et al. Oct 2008 A1
20080250073 Nori et al. Oct 2008 A1
20080255847 Moriwaki et al. Oct 2008 A1
20080263039 Van Lunteren Oct 2008 A1
20080270764 McMillen et al. Oct 2008 A1
20080281782 Agrawal Nov 2008 A1
20080301124 Alves et al. Dec 2008 A1
20080301125 Alves et al. Dec 2008 A1
20080301135 Alves et al. Dec 2008 A1
20080301256 McWilliams et al. Dec 2008 A1
20080313131 Friedman et al. Dec 2008 A1
20090006320 Ding et al. Jan 2009 A1
20090006346 C N et al. Jan 2009 A1
20090007098 Chevrette et al. Jan 2009 A1
20090019045 Amir et al. Jan 2009 A1
20090024622 Chkodrov et al. Jan 2009 A1
20090043729 Liu et al. Feb 2009 A1
20090070355 Cadarette et al. Mar 2009 A1
20090070785 Alvez et al. Mar 2009 A1
20090070786 Alves et al. Mar 2009 A1
20090076899 Gbodimowo Mar 2009 A1
20090088962 Jones Apr 2009 A1
20090100029 Jain et al. Apr 2009 A1
20090106189 Jain et al. Apr 2009 A1
20090106190 Srinivasan et al. Apr 2009 A1
20090106198 Srinivasan et al. Apr 2009 A1
20090106214 Jain et al. Apr 2009 A1
20090106215 Jain et al. Apr 2009 A1
20090106218 Srinivasan et al. Apr 2009 A1
20090106321 Das et al. Apr 2009 A1
20090106440 Srinivasan et al. Apr 2009 A1
20090112802 Srinivasan et al. Apr 2009 A1
20090112803 Srinivasan et al. Apr 2009 A1
20090112853 Nishizawa et al. Apr 2009 A1
20090125550 Barga et al. May 2009 A1
20090133041 Rahman et al. May 2009 A1
20090144696 Andersen Jun 2009 A1
20090172014 Huetter Jul 2009 A1
20090182779 Johnson Jul 2009 A1
20090187584 Johnson et al. Jul 2009 A1
20090216747 Li et al. Aug 2009 A1
20090216860 Li et al. Aug 2009 A1
20090222730 Wixson et al. Sep 2009 A1
20090228431 Dunagan et al. Sep 2009 A1
20090228434 Krishnamurthy et al. Sep 2009 A1
20090245236 Scott et al. Oct 2009 A1
20090248749 Gu et al. Oct 2009 A1
20090254522 Chaudhuri et al. Oct 2009 A1
20090257314 Davis et al. Oct 2009 A1
20090265324 Mordvinov et al. Oct 2009 A1
20090271529 Kashiyama et al. Oct 2009 A1
20090282021 Bennet et al. Nov 2009 A1
20090293046 Cheriton Nov 2009 A1
20090300093 Griffiths et al. Dec 2009 A1
20090300181 Marques Dec 2009 A1
20090300580 Heyhoe et al. Dec 2009 A1
20090300615 Andrade et al. Dec 2009 A1
20090313198 Kudo et al. Dec 2009 A1
20090319501 Goldstein et al. Dec 2009 A1
20090327102 Maniar et al. Dec 2009 A1
20100017379 Naibo et al. Jan 2010 A1
20100017380 Naibo et al. Jan 2010 A1
20100023498 Dettinger et al. Jan 2010 A1
20100036803 Vemuri et al. Feb 2010 A1
20100036831 Vemuri Feb 2010 A1
20100049710 Young, Jr. et al. Feb 2010 A1
20100057663 Srinivasan et al. Mar 2010 A1
20100057727 Srinivasan et al. Mar 2010 A1
20100057735 Srinivasan et al. Mar 2010 A1
20100057736 Srinivasan et al. Mar 2010 A1
20100057737 Srinivasan et al. Mar 2010 A1
20100094838 Kozak Apr 2010 A1
20100106946 Imaki et al. Apr 2010 A1
20100125574 Navas May 2010 A1
20100125584 Navas May 2010 A1
20100138405 Mihaila Jun 2010 A1
20100161589 Nica et al. Jun 2010 A1
20100223305 Park et al. Sep 2010 A1
20100223437 Park et al. Sep 2010 A1
20100223606 Park et al. Sep 2010 A1
20100293135 Candea et al. Nov 2010 A1
20100312756 Zhang et al. Dec 2010 A1
20100318652 Samba Dec 2010 A1
20100332401 Prahlad et al. Dec 2010 A1
20110004621 Kelley et al. Jan 2011 A1
20110016160 Zhang et al. Jan 2011 A1
20110022618 Thatte et al. Jan 2011 A1
20110023055 Thatte et al. Jan 2011 A1
20110029484 Park et al. Feb 2011 A1
20110029485 Park et al. Feb 2011 A1
20110040746 Handa et al. Feb 2011 A1
20110055192 Tang et al. Mar 2011 A1
20110055197 Chavan Mar 2011 A1
20110093162 Nielsen et al. Apr 2011 A1
20110105857 Zhang et al. May 2011 A1
20110161321 De Castro Alves et al. Jun 2011 A1
20110161328 Park et al. Jun 2011 A1
20110161352 De Castro Alves et al. Jun 2011 A1
20110161356 De Castro Alves et al. Jun 2011 A1
20110161397 Bekiares et al. Jun 2011 A1
20110173231 Drissi et al. Jul 2011 A1
20110173235 Aman et al. Jul 2011 A1
20110196839 Smith et al. Aug 2011 A1
20110196891 De Castro Alves et al. Aug 2011 A1
20110270879 Srinivasan et al. Nov 2011 A1
20110282812 Chandramouli et al. Nov 2011 A1
20110302164 Krishnamurthy et al. Dec 2011 A1
20110313844 Chandramouli et al. Dec 2011 A1
20110314019 Jimenez Peris et al. Dec 2011 A1
20110321057 Mejdrich et al. Dec 2011 A1
20120041934 Srinivasan et al. Feb 2012 A1
20120130963 Luo et al. May 2012 A1
20120166417 Chandramouli et al. Jun 2012 A1
20120166421 Cammert et al. Jun 2012 A1
20120166469 Cammert et al. Jun 2012 A1
20120191697 Sherman et al. Jul 2012 A1
20120233107 Roesch et al. Sep 2012 A1
20120259910 Andrade et al. Oct 2012 A1
20120278473 Griffiths Nov 2012 A1
20120290715 Dinger et al. Nov 2012 A1
20120324453 Chandramouli et al. Dec 2012 A1
20130031567 Nano et al. Jan 2013 A1
20130046725 Cammert et al. Feb 2013 A1
20130117317 Wolf May 2013 A1
20130144866 Jerzak et al. Jun 2013 A1
20130191370 Chen et al. Jul 2013 A1
20130332240 Patri et al. Dec 2013 A1
20140095444 Deshmukh et al. Apr 2014 A1
20140095445 Deshmukh et al. Apr 2014 A1
20140095446 Deshmukh et al. Apr 2014 A1
20140095447 Deshmukh et al. Apr 2014 A1
20140095462 Park et al. Apr 2014 A1
20140095471 Deshmukh et al. Apr 2014 A1
20140095473 Srinivasan et al. Apr 2014 A1
20140095483 Toillion et al. Apr 2014 A1
20140095525 Hsiao et al. Apr 2014 A1
20140095529 Deshmukh et al. Apr 2014 A1
20140095533 Shukla et al. Apr 2014 A1
20140095535 Deshmukh et al. Apr 2014 A1
20140095537 Park et al. Apr 2014 A1
20140095540 Hsiao et al. Apr 2014 A1
20140095541 Herwadkar et al. Apr 2014 A1
20140095543 Hsiao et al. Apr 2014 A1
20140136514 Jain et al. May 2014 A1
20140156683 de Castro Alves Jun 2014 A1
20140172914 Elnikety et al. Jun 2014 A1
20140201355 Bishnoi et al. Jul 2014 A1
20140236983 Alves et al. Aug 2014 A1
20140237289 de Castro Alves et al. Aug 2014 A1
20140379712 Lafuente Alvarez Dec 2014 A1
20150156241 Shukla et al. Jun 2015 A1
20150161214 Kali et al. Jun 2015 A1
Foreign Referenced Citations (9)
Number Date Country
1241589 Sep 2002 EP
2474922 Jul 2012 EP
WO 0049533 Aug 2000 WO
0118712 Mar 2001 WO
WO 0159602 Aug 2001 WO
WO 0165418 Sep 2001 WO
WO 03030031 Apr 2003 WO
2007122347 Nov 2007 WO
2012050582 Apr 2012 WO
Non-Patent Literature Citations (347)
Entry
“Oracle Complex Event Processing CQL Language Reference,” 11g Release 1 (11.1.1) E12048-01, Apr. 2010, 540 pages.
Martin et al “Finding application errors and security flaws using PQL: a program query language,” Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications 40:1-19 (Oct. 2005).
Office Action for U.S. Appl. No. 12/534,384 (Feb. 28, 2012).
Office Action for U.S. Appl. No. 12/506,905 (Mar. 26, 2012).
Office Action for U.S. Appl. No. 12/548,209 (Apr. 16, 2012).
Notice of Allowance for U.S. Appl. No. 13/184,528 (Mar. 1, 2012).
Office Action for U.S. Appl. No. 12/548,187 (Jun. 20, 2012).
Notice of Allowance for U.S. Appl. No. 12/395,871 (May 4, 2012).
Office Action for U.S. Appl. No. 12/548,222 (Jun. 20, 2012).
Office Action for U.S. Appl. No. 12/534,398 (Jun. 5, 2012).
Office Action for U.S. Appl. No. 12/548,281 (Jun. 20, 2012).
Office Action for U.S. Appl. No. 12/913,636 (Jun. 7, 2012).
Esper Reference Documentation, Copyright 2009, ver. 3.1.0, 293 pages.
International Search Report dated Jul. 16, 2012 for PCT/US2012/034970.
Final Office Action for U.S. Appl. No. 12/548,290 dated Jul. 30, 2012.
Office Action for U.S. Appl. No. 13/193,377 dated Aug. 23, 2012.
Office Action for U.S. Appl. No. 11/977,437 dated Aug. 3, 2012.
Final Office Action for U.S. Appl. No. 11/601,415 dated Jul. 2, 2012.
Notice of Allowance for U.S. Appl. No. 12/506,891 dated Jul. 25, 2012.
Final Office Action for U.S. Appl. No. 12/506,905 dated Aug. 9, 2012.
Abadi, D. et al., “Aurora: A Data Stream Management System,” International Conference on Management of Data, Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, ACM Press, 2003, 4 pages.
Aho, A. et al., “Efficient String Matching: An Aid to Bibliographic Search,” Communications of the ACM, Jun. 1975, vol. 18, No. 6, pp. 333-340, Copyright 1975, Association for Computing Machinery, Inc.
Arasu, “CQL: A language for Continuous Queries over Streams and Relations,” Lectures Notes in Computer Science, 2004, vol. 2921/2004, pp. 1-19.
Arasu, A., et al., “The CQL Continuous Query Language: Semantic Foundations and Query Execution,” Stanford University, The VLDB Journal—The International Journal on Very Large Data Bases, vol. 15, Issue 2, Springer-Verlag New York, Inc., Jun. 2006, pp. 1-32.
Arasu, et al., “An Abstract Semantics and Concrete Language for Continuous Queries over Streams and Relations,” 9th International Workshop on Database programming languages, Sep. 2003, 12 pages.
Arasu, et al., “STREAM: The Stanford Data Stream Management System,” Department of Computer Science, Stanford University, 2004, p. 21.
Avnur, et al., “Eddies: Continuously Adaptive Query Processing,” In Proceedings of the 2000 ACM SIGMOD International Conference on Data, Dallas TX, May 2000, 12 pages.
Avnur, et al., “Eddies: Continuously Adaptive Query Processing,” slide show, believed to be prior to Oct. 17, 2007, 4 pages.
Babu, et al., “Continuous Queries over Data Streams,” SIGMOD Record, Sep. 2001, vol. 30, No. 3, pp. 109-120.
Bai, Y., et al., “A Data Stream Language and System Designed for Power and Extensibility,” Conference on Information and Knowledge Management, Proceedings of the 15th ACM International Conference on Information and Knowledge Management, Arlington, Virginia, Nov. 5-11, 2006, 10 pages, ACM Press, Copyright 2006.
Bose, S. et al., “A Query Algebra for Fragmented XML Stream Data”, 9th International Conference on Data Base Programming Languages (DBPL), Sep. 6-8, 2003, Postdam, Germany, at URL: http://lambda,uta.edu/dbp103.pdf, 11 pages.
Buza, “Extension of CQL over Dynamic Databases,” Journal of Universal Computer Science, 2006, vol. 12, No. 9, pp. 1165-1176.
Carpenter, “User Defined Functions,” Oct. 12, 2000, at URL: http://www.sqlteam.com/itemprint.asp?ItemID=979, 4 pages.
Chan, et al., “Efficient Filtering of XML documents with Xpath expressions,” VLDB Journal, 2002, pp. 354-379.
Chandrasekaran, et al., “TelegraphCQ: Continuous Dataflow Processing for an Uncertain World,” Proceedings of CIDR 2003, p. 12.
Chen, J., et al., “NiagaraCQ: A Scalable Continuous Query System for Internet Databases,” Proceedings of the 2000 SIGMOD International Conference on Management of Data, May 2000, pp. 379-390.
Colyer, et al., “Spring Dynamic Modules Reference Guide,” Copyright 2006-2008, ver. 1.0.3, 73 pages.
Colyer, et al., “Spring Dynamic Modules Reference Guide,” Copyright 2006-2008, ver. 1.1.3, 96 pages.
“Complex Event Processing in the Real World,” an Oracle White Paper, Sep. 2007, 13 pages; McReynolds.
Conway, N., “An Introduction to Data Stream Query Processing,” Truviso, Inc., May 24, 2007, 71 pages, downloaded from: http://neilconway.org/talks/stream—intro.pdf.
“Coral8 Complex Event Processing Technology Overview,” Coral8, Inc., Make it Continuous, pp. 1-8, Copyright 2007 Coral8, Inc.
“Creating WebLogic Domains Using the Configuration Wizard,” BEA Products, Dec. 2007, ver. 10.0, 78 pages.
“Creating Weblogic Event Server Applications,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 90 pages.
Demers, A. et al., “Towards Expressive Publish/Subscribe Systems,” in Proceedings of the 10th International Conference on Extending Database Technology (EDBT 2006), Munich, Germany, Mar. 2006, pp. 1-18.
DeMichiel, et al., “JSR 220: Enterprise JavaBeans™, EJB 3.0 Simplified API,” EJB 3.0 Expert Group, Sun Microsystems, May 2, 2006, ver. 3.0, 59 pages.
“Dependency Injection,” Wikipedia, Dec. 30, 2008, printed on Apr. 29, 2011, at URL: http://en.wikipedia.org/w/index.php?title=Dependency—injection&oldid=260831402, pp. 1-7.
“Deploying Applications to WebLogic Server,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 164 pages.
Deshpande, et al., “Adaptive Query Processing,” slide show believed to be prior to Oct. 17, 2007, 27 pages.
“Developing Applications with Weblogic Server,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 254 pages.
Diao, Y. “Query Processing for Large-Scale XML Message Brokering”, 2005, University of California Berkeley, 226 pages.
Diao, Y. et al. “Query Processing for High-Volume XML Message Brokering”, Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 12 pages.
Dindar, N., et al., “Event Processing Support for Cross-Reality Environments,” Pervasive Computing, IEEE CS, Jul.-Sep. 2009, pp. 2-9, Copyright 2009 IEEE.
“EPL Reference,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 82 pages.
Esper Reference Documentation, Copyright 2007, ver. 1.12.0, 158 pages.
Esper Reference Documentation, Copyright 2008, ver. 2.0.0, 202 pages.
“Fast Track Deployment and Administrator Guide for BEA WebLogic Server,” BEA WebLogic Server 10.0 Documentation, printed on May 10, 2010, at URL: http://download.oracle.com/docs/cd/E13222—01/w1s/docs100/quickstart/quick—start.html, 1 page.
Fernandez, Mary et al., “Build your own XQuery processor”, slide show, at URL: http://www.galaxquery.org/slides/edbt-summer-school2004.pdf, 2004, 116 pages.
Fernandez, Mary et al., Implementing XQuery 1.0: The Galax Experience: Proceedings of the 29th VLDB Conference, Berlin, Germany, 2003, 4 pages.
Florescu, Daniela et al., “The BEA/XQRL Streaming XQuery Processor”, Proceedings of the 29th VLDB Conference, 2003, Berlin, Germany, 12 pages.
“Getting Started with WebLogic Event Server,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 66 pages.
Gilani, A. Design and implementation of stream operators, query instantiator and stream buffer manager, Dec. 2003, 137 pages.
Golab, “Sliding Window Query Processing Over Data Streams,” University of Waterloo, Waterloo, Ont. Canada, Aug. 2006, 182 pages.
Golab, L., et al., “Issues in Data Stream Management,” ACM SIGMOD Record, vol. 32, Issue 2, Jun. 2003, ACM Press, pp. 5-14.
Gosling, et al., “The Java Language Specification,” Book, copyright 1996-2005, 3rd edition, 684 pages, Sun Microsystems USA. (due to size, reference will be uploaded in two parts).
Hopcroft, J. E., “Introduction to Automata Theory, Languages, and Computation,” Second Edition, Addison-Wesley, Copyright 2001, 1-521 pages. (due to size, reference will be uploaded in two parts).
“Installing Weblogic Real Time,” BEA WebLogic Real Time, Jul. 2007, ver. 2.0, 64 pages.
“Introduction to BEA WebLogic Server and Bea WebLogic Express,” BEA WebLogic Server, Mar. 2007, ver. 10.0, 34 pages.
“Introduction to WebLogic Real Time,” BEA WebLogic Real Time, Jul. 2007, ver. 2.0, 20 pages.
“Jboss Enterprise Application Platform 4.3 Getting Started Guide CP03, for Use with Jboss Enterprise Application Platform 4.3 Cumulative Patch 3,” Jboss a division of Red Hat, Red Hat Documentation Group, Publication date Sep. 2007, Copyright 2008, 68 pages, Red Hat, Inc.
Jin, C. et al. “ARGUS: Efficient Scalable Continuous Query Optimization for Large-Volume Data Streams” 10th International Database Engineering and Applications Symposium (IDEAS'06), 2006, 7 pages.
Knuth, D. E., et al., “Fast Pattern Matching in Strings,” SIAM J. COMPUT., vol. 6, No. 2, Jun. 1977, pp. 323-350.
Lakshmanan, et al., “On efficient matching of streaming XML documents and queries,” 2002, 18 pages.
Lindholm, et al., “Java Virtual Machine Specification, 2nd Edition”, Prentice Hall, Apr. 1999, 484 pages. (due to size, reference will be uploaded in two parts).
Liu, et al., “Efficient XSLT Processing in Relational Database System,” Proceeding of the 32nd. International Conference on Very Large Data Bases (VLDB), Sep. 2006, 1106-1116, 11 pages.
Luckham, D., “What's the Difference Between ESP and CEP?” Complex Event Processing, downloaded Apr. 29, 2011, 5 pages, at URL: http://complexevents.com/?p=103.
Madden, et al., “Continuously Adaptive Continuous Queries (CACQ) over Streams,” SIGMOD 2002, Jun. 4-6, 2002, 12 pages.
“Managing Server Startup and Shutdown,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 134 pages.
“Matching Behavior,” .NET Framework Developers Guide, pp. 1-2, Copyright 2008 Microsoft Corporation, downloaded Jul. 1, 2008 from URL: http://msdn.microsoft.com/en-us/library/0yzc2yb0(printer).aspx.
Motwani, et al., “Models and Issues in Data Streams,” Proceedings of the 21st ACM SIGMOD-SIGACT-SIDART symposium on Principles of database systems, 2002, 30 pages.
Motwani, et al., “Query Processing Resource Management, and Approximation in a Data Stream Management System,” Proceedings of CIDR 2003, Jan. 2003, 12 pages.
Munagala, et al., “Optimization of Continuous Queries with Shared Expensive Filters,” Proceedings of the 26th ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, believed to be prior to Oct. 17, 2007, p. 14.
“New Project Proposal for Row Pattern Recognition—Amendment to SQL with Application to Streaming Data Queries,” H2-2008-027, H2 Teleconference Meeting, Jan. 9, 2008, pp. 1-6.
Novick, “Creating a User Defined Aggregate with SQL Server 2005,” at URL: http://novicksoftware.com/Articles/sql-2005-product-user-defined-aggregate.html, 2005, 6 pages.
Oracle Database, SQL Language Reference, 11g Release 1 (11.1), B28286-02, Sep. 2007, 1496 pages.
Oracle Application Server 10g, Release 2 and 3, New Features Overview, An Oracle White Paper, Oct. 2005, 48 pages.
Oracle Application Server, Administrators Guide, 10g Release 3 (10.1.3.2.0), B32196-01, Jan. 2007, 376 pages, Oracle.
Oracle Application Server, Enterprise Deployment Guide, 10g Release 3 (10.1.3.2.0), B32125-02, Apr. 2007, 120 pages, Oracle.
Oracle Application Server, High Availability Guide, 10g Release 3 (10.1.3.2.0), B32201-01, Jan. 2007, 314 pages, Oracle.
“Oracle CEP Getting Started,” Release 11gR1 (11.1.1) E14476-01, May 2009, 172 pages.
Oracle Database Data Cartridge Developers Guide, B28425-03, 11g Release 1 (11.1), Oracle, Mar. 2008, 372 pages.
Oracle Database, SQL Reference, 10g Release 1 (10.1), Part No. B10759-01, Dec. 2003, pp. 7-1 to 7-17; 7-287 to 7-290; 14-61 to 14-74. (due to size, reference will be uploaded in three parts).
“OSGI Service Platform Core Specification, The OSGI Alliance,” Apr. 2007, ver. 4.1, release 4, 288 pages, OSGI Alliance.
Peng, et al., “Xpath Queries on Streaming Data,” 2003, pp. 1-12, ACM Press.
Peterson, “Petri Net Theory and the Modeling of Systems”, Prentice Hall, 1981, 301 pages.
PostgresSQL: Documentation: Manuals: PostgresSQL 8.2: CREATE AGGREGATE, believed to be prior to Apr. 21, 2007, 4 pages.
PostgresSQL: Documentation: Manuals: PostgresSQL 8.2: User-Defined Aggregates, believed to be prior to Apr. 21, 2007, 4 pages.
“Release Notes,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 8 pages.
Sadri, R., et al., “Expressing and Optimizing Sequence Queries in Database Systems,” ACM Transactions on Database Systems, vol. 29, No. 2, Jun. 2004, pp. 282-318, ACM Press, Copyright 2004.
Sadtler, et al., “WebSphere Application Server Installation Problem Determination,” Copyright 2007, pp. 1-48, IBM Corp.
Sharaf, et al., Efficient Scheduling of Heterogeneous Continuous Queries, VLDB '06, Sep. 12-15, 2006, pp. 511-522.
Spring Dynamic Modules for OSGi Service Platforms product documentation, SpringSource, Jan. 2008, 71 pages; Colyer et al.
“Stanford Stream Data Manager,” at URL: http://infolab.stanford.edu/stream/, last modified Jan. 5, 2006, pp. 1-9.
Stolze, “User-defined Aggregate Functions in DB2 Universal Database,” at URL: http://www.128.ibm.com/developerworks/db2/library/tacharticle/0309stolze/0309stolze.html, Sep. 11, 2003, 9 pages.
Stream Query Repository: Online Auctions (CQL Queries), at URL: http://www-db.stanford.edu/strem/sqr/cql/onauc.html, Dec. 2, 2002, 4 pages.
Stream Query Repository: Online Auctions, at URL: http://www-db.stanford.edu/stream/sqr/onauc.html#queryspecsend, Dec. 2, 2002, 2 pages.
“Stream: The Stanford Stream Data Manager,” IEEE Data Engineering Bulletin, Mar. 2003, pp. 1-8.
“StreamBase New and Noteworthy,” StreamBase, dated Jan. 12, 2010, 878 pages.
Terry, et al., “Continuous queries over append-only database,” Proceedings of 1992 ACM SIGMOD, pp. 321-330.
“Understanding Domain Configuration,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 38 pages.
Vajjhala, et al, “The Java™ Architecture for XML Binding (JAXB) 2.0,” Sun Microsystem, Inc., Final Release Apr. 19, 2006, 384 pages.
W3C, “XML Path Language (Xpath),” W3C Recommendation, Nov. 16, 1999, ver. 1.0, at URL: http://www.w3.org/TR/xpath, 37 pages.
“WebLogic Event Server Administration and Configuration Guide,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 108 pages.
“WebLogic Event Server Reference,” BEA WebLogic Event Server, Jul. 2007, ver. 2.0, 52 pages.
“Weblogic Server Performance and Tuning,” BEA WebLogic Server, Mar. 30, 2007, ver. 10.0, 180 pages.
“WebSphere Application Server V6.1 Problem Determination: IBM Redpaper Collection,” WebSphere Software, IBM/Redbooks, Dec. 2007, 634 pages.
White, S., et al., “WebLogic Event Server: A Lightweight, Modular Application Server for Event Processing,” 2nd International Conference on Distributed Event-Based Systems, Jul. 2-4, 2008, Rome, Italy, 8 pages, ACM Press, Copyright 2004.
Widom, et al., “CQL: A Language for Continuous Queries over Streams and Relations,” believed to be prior to Oct. 17, 2007, 62 pages.
Widom, et al., “The Stanford Data Stream Management System,” PowerPoint Presentation, believed to be prior to Oct. 17, 2007, 110 pages.
Zemke,“XML Query,” Mar. 14, 2004, 29 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,187, mailed on Sep. 27, 2011, 19 pages.
Non-Final Office Action for U.S. Appl. No. 12/396,008, mailed on Jun. 8, 2011, 10 pages.
Non-Final Office Action for U.S. Appl. No. 12/395,871, mailed on May 27, 2011, 7 pages.
Final Office Action for U.S. Appl. No. 12/395,871, mailed on Oct. 19, 2011, 33 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,222, mailed on Oct. 17, 2011, 27 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,281, mailed on Oct. 3, 2011, 37 pages.
Non-Final Office Action for U.S. Appl. No. 12/548,290, mailed on Oct. 3, 2011, 34 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,202, mailed on Dec. 3, 2009, 20 pages.
Final Office Action for U.S. Appl. No. 11/874,202, mailed on Jun. 8, 2010, 18 pages.
Notice of Allowance for U.S. Appl. No. 11/874,202, mailed on Dec. 22, 2010, 23 pages.
Notice of Allowance for U.S. Appl. No. 11/874,202, mailed on Mar. 31, 2011, 12 pages.
Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Nov. 24, 2009, 17 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Dec. 11, 2009, 5 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 11/874,850, mailed on Jan. 27, 2010, 11 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,896, mailed on Dec. 8, 2009, 19 pages.
Final Office Action for U.S. Appl. No. 11/874,896, mailed on Jul. 23, 2010, 28 pages.
Non-Final Office Action for U.S. Appl. No. 11/874, 896, mailed on Nov. 22, 2010, 29 pages.
Notice of Allowance for U.S. Appl. No. 11/874,896, mailed on Jun. 23, 2011, 30 pages.
Non-Final Office Action for U.S. Appl. No. 11/977,439, mailed on Apr. 13, 2010, 11 pages.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Aug. 18, 2010, 11 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Sep. 28, 2010, 6 pages.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Nov. 24, 2010, 14 pages.
Notice of Allowance for U.S. Appl. No. 11/977,439, mailed on Mar. 16, 2011, 15 pages.
Non-Final Office Action for U.S. Appl. No. 11/977,437, mailed on Oct. 13, 2009, 12 pages.
Final Office Action for U.S. Appl. No. 11/977,437, mailed on Apr. 8, 2010, 20 pages.
Notice of Allowance for U.S. Appl. No. 11/977,440, mailed on Oct. 7, 2009, 9 pages.
Office Action for U.S. Appl. No. 11/874,197, mailed on Nov. 10, 2009, 17 pages.
Final Office Action for U.S. Appl. No. 11/874,197, mailed on Jun. 29, 2010, 19 pages.
Non-Final Office Action for U.S. Appl. No. 11/874,197, mailed on Dec. 22, 2010, 29 pages.
Final Office Action for U.S. Appl. No. 11/874,197, mailed on Aug. 12, 2011, 26 pages.
Non-Final Office Action for U.S. Appl. No. 11/873,407, mailed on Nov. 13, 2009, 10 pages.
Final Office Action for U.S. Appl. No. 11/873,407, mailed on Apr. 26, 2010, 12 pages.
Notice of Allowance for U.S. Appl. No. 11/873,407, mailed on Nov. 10, 2010, 14 pages.
Notice of Allowance for U.S. Appl. No. 11/873,407, mailed on Mar. 7, 2011, 11 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415, mailed on Sep. 17, 2008, 13 pages.
Final Office Action for U.S. Appl. No. 11/601,415, mailed on May 27, 2009, 30 pages.
Advisory Action for U.S. Appl. No. 11/601,415, mailed on Aug. 18, 2009, 3 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415, mailed on Nov. 30, 2009, 33 pages.
Final Office Action for U.S. Appl. No. 11/601,415, mailed on Jun. 30, 2010, 45 pages.
Non-Final Office Action for U.S. Appl. No. 11/927,681, mailed on Mar. 24, 2011, 17 pages.
Notice of Allowance for U.S. Appl. No. 11/927,681, mailed on Jul. 1, 2011, 8 pages.
Non-Final Office Action for U.S. Appl. No. 11/927,683, mailed on Mar. 24, 2011, 13 pages.
Final Office Action for U.S. Appl. No. 11/927,683, mailed on Sep. 1, 2011, 18 pages.
Non-Final Office Action for U.S. Appl. No. 10/948,523, mailed on Jan. 22, 2007, 55 pages.
Final Office Action for U.S. Appl. No. 10/948,523, mailed on Jul. 6, 2007, 42 pages.
Non-Final Office Action for U.S. Appl. No. 10/948,523, mailed on Dec. 11, 2007, 52 pages.
Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Jul. 8, 2008, 38 pages.
Supplemental Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Aug. 25, 2008, 3 pages.
Notice of Allowance for U.S. Appl. No. 10/948,523, mailed on Dec. 1, 2010, 18 pages.
International Search Report dated Sep. 12, 2012 for PCT/US2012/036353.
Office Action for U.S. Appl. No. 13/244,272 dated Oct. 4, 2012.
Notice of Allowance for U.S. Appl. No. 12/548,209 dated Oct. 24, 2012.
Nah et al. “A Cluster-Based THO-Structured Scalable Approach for Location Information Systems,” The Ninth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS' 03), pp. 225-233 (Jan. 1, 2003).
Hulton et al. “Mining Time-Changing Data Streams,” Proceedings of the Seventh ACM SIGKDD, pp. 10 (Aug. 2001).
Stump et al. (ed.) Proceedings of IJCAR '06 Workshop “PLPV '06: Programming Languages meets Program Verification,” pp. 1-113 (Aug. 21, 2006).
Vijayalakshmi et al. “Processing location dependent continuous queries in distributed mobile databases using mobile agents,” IET-UK International Conference on Information and Communication Technology in Electrical Sciences (ICTES 2007), pp. 1023-1030 (Dec. 22, 2007).
Wang et al. “Distributed Continuous Range Query Processing on Moving Objects,” Proceedings of the 17th international Conference on Database and Expert Systems Applications (DEXA'06), Berlin, DE, pp. 655-665 (Jan. 1, 2006).
Wu et al.“Dynamic Data Management for Location Based Services in Mobile Environments,” IEEE Proceedings of the Seventh International Database Engineering and Applications Symposium 2003 Piscataway. NJ. USA., pp. 172-181 (Jul. 16, 2003).
Hao et al. “Achieving high performance web applications by service and database replications at edge servers,” proceedings of IPCCC 2009, IEEE 28th International Performance Computing and Communications Conference, pp. 153-160 (Dec. 2009).
International Search Report dated for PCT/US2011/052019 (Nov. 17, 2011).
Office Action for U.S. Appl. No. 12/396,008 (Nov. 16, 2011).
Office Action for U.S. Appl. No. 12/506,891 (Dec. 14, 2011).
Office Action for U.S. Appl. No. 12/534,398 (Nov. 1, 2011).
Office Action for U.S. Appl. No. 11/601,415 (Dec. 9, 2011).
Sansoterra “Empower SOL with Java User-Defined Functions,” IT Jungle.com (Oct. 9, 2003).
Ullman et al., “Introduction to JDBC,” Stanford University (2005).
Non-Final Office Action for U.S. Appl. No. 12/957,194 dated Dec. 7, 2012.
Non-Final Office Action for U.S. Appl. No. 13/089,556 dated Nov. 6, 2012.
Notice of Allowance for U.S. Appl. No. 12/534,398 dated Nov. 27, 2012.
Notice of Allowance for U.S. Appl. No. 12/506,905 dated Dec. 14, 2012.
Non-Final Office Action for U.S. Appl. No. 12/957,201 dated Dec. 19, 2012.
U.S. Appl. No. 12/534,384, Notice of Allowance mailed on May 7, 2013, 12 pages.
U.S. Appl. No. 12/548,187, Non-Final Office Action mailed on Apr. 9, 2013, 17 pages.
U.S. Appl. No. 12/548,222, Non-Final Office Action mailed on Apr. 10, 2013, 16 pages.
U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Apr. 13, 2013, 16 pages.
U.S. Appl. No. 12/548,290, Non-Final Office Action mailed on Apr. 15, 2013, 17 pages.
U.S. Appl. No. 12/957,201, Final Office Action mailed on Apr. 25, 2013, 11 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Apr. 10, 2013, 10 pages.
Notice of Allowance for U.S. Appl. No. 11/977,437 dated Mar. 4, 2013. 9 pages.
Final Office Action for U.S. Appl. No. 13/244,272 dated Mar. 28, 2013, 29 pages.
Notice of Allowance for U.S. Appl. No. 12/957,194 dated Mar. 20, 2013. 9 pages.
Kawaguchi et al. “Java Architecture for XML Binding (JAXB) 2.2, ” Sun Microsystems, Inc., Dec. 10, 1999, 384 pages.
Final Office Action for U.S. Appl. No. 12/396,464 dated Jan. 16, 2013, 16 pages.
Final Office Action for U.S. Appl. No. 12/913,636 dated Jan. 8, 2013, 20 pages.
Non-Final Office Action for U.S. Appl. No. 12/949,081 dated Jan. 9, 2013, 12 pages.
Final Office Action for U.S. Appl. No. 13/193,377 dated Jan. 17, 2013, 24 pages.
Final Office Action for U.S. Appl. No. 12/534,384 dated Feb. 12, 2013, 13 pages.
Non-Final Office Action for U.S. Appl. No. 13/102,665 dated Feb. 1, 2013, 11 pages.
Oracle™ Fusion Middleware CQL Language Reference, 11g Release 1 (11.1.1.6.3) E12048-10, Aug. 2012, pp. 6-1 to 6-12.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1.4.0) E12048-04, Jan. 2011, pp. 6.1 to 6.12.
Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-03, Apr. 2010, sections 18-4 to 18.4.2.
Pattern Recognition With MATCH—RECOGNIZE, Oracle™ Complex Event Processing CQL Language Reference, 11g Release 1 (11.1.1) E12048-01, May 2009, pp. 15.1 to 15.20.
Supply Chain Event Management: Real-Time Supply Chain Event Management, product information Manhattan Associates, 2009-2012.
U.S. Appl. No. 11/601,415, Non-Final Office Action mailed on Dec. 11, 2013, 58 pages.
U.S. Appl. No. 12/396,464, Non Final Office Action mailed on Dec. 31, 2013, 16 pages.
U.S. Appl. No. 13/089,556, Non-Final Office Action mailed on Jan. 9, 2014, 14 Pages.
Non-Final Office Action for U.S. Appl. No. 12/548,187 dated Feb. 6, 2014, 53 pages.
Agrawal et al. “Efficient pattern matching over event streams,” Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pp. 147-160 (Jun. 2008).
Chandramouli et al., High-Performance Dynamic Pattern Matching over Disordered Streams, Proceedings of the VLDB Endowment, vol. 3, Issue 1-2, Sep. 2010, pp. 220-231.
Chapple “Combining Query Results with the Union Command,” ask.com Computing Databases, downloaded from: http://databases.about.com/od/sql/a/union.htm (no date, printed on Oct. 14, 2013).
Fantozzi, A Strategic Approach to Supply Chain Event Management, student submission for Masters Degree, Massachusetts Institute of Technology, Jun. 2003.
Komazec et al., Towards Efficient Schema-Enhanced Pattern Matching over RDF Data Streams, Proceedings of the 1st International Workshop on Ordering and Reasoning (OrdRing 2011), Bonn, Germany, Oct. 2011.
Ogrodnek, Custom UDFs and hive, Bizo development blog http://dev.bizo.com, Jun. 23, 2009, 2 pages.
Pradhan, Implementing and Configuring SAP® Event Management, Galileo Press, 2010, pp. 17-21.
Wilson et al., SAP Event Management, an Overview, Q Data USA, Inc., 2009.
Business Process Management (BPM), Datasheet [online]. IBM, [retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL: http://www-142.ibm.com/software/products/us/en/category/BPM-SOFTWARE>.
What is BPM? , Datasheet [online]. IBM, [retrieved on Jan. 28, 2013]. Retrieved from the Internet: <URL: http://www-01.ibm.com/software/info/bpm/whatis-bpm/>.
U.S. Appl. No. 12/548,281, Final Office Action mailed on Oct. 10, 2013, 21 pages.
U.S. Appl. No. 12/548,290, Notice of Allowance mailed on Sep. 11, 2013, 6 pages.
U.S. Appl. No. 12/949,081, Final Office Action mailed on Aug. 27, 2013, 13 pages.
U.S. Appl. No. 13/089,556, Final Office Action mailed on Aug. 29, 2013, 10 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Aug. 30, 2013, 24 pages.
U.S. Appl. No. 13/193,377, Notice of Allowance mailed on Aug. 30, 2013, 19 pages.
U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 10, 2013, 18 pages.
U.S. Appl. No. 12/548,222, Notice of Allowance mailed on Jul. 18, 2013, 12 pages.
U.S. Appl. No. 13/102,665, Final Office Action mailed on Jul. 9, 2013, 17 pages.
Notice of Allowance for U.S. Appl. No. 11/977,437 dated Jul. 10, 2013, 10 pages.
SQL Tutorial-In, Tizag.com, http://web.archive.org/web/20090216215219/http://www.tizag.com/sgiTutorial/sqlin.php, Feb. 16, 2009, pp. 1-3.
U.S. Appl. No. 12/548,281, Non-Final Office Action mailed on Feb. 13, 2014, 16 pages.
U.S. Appl. No. 13/177,748, Final Office Action mailed on Mar. 20, 2014, 23 pages.
International Search Report dated Apr. 3, 2014 for PCT/US2014/010832, 9 pages.
Cadonna et al. “Efficient event pattern matching with match windows,” Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 471-479 (Aug. 2012).
Nichols et al. “A faster closure algorithm for pattern matching in partial-order event data,” IEEE International Conference on Parallel and Distributed Systems, pp. 1-9 (Dec. 2007).
Babu et al., “Exploiting k-Constraints to Reduce Memory Overhead in Continuous Queries Over Data Streams”, ACM Transactions on Database Systems (TODS) vol. 29 Issue 3, Sep. 2004, 36 pages.
Tho et al. “Zero-latency data warehousing for heterogeneous data sources and continuous data streams,” 5th International Conference on Information Integrationand Web-based Applications Services (Sep. 2003) 12 pages.
“SQL Subqueries”—Dec. 3, 2011, 2 pages.
“Caching Data with SqiDataSource Control”—Jul. 4, 2011, 3 pages.
“SCD-Slowing Changing Dimensions in a Data Warehouse”—Aug. 7, 2011, one page.
Non-Final Office Action for U.S. Appl. No. 13/838,259 dated Oct. 24, 2014, 21 pages.
Notice of Allowance for U.S. Appl. No. 13/102,665 dated Nov. 24, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,631 dated Nov. 13, 2014, 10 pages.
Non-Final Office Action for U.S. Appl. No. 13/827,987 dated Nov. 6, 2014, 9 pages.
Non-Final Office Action for U.S. Appl. No. 11/601,415 dated Oct. 6, 2014, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/077,230 dated Dec. 4, 2014, 30 pages.
Non-Final Office Action for U.S. Appl. No. 13/828,640 dated Dec. 2, 2014, 11 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,428 dated Dec. 5, 2014, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,502 dated Nov. 20, 2014, 25 pages.
Non-Final Office Action for U.S. Appl. No. 13/839,288 dated Dec. 4, 2014, 30 pages.
Call User Defined Functions from Pig, Amazon Elastic MapReduce, Mar. 2009, 2 pages.
Strings in C, retrieved from the internet: <URL: https://web.archive.org/web/20070612231205/http:l/web.cs.swarthmore.edu/-newhall/unixhelp/C—strings.html> [retrieved on May 13, 2014], Swarthmore College, Jun. 12, 2007, 3 pages.
Non-Final Office Action for U.S. Appl. No. 12/913,636 dated Jul. 24, 2014, 21 pages.
U.S. Appl. No. 11/874,197, Notice of Allowance mailed on Jun. 22, 2012, 20 pages.
U.S. Appl. No. 12/396,464, Final Office Action mailed on May 16, 2014, 16 pages.
U.S. Appl. No. 12/396,464, Non-Final Office Action mailed on Sep. 7, 2012, 18 pages.
U.S. Appl. No. 12/548,187, Final Office Action mailed on Jun. 4, 2014, 64 pages.
U.S. Appl. No. 13/089,556, Final Office Action mailed on Jun. 13, 2014, 14 pages.
U.S. Appl. No. 13/244,272, Notice of Allowance mailed on Aug. 12, 2013, 12 pages.
International Application No. PCT/US2011/052019, International Preliminary Report on Patentability mailed on Mar. 28, 2013, 6 pages.
International Application No. PCT/US2012/034970, International Preliminary Report on Patentability mailed on Nov. 21, 2013, 7 pages.
Bottom-up parsing, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Bottom-up—parsing, Sep. 8, 2014, pp. 1-2.
Branch Predication, Wikipedia, downloaded from: http://en.wikipedia.org/wiki/Branch—predication, Sep. 8, 2014, pp. 1-4.
Microsoft Computer Dictionary, 5th Edition, Microsoft Press, Redmond, WA, 2002, pp. 238-239 and 529.
Notice of Allowance for U.S. Appl. No. 13/089,556 dated Oct. 6, 2014, 9 pages.
U.S. Appl. No. 12/396,464, Notice of Allowance mailed on Sep. 3, 2014, 7 pages.
U.S. Appl. No. 12/548,187, Advisory Action mailed on Sep. 26, 2014, 6 pages.
U.S. Appl. No. 12/548,281, Final Office Action mailed on Aug. 13, 2014, 19 pages.
U.S. Appl. No. 12/957,201, Non-Final Office Action mailed on Jul. 30, 2014, 12 pages.
U.S. Appl. No. 13/764,560, Non-Final Office Action mailed on Sep. 12, 2014, 23 pages.
U.S. Appl. No. 13/770,969, Non-Final Office Action mailed on Aug. 7, 2014, 9 pages.
U.S. Appl. No. 14/302,031, Non-Final Office Action mailed on Aug. 27, 2014, 19 pages.
Abadi et al., Aurora: a new model and architecture for data stream management, The VLDB Journal the International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 120-139.
Balkesen et al., Scalable Data Partitioning Techniques for Parallel Sliding Window Processing over Data Streams, 8th International Workshop on Data Management for Sensor Networks, Aug. 29, 2011, pp. 1-6.
Chandrasekaran et al., PSoup: a system for streaming queries over streaming data, The VLDB Journal, The International Journal on Very Large Data Bases, vol. 12, No. 2, Aug. 1, 2003, pp. 140-156.
Dewson, Beginning SQL Server 2008 for Developers: From Novice to Professional, A Press, Berkeley, CA 2008, pp. 337-349 and 418-438.
Harish D et al., Identifying robust plans through plan diagram reduction, PVLDB 08, Auckland, New Zealand, Aug. 23-28, pp. 1124-1140.
Krämer, Continuous Queries Over Data Streams—Semantics and Implementation, Fachbereich Mathematik and Informatik der Philipps-Universitat, Marburg, Germany, Retrieved from the Internet: URL:http://archiv.ub.uni-marburg.de/dissjz007/0671/pdfjdjk.pdf, Jan. 1, 2007; 313 pages.
International Application No. PCT/US2013/062047, International Search Report and Written Opinion mailed on Jul. 16, 2014, 12 pages.
International Application No. PCT/US2013/062050, International Search Report & Written Opinion mailed on Jul. 2, 2014, 13 pages.
International Application No. PCT/US2013/062052, International Search Report & Written Opinion mailed on Jul. 3, 2014, 12 pages.
International Application No. PCT/US2013/073086, International Search Report and Written Opinion mailed on Mar. 14, 2014.
International Application No. PCT/US2014/017061, International Search Report and Written Opinion mailed on Sep. 9, 2014, 12 pages.
Rao et al., Compiled Query Execution Engine using JVM, ICDE '06, Atlanta, GA, Apr. 3-7, 2006, 12 pages.
Ray et al., Optimizing complex sequence pattern extraction using caching, data engineering workshops (ICDEW)˜ 2011 IEEE 27th international conference on IEEE, Apr. 11, 2011, pp. 243-248.
Shah et al., Flux: an adaptive partitioning operator for continuous query systems, Proceedings of the 19th International Conference on Data Engineering, Mar. 5-8, 2003, pp. 25-36.
Stillger et al., LEO—DB2's Learning Optimizer, Proc. of the VLDB, Roma, Italy, Sep. 2001, pp. 19-28.
Cranor et al. “Gigascope: a stream database for network applications,” Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pp. 647-651 (Jun. 2003).
International Application No. PCT/US2014/068641, International Search Report and Written Opinion mailed on Feb. 26, 2015, 11 pages.
European Patent Application No. 12783063.6, Extended Search Report mailed Mar. 24, 2015, 6 pages.
U.S. Appl. No. 12/949,081, Non-Final Office Action mailed on Jan. 28, 2015, 20 pages.
U.S. Appl. No. 12/957,201, Notice of Allowance mailed on Jan. 21, 2015, 5 pages.
U.S. Appl. No. 13/177,748, Non-Final Office Action mailed on Feb. 3, 2015, 22 pages.
U.S. Appl. No. 13/770,961, Non-Final Office Action mailed on Feb. 4, 2015, 22 pages.
U.S. Appl. No. 13/770,969, Notice of Allowance mailed on Jan. 22, 2015, 5 pages.
U.S. Appl. No. 13/829,958, Non-Final Office Action mailed on Dec. 11, 2014, 15 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,378 dated Feb. 25, 2015, 23 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,129 dated Feb. 27, 2015, 19 pages.
Non-Final Office Action for U.S. Appl. No. 12/913,636 dated Apr. 1, 2015, 22 pages.
Final Office Action for U.S. Appl. No. 13/827,631 dated Apr. 3, 2015, 11 pages.
Notice of Allowance for U.S. Appl. No. 13/839,288 dated Apr. 3, 2015, 12 pages.
Notice of Allowance for U.S. Appl. No. 14/077,230 dated Apr. 16, 2015, 16 pages.
Final Office Action for U.S. Appl. No. 13/764,560 dated Apr. 15, 2015, 19 pages.
International Application No. PCT/US2014/010832, Written Opinion mailed on Dec. 15, 2014, 5 pages.
International Application No. PCT/US2014/010920, International Search Report and Written Opinion mailed on Dec. 15, 2014, 10 pages.
International Application No. PCT/US2014/017061, Written Opinion mailed on Feb. 3, 2015, 6 pages.
Oracle® Complex Event Processing EPL Language Reference 11g Release 1 (11.1.1.4.0), E14304-02, Jan. 2011, 80 pages.
De Castro Alves, A General Extension System for Event Processing Languages, DEBS '11, New York, NY, USA, Jul. 11-15, 2011, pp. 1-9.
Takenaka et al., A scalable complex event processing framework for combination of SQL-based continuous queries and C/C++ functions, FPL 2012, Oslo, Norway, Aug. 29-31, 2012, pp. 237-242.
Tomàs et al., RoSeS: A Continuous Content-Based Query Engine for RSS Feeds, DEXA 2011, Toulouse, France, Sep. 2, 2011, pp. 203-218.
Notice of Allowance for U.S. Appl. No. 12/548,187 dated Aug. 17, 2015, 18 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,072 dated Jul. 9, 2015, 12 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,502 dated Jun. 30, 2015, 25 pages.
Non-Final Office Action for U.S. Appl. No. 14/036,659 dated Aug. 13, 2015, 33 pages.
Non-Final Office Action for U.S. Appl. No. 13/830,759 dated Aug. 7, 2015, 23 pages.
Final Office Action for U.S. Appl. No. 14/302,031 dated Apr. 22, 2015, 23 pages.
Non-Final Office Action for U.S. Appl. No. 14/692,674 dated Jun. 5, 2015, 22 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,171 dated Jun. 3, 2015, 15 pages.
Non-Final Office Action for U.S. Appl. No. 14/830,735 dated May 26, 2015, 19 pages.
Final Office Action for U.S. Appl. No. 13/830,428 dated Jun. 4, 2015, 21 pages.
Non-Final Office Action for U.S. Appl. No. 14/838,259 dated Jun. 9, 2015, 37 pages.
Final Office Action for U.S. Appl. No. 14/906,162 dated Jun. 10, 2015, 10 pages.
Non-Final Office Action for U.S. Appl. No. 14/037,153 dated Jun. 19, 2015, 23 pages.
Final Office Action for U.S. Appl. No. 13/829,958 dated Jun. 19, 2015, 17 pages.
Final Office Action for U.S. Appl. No. 13/827,987 dated Jun. 19, 2015, 10 pages.
Final Office Action for U.S. Appl. No. 13/828,640 dated Jun. 17, 2015, 11 pages.
U.S. Appl. No. 13/906,162, Non-Final Office Action mailed on Dec. 29, 2014, 10 pages.
International Application No. PCT/US2014/039771, International Search Report and Written Opinion mailed on Apr. 29, 2015 6 pages.
International Application No. PCT/US2015/016346, International Search Report and Written Opinion mailed on May 4, 2015, 9 pages.
International Preliminary Report on Patentability dated Apr. 9, 2015 for PCT/US2013/062047, 10 pages.
International Preliminary Report on Patentability dated Apr. 9, 2015 for PCT/US2013/062052, 18 pages.
International Preliminary Report on Patentability dated May 28, 2015 for PCT/US2014/017061, 31 pages.
International Preliminary Report on Patentability dated Jun. 18, 2015 for PCT/US2013/073086, 7 pages.
International Preliminary Report on Patentability dated Jul. 29, 2015 for PCT/US2014/010920, 30 pages.
International Preliminary Report on Patentability dated Jul. 29, 2015 for PCT/US2014/039771, 24 pages.
Japan Patent Office office actions JPO patent application JP2013-529376 (Aug. 18, 2015).
Final Office Action for U.S. Appl. No. 13/177,748 dated Aug. 21, 2015, 24 pages.
Non-Final Office Action for U.S. Appl. No. 14/036,500 dated Aug. 14, 2015, 26 pages.
Notice of Allowance for U.S. Appl. No. 13/830,129 dated Sep. 22, 2015, 9 pages.
Final Office Action for U.S. Appl. No. 13/770,961 dated Aug. 31, 2015, 28 pages.
Related Publications (1)
Number Date Country
20120291049 A1 Nov 2012 US