The present invention is in the field of inertial navigation. More specifically the invention is regarding combination of information from several sources to improve the accuracy of tracking a platform bearing a navigation system.
Inertial and electromagnetic tracking are the two main methods of tracking mobile platforms (MP) such as airplanes, missiles, boats and cars. An electromagnetic tracking system (EMT) is typically based on estimating the direction of the maximum electromagnetic intensity at the receiver. Step track, conical scan and monopulse are examples of EMT methods.
An antenna typically has a beam width ranging from a fraction of a degree to several degrees. While this is sufficiently accurate for some tasks such as locating the target, it is not accurate enough for other tasks. In step tracking which is also referred to as hill climbing, the signal location is assumed known within the uncertainty of the antenna's main beam and the antenna is initially pointed at the estimated signal location. The antenna is then open loop commanded by equal and opposite angular displacements from this estimated signal location, e.g. in the azimuth direction, and the received signal level is measured at both angular displacements. Likewise, the antenna is also open loop commanded by equal and opposite angular displacements in the orthogonal plane, e.g., the elevation direction, and again the signal level at each displacement is again measured. If the signal level in each plane is identical at both angular displacements, the antenna is correctly boresighted with the signal. Differences in the signal level at the two angular offsets can be used to realign the antenna so that the boresight axis is coincident with the signal path direction.
Conical scanning is a method used to properly steer the antenna to track an MP. In this case, the antenna is continuously rotated at an offset angle relative to the tracking axis, or has a feed that is rotated about the antenna's tracking axis. As the beam rotates around the tracking axis beam returns from the MP are measured. Considering the case in which the MP is not aligned with the tracking axis, an amplitude modulation (AM) exists on top of the returned signal. This AM envelope corresponds to the position of the target relative to the tracking axis. Thus, the extracted AM envelope can be used to drive a servo-control system in order to align the target with the tracking axis. Typically, a conical scan system needs at least four MP beam returns to be able to determine the MP azimuth and elevation coordinate (two returns per coordinate).
Amplitude comparison monopulse tracking is similar to a conical scan in the sense that four squinted beams are typically required to measure the target's angular position. The difference is that the four beams are generated simultaneously rather than sequentially. For this purpose, a special antenna feed is utilized such that the four beams are produced simultaneously. Typically, four feeds, mainly horns, are used to produce the monopulse antenna pattern. When a mobile platform is located on the antenna tracking axis the four horns receive an equal amount of energy. However, when the target is off the tracking axis an imbalance of energy occurs within the different beams. This imbalance of energy is used to generate an error signal that drives the servo-control system. Typical monopulse processing consists of computing a sum and two difference (azimuth and elevation) antenna patterns. Then, by dividing a difference channel voltage by the sum channel voltage, the angle of the signal can be determined.
Electromagnetic tracking is involved with errors in estimating the MP state; some of the causes for electromagnetic (EM) errors are described as follows. Measurement of the return EM reference from a moving platform is not accurate and is sensitive to return EM intensity variations (e.g. as a result of airplane maneuvers). The multipath phenomenon is the propagation that results in radio signals reaching the receiving antenna by two or more paths. Causes of the multipath include atmospheric ducting, ionospheric reflection and refraction and reflection from terrestrial objects, such as mountains and buildings. The multipath effect causes changes in received EM intensity signal (which is often called scintillation or signal “breathing”) especially when the elevation angle of the antenna is close to the horizon as described schematically in
Navigation systems (NSs) on board moving platforms (MPs) are installed typically on board spacecrafts, missiles, aircrafts, surface ships, submarines or land vehicles. Typical NSs in use are inertial navigation systems (INS), global positioning systems (GPS) and star trackers. The INS typically consists of an inertial measurement unit (IMU) containing a cluster of sensors such as accelerometers and gyroscopes, which measure the platform linear acceleration and angular velocity respectively. Navigation computers calculate an estimate of the position, velocity, attitude and attitude rate of the mobile platform (starting from known initial conditions). This is achieved by integrating the sensor measurements, while taking into account the gravitational acceleration. INS suffers from integration drift, as small errors in measurement are integrated into progressively larger errors in velocity and especially position. This is a problem that is inherent in every open loop control system. The INS is inherently well suited for integrated navigation, guidance and control of host MPs. Its IMU measures the derivative of the variables to be controlled (e.g., position velocity and attitude). The INS is typically autonomous and does not rely on any external aids or on visibility conditions. It is therefore immune to jamming and deception. An inertial tracking system (ITS) which is usually based on INS, computes the relative change in position and orientation from the appearing acceleration and angular velocity in the MP with respect to an inertial reference coordinate system as illustrated schematically in two dimensions in
With a known absolute start position p0 and start orientation vector q0 at time T0 the orientations vectors q1, q2 and positions p1, p2 at time T1 and T2 respectively are determined. The inertial tracker computes the relative changes in position Δp1 Δp2 and orientation Δq1,Δq2 and from the start configuration the actual position and orientation is determined.
The MP tracking errors such as position, orientation, velocity and acceleration in both methods cause degradations in tracking performance. Such degradations are noticeable, for example, when using a narrow beam antenna to track an MP, in such a case an accurate tracking system is needed to pin-point an MP. In another example, a narrow beam antenna is pointed towards an MP. When the antenna's axis is aligned exactly with the line of sight (LOS) between the antenna and the MP, a strong signal is detected. As the tracking error increases (i.e. the antenna axis is shifted with respect to the line of sight) the signal power decreases proportionally to the tracking error (within the limits of the main lobe). This power loss should be taken into account in power link budget calculations.
In accordance with the present invention, the data provided by a navigation system on board a moving platform (MP) is merged with data obtained using a tracking system that tracks the MP from another location. A typical navigation system on board the moving platforms is an inertial navigation system (INS). In
In another scenario, In order to correct the OBC of MP the EMT tracking data is processed in the TSS. The processed data is sent to the NS on-board the MP to update the OBC of the MP. For example, when the NS is an INS, in order to correct INS drift, the EMT tracking data is processed in the TSS. The processed data is sent to the INS on-board the MP to correct the drift in INS OBC.
An example illustrating a path of an MP in two dimensions and MP paths derived from EMT and INS measurements is described schematically in
The NS data such as MP position, velocity and acceleration is referred to hereinafter as NS state data. The EMT data such as range, antenna elevation and azimuth, MP position, velocity and acceleration is referred to hereinafter as EMT state data. The real MP data such as MP position, velocity and acceleration is referred to hereinafter as real MP state data.
In accordance with the present invention, state data generated on board the MP, typically NS data at one point in time, is used to decrease tracking error and thus to reduce tracking inaccuracy, increasing therefore the accuracy of the estimate of the position of the MP in a next point in time. To make use of the on-board generated state data, this data is merged with the state data generated by the EMT unit. The data merged from these two sources are used in estimating the current MP state and in the prediction of the next MP state. To this end, the NS state data is sent through a communications channel to a processing facility which also accepts the EMT unit generated state data. The processing facility may be installed in the EMT system, in the on-board MP or in any other locations and combinations thereof.
An example of merging of the INS on board the MP and EMT state data is described schematically in
In another scenario, the navigation system on board the MP is an INS which inherently accumulates error over time. In such error accumulating scenarios, measuring the difference in state data over a small period of time is advantageous. An example showing the advantage of using such differential state data is described schematically in
Linear or non-linear Kalman filters such as an extended Kalman filter (EKF) can be used to implement the MP position estimate. Kalman filter can be implemented by software or hardware and can be installed in the tracked moving object, the tracking system or in another static or mobile processing facility. Although the basic Kalman filter is limited to linear assumptions, most of the non-trivial systems are non-linear. The non-linearity can be associated either with the process model, the observation model or with both. The advantage of the nonlinear Kalman filters is that they can be used to directly estimate the MP dynamics (which are non-linear in most cases). Both the MP states and the sensor measurement equations can have nonlinear terms. This results in better estimation accuracy, over a wider range of operating conditions. The Kalman filter is an extremely effective and versatile procedure for combining data from multiple sources to estimate the state of a system with uncertain dynamics. With respect to the present invention, such data are INS and EM MP state calculations, typically MP position and velocity. The system state may include for example the position, velocity, acceleration of the MP or the EMT. Uncertain dynamics according to the present invention includes unpredictable disturbances of MP and/or EMT, whether caused by human operator or by the medium (e.g., winds surface currents, mobile platform maneuvers, ray deflection and scintillation). The Kalman filter maintains two types of variables estimates, the state vector and the covariance matrix. The components of the estimated state vector include the variables of interest (i.e. MP position, MP velocity, EMT angular data for directing EMT antenna to MP). The Kalman filter state variables for a specific application must include all those system dynamics variables that are measurable by the sensors used in the application. Covariance matrix, is a measure of estimation uncertainty, taking into account how sensor noise and dynamic uncertainty contribute to uncertainty of the estimated system state.
By maintaining an estimate of its own estimation uncertainty and the relative uncertainty in the various measurements outputs, a linear Kalman filter is able to combine all sensor information “optimally”, in the sense that the resulting estimate minimizes any quadratic loss function of estimation error, including the mean-squared value of any linear combination of state estimation error. The Kalman gain, is the optimal weighting matrix for combining new measured sources with prior estimate to obtain a new estimate.
The following is an example of the use of a nonlinear Kalman filter for combining the data measured by an INS with monopulse data to estimate the state of a mobile platform.
The scenario includes a ground station (GS) and an MP, e.g., an aircraft (AC). The AC contains an INS, which measures the inertial position and velocity of the AC. This data is transmitted to the GS. The GS contains a communications antenna with a monopulse system. A Cartesian system of coordinates (X,Y,Z) is positioned at the base of the GS antenna turning device. The AC is located at position (px,py,pz) and travels at linear velocity (vx,vy,vz) and linear acceleration (ax,ay,az).
Comment: an INS system normally represents the AC state (position, velocity, acceleration) in a global system of coordinates, such as LLA (longitude, latitude, altitude). It is assumed here that this state is converted (by the GS or the AC) to the geocentric coordinate system (GCS) centered system of coordinates (X,Y,Z).
The GS antenna points at direction (Θ,Φ), where Θ designates the azimuth and Φ the elevation of the antenna, as measured by the encoders of the motors in the antenna turning device. At a given time instance, the GS antenna points at direction (Θ,Φ) and the monopulse reception device of the antenna measures a deviation error of (δθ,δφ) in the azimuth and elevation directions, respectively. Thus, the GS antenna and monopulse system measure the AC at azimuth and elevation locations (θ,φ), where (θ,φ)=(Θ+δθ,Φ+δφ). Summarizing, the INS system aboard the AC measures (px,py,pz), (vx,vy,vz) and (ax,ay,az), and the GS monopulse system measures the deviation errors (δθ,δφ) and the motor encoding settings (Θ,Φ). In
1) State Vector Definition
The state variables are aggregated in a state vector, given by:
x=(px vx ax py vy ay pz vz az δθδφ)T
Thus, the state variables include:
The following sections describe the state equations for each state variable.
2) State Equations for AC Motion
The state equation describing the AC motion in the x direction is modeled by equation 3:
sx(n+1)=Hsx(n)+bux(n) (3)
where,
is the state vector in the x direction at sample time n,
and ux is the process driving noise in the x direction.
Analogous expressions are assumed for the state equations in the y and z directions.
3) State Equations for Monopulse Deviation Error
The monopulse deviation error is modelled by a first order autoregressive process given by equations 4 and 5:
δθ(n+1)=ρθδθ(n)+ue(n) (4)
δφ(n+1)=ρφδφ(n)+uφ(n) (5)
where 0<ρθ, ρφ<1 and uθ, uφ are the process driving noises.
The state equations described above, for the AC motion and for the monopulse deviation errors, can be aggregated in a single linear state equation, given by equation 6:
x(n+1)=Ax(n)+Bu(n) (6)
where x=(px vx ax py vy ay pz vz az δθ δφ)T is the state vector, u=(ux uy uz uθ uφ)T is the process driving noise vector with given covariance matrix Cu. The matrix A is given by (in block notation):
and 03×3,03×2,02×3 are zero matrices with the corresponding dimensions. The matrix B is given by:
The measured variables are aggregated in a measurement vector, given by:
y=(
Thus, the measurement variables contain:
Note that measurement variables are denoted by an over-bar, to distinguish them from the state variables. Next, the following sections describe the measurement equations for each measurement variable.
In this example, the INS measures the AC position and linear velocity, aggregated in the following vector:
yINS=(
The INS measurement equations are given by equation 7:
yINS(n)=Cx(n)+wINS(n) (7)
where:
is the INS measurement noise vector, with given covariance matrix CINS.
The monopulse system measures the values of the antenna motor encoders (
Thus, the measurement equations 8 and 9 for the deviation errors are:
where wθ,wφ are the measurement noises of both values, with given covariances.
The measurement equations for the motor encoder values are given by equations 10 and 11 respectively:
where wΘ,wΦ are the measurement noises of both values, with given covariances.
It is noted, that all the measurement equations are linear, with the exception of equations 10 and 11. In addition, equations 10 and 11 fuse monopulse state and INS state. This data fusion is used by the Kalman filter in order to improve the estimations of both the AC state and the monopulse errors, which are also measured separately.
The standard Kalman filter cannot be used directly with the equations given above, because the equations are nonlinear, in particular motor encoder measurement equations.
A possible solution is to use an adaptive filter such as the nonlinear Kalman filter, extended Kalman filter, particle filter or scented filter. One such technique is disclosed in M. Nørgaard, N. K. Poulsen, and O. Ravn, “Advances in Derivative Free State Estimation for Nonlinear Systems”, Technical report IMM-REP-1998-15, Technical University of Denmark, 2000, the contents of which are incorporated herein by reference.
An example of a Kalman filter implementation in the context of the present invention is described schematically in
Number and Deployment of Tracking Units
In accordance with the present invention, the MP state data can be collected from two or more independent units, one of which is on board the MP. Other tracking units are typically positioned statically on the ground but in other scenarios, the additional tracking systems may be deployed on a moving object.
It will be appreciated that the present invention is not limited by what has been described hereinabove and that numerous modifications, all of which fall within the scope of the present invention, exist. It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described herein above. Rather the scope of the invention is defined by the claims which follow:
Number | Date | Country | Kind |
---|---|---|---|
179344 | Nov 2006 | IL | national |
Number | Name | Date | Kind |
---|---|---|---|
4303978 | Shaw et al. | Dec 1981 | A |
5465142 | Krumes et al. | Nov 1995 | A |
6377041 | Jones et al. | Apr 2002 | B1 |
6445344 | Wise et al. | Sep 2002 | B1 |
6611141 | Schulz | Aug 2003 | B1 |
6826477 | Ladetto et al. | Nov 2004 | B2 |
7139651 | Knowlton | Nov 2006 | B2 |
7256728 | Kenny et al. | Aug 2007 | B1 |
7650232 | Paielli | Jan 2010 | B1 |
20010020216 | Lin | Sep 2001 | A1 |
20050035900 | Zaugg | Feb 2005 | A1 |
20050187677 | Walker | Aug 2005 | A1 |
20050248486 | Lee | Nov 2005 | A1 |
20070050138 | Morgan | Mar 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080120031 A1 | May 2008 | US |