This application is related to U.S. patent application Ser. No. 09/541,444 titled REAL-TIME SCHEDULING OF VIRTUAL MACHINES, filed on Mar. 31, 2000, still pending, and U.S. patent application Ser. No. 09/752,134 titled NEW PROCESSOR MODE FOR LIMITING THE OPERATION OF GUEST SOFTWARE RUNNING ON A VIRTUAL MACHINE SUPPORTED BY A VIRTUAL MACHINE MONITOR, filed on Dec. 27, 2000, still pending, both of which are assigned to the assignee of the present application.
This invention relates generally to virtual machine environments, and more particularly to scheduling virtual machines within those environments.
An Operating System (OS) is a software program that controls physical computer hardware (e.g., a processor, memory, and disk and CD-ROM drives) and presents application programs with a unified set of abstract services (e.g., a file system). Modern OSs typically multi-task among several application programs, each of which executes in a separate process, and many enable application programs to multi-task among several “threads” that share the same process address space.
Modern processors frequently have “performance counters,” software-configurable registers that count occurrences of various performance “events.” Typical events include “instructions retired” and “processor cycles,” the ratio of which is the well-known metric Instructions Per Clock (IPC), as well as various types of cache misses. Performance monitoring applications use these counters and events to evaluate and tune the performance of other applications. In a multi-tasking environment, performance monitoring applications must distinguish events such as cache misses that occur in one program or thread from those that occur in other programs or threads. Since hardware counters count these events, the inability to track OS process and thread execution in hardware limits the usefulness of the performance monitoring applications.
A Virtual Machine Monitor (VMM) is a software program that controls physical computer hardware (e.g., a processor, memory, and disk and CD-ROM drives) and presents programs executing within a Virtual Machine (VM) with the illusion that they are executing on real physical computer hardware (a “bare” machine, e.g., a processor, memory and a disk drive). Each VM typically functions as a self-contained platform, controlled by a “guest” OS (i.e., an OS hosted by the VMM), which executes as if it were running on a “bare” machine instead of within a virtual machine. Recursive VMs are VMs that are controlled by a VMM that is itself executing within a VM.
In a “real-time” application, computations upon data that is available at one substantially predetermined time should be completed by another substantially predetermined time. If an OS (or VMM) schedules a thread or process (or VM) with sufficient frequency and for sufficient duration that the thread or process (or VM) is able to complete its computations before their respective deadlines, the thread or process (or VM) is said to have received adequate scheduling Quality of Service (QoS). OSs and VMMs should schedule the computing resources of their real or virtual machine in such a fashion as to ensure that real-time applications receive adequate scheduling QoS.
A VMM can monitor scheduling QoS at the level of all applications within a VM as disclosed in the related application Ser. No. 09/541,444. However, such monitoring cannot distinguish between real-time and non-real-time applications in the same VM, nor can it distinguish among recursive VMs in the same VM, leading to problems in providing adequate scheduling QoS. Furthermore, a system wide performance monitoring facility that executes as part of a VMM will need to distinguish events in one VM from those in another VM.
In the following detailed description of embodiments of the invention, reference is made to the accompanying drawings in which like references indicate similar elements, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical, functional and other changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Furthermore, particular embodiments of methods of the invention are described in terms of executable instructions with reference to a series of flowcharts. Describing the methods by reference to a flowchart enables one skilled in the art to develop such instructions to carry out the methods within suitably configured processing units. The executable instructions may be written in a computer programming language or may be embodied in firmware logic. The present invention is not described with reference to any particular programming language and it will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. In addition, it is common in the art to speak of executable instructions as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the instructions by a computer causes the processor of the computer to perform an action or a produce a result.
The present invention infers software actions that result in transitions among operating system processes and threads as well as among virtual machines. These inferences can be made either by real hardware (i.e., a computer processor) or by a virtual machine monitor, in which case the virtual machines whose transitions are being inferred are recursive virtual machines whose transitions are controlled by a child virtual machine monitor that executes within one of the virtual machines controlled by the virtual machine monitor itself. In one of the embodiments described herein, hardware performance counters incorporate the techniques of this invention to distinguish the occurrence of performance “events” such as “instructions retired”, “processor cycles” or “cache misses” in one operating system process or thread or in an entire virtual machine from those, respectively, in another operating system process or thread or in an entire virtual machine. In another embodiment, the invention is incorporated into a virtual machine monitor to enable a virtual machine system to guarantee adequate scheduling Quality of Service (QoS) to real-time applications executing in virtual machines that contain both real-time and non-real-time applications. The use of the invention in a recursive virtualization system where a child virtual machine monitor controls multiple virtual machines, with one or more of the recursive virtual machines executing one or more real-time applications, and one or more recursive virtual machines executing one or more non-real-time applications is also described. The invention is not so limited by these embodiments, however, and the scheduling information also can be used, for example, by multiprocessor systems and multithreaded processors to better assign instruction streams to particular processors and/or hardware contexts.
The OS 157 schedules processes A 153 and B 155 for execution on the bare machine 101. In addition OS 157 may directly schedule threads A-1163, A-2164, A-3165 and B-2166, for execution or it may allow the processes 153, 155 to schedule the threads 163, 164, 165, 166 themselves. The actual mechanism(s) used to schedule the processes and threads for execution on the bare machine are well-known by those skilled in the art.
The VMM 107 schedules the virtual machines, VM A 103 and VM B 105, for execution on the bare machine 101 in a fashion that allows the VMs to share the computing resources of the bare machine 101. Each VM allocate its shares of the computing resources to its guest operating system (OS) and to any user-level applications running in that particular VM, such as guest OS1109 and applications 113 within VM A 103, and guest OS2111 and applications 115 for VM B 105. The actual allocation of the computing resources by the VMM 107 depends, at least in part, on the particular embodiment of the virtual machine system 100 and the applications 113, 115 being run by the guest OSs 109, 111 within the VMs 103, 105. In particular, when one or more of the applications 113, 115 are real-time applications, the VMM 107 must allocate the computing resources to provide adequate scheduling Quality of Service (QoS) to the real-time application(s), i.e., the VMs are scheduled for execution with sufficient frequency and for sufficient durations that the deadlines for their real-time applications can be met.
Real-time systems theory and practice teaches that a real-time application thread (or other schedulable entity such as a process, guest operating system, virtual machine, etc.) can be guaranteed sufficient scheduling QoS by reserving a certain amount of processor time for the real-time application, typically expressed in terms of a percentage of the processor (X) and a period of (cyclic) execution (Y). In other words, the scheduling requirements of a real-time application can be abstracted as X microseconds of execution time every Y microseconds of wall clock time. For example, to provide adequate scheduling QoS to a real-time application 113, VM A 103 might need to receive 2 microseconds of execution time on the processor of the bare machine 101 every 10 microseconds of wall clock time. Once VM A 103 has received its 2 microsecond during any 10 microsecond period, the VMM 107 saves the state of VM A 103 and switches in the state of VM B 105 for execution.
However, the actual computing resource requirements X and Y of the VMs 103, 105 are not directly accessible by the VMM 107 and thus must be inferred from events within the VMs that are visible to the VMM. Assuming that real-time processing in a guest OS is interrupt driven via a periodic clock interrupt (or other periodic interrupt), the VMM 107 can deduce the computer resource requirements for a VM executing a real-time guest OS or applications based on the instruction stream executed by the VM since instructions can be trapped by the VMM (illustrated by arrows from the guest OSs 109, 111 and the applications 113, 115 to the VMM 107 in
Within a VM, when the active process or thread completes its work, or blocks before completing its work, its state is saved by the guest OS and the execution is switched to another process or thread. OSs that use static priority schedulers, such as Windows NT, typically assign higher priorities to processes and threads belonging to real-time applications than to processes and threads belonging to non real-time applications, so that any ready-to-run real-time threads or processes will complete or block before any non-real-time threads or processes begin executing. Typically, when a VM resumes execution from being switched out by the VMM for a period of time, a number of interrupts will be pending, including clock interrupts, and the OS will tend to make rescheduling decisions immediately after being switched in as threads and processes that were blocked waiting on those interrupts are unblocked. Thus, the VMM can infer the processes and threads belonging to real-time applications by monitoring which processes and thread are switched in first within each VM over time. Alternatively, for OSs such as Windows NT that do not implement a priority inheritance protocol the VMM can utilize a “helper” thread or process at a low real-time priority that is set up to execute in each VM to establish a “fence.” If, following an interrupt, one or more threads and/or processes are switched in before the helper thread or process is switched in, and there has been no intervening interrupt, then the VMM can be assured that those threads and/or processes in the VM are real-time.
To deduce the periodic frequency (Y) for VM A 103, for example, let YA be the minimum Y for all real-time applications being executed by the guest OS1109. Given that all processing in VM A 103 is driven by a clock interrupt having a rate TA, then YA>=TA. The calculation of Y in a system driven by some other periodic interrupt source is analogous. By incorporating a component that detects interrupt frequency into the VMM 107, the VMM 107 can track interrupt frequency for each VM and can thus deduce a Y for each VM. Cases where a combination of periodic interrupt sources are used can be resolved by choosing the smaller period (or more generally, the GCD or greatest common divisor), or other arbitration scheme that results in a period that closely matches the rate.
In one embodiment, the determination of how much execution time (X) to allot to each VM uses a feedback loop in which the process/thread switches for real-time applications within the VM serve as the feedback. Any of a number of well-known feedback loops can be used to close the loop in a self-dampening way and such techniques have been successfully applied to real-time software. The VMM 107 deduces X for each VM by initially assigning the VM a provisional “MHz rating,” setting X to match the provisional rating, and monitoring each VM to determine if it is getting enough execution time to provide adequate scheduling QoS to its real-time processes/threads. If the active real-time process/thread is switched out before the interrupt at X occurs, then the real-time process/thread has met its deadline(s) without needing all the execution time currently assigned to the VM and the real-time application has received adequate scheduling QoS from the guest OS and from the VM. Conversely, if the real-time process/thread is still executing when it is interrupted at X, then the real-time process/thread needs more execution time. By monitoring the frequency with which real-time processes/threads within a VM receive adequate scheduling QoS, the VMM 107 can make necessary adjustments to the value of X for the VM. The VMM 107 can also detect the frequency with which a guest OS enters an idle loop, i.e., has no useful work to do, by detecting halt (HLT) instructions. Because the VMM 107 detects process and thread switches at the operating system and application levels, it can calculate its scheduling for a VM at granularities beneath the whole VM.
In an exemplary embodiment illustrated in
One embodiment of the processes represented by blocks 261 and 267 in
In an alternate embodiment not shown, the effect of a state match could be the reverse of that illustrated in
Beginning with
Turning now to
The VMM modifies the protected state register on behalf of the unprivileged software (block 213), which signals a process/thread switch within the currently executing VM. The VMM determines the VMM identifier, e.g., 12330000, for the new process/thread through the look-up table 400 using the contents of the state register after it has been modified (block 215). The VMM also marks the corresponding VMM identifier as active in the status table 410 (block 217). Thus, for example, the processing at block 217 marks the process/thread VMM identifier 1233000 as active in the status table 410 in
As stated above, the data structures that can serve as the protected state registers vary from processor to processor. One embodiment of the invention can be used with processors that provide a virtual addressing space to executing processes. One or more “address space” registers containing the values for the current address space must be updated on an operating system process switch. For example, when executing on an Intel IA32 processor, the VMM 107 can detect operating system process switches by monitoring changes to a control register (CR3) that contains the base address of the current page table. Similarly, the VMM 107 executing on an Intel IA64 processor can detect operating system process switches by monitoring changes to region registers that map virtual address regions into a global address space. Processors with hardware-managed address translation look aside buffers (TLBs) typically have one or more registers which are generally protected from modification by unprivileged software. Thus, VMM 107 can track changes to these registers to effectively monitor operating system process switches. Processors with software-managed TLBs also provide hardware to assist with address translation. For instance, the MIPS R10000 RISC processor associates an address space identifier (ASID) with each TLB entry to avoid costly TLB flushes upon context switches. A special register containing the ASID of the current process must be updated upon every context switch so the VMM 107 could track changes to this register to detect operating system process switches on a R10000 or similar processor.
On any processor that supports multi-threaded processes, each thread is associated with an instruction stack and a stack pointer that points to the current top of the stack. Typically, the guest OS 109, 111 will store the stack pointer for a non-executing thread in a data structure in memory (often called a thread control block). By monitoring loads or stores of the stack pointers from or to memory, a processor could detect thread switches. However, current processors do not protect the stack pointers from access by unprivileged software, and thus do not fault when load/store instructions on the stack pointers are issued by unprivileged software. By modifying the processor to protect the stack pointers in such a fashion, the stack pointers would serve as the protected state registers and the VMM 107 could detect memory loads/stores of the stack pointers by the guest OSs 109, 111, thereby monitoring thread switches in the VMs 103, 105. Although such changes could be accomplished without impacting the usability of the stack, they would likely make implementation of light weight user-level thread packages problematical. Moreover, microarchitecture design considerations and microcode implementation issues make it difficult to modify many standard processors, such as the IA32 and IA64, to fault in this fashion.
In some processors, such as the IA32, the current instruction stack is stored in a segment and identified by a segment selection in a stack segment register. Because certain operating systems, such as the Microsoft Windows 9x family and some optimized real-time operating systems, leverage the processor's segmentation architecture for low cost address space protection, they must modify the stack segment register when switching threads. Thus, in yet another embodiment of the invention, the processor would be modified to fault when unprivileged software attempts to load a stack segment register, enabling the VMM 107 to track thread switching in these operating systems executing on a segmented architecture processor.
Other processors, such as the IA64, incorporate instruction level parallelism that uses speculation techniques to determine the next instructions and data most likely to be required by the processor. The processor uses a data structure to hold the data speculative state of the processor, referred to hereinafter as the Advanced Load Address Table (ALAT). Entries in the ALAT are invalidated by events that alter the state of the processor and such events are relatively well-coordinated with thread switches. Therefore, the ALAT could serve as the protected state registers if the processor is modified to fault on ALAT invalidations caused by unprivileged software. This would enable the VMM 107 to track thread context switches performed by both guest OSs 109, 111 and user-level applications 113, 115. It will be appreciated that although ALAT is the name of the data structure within the IA64 processor, the invention is not limited to use only with that particular data structure.
One embodiment of VMM 107 that bases its scheduling of virtual machines, at least in part, on resource requirement values derived from process/thread switches is illustrated in
When the VMM 107 receives a virtualization trap for VM A 103 or VM B 105 from the processor as previously described in conjunction with
Thus, the current invention enables a VMM to monitor scheduling decisions by guest operating systems. Based on the characteristics of various guest operating systems, the VMM can infer scheduling QoS at the level of the operating system process or even individual threads. For a general purpose operating system such as Microsoft Windows NT and Windows 2000, this could allow the VMM to track execution of threads executing with real-time priority by inferring processes in the Win32 real-time priority class and ensure that threads in those processes received adequate scheduling quality of service. Thus, detecting process/thread switches can enable a VMM to better schedule a system in which general purpose OSs are executing both real-time and non-real-time applications within VMs.
A recursive virtualization environment is illustrated in
In one embodiment, no special hardware support is provided for virtualization so the VMM 107 executes with full privilege (e.g., in ring 0) and both the guest OS 111 and guest applications 115 execute without privilege (e.g., in ring 3). In one embodiment on such hardware the VMs 103 and 105 have separate address spaces so that guest OS 109 and guest OS 111 are protected from one another. On such hardware the child VMM 701 would thus execute without privilege (e.g., in ring 3), as would guest OS 3707, guest OS 4709 and applications 711 and 713. Since the parent VMM 107 executes with full privilege it can switch processes on behalf of guest OS 1111 executing within VM B 105 and it can switch execution to VM A 103 without having those instructions trapped by the processor. However, the child VMM 701 cannot switch processes on behalf of guest OS 3707 executing within VM A1703 nor can it switch execution from VM A1703 to VM A2705 because the child VMM 701 is in fact executing without privilege. As noted earlier, in one embodiment the parent VMM 107 transitions from VM A 103 to VM B 105 by effecting a process switch, but as noted earlier the child VMM 701 executes at ring 3 and so an attempt by it to switch from VM A1703 to VM A2705 by switching processes will trap to the parent VMM 107. As a result all attempts by the child VMM 701 to switch VMs trap to the parent VMM 701, which is thus enabled to track VM switches by the child VMM 701.
In an alternate embodiment, the child VMM 701 executes in a non-privileged virtualization mode on a processor that includes a hardware VM-state register and a VM-run instruction. The VM-state register is loaded with the state information for a virtual machine and the VM-run instruction causes the processor to begin execution of that state, analogous to a state register for a process/thread and the transition to a privilege level in which the execution of a process/thread is invoked. Thus, the processor could trap either an instruction to load the VM-state register or the VM-run instruction to track VM switches by a child VMM 701. However, many of the executions of the VM-run instruction will not be as a result of a change in VM but will be due to attempts by a guest OS to execute a privileged instruction, page faults, etc. By trapping, instead, on loads of the VM-state register, the processor could ensure that the parent VMM 107 only receives virtualization traps from the child VMM 701 in response to actual VM switches by the child VMM 701.
As shown in
The VMM 107 of
Thus, the current invention enables a parent VMM 107 to monitor machine scheduling decisions made by a child VMM 701. The parent VMM can use this information to schedule a child VMM 701 for execution in such a way that the child VMM 701 is able to schedule its VMs as may be necessary in order that applications executing in VMs of the child VMM 701 receive adequate scheduling quality of service.
The following description of
Techniques for detecting in hardware transitions among software processes or threads or among virtual machines have been described. In addition, techniques for detecting in a virtual machine monitor transitions among software processes or threads or virtual machines belonging to a child virtual machine monitor have been described. Embodiments of hardware performance monitoring counters that utilize these techniques to distinguish events that occur in one process, thread or virtual machine from those that occur in another have also been described. Finally, embodiments of a virtual memory monitor that utilize those techniques to provide adequate scheduling quality of service to a real-time applications executing within the virtual machines have been described. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the present invention. For example, those of ordinary skill within the art will appreciate that the embodiments of the invention have been described above as switching between two schedulable entities for ease in explanation and the invention is not limited to virtual machine environments in which only two schedulable entities are executing. Therefore, it is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3699532 | Schaffer et al. | Oct 1972 | A |
3996449 | Attanasio | Dec 1976 | A |
4037214 | Birney et al. | Jul 1977 | A |
4162536 | Morley | Jul 1979 | A |
4207609 | Luiz et al. | Jun 1980 | A |
4247905 | Yoshida et al. | Jan 1981 | A |
4276594 | Morley | Jun 1981 | A |
4278837 | Best | Jul 1981 | A |
4307447 | Provanzano et al. | Dec 1981 | A |
4319233 | Matsuoka et al. | Mar 1982 | A |
4319323 | Ermolovich et al. | Mar 1982 | A |
4347565 | Kaneda et al. | Aug 1982 | A |
4366537 | Heller et al. | Dec 1982 | A |
4403283 | Myntti et al. | Sep 1983 | A |
4419724 | Branigin et al. | Dec 1983 | A |
4430709 | Schleupen | Feb 1984 | A |
4521852 | Guttag | Jun 1985 | A |
4571672 | Hatada et al. | Feb 1986 | A |
4621318 | Maeda | Nov 1986 | A |
4759064 | Chaum | Jul 1988 | A |
4795893 | Ugon | Jan 1989 | A |
4802084 | Ikegaya | Jan 1989 | A |
4825052 | Chemin et al. | Apr 1989 | A |
4835685 | Kun | May 1989 | A |
4907270 | Hazard | Mar 1990 | A |
4907272 | Hazard | Mar 1990 | A |
4910774 | Barakat | Mar 1990 | A |
4916608 | Shultz | Apr 1990 | A |
4975836 | Hirosawa | Dec 1990 | A |
5007082 | Cummins | Apr 1991 | A |
5022077 | Bealkowski et al. | Jun 1991 | A |
5043878 | Ooi | Aug 1991 | A |
5075842 | Lai | Dec 1991 | A |
5079737 | Hackbarth | Jan 1992 | A |
5187802 | Inoue | Feb 1993 | A |
5230069 | Brelsford | Jul 1993 | A |
5237616 | Abraham et al. | Aug 1993 | A |
5255379 | Melo | Oct 1993 | A |
5287363 | Wolf et al. | Feb 1994 | A |
5293424 | Hotley et al. | Mar 1994 | A |
5295251 | Wakui | Mar 1994 | A |
5317705 | Gannon et al. | May 1994 | A |
5319760 | Mason et al. | Jun 1994 | A |
5361375 | Ogi | Nov 1994 | A |
5371857 | Takagi | Dec 1994 | A |
5386552 | Garney | Jan 1995 | A |
5421006 | Jablon et al. | May 1995 | A |
5434999 | Goire et al. | Jul 1995 | A |
5437033 | Inoue et al. | Jul 1995 | A |
5442645 | Ugon et al. | Aug 1995 | A |
5455909 | Blomgren et al. | Oct 1995 | A |
5459867 | Adams et al. | Oct 1995 | A |
5459869 | Spilo | Oct 1995 | A |
5469557 | Salt | Nov 1995 | A |
5473692 | Davis | Dec 1995 | A |
5479509 | Ugon | Dec 1995 | A |
5504922 | Seki et al. | Apr 1996 | A |
5506975 | Onodera | Apr 1996 | A |
5511217 | Nakajima et al. | Apr 1996 | A |
5522075 | Robinson et al. | May 1996 | A |
5528231 | Patarin | Jun 1996 | A |
5530860 | Matsuura | Jun 1996 | A |
5533126 | Hazard et al. | Jul 1996 | A |
5555385 | Osisek | Sep 1996 | A |
5555414 | Hough | Sep 1996 | A |
5560013 | Scalzi et al. | Sep 1996 | A |
5564040 | Kubala | Oct 1996 | A |
5566323 | Ugon | Oct 1996 | A |
5568552 | Davis | Oct 1996 | A |
5574936 | Ryba | Nov 1996 | A |
5582717 | Di Santo | Dec 1996 | A |
5604805 | Brands | Feb 1997 | A |
5606617 | Brands | Feb 1997 | A |
5615263 | Takahashi | Mar 1997 | A |
5628022 | Ueno et al. | May 1997 | A |
5633929 | Kaliski, Jr. | May 1997 | A |
5657445 | Pearce | Aug 1997 | A |
5668971 | Neufeld | Sep 1997 | A |
5684948 | Johnson et al. | Nov 1997 | A |
5706469 | Kobayashi | Jan 1998 | A |
5717903 | Bonola | Feb 1998 | A |
5720609 | Pfefferle | Feb 1998 | A |
5721222 | Bernstein et al. | Feb 1998 | A |
5727211 | Gulsen | Mar 1998 | A |
5729760 | Poisner | Mar 1998 | A |
5737604 | Miller et al. | Apr 1998 | A |
5737760 | Grimmer, Jr. et al. | Apr 1998 | A |
5740178 | Jacks et al. | Apr 1998 | A |
5752046 | Oprescu et al. | May 1998 | A |
5757919 | Herbert et al. | May 1998 | A |
5764969 | Kahle et al. | Jun 1998 | A |
5796835 | Saada | Aug 1998 | A |
5796845 | Serikawa et al. | Aug 1998 | A |
5805712 | Davis | Sep 1998 | A |
5805790 | Nota et al. | Sep 1998 | A |
5809546 | Greenstein et al. | Sep 1998 | A |
5825875 | Ugon | Oct 1998 | A |
5825880 | Sudia et al. | Oct 1998 | A |
5835594 | Albrecht et al. | Nov 1998 | A |
5838968 | Culbert | Nov 1998 | A |
5844986 | Davis | Dec 1998 | A |
5852717 | Bhide et al. | Dec 1998 | A |
5854913 | Goetz et al. | Dec 1998 | A |
5867577 | Patarin | Feb 1999 | A |
5872994 | Akiyama et al. | Feb 1999 | A |
5890189 | Nozue et al. | Mar 1999 | A |
5900606 | Rigal | May 1999 | A |
5901225 | Ireton et al. | May 1999 | A |
5901312 | Radko | May 1999 | A |
5903752 | Dingwall et al. | May 1999 | A |
5919257 | Trostle | Jul 1999 | A |
5935242 | Madany et al. | Aug 1999 | A |
5935247 | Pai et al. | Aug 1999 | A |
5937063 | Davis | Aug 1999 | A |
5944821 | Angelo | Aug 1999 | A |
5953502 | Helbig, Sr. | Sep 1999 | A |
5956408 | Arnold | Sep 1999 | A |
5970147 | Davis et al. | Oct 1999 | A |
5978475 | Schneier | Nov 1999 | A |
5978481 | Ganesan et al. | Nov 1999 | A |
5987557 | Ebrahim | Nov 1999 | A |
6014745 | Ashe | Jan 2000 | A |
6035374 | Panwar et al. | Mar 2000 | A |
6044478 | Green | Mar 2000 | A |
6047307 | Radko | Apr 2000 | A |
6055537 | LeRourneau | Apr 2000 | A |
6055637 | Hudson et al. | Apr 2000 | A |
6058478 | Davis | May 2000 | A |
6061794 | Angelo | May 2000 | A |
6075938 | Bugnion et al. | Jun 2000 | A |
6085296 | Karkhanis et al. | Jul 2000 | A |
6088262 | Nasu | Jul 2000 | A |
6092095 | Maytal | Jul 2000 | A |
6093213 | Favor | Jul 2000 | A |
6101584 | Satou et al. | Aug 2000 | A |
6108644 | Goldschlag et al. | Aug 2000 | A |
6115816 | Davis | Sep 2000 | A |
6125430 | Noel et al. | Sep 2000 | A |
6131166 | Wong Insley | Oct 2000 | A |
6148379 | Schimmel | Nov 2000 | A |
6158546 | Hanson et al. | Dec 2000 | A |
6173417 | Merrill | Jan 2001 | B1 |
6175924 | Arnold | Jan 2001 | B1 |
6175925 | Nardone et al. | Jan 2001 | B1 |
6178509 | Nardone et al. | Jan 2001 | B1 |
6182089 | Ganapathy et al. | Jan 2001 | B1 |
6188257 | Buer | Feb 2001 | B1 |
6192455 | Bogin et al. | Feb 2001 | B1 |
6199152 | Kelly et al. | Mar 2001 | B1 |
6205550 | Nardone et al. | Mar 2001 | B1 |
6212635 | Reardon | Apr 2001 | B1 |
6222923 | Schwenk | Apr 2001 | B1 |
6249872 | Wildgrube et al. | Jun 2001 | B1 |
6252650 | Nakaumra | Jun 2001 | B1 |
6269392 | Cotichini et al. | Jul 2001 | B1 |
6272533 | Browne et al. | Aug 2001 | B1 |
6272637 | Little et al. | Aug 2001 | B1 |
6275933 | Fine | Aug 2001 | B1 |
6282650 | Davis | Aug 2001 | B1 |
6282651 | Ashe | Aug 2001 | B1 |
6282657 | Kaplan et al. | Aug 2001 | B1 |
6292874 | Barnett | Sep 2001 | B1 |
6301646 | Hostetter | Oct 2001 | B1 |
6308270 | Guthery et al. | Oct 2001 | B1 |
6314409 | Schneck et al. | Nov 2001 | B2 |
6321314 | Van Dyke | Nov 2001 | B1 |
6327652 | England et al. | Dec 2001 | B1 |
6330670 | England et al. | Dec 2001 | B1 |
6339815 | Feng et al. | Jan 2002 | B1 |
6339816 | Bausch | Jan 2002 | B1 |
6357004 | Davis | Mar 2002 | B1 |
6363485 | Adams | Mar 2002 | B1 |
6374286 | Gee et al. | Apr 2002 | B1 |
6374317 | Ajanovic et al. | Apr 2002 | B1 |
6378068 | Foster | Apr 2002 | B1 |
6378072 | Collins et al. | Apr 2002 | B1 |
6389537 | Davis et al. | May 2002 | B1 |
6397242 | Devine et al. | May 2002 | B1 |
6397379 | Yates, Jr. et al. | May 2002 | B1 |
6412035 | Webber | Jun 2002 | B1 |
6421702 | Gulick | Jul 2002 | B1 |
6435416 | Slassi | Aug 2002 | B1 |
6445797 | McGough et al. | Sep 2002 | B1 |
6463535 | Drews et al. | Oct 2002 | B1 |
6463537 | Tello | Oct 2002 | B1 |
6496847 | Bugnion et al. | Dec 2002 | B1 |
6499123 | McFarlane et al. | Dec 2002 | B1 |
6505279 | Phillips et al. | Jan 2003 | B1 |
6507904 | Ellison et al. | Jan 2003 | B1 |
6529909 | Bowman-Amuah | Mar 2003 | B1 |
6535988 | Poisner | Mar 2003 | B1 |
6557104 | Vu et al. | Apr 2003 | B2 |
6560627 | McDonald et al. | May 2003 | B1 |
6601081 | Provino et al. | Jul 2003 | B1 |
6609199 | DeTreville | Aug 2003 | B1 |
6615278 | Curtis | Sep 2003 | B1 |
6633963 | Ellison et al. | Oct 2003 | B1 |
6633981 | Davis | Oct 2003 | B1 |
6651171 | England et al. | Nov 2003 | B1 |
6678825 | Ellison et al. | Jan 2004 | B1 |
6684326 | Cromer et al. | Jan 2004 | B1 |
6732220 | Babaian et al. | May 2004 | B2 |
6785886 | Lim et al. | Aug 2004 | B1 |
6795966 | Lim et al. | Sep 2004 | B1 |
6944699 | Bugnion et al. | Sep 2005 | B1 |
6961941 | Nelson et al. | Nov 2005 | B1 |
20010021969 | Burger et al. | Sep 2001 | A1 |
20010027511 | Wakabayashi et al. | Oct 2001 | A1 |
20010027527 | Khidekel et al. | Oct 2001 | A1 |
20010037450 | Metlitski et al. | Nov 2001 | A1 |
20020007456 | Peinado et al. | Jan 2002 | A1 |
20020013802 | Mori et al. | Jan 2002 | A1 |
20020023032 | Pearson et al. | Feb 2002 | A1 |
20020147916 | Strongin et al. | Oct 2002 | A1 |
20020166061 | Falik et al. | Nov 2002 | A1 |
20020169717 | Challener | Nov 2002 | A1 |
20030018892 | Tello | Jan 2003 | A1 |
20030074548 | Cromer et al. | Apr 2003 | A1 |
20030115453 | Grawrock | Jun 2003 | A1 |
20030126442 | Glew et al. | Jul 2003 | A1 |
20030126453 | Glew et al. | Jul 2003 | A1 |
20030159056 | Cromer et al. | Aug 2003 | A1 |
20030188179 | Challener et al. | Oct 2003 | A1 |
20030196085 | Lampson et al. | Oct 2003 | A1 |
20040117539 | Bennett et al. | Jun 2004 | A1 |
Number | Date | Country |
---|---|---|
4217444 | Dec 1992 | DE |
0473913 | Mar 1992 | EP |
0600112 | Nov 1992 | EP |
0 892 521 | Jan 1999 | EP |
0930567 | Jul 1999 | EP |
0 961 193 | Dec 1999 | EP |
0 965 902 | Dec 1999 | EP |
1030237 | Aug 2000 | EP |
1 055 989 | Nov 2000 | EP |
1 056 014 | Nov 2000 | EP |
1 085 396 | Mar 2001 | EP |
1146715 | Oct 2001 | EP |
1 271 277 | Jan 2003 | EP |
02000076139 | Mar 2000 | JP |
WO 9524696 | Sep 1995 | WO |
WO 9729567 | Aug 1997 | WO |
WO 9812620 | Mar 1998 | WO |
WO 9834365 | Aug 1998 | WO |
WO 9844402 | Oct 1998 | WO |
WO 9905600 | Feb 1999 | WO |
WO 9909482 | Feb 1999 | WO |
WO 9918511 | Apr 1999 | WO |
WO 9918511 | Apr 1999 | WO |
WO 9957863 | Nov 1999 | WO |
WO 9965579 | Dec 1999 | WO |
WO 9965579 | Dec 1999 | WO |
WO 0021238 | Apr 2000 | WO |
WO 0062232 | Oct 2000 | WO |
WO 0127723 | Apr 2001 | WO |
WO 0127821 | Apr 2001 | WO |
WO 0163994 | Aug 2001 | WO |
WO 01 75564 | Oct 2001 | WO |
WO 0175565 | Oct 2001 | WO |
WO 0175595 | Oct 2001 | WO |
WO 02 17555 | Feb 2002 | WO |
WO 02 086684 | Oct 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030037089 A1 | Feb 2003 | US |