Claims
- 1. A tracking resistant electrical insulator consisting of a molded body comprising (1) an unsaturated phthalate polyester resin matrix comprising the reaction product of an unsaturated phthalate polyester precursor having a viscosity higher than about 500 cps at room temperature and (2) from about 76 to about 96 percent by weight, based on the total weight of the insulator, of a filler composition comprising:
- a) silica having a particle size distribution such that no less than about 70% by weight of the particles are retained on a 60 mesh U.S. standard sieve and no more than about 30% by weight of the particles are retained on a 40 mesh U.S. standard sieve, in an amount of from about 40 to about 52 percent by weight based on the total weight of the insulator;
- b) silica having a particle size distribution such that no less than about 80% by weight of the particles are retained on a 325 mesh U.S. standard sieve and no more than about 11% by weight of the particles are retained on a 200 mesh U.S. standard sieve, in an amount of from about 23 to 36 percent by weight based on the total weight of the insulator; and
- c) from about 3 to about 8 percent by weight of alumina particles based on the total weight of the insulator.
- 2. An electrical insulator according to claim 1 wherein said unsaturated phthalate polyester resin is formed from an unsaturated phthalate polyester precursor having a viscosity of from about 3,000 to about 4,000 cps at room temperature.
- 3. An electrical insulator according to claim 1 wherein the filter also includes an amount of from about 1.5 to about 3% by weight of the total weight of the insulator of a fibrous inorganic material.
- 4. An electrical insulator according to claim 3 wherein said fibrous inorganic material is fiber glass.
- 5. An electrical insulator according to claim 1 wherein the filler particles are bonded to said resin matrix by an amount of from about 0.05 to about 0.5% by weight of the total weight of the insulator of an organosilane bonding agent.
- 6. An electrical insulator according to claim 1 wherein the filler particles are bonded to said resin matrix by an amount of from about 0.05 to about 0.5% by weight of the total weight of the insulator of a methacryloxypropyl-trimethoxysilane bonding agent.
- 7. A highly filled polymerizable composition for the manufacture of electrical insulators, comprising an admixture of from about 40 to about 52% by weight of silica sand having a particle size such that no less than about 70% by weight of the particles are retained on a 60 mesh U.S. standard sieve and no more than about 30% by weight of the particles are retained on a 40 mesh U.S. standard sieve; an amount of from about 23 to about 36% by weight of silica sand having a particle size such that no less than about 80% by weight of the particles are retained on a 325 mesh U.S. standard sieve and no more than about 11% by weight of the particles are retained on a 200 mesh U.S. standard sieve; from about 3 to about 8% by weight of alumina particles; from about 4 to about 24% by weight of an ortho- or iso-phthalic unsaturated polyester precursor having a viscosity of from about 500 to about 8,000 cps at room temperature; from about 0.1 to about 0.7% by weight of benzoyl peroxide curing agent; from about 0.05 to about 0.5% by weight of an organosilane bonding agent; from about 0.01 to about 0.2% by weight of a silicone oil lubricant; from about 0.5 to about 1.5% by weight of a stearate plasticizer; and from about 0.01 to about 0.1% by weight of a phenolic antioxidant.
- 8. A highly filled polymerizable composition according to claim 7 also including from about 1.5 to about 3.0% by weight of fiber glass.
- 9. A method of preparing a molding composition for the manufacture of electrical insulators, said composition including a filler material comprising, based on the total weight of the composition, from about 40 to about 52% by weight of silica sand having a particle size such that no less than about 70% by weight of the particles are retained on a 60 mesh U.S. standard sieve and no more than about 30% by weight of the particles are retained on a 40 mesh U.S. standard sieve; an amount of from about 23 to about 36% by weight of silica sand having a particle size such that no less than about 80% by weight of the particles are retained on a 325 mesh U.S. standard sieve and no more than about 11% by weight of the particles are retained on a 200 mesh U.S. standard sieve; and from about 3 to about 8% by weight of alumina particles; and a polymerizable matrix material comprising, based on the total weight of the composition, from about 4 to about 24% by weight of an ortho- or isophthalic unsaturated polyester precursor, from about 0.1 to about 0.7% by weight of benzoyl peroxide curing agent, from about 0.05 to about 0.5% by weight of an organosilane bonding agent, from about 0.01 to about 0.2% by weight of a silicone oil lubricant, from about 0.5 to about 1.5% by weight of a stearate plasticizer, and from about 0.01 to about 0.1% by weight of a phenolic antioxidant, said method comprising the steps of admixing the organic ingredients at a temperature of from about 20.degree. to about 30.degree. C. by adding said ingredients in the following order: the stearate, the anti-oxidant and the silicone oil, then the organosilane and the benzoyl peroxide, and finally the unsaturated polyester resin precursor, and homogenizing the mixture by blending same for a period of time of from about 3 to about 4 minutes; separately admixing the inorganic ingredients under heating at a temperature of from about 55.degree. to about 60.degree. C. and homogenizing same; and pouring the mixture of the organic ingredients on the mixture of the inorganic ingredients with continuous stirring for about 10 minutes and under a temperature of from about 55.degree. to about 65.degree. C.
- 10. A method according to claim 9 wherein an amount of from about 1.5 to about 3% by weight of fiber glass is added to the final mixture and the stirring is continued for an additional period of time of about 10 minutes at a temperature of from about 55.degree. to about 65.degree. C.
Parent Case Info
This application is a continuation of Ser. No, 07/956,045, filed Oct. 2, 1992, now abandoned, which is a continuation-in-part of Ser. No. 07/646,444, filed Jan. 25, 1991, now abandoned, which is a continuation of Ser. No. 07/269,355, filed Nov. 10, 1988, now abandoned.
US Referenced Citations (5)
Foreign Referenced Citations (4)
Number |
Date |
Country |
2209147 |
Mar 1986 |
JPX |
2271708 |
May 1986 |
JPX |
3317540 |
Jun 1987 |
JPX |
0709125 |
May 1954 |
GBX |
Continuations (2)
|
Number |
Date |
Country |
Parent |
956045 |
Oct 1992 |
|
Parent |
269355 |
Nov 1988 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
646444 |
Jan 1991 |
|