The present invention relates to tracking waveforms in radar. More specifically, the present invention relates to minimising the dwell time and energy in a tracking waveform whilst maintaining a specified track positional accuracy and consequently velocity accuracy.
In known radar apparatus, a fixed amount of time and energy is used for tracking waveforms, the settings for which are hard-coded in the radar apparatus. Thus, the track accuracy would vary according to the situation and there would be no opportunity to optimise the tracking waveforms.
The present invention provides a method and apparatus for selecting a tracking waveform in a radar apparatus comprising the steps of: (i) determining a target range rate; (ii) determining a signal strength; (iii) determining the radiated frequency of the subsequent transmitted tracking waveform; and (iv) modifying the energy and pulse repetition frequency used on subsequent tracking waveforms on the basis of the determined target range rate, signal strength and next transmitted tracking waveform frequency.
The present invention thus provides a means by which the time and energy resources of the radar can be managed to provide a required level of performance.
The advantage of the present invention is that the amount of time and amount of energy in a tracking waveform can be adjusted according to the situation, in a self-reinforcing manner, to maximise the coherent gain on the target return and to minimise the radar time spent tracking each target.
Specific embodiments of the invention will now be described, by way of example only and with reference to the accompanying drawings that have like reference numerals, wherein:—
The specific embodiment will now be described with reference to
In
The remaining elements of the radar apparatus as shown in
The tracking waveform selection function 140 is shown in more detail in
In a preferred embodiment of the invention, the signal to noise ratio for each track is normalised to a fixed pulse length and fixed target range and alpha smoothed before being input into the tracking waveform selection function 140.
The tracking waveform selection function 140 performs two self-reinforcing steps:
2. With the estimate of the target range rate and its associated error (also output by the tracking function 130), the pulse repetition frequency on track update waveforms which use coherent processing is chosen to maximise the coherent gain on the target return. This acts to reinforce the determination of total energy content since achieving processing gain through a coherent filter will subsequently reduce the total energy requirement.
The tracking waveform selection function 140 then outputs the pulse length, number of coherent bursts and the pulse repetition frequency to be used in the next tracking waveform. This is passed through the radar control 150, via the interface 160, to the antenna 100 and receiver 110.
The graph in
In this way the invention acts to control both the time and energy of radar tracking waveforms in order to minimise the use of radar resources whilst achieving a required level of track position and velocity accuracy.
The skilled person reading the above embodiment of the invention will understand that, although the embodiment describes the use of a phased array antenna, the above invention is applicable to any multi-function radar apparatus.
It is to be understood that any feature described in relation to any one embodiment may be used alone, or in combination with other features described, and may also be used in combination with one or more features of any other of the embodiments, or any combination of any other of the embodiments. Furthermore, equivalents and modifications not described above may also be employed without departing from the scope of the invention, which is defined in the accompanying claims.
Number | Date | Country | Kind |
---|---|---|---|
07270027.1 | Jun 2007 | EP | regional |
0710370.8 | Jun 2007 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2008/050389 | 5/29/2005 | WO | 00 | 8/7/2008 |