The invention relates to apparatus, systems and methods for controlling or adjusting the traction of a downhole tractor in a borehole.
In the petroleum exploration and production industries, downhole tractors are often used to convey tools and other devices into boreholes. However, downhole tractors may be used for any desired purpose. As used throughout this patent, the terms “tractor”, “downhole tractor” and variations thereof means a powered device of any form, configuration and components capable of crawling or moving within a borehole. The term “borehole” and variations thereof means and includes any underground hole, passageway or area. An “open borehole” is a borehole that does not have a casing. A “non-vertical borehole” is a borehole that is at least partially not vertically oriented, such as a horizontal or deviated well.
Typically, the movement of the tractor is enabled by friction-generated traction between one or more component associated with the tractor, referred to herein as the “drive unit(s),” and the borehole wall. In such instances, a normal force is usually applied to the drive unit to press it against the borehole wall.
For a tractor to achieve or maintain movement within a borehole, the drive unit cannot completely slip relative to the borehole wall, so that the traction force (FT)≦μFN, where μ is the friction coefficient between the drive unit and the borehole wall and FN is the normal force. Also, the drive unit must provide enough traction force to overcome drag or resistance (FR) on the drive unit, such as may be caused by the conveyed tool(s) and delivery cable, so that FT≧FR.
Any number of other factors (referred to throughout this patent as “disturbance factors”) may affect the amount of traction necessary to move the tractor within the borehole in any particular situation and environment of operation. For example, when the borehole wall possesses an irregular surface, the amount of traction necessary for movement and/or the coefficient of friction may change as the borehole surface navigated by the tractor changes. A few other examples of disturbance factors that may affect the tractor's resistance to motion are changes in the inclination of the borehole, diameter of the borehole, surface of the borehole, borehole wall properties, increasing cable drag (when a cable is used), debris in the borehole and borehole fluid properties.
When the amount of traction needed for the tractor to move or continue moving in the borehole changes, the normal force on the drive unit(s) must be adjusted. Otherwise, the tractor may experience excessive slippage. Hence, in order to keep FT≦μFN, the normal force FN has to be adjusted. The normal force may also need to be adjusted when it is desired to prevent power overload or unnecessary excessive normal force. Thus, although not essential for tractor operations (or the present invention), an ideal value for the normal force is FN=FT/μ, particularly when the tractor is moving in an open, non-vertical or highly deviated borehole.
If the borehole conditions change infrequently and there are no substantial tractor disturbance factors, such as may exist in a “cased” borehole, the normal force may be effectively adjusted by an operator sending commands to the tractor from the surface using existing technology. However, when the amount of needed traction changes often, such as in an open borehole or because of the existence of disturbance factors, the operator is unlikely to react sufficiently, often or quickly enough, resulting in excessive slippage and, thus, poor tractor performance, and/or excessive power to the drive units. Examples of existing downhole tractor technology not believed to provide sufficient or efficient traction control in such instances are disclosed in U.S. Pat. No. 6,089,323 issued on Jul. 18, 2000 to Newman et al. and U.S. Pat. No. 5,184,676 issued on Feb. 9, 1993 to Graham et al. Examples of existing traction control technology for entirely different applications not involving downhole tractors are U.S. Pat. No. 6,387,009B1 to Haka and issued on May 14, 2002 and German Patent DE 19,718,515 to Bellgardt and issued on Mar. 26, 1998. Each of the above-referenced patents is hereby incorporated by reference herein in its entirety.
Thus, there remains a need for methods, apparatus and/or systems that are useful with downhole tractors and have one or more of the following attributes, capabilities or features: adjusting the normal force on one or more drive unit continuously, automatically, without human intervention, on a real-time basis, or any combination thereof; optimizing the traction of the drive unit(s) in the borehole by adjusting or controlling the normal force; applying as much normal force as necessary to reduce slippage and as little normal force as necessary to minimize waste of available power; adjusting the normal force as quickly as possible without the necessity of human involvement; reacting to or dealing with typical disturbance factors by adjusting the normal force on the drive unit(s); real-time adjustment of normal forces on the drive unit(s) to maintain or cause movement of the tractor in the borehole; allowing the tractor to achieve continuous motion, as may be desired or required in downhole data logging applications, at the lowest effective normal force; preventing excessive or unnecessary wear on components, loss of energy and casing or formation damage caused by excessive normal forces.
Various embodiments of the invention involve a method of controlling the traction of a downhole tractor in a borehole, the traction created by applying normal force to at least one drive unit associated with the tractor, the method including repeatedly determining the slip of the at least one drive unit, repeatedly determining if the slip is excessive, and if the slip is excessive, increasing the normal force on the at least one drive unit.
In other embodiments, instead of increasing the normal force when slip is excessive, the normal force on the at least one drive unit is decreased if the slip is below a minimum acceptable level. In yet other embodiments, both the increasing and decreasing options are included.
Some embodiments of the present invention include a method of adjusting the traction of a downhole tractor in a borehole, the method including measuring the velocity of drive unit(s), measuring the velocity of the tractor, determining the slip of the drive unit(s) based upon the velocity of the drive unit(s) and the velocity of the tractor and comparing the slip of the drive unit(s) to an acceptable slip value or range to determine if the slip of the drive unit(s) is excessive. If the slip of the drive unit(s) is excessive, the normal force on the drive unit(s) is increased.
In many embodiments of the present invention, a method of real-time, dynamic adjustment of the traction of a downhole tractor in a borehole without human intervention includes increasing the normal force on at least one drive unit when the slip of the drive unit(s) relative to the borehole wall is excessive and decreasing the normal force on the drive unit(s) when the slip is below a minimum acceptable level.
There are embodiments of the invention that involve a method of real-time, dynamic adjustment of the traction of a downhole tractor in a borehole without human intervention, the method including changing the normal force applied to at least one drive unit in response to a suitable change in at least one among the diameter of the borehole, the presence of debris in the borehole, one or more borehole fluid property, the surface of the borehole, the inclination of the borehole, one or more borehole wall property, the actual slip of the at least one drive unit relative to the borehole wall, the coefficient of friction between the at least one drive unit and the borehole wall, and the drag created by a cable connected with the tractor.
The present invention may be embodied in a method of optimizing the amount of energy required for maintaining the movement of a downhole tractor within a borehole without human intervention, the method including automatically, dynamically adjusting the normal force applied to at least one drive unit in response to changes in the actual slip of the at least one drive unit relative to the borehole wall as compared to an acceptable slip value or range.
Yet various embodiments involve a method of optimizing the amount of energy required for maintaining the movement of a downhole tractor within a borehole, the method including automatically changing the normal force applied to at least one drive unit without human intervention in response to one or more change in at least one among the diameter of the borehole, the presence of debris in the borehole, one or more borehole fluid property, the surface of the borehole, the inclination of the borehole, one or more borehole wall property, the actual slip of the drive unit relative to the borehole wall, the coefficient of friction between the drive unit and the borehole wall, and the drag created by a cable connected with the tractor.
Various embodiments of the invention involve an apparatus for adjusting the traction of a downhole tractor that is moveable within a borehole and which includes at least one drive module. The drive module includes at least one drive unit that is engageable with and moveable relative to a wall of the borehole. At least one measuring unit is capable of determining the velocity of the tractor in the borehole. Each drive module is capable of determining the velocity of at least one drive unit in the borehole and applying normal force to such drive unit(s) to cause it to engage and move with respect to the borehole wall. Each drive module is also capable of varying the normal force on the at least one drive unit based upon the velocity of the tractor and the velocity of the drive unit.
Some embodiments involve a drive module useful for controlling the traction of a downhole tractor in a borehole. The drive module includes: at least one drive unit engageable with and moveable relative to a wall of the borehole to move the tractor through the borehole; at least one normal force generator capable of applying a normal force to at least one drive unit to cause the drive unit to move relative to the borehole; and at least one normal force controller in communication with the at least one normal force generator and capable of causing the normal force generator to vary the magnitude of the normal force applied to at least one drive unit based upon the slip of the drive unit.
The present invention may be embodied in a system useful for adjusting the traction of a downhole tractor in a borehole that includes at least two drive modules capable of generating and applying a normal force and moving the tractor through the borehole. At least one measuring unit is capable of repeatedly determining at least one among the velocity of the tractor in the borehole and the diameter of the borehole. A main controller is in communication with the drive modules and the measuring unit. Each drive module is capable of varying the magnitude of normal force required for moving the tractor through the borehole based at least partially upon signals received from the main controller.
Accordingly, the present invention includes features and advantages which are believed to enable it to advance downhole tractor technology. Characteristics and advantages of the present invention described above and additional features and benefits will be readily apparent to those skilled in the art upon consideration of the following detailed description of preferred embodiments and referring to the accompanying drawings.
For a detailed description of preferred embodiments of the invention, reference will now be made to the accompanying drawings wherein:
Presently preferred embodiments of the invention are shown in the above-identified figures and described in detail below. It should be understood that the appended drawings and description herein are of preferred embodiments and are not intended to limit the invention or the appended claims. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims. In showing and describing the preferred embodiments, like or identical reference numerals are used to identify common or similar elements. The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
As used herein and throughout all the various portions (and headings) of this patent, the terms “invention”, “present invention” and variations thereof are not intended to mean the claimed invention of any particular appended claim or claims, or all of the appended claims. The subject or topic of each such reference is thus not necessarily part of, or required by, any particular claim(s) merely because of such reference.
Referring initially to
Still referring to
The main controller 14, drive modules 16, measuring unit 22 and other exemplary components may be of any desired type and configuration. Moreover, the particular components and configuration of
Now referring to
In accordance with the present invention, the normal force on the drive unit(s) is adjusted, if necessary, as the tractor moves through the borehole to establish or maintain traction, or to achieve or maintain a particular tractor velocity. In accordance with one embodiment of the invention, referring to the flow diagram of
Still referring to the embodiment of
In some embodiments, if desired, the normal force FN on the drive unit(s) may instead or also be adjusted in an effort to optimize energy usage, prevent excessive increases of the normal force(s), maintain a constant tractor velocity, or for any other desired reason. For example, in the embodiment diagramed in
Any suitable control, communication, measuring and drive components and techniques may be used with any type of downhole tractor to perform the traction control methodology of the present invention.
Still referring to the “black box” representation of
In the embodiment of
Referring now to
In this example, the normal force generator 38 is controlled by a normal force controller 40, which repeatedly determines slip of the corresponding drive units 36, such as described above. Whenever the slip is excessive, the controller 40 causes the normal force generator 38 to increase the normal force on the drive unit(s) 36 until the slip is deemed not excessive by the controller 40. Also, if desired, when the slip falls below a minimum acceptable level, the normal force controller 40 can be designed to cause the normal force generator 38 to decrease the normal force on the drive unit(s) 36 until the slip is determined by the controller 40 to be acceptable. This process continues so long as efficient tractor movement in the borehole is desired. The normal force controller 40 of this embodiment thus controls the dynamic application of normal force to the drive unit(s) 36 by the normal force generator 38.
One or more force transducer 42 is also included in this example to provide information about the traction force of each drive unit 36. This information may be used for any desired purpose, such as to assist in sharing the load among multiple drive units. However, transducers and load sharing among multiple drive units are not required.
Still referring to the “black box” representation of
For some optional examples, the drive units 36 provide drive unit torque to the main controller 14 for determining load sharing, providing information about bore hole conditions or any other suitable purpose. The drive units 36 may be equipped with internal speed control mechanisms and may receive requested speed settings through the main controller 14 from an operator or other source. In another optional example, the main controller 14 is shown providing borehole diameter data to the normal force controller 40 for determining the magnitude of normal force to be applied to the drive units 36. For example, the normal force may be reduced in anticipation of an upcoming well restriction. However, other or different data may be exchanged between various components. The above examples of data flow are neither required by, nor limiting upon, the present invention.
Still referring to
The linear actuator 46 converts rotary motion of the normal force motor 54 to linear motion. The linear force generated by the linear actuator 46 is converted into the normal force that presses the drive chain 66 against the borehole wall 10a. This force conversion takes place at a pin, or joint, 110 disposed at the front end 112 of the linear actuator 46 and which is slidable within a slot 108 in the drive module 16. Thus, increasing the linear force generated by the normal force generator 38 moves the joint 110 forward in the slot 108, decreasing the normal force applied to the sprocket wheels 64. Likewise, the normal force will be increased when linear force applied to the joint 110 is decreased.
Now referring to the embodiment of
In the embodiment of
The normal force generator 38 of this embodiment is generally the same as that described above with respect to
Now referring to
Still referring to the embodiment of
The flow diagram of
The main controller 14 communicates with the operator, or surface, at a user interface 28. Various information may be exchanged between the main controller 14 and user interface 28. For example, commands, such as a requested drive unit velocity (V1), may be provided from the user interface 28 to the main controller 14. The main controller 14 of this embodiment may honor or suppress such commands based upon one or more condition or circumstance. If a requested drive unit velocity (V1) is honored by the main controller 14, the controller 14 will pass the command on to the individual drive units 36. If desired, this request may be made only at the start of operations or at certain times during operations. The main controller 14 may provide additional information, such as maximum allowable torque, to each drive unit 36.
The main controller 14 notifies each normal force controller 40 of the tractor velocity (V2) and pertinent borehole diameter (D1). Each normal force controller 40 gives the commands to its corresponding normal force generator 38 to apply the desired normal force to the respective drive unit 36. The normal force controllers 40 also provide a checkback signal to the main controller 14. The checkback signal may be used by the main controller 14 for logging information, such as the actual friction factor. Also, in this example, each drive unit 36 notifies the main controller 14 of its actual torque. It should be understood, however, that each of the above exemplary inputs, outputs and data communications is not required.
Additional components, capabilities and/or features may be included in the traction control system of the present invention to provide additional functions. For example, referring to
Preferred embodiments of the present invention thus offer advantages over the prior art and are well adapted to carry out one or more of the objects of the invention. However, the present invention does not require each of the components and acts described above, and is in no way limited to the above-described embodiments and methods of operation. Further, the methods described above and any other methods which may fall within the scope of any of the appended claims can be performed in any desired suitable order and are not necessarily limited to the sequence described herein or as may be listed in any of the appended claims. Yet further, the methods of the present invention do not require use of the particular embodiments shown and described in the present specification, but are equally applicable with any other suitable structure, form and configuration of components.
The present invention does not require all of the above components, features and processes. Any one or more of the above components, features and processes may be employed in any suitable configuration without inclusion of other such components, features and processes. Further, while preferred embodiments of this invention have been shown and described, many variations, modifications and/or changes of the system, apparatus and methods of the present invention, such as in the components, details of construction and operation, arrangement of parts and/or methods of use, are possible, contemplated by the patentee, within the scope of the appended claims, and may be made and used by one of ordinary skill in the art without departing from the spirit or teachings of the invention and scope of appended claims. Moreover, the present invention includes additional features, capabilities, functions, methods, uses and applications that have not been specifically addressed herein but are, or will become, apparent from the description herein, the appended drawings and claims. Thus, all matter herein set forth or shown in the accompanying drawings should thus be interpreted as illustrative and not limiting. Accordingly, the scope of the invention and the appended claims is not limited to the embodiments described and shown herein.