1. Field of Invention
This invention relates to a traction mat that is placed under the wheels of a vehicle to provide extra traction in snow, mud, sand, or other slippery road conditions.
2. Description of Related Art
A traction mat is an apparatus that can be placed under the wheels of a car to provide additional traction during slippery road conditions. A great variety of traction mats already exist. However, these traction mats fall short because they cannot be easily folded or rolled for storage convenience in a relatively small place.
The present invention overcomes these and other deficiencies of the prior art by providing a traction mat that can be placed under the wheels of a vehicle to provide the necessary traction to extricate a vehicle from snow, mud, sand, or other slippery road conditions. The traction mat provides structure that allows it to be easily folded or rolled for storage convenience in a relatively small place.
In an embodiment of the invention, a traction mat comprises: a handle, a plurality of bars, and a wire that connects the handle and bars together. The handle comprises a top surface, a bottom surface, and an interior. The top surface and bottom surface of the handle comprise a plurality of protrusions that provide traction. The protrusions may be any variety of geometric shapes and may be arranged in a crisscross pattern. The interior of the handle comprises a plurality of guideposts for securing the wire to the handle. Optionally, the handle of the traction mat may comprise an aperture that is sized and dimensioned for receiving five fingers of a hand. The bars comprise a top surface, a bottom surface, a proximal end, and a distal end. The top surface and bottom surfaces comprise a plurality of protrusions for traction. The proximal end further comprises a plurality of tabs, where each tab has an aperture extending from the proximal end to the distal end of the bar. The wire is threaded through the aperture in the tabs of the bars to connect the bars together. The tabs provide space between the bars and allow the traction mat to be rolled into a ball. The plurality of bars may be configured to allow the traction mat to be rolled or folded.
The foregoing, and other features and advantages of the invention, will be apparent from the following, more particular description of the preferred embodiments of the invention, the accompanying drawings, and the claims.
For a more complete understanding of the present invention, the objects and advantages thereof, reference is now made to the ensuing descriptions taken in connection with the accompanying drawings briefly described as follows.
Preferred embodiments of the present invention and their advantages may be understood by referring to
The terms proximal and distal are relative to the handle 12. Proximal refers to a location close to the handle 12 and distal refers to an area away from the handle 12.
Referring now to
In
The interior 18b comprises a plurality of guide posts, 26a and 26b, recesses 28, screw holes 30, tabs 32, and retaining posts 34, as shown in
In
As shown in
The aperture 22 of the handle 12 is sized and dimensioned for receiving all five fingers of the hand. This aperture 22 allows the user to easily grip the traction mat 10 so that he can easily place the traction mat 10 under the wheels of a vehicle.
Referring now to
The first surface (e.g., a top surface) and second surface (e.g., a bottom surface) of the bar 14 can be identical and further comprise a plurality of protrusions 24 that provide additional traction. As shown in
In
In
The wire 16 is a monofilament wire. This material is ideal for the traction mat 10 because it is lightweight and difficult to cut, thereby making it hard for the bars 14 to separate from each other.
To construct the traction mat 10, a knot is tied at one end of the wire 16 and covered with shrink tubing (not shown) to prevent the knot from becoming undone. The wire 16 is inserted into guide posts 26a and 26b on one side of the aperture 22 in the interior 18b of the first half of the handle 12. The wire 16 is threaded into the aperture 58 in the tab 54 at the proximal end 48 of the bar 14 until it comes out the distal end 50. The wire 16 is continually threaded through each bar 14 until the last bar 14 at the end of the traction mat 10 is reached. At the last bar 14, the wire 16 is bent into a U-shape 62 as shown in
In the preferred embodiment, the handle 12, the bars 14, and the screw caps 37 are made by injection molding with high density polyethylene (HDPE). While other plastic materials harden and become brittle at temperatures as low as −30° C. (−22° F.), HDPE is able to withstand such temperatures, making the traction mat 10 suitable for slippery road surfaces in cold weather.
During slippery road conditions such as snow, mud, or sand, a user places the traction mat 10 under one wheel of a car in the direction that the car travels. The wheel grips the traction mat 10 and travels the full length of the traction mat 10, thereby extricating the car from the snow, mud, or sand. Afterwards, the user rolls the traction mat 10 into a roll as shown in
The invention has been described herein using specific embodiments for the purposes of illustration only. It will be readily apparent to one of ordinary skill in the art, however, that the principles of the invention can be embodied in other ways. Therefore, the invention should not be regarded as being limited in scope to the specific embodiments disclosed herein, but instead as being fully commensurate in scope with the following claims.
Number | Name | Date | Kind |
---|---|---|---|
1430471 | Simon | Sep 1922 | A |
1549775 | Keyser, Jr. | Aug 1925 | A |
2422006 | Friedman | Jun 1947 | A |
3997110 | Aumont | Dec 1976 | A |
4681482 | Arciszewski et al. | Jul 1987 | A |
4964751 | Rope et al. | Oct 1990 | A |
5807021 | Aaron | Sep 1998 | A |
5899380 | Beaulieu | May 1999 | A |
6575660 | Davis et al. | Jun 2003 | B1 |
6779738 | Stannard | Aug 2004 | B1 |
6874972 | Davis et al. | Apr 2005 | B2 |
8210443 | Studstill | Jul 2012 | B2 |
8511644 | Biesse | Aug 2013 | B2 |
20040042851 | Davis et al. | Mar 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20140103131 A1 | Apr 2014 | US |