This invention refers to a traction system, more specifically to an angular axle operation system using a double crank which, although specially designed for use on bicycles and similar vehicles, can also be used in a variety of applications in which a push rod or similar is normally used for angular axle operation.
The purpose of the invention is to provide a device with a structure that makes it possible to reduce the force required to turn said axle.
In the scope of practical application of the invention, there are various known systems which seek to optimise the displacement of the push rods that turn the bottom bracket axle, i.e. the pedal cycle. These include the ‘bikedrive’ system, in which the dead centres of said displacement are used to recover part of the energy that has been accumulated through a number of springs in the intermediate zone, on the horizontal.
There are also known transmission systems that eliminate the dead centre by means of a complex system used for the pedal support.
At the same time, there are known power transmission systems that use elliptic pedalling with push rods of variable length in which the transmission support and auxiliary mechanism are fitted on both sides of the bottom bracket box. There are also power transmission systems for converting circular movements into elliptical movements.
All these and many other systems have one common denominator, which is as follows:
The double crank alternating cycle traction system proposed in the invention solves the aforementioned problem in a fully satisfactory way thanks to a new technical design, which leads to a simpler structure and the consequent lightness of the unit, all with high mechanical efficiency.
Accordingly, the invention consists of a conventional pedal cycle to which two independent free-turning cranks are strategically added, articulated at the point where the force is applied so that the resulting mechanical composition during operation provides an increase in the mechanical advantage for the original system, defining new kinematics. The immediate consequence is that the moment of turn required by the system for movement is slightly lower than that required in the conventional pedal cycle.
More specifically, as has just been pointed out, the device is based on the conventional structure of a pedal cycle, which defines a bottom bracket axle, to which two opposing push rods are attached. The unit also has a disc, gears, belt or element involved in the transmission in question and push rods connected to the classic pedals at the ends.
Based on this conventional structure, the invention focuses its specifications on the fact that a crank is positioned parallel to each push rod and articulated in relation to the point where the force is applied, in other words, the pedal axle. At the other end, it has a turn axle parallel to the bottom bracket axle. Said axle is free-turning and uses a bearing connected to the crank by an extension of the threaded cap or cup bolt that fastens the bottom bracket cartridge in its box.
Consequently, it is obvious that, based on this eccentricity between axles, the movement of the mechanism will define a relative displacement between each push rod and its corresponding crank, for which three equivalent solutions have been provided.
The first solution consists of the aforementioned push rod, more specifically at the end connected to the pedal axle, defining a longitudinal groove, acting as a runner along which a bearing connected to the pedal axle will move, and, as a consequence of the crank, acting as a feeler and absorbing the difference in length created by the displacement of the push rods due to the eccentricity between their axles.
A second option to counter this effect consists of the push rod having a telescopic structure based on two semi-arms, one of which moves inside the other, to achieve the same effect.
A third option includes the use of two bearings, one on the end of the push rod and the other on the end of the crank at the same height as the pedal axle, articulated by means of two opposing shafts that are 180° out of phase and located on a central ring, called the coupling module to the ring and shaft unit. The separation between the shafts is identical to the separation between the parallel rotation axles of the push rod and the crank.
This develops a mechanism containing a second-degree lever and the force required to displace the bottom bracket axle angularly is reduced and, consequently, so is the associated transmission.
To complement the description that is being made and to make it easier to understand the specifications of the invention, in accordance with a preferential example of its practical use, said description includes a set of drawings showing, by way of example but not limited thereto, the following:
In view of the aforementioned figures and, in particular,
Each push rod (6) is connected to a crank (1) positioned on an imaginary plane parallel to it, finished at one end by a turn axle (2), parallel to the bottom bracket axle (7) but eccentric to it, at a certain distance (D), a free-turning axle (2), through a double bearing (10), as shown in detail in
The ends of the cranks (1) will be fitted with the corresponding circular holes for the axles (3) for attaching the corresponding pedals, not shown in the figures.
Furthermore, the opposite end of the push rod (6) is connected to the pedal axle (3) by means of a dynamic articulation.
Said dynamic articulation can be made in three different but equivalent ways: the first is shown in
Therefore, in accordance with the example shown in
At the same time and in accordance with the example shown in
In accordance with the example shown in
The rest of the unit maintains the characteristic structure in which the push rod (6) is connected to the desk (4) via the corresponding groove (5), where said construction is familiar to experts in the subject.
Increasing the length of this description is not considered necessary for any expert in the subject to understand the scope of the addition and the benefits it provides.
The materials, shape, size and positions of the elements will be variable as long as any change does not alter the essence of the invention.
The terms under which this memorandum has been drawn up must be taken always in the broad sense and not in any restricting way.
Number | Date | Country | Kind |
---|---|---|---|
P201031072 | Jul 2010 | ES | national |
P201100711 | Jun 2011 | ES | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/ES2011/000226 | 7/13/2011 | WO | 00 | 12/27/2012 |