Information
-
Patent Grant
-
6234276
-
Patent Number
6,234,276
-
Date Filed
Tuesday, September 14, 199925 years ago
-
Date Issued
Tuesday, May 22, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Lillis; Eileen D.
- Chin; Paul T.
Agents
- Oblon, Spivak, McClelland, Maier & Neustadt, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 187 411
- 187 264
- 187 266
- 187 406
- 187 412
- 187 404
-
International Classifications
-
Abstract
An elevator including a cage configured to ascend and descend in an elevator shaft along a cage guide rail, a counterweight configured to ascend and descend in the elevator shaft along a counterweight guide rail, a cable configured to hang and connect the cage and the counterweight, a drive unit configured to drive the cage and the counterweight by providing motive power for the cable, and a cable hitch mounted on the cage guide rail or the counterweight guide rail and configured to secure one end of the cable.
Description
CROSS REFERENCE TO RELATED APPLICATION
This application claims benefit of priority to Japanese Patent Application No. JP10-260498 filed Sep. 14, 1998.
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to an elevator with a cable hitch for securing end parts of the cable which drives a passenger cage.
2. Description of the Background
FIG. 1
shows one example of a conventional two-to-one roping type traction elevator which is constructed such that a cage speed is set to half the cable speed. In
FIG. 1
, a cage sheave
104
is provided at an upper portion of a cage
101
which is hanged by a cable
103
placed around the cage sheave
104
. The cable
103
further around a driving sheave
107
driven by a motor (not shown) and a deflector sheave
108
, and then placed around a counterweight sheave
105
mounted on an upper side of a counterweight
102
.
The opposite ends of the cable
103
are secured on a machine beam (not shown) in a machine room (penthouse)
109
by means of two cable hitches
106
.
However, in one type of two-to-one roping elevator which has a drive unit including the driving sheave
107
, the motor and the like is disposed within an elevator shaft
110
of a building instead of the machine room
109
. Thus, this kind of elevator dispenses with the machine room
109
. As a result, the cable hitches
106
can not be mounted on the machine beam in the machine room
109
in the same way as the elevator shown in FIG.
1
.
SUMMARY OF THE INVENTION
Accordingly, one object of the present invention is to provide a novel traction type elevator having a cable hitch optimally located in an elevator shaft.
This and other objects are achieved according to the present invention by providing a new improved elevator including a cage configured to ascend and descend in an elevator shaft along a cage guide rail, a counterweight configured to ascend and descend in the elevator shaft along a counterweight guide rail, a cable configured to hang and connect the cage and the counterweight, a drive unit configured to drive the cage and the counterweight by providing motive power for the cable, and a cable hitch mounted on one of the cage guide rail and the counterweight guide rail and configured to secure one end of the cable to said one of the cage guide rail and the counterweight guide rail.
BRIEF DESCRIPTION OF THE DRAWINGS
A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
FIG. 1
is a schematic view showing a conventional two-to-one roping type traction elevator;
FIG. 2
is a schematic perspective view showing the two-to-one roping elevator of a first embodiment of the present invention;
FIG. 3
is a side view showing a cable hitch of the first embodiment of the present invention;
FIG. 4
is a front view of the cable hitch shown in
FIG. 3
;
FIG. 5
is a side view of a cable hitch of a second embodiment of the present invention;
FIG. 6
is a front view of the cable hitch shown in
FIG. 5
;
FIG. 7
is a side view of a cable hitch of the third embodiment of the invention;
FIG. 8
is a front view of the cable hitch shown in
FIG. 7
;
FIG. 9
is a side view of a cable hitch of a fourth embodiment of the present invention;
FIG. 10
is a front view of the cable hitch taken along the line X—X shown in
FIG. 9
;
FIG. 11
is a side view of a cable hitch of a fifth embodiment of the present invention;
FIG. 12
is a front view of the cable hitch taken along the line Y—Y shown in
FIG. 11
;
FIG. 13
is a side view of a cable hitch of a sixth embodiment of the present invention;
FIG. 14
is a front view of the cable hitch taken along the line Z—Z shown in
FIG. 13
;
FIG. 15
is a front view of a cable hitch of a seventh embodiment of the present invention;
FIG. 16
is a side view of the cable hitch shown in
FIG. 15
;
FIG. 17
is a front view of a cable hitch of an eighth embodiment of the present invention;
FIG. 18
is a side view of the cable hitch shown in
FIG. 17
; and
FIG. 19
is a front view of a cable hitch of the ninth embodiment of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Referring now to the drawings, where like reference numerals designate the same or corresponding parts throughout the several views, and more particularly
FIGS. 2-4
, there will be described a first embodiment of the invention with regard to a Two-to-One roping elevator.
FIG. 2
is a schematic perspective view showing the two-to-one roping elevator of the first embodiment of the present invention. As shown in
FIG. 2
, the elevator includes a pair of cage guide rails
5
a
and
5
b
to be provided in an elevator shaft
110
in a building, a cage
113
ascending and descending along the cage guide rails
5
a
and
5
b,
a pair of car sheaves
112
to be provided at the bottom of the cage
113
, a counterweight
114
ascending and descending along a pair of counterweight guide rails
5
c
and
5
d,
and a counterweight sheave
116
to be provided at the upper side of the counterweight
114
.
Three cables
2
(only one is shown) are placed around the counterweight sheave
116
and the car sheaves
112
, and driven by a drive unit
111
, thus moving the cage
113
and the counterweight
114
up and down. The drive unit
111
is disposed in the elevator shaft
110
and a damper
115
is installed at the bottom of the shaft
110
.
Further, the elevator of this embodiment includes a pair of cable hitches
3
for securing the opposite ends of the cables
2
in the shaft
110
. One cable hitch
3
is mounted on the cage guide rail
5
a
and another cable hitch
3
is mounted on the counterweight guide rail
5
d.
FIG. 3
is a side view of the cable hitch
3
of the first embodiment.
FIG. 4
is a front view of the cable hitch
3
shown in
FIG. 3
As shown in
FIGS. 3 and 4
, three shackle rods
1
, which are attached to the ends of the cables
2
, are secured on the top of the cage guide rail
5
a
by means of the cable hitch
3
. Another cable hitch
3
is mounted on the top of the counterweight guide rail
5
d
in the same way as the cable hitch
3
shown in
FIGS. 3 and 4
and supports other ends of the cables
2
.
In this embodiment, only the cable hitch
3
mounted on the cage guide rail
5
a
is described for the sake of convenience.
The cable hitch
3
includes an L-shaped member
4
which is mounted on the top of the cage guide rail
5
a.
A longitudinal section of member
4
has the shape of an inverted L. The L-shaped member
4
is composed of a vertically extending portion and a horizontally extending portion.
The vertically extending portion forms a base
4
a
to be secured on a back side of the cage guide rail
5
a,
while the horizontally extending portion forms a support
4
b
for supporting the ends of the cables
2
. The support
4
b
extends toward the opposite cage guide rail
5
b,
thus the position where the cables
2
is supported on the cable hitch
3
is offset from the side of the cage guide rail
5
b.
The base
4
a
of the L-shaped member
4
is secured to a back side of the cage guide rail
5
a
by six bolts
6
(only three are shown). The base
4
a
can be welded to the back side of the cage guide rail
5
a
instead of fastened thereto with the bolts
6
.
A pair of reinforcing plates
7
a
and
7
b
are provided on sides of the L-shaped member
4
, thereby strengthening the support for the shackle rods
1
.
According to the first embodiment of the present invention, since the cable hitch
3
is mounted on the top of the cage guide rail
5
a
and supports the ends of the cables
2
, it is not required that the cable hitch
3
be installed in the machine room as shown in FIG.
1
.
Thus, in the case where a two-to-one roping elevator dispenses with a machine room, the size of the shaft
110
is the same as an elevator with machine room, it is not necessary to provide space protruding from the roof of the building for a machine room, and further there is no difficulty to support the ends of the cables
2
.
In this embodiment and other embodiments later described, as shown in
FIG. 2
, although the car sheaves
112
are attached to the bottom of the cage
113
, the present invention is not limited to this kind of elevator. That is, the present invention can be adapted to an elevator having car sheaves at the upper portion thereof as shown in
FIG. 1
or all kinds of a two-to-one roping elevator.
FIG. 5
is a side view of a cable hitch of a second embodiment of the present invention.
FIG. 6
is a front view of the cable hitch shown in FIG.
5
. The second embodiment modifies a part of the composition of the first embodiment. Hereinafter, only components different from the components explained in the first embodiment shown in
FIGS. 2-4
are described.
In the second embodiment, the support
4
b
has a cut
4
c
capable of passing through the cage guide rail
5
a.
The cage guide rail
5
a
passes through the cut
4
c,
such that the L-shaped member
4
is mounted distant from the top of the cage guide rail
5
a,
at a position where the L-shaped member
4
does not interfere with the usual motion of the cage
113
or the counterweight
114
.
In this embodiment, the L-shaped member
4
is mounted on the cage guide rail
5
a
such that the longitudinal section has an inverted L shape, but the L-shaped member
4
can be mounted on the cage guide rail
5
a
such that the longitudinally section forms has a non-inverted L shape.
According to the second embodiment, since the cut
4
c
is formed on the support
4
b
and allows the cage guide rail
5
a
to pass through, the L-shaped member
4
can be mounted not only on the top of the cage guide rail
5
a
but also below the top of the cage guide rail
5
a,
as long as the L-shaped member
4
does not interfere with the cage
113
or the counterweight
114
.
FIG. 7
is a side view of a cable hitch of the third embodiment of the invention.
FIG. 8
is a front view of the cable hitch shown in FIG.
7
. The third embodiment modifies the cable hitch
3
of the first embodiment. Hereinafter, only components different from the components explained in the first embodiment shown in
FIGS. 2-4
are described.
As shown in
FIGS. 7 and 8
, three shackle rods
1
, which are attached to the ends of the cables
2
, are secured below the top of the cage guide rail
5
a
by means of the cable hitch
10
. The cable hitch
10
can also be mounted on the top of the cage guide rail
5
a
so as to support the ends of the cables
2
at the top of the cage guide rail
5
a.
The cable hitch
10
includes a U-shaped member
31
which is mounted on the middle of the guide rail
5
a
such that the horizontally section thereof has a U-shape. The U-shaped member
31
is composed of a base
31
a
to be secured on a back side of the cage guide rail
5
a
and a pair of support arms
31
b
horizontally extending from both side edges of the base
31
a.
The base
31
a
of the U-shaped member
31
is secured to a back side of the cage guide rail
5
a
by six bolts
6
(only three are shown). The base
31
a
can be welded to the back side of the cage guide rail
5
a
instead of being fastened with the bolts
6
.
A support plate
32
is bridged and mounted on the upper side of the support arms
31
b,
and supports the shackle rods
1
. A permissible space to pass through the cage guide rail
5
a
is made between the base
31
a
and the support plate
32
.
According to the third embodiment, since the cable hitch
10
is mounted on the cage guide rail
5
a
and supports the ends of the cables
2
, it is not required that the cable hitch be installed in the machine room as shown in FIG.
19
.
FIG. 9
is a side view of a cable hitch of a fourth embodiment of the present invention.
FIG. 10
is a front view of the cable hitch shown in FIG.
9
. The fourth embodiment adds some components to the first embodiment. Thus, only components different from the components explained in the first embodiment in
FIGS. 2-4
are described.
As shown in
FIGS. 9 and 10
, one cable hitch
11
is composed of a pair of L-shaped members
4
mounted on the tops of respective of the cage guide rails
5
a
and
5
b
and supports one end of the cable
2
. Another cable hitch
11
is also composed of a pair of L-shaped members
4
mounted on the tops of respective of the counterweight guide rails
5
c
and
5
d
and support the other end of the cable
2
. Three shackle rods
1
, which are attached to the ends of the cables
2
, are secured on the top of the cage guide rail
5
a
and
5
b
by means of the cable hitch
11
.
In this embodiment, only the cable hitch
11
mounted on the guide rails
5
a
and
5
b
is described for the sake of convenience.
A pair of L-shaped members
4
are respectively mounted to the cage guide rails
5
a
and
5
b
such that the longitudinal sections thereof have an inverted L-shape. The L-shaped members
4
are secured to the cage guide rails by bolts
6
, but can also be welded to the cage guide rails
5
a
and
5
b
instead of being fastened with the bolts
6
.
A support plate
42
is secured at the opposite ends thereof on respective supports
4
b
of the L-shaped members
4
. The support plate
42
is secured to the supports
4
b
by means of bolts
47
and angle brackets
46
a
and
46
b.
The support plate
42
can also be welded to the supports
4
b
instead of bolts
47
and angle brackets
46
a
and
46
b.
The shackle rods
1
supporting the ends of the cables
2
are secured to the support plate
42
, and the installation position of the cables
2
offset from the cage guide rails
5
a
and
5
b.
A plate, which has relatively strong bending strength such as a plate having an L-shaped section or a C-shaped section, can be adapted instead of the support plate
42
.
According to the fourth embodiment, since the pair of L-shaped members
4
are respectively mounted on the cage guide rails
5
a
and
5
b,
and the support plate
42
is secured at the opposite ends thereof on respective supports
4
b
of the L-shaped members
4
and supports the cables
2
, the support plate
42
can efficiently support the bending moment caused by the installation position of the cables
2
being offset from the cage guide rails
5
a
and
5
b.
Thus, the permissible load of the support plate
42
is more than a cantilever structure such as the cable hitch
3
shown in
FIG. 3
, and a distance between the cage guide rail
5
a
or
5
b
and the installation position of the cables
2
can be made longer. As a result, the installation position of the cables
2
can be set more freely.
The U-shaped member
31
shown in
FIG. 7
can be substituted for the L-shaped member
4
.
FIG. 11
is a side view of a cable hitch of a fifth embodiment of the present invention.
FIG. 12
is a front view of the cable hitch shown in
FIG. 1
1
. The fifth embodiment adds some components to the second embodiment. Thus, only components different from the components explained in the second embodiment in
FIG. 5 and 6
are described.
As shown in
FIGS. 11 and 12
, one cable hitch
12
is composed of a pair of L-shaped members
4
which are mounted distant from the tops of respective of the cage guide rails
5
a
and
5
b.
The respective L-shaped members
4
are located at same level and have cuts
4
c
for passing through the cage guide rails
5
a
and
5
b.
Another cable hitch
12
is also composed of a pair of L-shaped members
4
which are mounted distant from the tops of respective of the counterweight guide rails
5
c
and
5
d.
The respective L-shaped members
4
are located at same level and have cuts
4
c
for passing through the counterweight guide rails
5
c
and
5
d.
Three shackle rods
1
(only two are shown), which are attached to the ends of the cables
2
, are secured on the middle of the cage guide rail
5
a
and
5
b
by means of the cable hitch
12
. The cable hitch
12
mounted on the middle of the counterweight guide rails
5
c
and
5
d
is supported in the same way and supports the other ends of the cables
2
.
In this embodiment, only the cable hitch
12
mounted on the guide rails
5
a
and
5
b
is described for the sake of convenience.
A pair of L-shaped members
4
are mounted on respective of the cage guide rails
5
a
and
5
b
such that the longitudinal sections thereof have an inverted L-shape, and are secured to the cage guide rails
5
a
and
5
b
by bolts
6
. The L-shaped members
4
can otherwise be welded to the cage guide rails
5
a
and
5
b
instead of being fastened with the bolts
6
. Further, the L-shaped members
4
can be mounted on the cage guide rails
5
a
and
5
b
such that the longitudinal sections thereof have a non-inverted L-shape.
A support plate
42
is secured at the opposite ends thereof on respective supports
4
b
of the L-shaped members
4
by means of bolts
47
and angle brackets
46
a
and
46
b.
The support plate
42
can be welded to the supports
4
b
instead of using bolts
47
and angle brackets
46
a
and
46
b.
The shackle rods
1
supporting the ends of the cables
2
are secured to the support plate
42
, and the installation position of the cables
2
offset from the cage guide rails
5
a
and
5
b.
A plate, which has relatively strong bending strength such as a plate having a L-shaped section or a C-shaped section, can be used instead of the support plate
42
.
According to the fifth embodiment, since the pair of L-shaped members
4
are respectively mounted to the cage guide rails
5
a
and
5
b,
and the support plate
42
is secured at the opposite ends thereof on respective supports
4
b
of the L-shaped members
4
and supports the cables
2
, the support plate
42
can efficiently support the bending moment caused by the installation position of the cables
2
being offset from the cage guide rails
5
a
and
5
b.
Thus, the permissible load of the support plate
42
is more than a cantilever structure such as the cable hitch
3
shown in
FIG. 3
, and a distance between the cage guide rail
5
a
or
5
b
and the installation position of the cables
2
can be made longer. As a result, the installation position of the cables
2
can be set more freely.
Further, since the L-shaped members
4
are mounted below the tops of the cage guide rails
5
a
and
5
b,
the vertical installation position of the cables
2
can be set freely as long as the L-shaped members
4
do not interfere with the cage
113
and the counterweight
114
.
FIG. 13
is a side view of a cable hitch
13
of a sixth embodiment of the present invention.
FIG. 14
is a front view of the cable hitch
13
shown in FIG.
13
.
As shown in
FIGS. 13 and 14
, the U-shaped member
31
shown in
FIG. 7
is substituted for the L-shaped member
4
in the fifth embodiment in FIG.
11
. The other components are the same as the fifth embodiment. Accordingly, the sixth embodiment can also obtain the same effect as the fifth embodiment.
FIG. 15
is a front view of a cable hitch
14
of a seventh embodiment of the present invention.
FIG. 16
is a side view of the cable hitch
14
shown in FIG.
15
. The seventh embodiment modifies a part of the composition of the first embodiment. Hereinafter, only components different from the components explained in the first embodiment shown in
FIGS. 2-4
are described.
As shown in
FIGS. 15 and 16
, a cable hitch
14
is composed of a C-shaped member
71
which is mounted on a back side of the cage guide rail
5
a
such that the longitudinal section has a C-shape. The C-shaped member
71
is composed of a vertically extending portion and a pair of horizontally extending portions.
The vertically extending portion forms a base
71
a
to be secured on the back side of the cage guide rail
5
a,
while an upper side of the horizontally extending portions forms a support
71
b
for supporting the ends of the cables
2
.
The base
71
a
of the C-shaped member
71
is extended in the horizontal direction and secured to a back side of the cage guide rail
5
a
by six bolts
73
so as to be wider than the width of the cage guide rails
5
a.
The base
71
a
can be welded to the back side of the cage guide rail
5
a
instead of fastening with the bolts
73
.
A support plate
74
is secured on the supports
71
b
of the C-shaped member
71
and supports the shackle rods
1
attached to the ends of the cables
2
. The support plate
74
is secured to the supports
71
b
by bolts(not shown). The support plate
74
can otherwise be welded to the supports
71
b.
A pair of triangular reinforcing plates
72
a
and
72
b
are welded to the C-shaped member
71
, thereby strengthening the support plate
74
.
Further, an auxiliary plate
75
is secured at one end thereof to a position of the cage guide rail
5
a
where the C-shaped member
71
is attached, and integrally secured to the C-shaped member
71
with the bolts
73
. Another end of the auxiliary plate
75
is secured by anchor bolts
76
to a wall
117
of the shaft
110
positioned at the opposite side of the cage guide rail
5
a
as shown in FIG.
15
. Alternatively, the other end of the auxiliary plate
75
can be secured to a fixed element of the shaft
110
such as a steel frame of the building, which is positioned at the opposite side of the cage guide rail
5
a.
The auxiliary plate
75
can otherwise be welded to the C-shaped member
71
instead being fastened thereto by the bolts
73
.
According to the seventh embodiment, since the cable hitch
14
is mounted on the top or middle of the cage guide rail
5
a
and supports the ends of the cables
2
, it is not required that the cable hitch be installed in the machine room as shown in FIG.
1
.
Thus, in the case where a two-to-one roping elevator dispenses with a machine room, the size of the shaft can be the same size as the shaft of an elevator with a machine room, it is not necessary to provide a space protruding from the roof of the building for a machine room, and further there is no difficulty to support the ends of the cables
2
.
Further, installation of the C-shaped member
71
supported by the auxiliary plate
75
and secured at one end thereof to the wall
117
, as shown in
FIG. 15
, increases safety and strength against a moment applied to the C-shaped member
71
.
FIG. 17
is a front view of a cable hitch
15
of an eighth embodiment of the present invention.
FIG. 18
is a side view of the cable hitch
15
shown in FIG.
17
. The eighth embodiment modifies a part of the seventh embodiment, in which back sides of one of a pair of the cage guide rails
5
a
and
5
b,
and one of a pair of the counterweight guide rails
5
c
and
5
d
flush with each other. Hereinafter, only components different from the components explained in the seventh embodiment shown in
FIGS. 15 and 16
are described.
As shown in
FIG. 17
, the cable hitch
15
is composed of a C-shaped member
81
which is secured at one end thereof to the back side of the cage guide rail
5
a
or
5
b,
and at the opposite end thereof to the back side of the counterweight guide rail
5
c
or
5
d
by bolts
73
, and respectively positioned at the same level. Alternatively, the C-shaped member
81
can be welded to the cage guide rail
5
a
and the counterweight guide rail
5
c
instead being fastened thereto by the bolts
73
.
The C-shaped member
81
is composed of a vertical extending portion and a pair of horizontally extending portions. The vertically extending portion forms a base
81
a
to be secured on back sides of the cage guide rail
5
a
and the counterweight guide rail
5
c,
while an upper side of the horizontally extending portions forms a support
81
b
for supporting the ends of the cables
2
.
A support plate
74
is secured on the support portions
81
b
of the C-shaped member
81
and supports the shackle rods
1
attached to the ends of the cables
2
. The support plate
74
is secured to the supports
81
b
by bolts (not shown). The support plate
74
can otherwise be welded to the supports
81
b
instead of the bolts.
A pair of reinforcing plates
82
a
and
82
b
composed of triangular plates are welded to the C-shaped member
81
, thereby strengthening the support plate
74
.
According to the eighth embodiment, since the C-shaped member
81
is secured at one end thereof to the back side of the cage guide rail
5
a
or
5
b
and the opposite end thereof to the back side of the counterweight guide rail
5
c
or
5
d,
and supports the cables
2
, the support plate
74
can efficiently support the bending moment caused by the installation position of the cables
2
being offset from the cage guide rails
5
a
and
5
c.
Thus, the permissible load of the cable hitch
15
is more than a cantilever structure such as the cable hitch
14
shown in
FIG. 15
, and a distance between the cage guide rail
5
a
or
5
c
and the installation position of the cables
2
can be made longer. As a result, the installation position of the cables
2
can be set more freely.
The cable hitch
15
can be composed of a pair of C-shaped members
71
shown in FIG.
15
. In this case, C-shaped members
71
are respectively mounted on the cage guide rail
5
a
and the counterweight guide rail
5
c
at the same level, and the support plate
74
is secured at the opposite ends thereof on respective supports
71
b
of the C-shaped members
71
.
FIG. 19
is a front view of a cable hitch of the ninth embodiment of the present invention. The ninth embodiment adds some components to the fourth embodiment shown in
FIG. 9 and 10
. Hereinafter, only components different from the components explained in the fourth embodiment are described.
As shown in
FIG. 19
, a plate
95
is supported by hitch springs
92
above the support plate
42
so as to move up and down, and the shackle rods
1
are supported on the plate
95
by hitch springs
91
.
A switch
94
is attached at a center of the support plate
42
, and a pin
93
is disposed at a position facing the switch
94
. The switch
94
and the pin
93
compose a load detector.
If a load of the cage
113
increases, the hitch springs
91
are compressed and the hitch springs
92
are compressed by the reaction force of the hitch springs
91
, so that the pin
93
moves downward and activates the switch
94
. Thus, the load of the cage
113
can be detected.
The pin
93
is screwed into the plate
95
and a projection length of the pin
93
is adjustable. Thus, the pin
93
can be set such that the switch
94
is activated when the load of the cage
113
exceeds a rated load of the cage
113
.
According to the ninth embodiment, a load of the cage
113
can be detected by detecting a deformation of the hitch springs
92
. Further, a load to be detected is adjustable by adjusting a distance between the switch
94
and the pin
93
.
Various modifications and variations are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein.
Claims
- 1. An elevator comprising:a cage configured to ascend and descend in an elevator shaft along a cage guide rail; a counterweight configured to ascend and descend in said elevator shaft along a counterweight guide rail; a cable configured to hang and connect said cage and said counterweight; a drive unit configured to drive said cage and said counterweight by providing motive power for said cable; and at least one cable hitch mounted on one of said cage guide rail and said counterweight guide rail and configured to secure one end of said cable, said cable hitch having a U-shaped horizontal section and comprising a base secured to a back side of said one of said cage guide rail and said counterweight guide rail, a plurality of support arms configured to support said end of said cable and to be extended in the horizontal direction from both side edges of said base such that said one of said cage guide rail and said counterweight guide rail is disposed between said support arms, and a support plate mounted on said support arms configured to support said end of said cable, said support plate and said base defining an opening by which said one of said cage guide rail and said counterweight guide rail can pass between said base and said support plate.
Priority Claims (1)
Number |
Date |
Country |
Kind |
10-260498 |
Sep 1998 |
JP |
|
US Referenced Citations (14)
Foreign Referenced Citations (4)
Number |
Date |
Country |
403051284 |
Mar 1991 |
JP |
404016478 |
Jan 1992 |
JP |
405032385 |
Feb 1993 |
JP |
10-231077 |
Sep 1998 |
JP |