Information
-
Patent Grant
-
6769860
-
Patent Number
6,769,860
-
Date Filed
Friday, February 15, 200222 years ago
-
Date Issued
Tuesday, August 3, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Lillis; Eileen D.
- Lowe; Michael
Agents
- Webb Ziesenheim Logsdon Orkin & Hanson, P.C.
-
CPC
-
US Classifications
Field of Search
US
- 414 686
- 414 687
- 172 272
- 172 273
- 172 274
- 172 275
- 280 791
- 280 792
- 296 20301
- 037 410
-
International Classifications
-
Abstract
A tractor has a vehicle frame with a pair of right and left elongate frame members spaced from each other and extending in a longitudinal direction and interconnected in intermediate positions by a cross member, an engine supported by the elongate frame members in a front region of the vehicle frame, a rear axle unit connected to rear axle connecting members fixed to the elongate frame members in a rear region of the vehicle frame, and a drive transmitting mechanism for transmitting drive from the engine to the rear axle unit. A front loader and/or a backhoe are/is attachable to a front and a rear of the tractor as supported by the vehicle frame. A reinforcing frame unit is provided for reinforcing the vehicle frame. The reinforcing frame unit is connected to the vehicle frame by reinforcing frame connecting members spaced horizontally and/or vertically from the rear axle connecting members.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a tractor having a vehicle frame with a p air of right and left elongate frame members spaced from each other and extending in a longitudinal direction and interconnected in intermediate positions by a cross member, an engine supported by the elongate frame members in a front region of the vehicle frame, a rear axle unit connected to rear axle connecting members fixed to the elongate frame members in a rear region of the vehicle frame, and a drive transmitting mechanism for transmitting drive from the engine to the rear axle unit, a front loader and/or a backhoe being attachable to a front and a rear of the tractor as supported by the vehicle frame.
2. Description of the Related Art
A tractor with a front loader and a backhoe attachable thereto as noted above, i.e. a so-called tractor-front loader-backhoe (TLB), is subjected to overloads such as compressive, tensile, twisting and bending forces acting on a vehicle frame when running with the backhoe attached to the rear end or during an excavating operation with the backhoe. Thus, the tractor must have a highly strong chassis to withstand such heavy loads. TLBs with such strong chassis are known from U.S. Pat. Nos. 4,087,009 and 4,661,036, for example.
Further, it is common practice to connect a reinforcing frame unit to a rear region of a vehicle frame to which a backhoe is attached, whereby the entire vehicle frame becomes strong enough to withstand overloads occurring when running with the backhoe attached to the rear end or during an excavating operation with the backhoe. Tractors with such reinforcing frames are known from U.S. Pat. Nos. 5,000,269 and 5,248,237, for example. U.S. Pat. No. 6,056,502 discloses a technique of connecting a front end of a reinforcing frame to a forward region of a vehicle frame by a flexible structure.
In any case, in connecting a reinforcing frame unit to a rear region of a vehicle frame, according to conventional practice, reinforcing frame connections are formed on the vehicle frame adjacent connections of a rear axle unit fixed to the vehicle frame.
That is, in the prior art noted above, a structure elastically deformable relatively freely is not provided between the rear axle connections and the reinforcing frame connections that are formed adjacent each other on the vehicle frame. Consequently, overloads occurring when running with a backhoe attached to the rear end or during an excavating operation with the backhoe are transmitted straight to the axle unit. It is therefore necessary for the casing of the rear axle unit also to have sufficient strength to withstand such overloads. As a result, the rear axle unit tends to be large and expensive to manufacture. It is difficult to attach a backhoe to a small tractor, in particular, for which lightweight and low cost are desired features.
SUMMARY OF THE INVENTION
The object of this invention is to suppress transmission to a rear axle unit of overloads occurring when running with a backhoe attached to the rear end or during an excavating operation with the backhoe, thereby to avoid an enlargement and increased manufacturing cost of the rear axle unit due to reinforcement, for example, of the casing of the rear axle unit.
The above object is fulfilled, according to this invention, by a tractor having a vehicle frame with a pair of right and left elongate frame members spaced from each other and extending in a longitudinal direction and interconnected in intermediate positions by a cross member, an engine supported by the elongate frame members in a front region of the vehicle frame, a rear axle unit connected to rear axle connecting members fixed to the elongate frame members in a rear region of the vehicle frame, and a drive transmitting mechanism for transmitting drive from the engine to the rear axle unit, a front loader and/or a backhoe being attachable to a front and a rear of the tractor as supported by the vehicle frame, the tractor comprising a reinforcing frame unit for reinforcing the vehicle frame, and reinforcing frame connecting members for connecting the reinforcing frame unit to the vehicle frame, wherein the reinforcing frame connecting members are spaced horizontally and/or vertically from the rear axle connecting members.
With this construction, the reinforcing frame unit connected to the vehicle frame gives the latter increased strength for withstanding overloads such as compressive, tensile, twisting and bending forces occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe. Further, the vehicle frame has the reinforcing frame connecting members and rear axle connecting members spaced from each other as noted above. The frame portions in between act as flexible structure portions relatively freely and elastically deformable when the tractor runs with the backhoe attached or during an excavating operation with the backhoe. The elastic deformation of these frame portions absorbs overloads occurring when the tractor runs or during an excavating operation, thereby suppressing transmission of the overloads to the rear axle unit. This invention effectively avoids an enlargement and increased manufacturing cost of the rear axle unit due to reinforcements of a casing and the like of the rear axle unit, and allows attachment of a backhoe to a small tractor for which lightweight and low cost are desired.
In a preferred embodiment of this invention, the reinforcing frame unit is in form of a gate-shaped frame including a pair of right and left side members and a horizontal member interconnecting upper positions of the side members, and the reinforcing frame connecting members are formed in lower end regions of the side members and rear end regions of the elongate frame members, the side members further forming backhoe attaching members. With this construction, the rear end region of the vehicle frame has increased strength, and the backhoe may be attached to the rear end region having the increased strength, without a special, additional frame member for defining the backhoe attaching portions. A frame portion, between the rear axle connecting member and the reinforcing frame connecting member to which the reinforcing frame connecting member of one of the side members is connected, of each of the right and left frame members acts as a flexible structure portion relatively freely and elastically deformable. The elastic deformation of this frame portion absorbs the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe, thereby suppressing transmission of the overloads to the rear axle unit
Another preferred embodiment of this invention provides brace members each connected at one end thereof to one of the side members, and at the other end to a position of one of the elongate frame members vertically spaced from one of the rear axle connecting members. With this construction, the gate-shaped frame to which the backhoe is attached has increased supporting strength. Loads acting on the gate-shaped frame are distributed to the right and left elongate frame members and the right and left brace members. Further, a frame portion of each of the right and left elongate frame members between a connection to the brace member and the rear axle connecting member, as well as the frame portion of each elongate frame member between the rear axle connecting member and the reinforcing frame connecting member, acts as a flexible structure portion relatively freely and elastically deformable. The elastic deformation of the frame portions of the right and left elongate frame members between the rear axle connecting members and the reinforcing frame connecting members absorbs components distributed to the right and left elongate frame members of the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe, thereby suppressing transmission of the overload components to the rear axle unit. The elastic deformation of the frame portions of the right and left elongate frame members between the connections to the brace members and the rear axle connecting members absorbs load components distributed to the right and left brace members, thereby suppressing transmission of the overload components to the rear axle unit.
In a further preferred embodiment of this invention, the reinforcing frame unit is in form of at least one cross frame interconnecting rear end regions of the elongate frame members. With this construction, the rear end region of the vehicle frame is reinforced by the cross frame interconnecting rear end regions of the right and left elongate frame members. Further, a rearward frame portion between the rear axle connecting member and a connection to the cross member of each of the right and left elongate frame members acts as a flexible structure portion relatively freely and elastically deformable. The elastic deformation of these frame portions absorbs the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe, thereby suppressing transmission of the overloads to the rear axle unit.
In a further preferred embodiment of this invention, the reinforcing frame unit includes elongate reinforcing frames extending along outer faces of the elongate frame members, respectively, and one of the reinforcing frame connecting members is formed in a rear end region of each of the reinforcing frames and a rear end region of each of the elongate frame members, and the other of the reinforcing frame connecting members is formed in a forward end region of each of the reinforcing frames and a forward end region beyond an engine mounting portion of each of the elongate frame members. With this construction, the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe are distributed to the right and left elongate frame members and right and left reinforcing frames. A frame portion between the rear axle connecting member and the reinforcing frame connecting member in the rear end region of each of the right and left elongate frame members, and a frame portion of each of the right and left reinforcing frames between the rear reinforcing frame connecting member connected to the reinforcing frame connecting member of the elongate frame member and the front reinforcing frame connecting member connected to the reinforcing frame connecting member of the elongate frame member, act as flexible structure portions relatively freely and elastically deformable. The elastic deformation of the frame portions between the rear axle connecting members and the reinforcing frame connecting members in the rear end regions of the right and left elongate frame members absorbs components distributed to the right and left elongate frame members of the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe, thereby suppressing transmission of the overload components to the rear axle unit. The elastic deformation of the frame portions between the front and rear reinforcing frame connecting members of the right and left reinforcing frames absorbs load components distributed to the right and left reinforcing frames, thereby avoiding transmission thereof to the rear axle unit.
In a further preferred embodiment of this invention, the reinforcing frame unit includes elongate reinforcing frames extending along outer faces of the elongate frame members, respectively, the elongate frame members have front loader post support members projecting laterally outwardly of longitudinally intermediate portions thereof, and one of the reinforcing frame connecting members is formed in a rear end region of each of the reinforcing frames and a rear end region of each of the elongate frame members, and the other of the reinforcing frame connecting members is formed in a forward end region of each of the reinforcing frames and each of the front loader post support members. With this construction, the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe are distributed to the right and left elongate frame members and right and left reinforcing frames. A frame portion between the rear axle connecting member and the reinforcing frame connecting member in the rear end region of each of the right and left elongate frame members, and a frame portion of each of the right and left reinforcing frames between the rear reinforcing frame connecting member connected to the rear reinforcing frame connecting member of one of the elongate frame member and the front reinforcing frame connecting member connected to one of the front loader post support members, act as flexible structure portions relatively freely and elastically deformable. The elastic deformation of the frame portions between the rear axle connecting members and the reinforcing frame connecting members in the rear end regions of the right and left elongate frame members absorbs components distributed to the right and left elongate frame members of the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe, thereby suppressing transmission of the overload components to the rear axle unit. The elastic deformation of the frame portions between the front and rear reinforcing frame connecting members of the right and left reinforcing frames absorbs load components distributed to the right and left reinforcing frames and transmits the load components to the front loader post support members, thereby avoiding transmission thereof to the rear axle unit.
In a further preferred embodiment of this invention, the reinforcing frame unit includes reinforcing frames extending along outer faces of the elongate frame members, respectively, the reinforcing frame connecting members are formed in a rear end region of each of the reinforcing frames and a rear end region of each of the elongate frame members, and the reinforcing frames are connected to the rear axle unit in positions spaced from the rear axle connecting members. With this construction, the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe are distributed to the right and left elongate frame members
4
and right and left reinforcing frames. A frame portion between the rear axle connecting member and the reinforcing frame connecting member of each of the right and left elongate frame members, and a frame portion between a connection to one of the rear axle cases and the rear reinforcing frame connecting member of each of the right and left reinforcing frames, act as flexible structure portions relatively freely and elastically deformable. The elastic deformation of the frame portions between the rear axle connecting members and the reinforcing frame connecting members of the right and left elongate frame members absorbs components distributed to the right and left elongate frame members of the overloads occurring when the tractor runs with the backhoe attached or during an excavating operation with the backhoe, thereby suppressing transmission of the overload components to the rear axle unit. The elastic deformation of the frame portions between the connections to the rear axle cases and the rear reinforcing frame connecting portions in the rear end regions of the right and left reinforcing frames, absorbs load components distributed to the right and left reinforcing frames, thereby suppressing transmission thereof to the rear axle unit.
Other features and advantages of this invention will be apparent from the following description of the embodiments to be taken with reference to the drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a side elevation of a tractor-front loader-backhoe;
FIG. 2
is an exploded perspective view of a principal portion showing a reinforcing structure;
FIG. 3
is a plan view of the principal portion showing a reinforcing structure;
FIG. 4
is a plan view of a principal portion showing a reinforcing structure in a first modified embodiment;
FIG. 5
is a plan view of a principal portion showing a reinforcing structure in a second modified embodiment;
FIG. 6
is a plan view of a principal portion showing a reinforcing structure in a third modified embodiment;
FIG. 7
is a plan view of a principal portion showing a reinforcing structure in a fourth modified embodiment;
FIG. 8
is a plan view of a principal portion showing a reinforcing structure in a fifth modified embodiment;
FIG. 9
is a plan view of a principal portion showing a reinforcing structure in a sixth modified embodiment; and
FIG. 10
is a plan view of a principal portion showing a reinforcing structure in a seventh modified embodiment.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1
shows a side elevation of a tractor-front loader-backhoe (TLB) in which a tractor
1
has a front loader
2
attached to the front thereof and a backhoe
3
attached to the rear end.
Referring to
FIGS. 1 through 3
, the tractor
1
includes a pair of right and left band-like elongate frame members
4
formed of sheet metal, extending longitudinally of a vehicle body and spaced from each other transversely of the vehicle body. The elongate frame members
4
are interconnected in intermediate positions thereof by a cross member
5
to form a vehicle frame
6
. In a front region of the vehicle frame
6
, an engine
7
is supported by the right and left elongate frame members
4
through rubber vibration isolators not shown. In a rear region of the vehicle frame
6
, a rear axle unit
9
having a pair of right and left rear wheels
8
are attached is connected to connecting brackets
10
acting as rear axle connectors fixed to the right and left elongate frame members
4
, respectively. The rear axle unit
9
has a drive transmission mechanism
11
secured thereto for changing the speed of drive from the engine
7
and transmitting the drive to the rear axle unit
9
. A longitudinally intermediate region of the vehicle frame
6
between the engine
7
and drive transmission mechanism
11
provides a driving platform
15
including a steering wheel
13
for steering a pair of right and left front wheels
12
, and a diver's seat
14
.
The rear axle unit
9
includes a pair of right and left rear axle cases
16
connected to the connecting brackets
10
, a rear differential
18
mounted in a lower portion of a transmission cases
17
connected to the right and left rear axle cases
16
, and rear axles
19
extending right and left from the rear differential
18
. Castings are employed as the right and left rear axle cases
16
and transmission case
17
. The right and left rear axle cases
16
define connectors
20
in upper positions thereof for connection to the connecting bracket
10
, respectively.
The drive transmission mechanism
11
includes an HST (hydrostatic stepless transmission)
23
connected to the front of transmission case
17
for receiving the drive from the engine
7
through front and rear universal joints
21
and a transmission shaft
22
, and a gear type change speed device
24
mounted in an upper portion of transmission case
17
for receiving the drive having undergone speed changes by HST
23
.
As shown in
FIG. 1
, the front loader
2
is detachably attached to the vehicle frame
6
. The right and left elongate frame members
4
have front loader post support members
25
projecting laterally outwardly of longitudinally intermediate portions thereof, and a pair of right and left front loader posts
26
are erected on these support members
25
, respectively. The front loader
2
includes a pair of right and left booms
27
vertically pivotably extending from upper ends of the respective front loader posts
26
. A bucket
28
is vertically pivotably connected to, so as to bridge, distal ends of the booms
27
. A pair of right and left boom cylinders
29
each extend between the corresponding front loader post
26
and boom
27
. A bucket cylinder
30
extends between the booms
27
and bucket
28
. A pair of right and left reinforcing brace members
31
each extend between the corresponding elongate frame member
4
and front loader post
26
.
The backhoe
3
has been detachably constructed for vehicle frame
6
. A base
34
includes a control unit
32
and outriggers
33
. A swing bracket
35
is connected to the base
34
for swinging right and left. A boom
36
vertically pivotably extends from the swing bracket
35
. An arm
37
extends from a distal end of the boom
36
to be pivotable back and forth. A bucket
38
is connected to a distal end of the arm
37
to be pivotable in an excavating operation. A swing cylinder
39
extends between the base
34
and swing bracket
35
. A boom cylinder
40
extends between the swing bracket
35
and boom
36
. An arm cylinder
41
extends between the boom
36
and arm
37
. A bucket cylinder
42
extends between the arm
37
and bucket
38
.
As shown in
FIGS. 1 through 3
, the vehicle frame
6
has a reinforcing frame unit
43
for reinforcing the vehicle frame
6
. The reinforcing frame unit
43
is in the form of a gate-shaped frame
46
including a pair of right and left side members
44
made of sheet metal a horizontal member
45
made of sheet metal and interconnecting upper ends of the side members
44
. Each elongate frame member
4
has a reinforcing frame connecting portion
47
formed in a rear end region thereof horizontally spaced by a distance L1 from the connecting bracket
10
. Each side member
44
has a reinforcing frame connecting portion
48
formed in a lower end region thereof for connection to the reinforcing frame connecting portion
47
. Further, each side member
44
has a backhoe attaching portion
49
formed in a rear end region thereof.
Each of the reinforcing frame connecting portions
47
and
48
of the elongate frame members
4
and reinforcing frame unit
43
includes four connecting bores
50
. Each backhoe attaching portion
49
includes a connecting bore
51
and a hook
52
.
That is, the reinforcing frame unit
43
interconnects the rear end regions of the right and left elongate frame members
4
of the vehicle frame
6
. Thus, the rear end region of vehicle frame
6
to which the backhoe
3
is attached has increased strength for withstanding overloads such as compressive, tensile, twisting and bending forces occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
. The backhoe
3
may be attached to the rear end region having the increased strength, without a special, additional frame member for defining the backhoe attaching portions
49
.
As noted above, each elongate frame member
4
provides the distance L1 between the connecting bracket
10
for connecting the rear axle unit
9
and the reinforcing frame connecting portion
47
for connecting the reinforcing frame unit
43
. A frame portion
53
between the connecting bracket
10
and the reinforcing frame connecting portion
47
acts as a flexible structure portion relatively freely and elastically deformable when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
. The elastic deformation of the frame portion
53
absorbs the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overloads to the rear axle unit
9
. The rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components. The invention avoids an enlargement and increased manufacturing cost of the rear axle unit
9
due to such reinforcement.
As shown in
FIGS. 1 and 3
, the transmission case
17
has a gear pump
54
projecting from a rear end thereof to be opposed to the backhoe
3
through a space
55
in the reinforcing frame unit
43
for feeding pressure oil toward the backhoe
3
. Thus, piping or the like not shown may be passed through the space
55
in the reinforcing frame unit
43
to extend from the gear pump
54
to the backhoe
3
. A piping operation may be carried out with ease to link the tractor
1
and backhoe
3
. At the same time, the reinforcing frame unit
43
effectively prevents foreign objects from contacting the piping and the like extending between the gear pump
54
and backhoe
3
.
Modified embodiments of this invention will be described hereinafter.
<First Modified Embodiment>
As shown in
FIG. 4
, the first modified embodiment includes a pair of right and left brace members
56
provided for the reinforcing frame unit
43
shown in the foregoing embodiment. Each brace member
56
is connected at one end thereof to an upper forward position of the corresponding side member
44
, and at the other end to a position of the corresponding elongate frame member
4
vertically spaced by a distance L2 from the connecting bracket
10
.
With this construction, the gate-shaped frame
46
to which the backhoe
3
is attached has increased supporting strength. Loads acting on the gate-shaped frame
46
are distributed to the right and left elongate frame members
4
and the right and left brace members
56
. Further, a vertical frame portion
58
of each of the right and left elongate frame members
4
between a connection
57
to the brace member
56
and the connecting bracket
10
, as well as the horizontal frame portion
53
of each elongate frame member
4
between the connecting bracket
10
and the reinforcing frame connecting portion
47
, acts as a flexible structure portion relatively freely and elastically deformable. The elastic deformation of the frame portions
53
of the right and left elongate frame members
4
between the connecting bracket
10
and the reinforcing frame connecting portion
47
absorbs components distributed to the right and left elongate frame members
4
of the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overload components to the rear axle unit
9
. The elastic deformation of the frame portions
58
of the right and left elongate frame members
4
between the connections
57
to the brace members
56
and the connecting bracket
10
absorbs load components distributed to the right and left brace members
56
, thereby suppressing transmission of the overload components to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components. In addition, the backhoe
3
may be attached to the tractor
1
with increased stability.
<Second Modified Embodiment>
In the second modified embodiment, as shown in
FIG. 5
, each of the right and left elongate frame members
4
has a reinforcing frame connecting portion
47
formed in an upper portion of a rear end region thereof horizontally spaced by the distance L1 from the connecting bracket
10
and vertically by the distance L2 from the connecting bracket
10
. The reinforcing frame unit
43
shown in the foregoing embodiments has the reinforcing frame connecting portion
48
formed in the lower end region of each side member
44
and connected to the reinforcing frame connecting portion
47
formed in the upper portion.
With this construction, the horizontal frame portion
53
extending over the horizontal distance L1 and vertical distance L2 between the connecting bracket
10
and reinforcing frame connecting portion
47
of each of the light and left elongate frame members
4
acts as a flexible structure portion relatively freely and elastically deformable when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
. The elastic deformation of the frame portion
53
absorbs the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overloads to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components.
In this construction also, as shown in a two-dot chain line in
FIG. 5
, the reinforcing frame unit
43
may have the pair of right and left brace members
56
shown in the first modified embodiment.
<Third Modified Embodiment>
In the third modified embodiment, as shown in
FIG. 6
, a reinforcing frame unit
43
includes a cross frame
59
extending transversely of the vehicle body and interconnecting the rear end regions of the right and left elongate frame members
4
horizontally spaced by the distance L1 from the connecting brackets
10
acting as rear axle connectors, and a cross frame
60
extending transversely of the vehicle body and interconnecting rear end regions of the right and left elongate frame members
4
horizontally spaced by a distance L3 from the connecting brackets
10
.
With this construction, the two cross frames
59
and
60
extending between the right and left elongate frame members
4
reinforce the rear region of vehicle frame
6
to which the backhoe
3
is attached. A horizontal frame portion
62
between the connecting bracket
10
and a connecting position
61
, to which the rear cross frame
52
is connected, of each of the right and left elongate frame members
4
acts as a flexible structure portion relatively freely and elastically deformable. The elastic deformation of the frame portion
62
absorbs the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overloads to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components.
The cross frame
60
may be formed of sheet metal, steel pipe or other material.
Numeral
63
in
FIG. 6
denotes a pair of right and left backhoe attaching brackets erected at the rear ends of right and left elongate frame members
4
and having backhoe attaching portions
49
.
Though not shown, the reinforcing frame unit
43
may include only the single cross frame
59
extending transversely of the vehicle body and interconnecting the rear end regions of the right and left elongate frame members
4
horizontally spaced by the distance L1 from the connecting brackets
10
acting as rear axle connectors, or may include this cross frame
59
and the gate-shaped frame
46
, shown in the foregoing embodiments, which interconnects the rear end regions of the right and left elongate frame members
4
horizontally spaced by the distance L1 from the connecting brackets
10
acting as rear axle connectors. Furthermore, the pair of right and left brace members
56
shown in the first modified embodiment may be provided to extend from the gate-shaped frame
46
to the right and left elongate frame members
4
.
<Fourth Modified Embodiment>
In the fourth modified embodiment, as shown in
FIG. 7
, a reinforcing frame unit
43
includes a pair of right and left band-like elongate reinforcing frames
64
extending along outer faces of the right and left elongate frame members
4
, respectively. Each reinforcing frame
64
has a rear end region thereof defining a reinforcing frame connecting portion
48
connected to a reinforcing frame connecting portion
47
formed in the rear end region of the corresponding elongate frame member
4
horizontally spaced by the distance L1 from the connecting bracket
10
acting as the rear axle connector, and a forward end region defining a reinforcing frame connecting portion
48
connected to a reinforcing frame connecting portion
47
formed in a forward end region of the corresponding elongate frame member
4
beyond where the engine
7
is mounted.
With this construction, the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
are distributed to the right and left elongate frame members
4
and right and left reinforcing frames
64
. A frame portion
65
between the connecting bracket
10
and the reinforcing frame connecting portion
47
in the rear end region of each of the right and left elongate frame members
4
, and a frame portion
66
between the front and rear reinforcing frame connecting portions
48
of each of the right and left reinforcing frames
64
, act as flexible structure portions relatively freely and elastically deformable. The elastic deformation of the frame portions
65
between the connecting brackets
10
and the reinforcing frame connecting portions
47
in the rear end regions of the right and left elongate frame members
4
absorbs components distributed to the right and left elongate frame members
4
of the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overload components to the rear axle unit
9
. The elastic deformation of the frame portions
66
between the front and rear reinforcing frame connecting portions
48
of the right and left reinforcing frames
64
absorbs load components distributed to the right and left reinforcing frames
64
and transmits the load components to the forward end regions of the elongate frame members
4
, thereby avoiding transmission thereof to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components.
In this construction, the right and left reinforcing frames
64
have backhoe attaching portions
49
at the rear ends thereof, respectively.
As shown in two-dot chain lines in
FIG. 7
, the cross frame
59
extending transversely of the vehicle body, shown in the third modified embodiment, may be connected to the reinforcing frame connecting portions
47
in the rear end regions of the right and left elongate frame members
4
, along with the reinforcing frame connecting portions
48
in the rear end regions of the right and left reinforcing frames
64
. Though not shown, the gate-shaped frame
46
in the foregoing embodiments may be provided instead of the cross frame
59
. This gate-shaped frame
46
may have backhoe attaching portions
49
. Further, a pair of right and left brace members as shown in the first modified embodiment may be provided to extend from the gate-shaped frame
46
to the right and left elongate frame members
4
or right and left reinforcing frames
64
.
<Fifth Modified Embodiment>
In the fifth modified embodiment, as shown in
FIG. 8
, a reinforcing frame unit
43
includes a pair of right and left band-like elongate reinforcing frames
67
extending along outer faces of the right and left elongate frame members
4
, respectively. Each reinforcing frame
67
has a rear end region thereof defining a reinforcing frame connecting portion
48
connected to a reinforcing frame connecting portion
47
formed in the rear end region of the corresponding elongate frame member
4
horizontally spaced by the distance L1 from the connecting bracket
10
acting as the rear axle connector, and a forward end region defining a reinforcing frame connecting portion
48
connected to a reinforcing frame connecting portion
47
formed in one of the front loader post support members
25
projecting from a longitudinally intermediate portion of the corresponding elongate frame member
4
.
With this construction, the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
are distributed to the right and left elongate frame members
4
and right and left reinforcing frames
67
. A frame portion
68
between the connecting bracket
10
and the reinforcing frame connecting portion
47
in the rear end region of each of the right and left elongate frame members
4
, and a frame portion
69
between the front and rear reinforcing frame connecting portions
48
of each of the right and left reinforcing frames
67
, act as flexible structure portions relatively freely and elastically deformable. The elastic deformation of the frame portions
68
between the connecting brackets
10
and the reinforcing frame connecting portions
47
in the rear end regions of the right and left elongate frame members
4
absorbs components distributed to the right and left elongate frame members
4
of the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overload components to the rear axle unit
9
. The elastic deformation of the frame portions
69
between the front and rear reinforcing frame connecting portions
48
of the right and left reinforcing frames
67
absorbs load components distributed to the right and left reinforcing frames
67
and transmits the load components to the front loader post support members
25
, thereby avoiding transmission thereof to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components.
In this construction, the right and left reinforcing frames
67
have backhoe attaching portions
49
at the rear ends thereof, respectively.
Though not shown, the cross frame
59
extending transversely of the vehicle body, shown in the third modified embodiment, may be connected to the reinforcing frame connecting portions
47
in the rear end regions of the right and left elongate frame members
4
, along with the reinforcing frame connecting portions
48
in the rear end regions of the right and left reinforcing frames
67
. The gate-shaped frame
46
in the foregoing embodiments may be provided instead of the cross frame
59
. This gate-shaped frame
46
may have backhoe attaching portions
49
. Further, a pair of right and left brace members as shown in the first modified embodiment may be provided to extend from the gate-shaped frame
46
to the right and left elongate frame members
4
or right and left reinforcing frames
67
.
<Sixth Modified Embodiment>
In the sixth modified embodiment, as shown in
FIG. 9
, a reinforcing frame unit
43
includes a pair of right and left band-like elongate reinforcing frames
71
extending along outer faces of the right and left elongate frame members
4
, respectively. Each reinforcing frame
71
has a rear end region thereof defining a reinforcing frame connecting portion
48
connected to a reinforcing frame connecting portion
47
formed in the rear end region of the corresponding elongate frame member
4
horizontally spaced by the distance L1 from the connecting bracket
10
acting as the rear axle connector, a longitudinally intermediate portion connected to another connector
70
formed on one of the right and left rear axle cases
16
and laterally outwardly spaced by a distance L4 from the connector
20
to which the connecting bracket
10
is connected, and a forward end region connected to one of the front loader post support members
25
projecting from a longitudinally intermediate portion of the corresponding elongate frame member
4
.
With this construction, the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
are distributed to the right and left elongate frame members
4
and right and left reinforcing frames
71
. A frame portion
72
between the connecting bracket
10
and the reinforcing frame connecting portion
47
of each of the right and left elongate frame members
4
, and a frame portion
73
between the connector
70
formed on one of the rear axle cases
16
and the rear reinforcing frame connecting portion
48
of each of the right and left reinforcing frames
71
, act as flexible structure portions relatively freely and elastically deformable. The elastic deformation of the frame portions
72
between the connecting brackets
10
and the reinforcing frame connecting portions
47
of the right and left elongate frame members
4
absorbs components distributed to the right and left elongate frame members
4
of the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overload components to the rear axle unit
9
. The elastic deformation of the frame portions
73
between the connectors
70
formed on the rear axle cases
16
and the rear reinforcing frame connecting portions
48
in the rear end regions of the right and left reinforcing frames
71
, absorbs load components distributed to the right and left reinforcing frames
71
, thereby suppressing transmission thereof to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components.
In this construction, the right and left reinforcing frames
71
have backhoe attaching portions
49
at the rear ends thereof, respectively.
Though not shown, the cross frame
59
extending transversely of the vehicle body, shown in the third modified embodiment, may be connected to the reinforcing frame connecting portions
47
in the rear end regions of the right and left elongate frame members
4
, along with the reinforcing frame connecting portions
48
in the rear end regions of the right and left reinforcing frames
71
. The gate-shaped frame
46
in the foregoing embodiments may be provided instead of the cross frame
59
. This gate-shaped frame
46
may have backhoe attaching portions
49
. Further, a pair of right and left brace members as shown in the first modified embodiment may be provided to extend from the gate-shaped frame
46
to the right and left elongate frame members
4
or right and left reinforcing frames
71
.
Further, though not shown, short right and left reinforcing frames
71
may be employed, each of such frames
71
extending the reinforcing frame connecting portion
47
of each elongated frame member
4
to the connector
70
on one of the rear axle cases
16
.
<Seventh Modified Embodiment>
In the seventh modified embodiment, as shown in
FIG. 10
, a reinforcing frame unit
43
includes a pair of right and left band-like elongate reinforcing frames
74
extending along outer faces of the right and left elongate frame members
4
, respectively. Each reinforcing frame
74
has a forward end region connected to one of the front loader post support members
25
projecting from a longitudinally intermediate portion of the corresponding elongate frame member
4
, and a longitudinally intermediate portion connected to another connector
70
formed on one of the right and left rear axle cases
16
and laterally outwardly spaced by a distance L4 from the connector
20
to which the connecting bracket
10
is connected. The reinforcing frame unit
43
includes also a gate-shaped frame
75
interconnecting rear end regions of the right and left reinforcing frames
74
horizontally spaced by the distance L1 from the connectors on the rear axles cases
16
. The gate-shaped frame
75
has backhoe attaching portions
48
.
With this construction, the horizontal frame portion
76
extending over the horizontal distance L1 between the gate-shaped frame
75
and the connecting bracket
10
of each of the right and left reinforcing frames
74
acts as a flexible structure portion relatively freely and elastically deformable when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
. The elastic deformation of the frame portions
76
absorbs the overloads occurring when the tractor runs with the backhoe
3
attached or during an excavating operation with the backhoe
3
, thereby suppressing transmission of the overload components to the rear axle unit
9
. As a result, an enlargement and increased manufacturing cost of the rear axle unit
9
may be effectively avoided. Such drawbacks could be encountered where the rear axle unit
9
and the like must be reinforced substantially if such overloads were transmitted as they are to these components.
In this construction, as shown in two-dot chain lines in
FIG. 10
, the reinforcing frame unit
43
may include a pair of right and left cross frames
77
extending transversely and each interconnecting rear end regions of one of the right and left elongate frame members
4
and the corresponding reinforcing frame
74
. Though not shown, the cross frame
59
extending transversely of the vehicle body, shown in the third modified embodiment, may be provided to interconnect the rear end regions of the right and left elongate frame members
4
. Further, a pair of right and left brace members as shown in the first modified embodiment may be provided to extend from the gate-shaped frame
75
to the right and left elongate frame members
4
or right and left reinforcing frames
74
.
Claims
- 1. A tractor having a vehicle frame with a pair of right and left elongate frame members spaced from each other and extending in a longitudinal direction and interconnected in intermediate positions by a cross member, an engine supported by the elongate frame members in a front region of the vehicle frame, a rear axle unit connected to rear axle connecting members fixed to the elongate frame members in a rear region of the vehicle frame, and a drive transmitting mechanism for transmitting drive from the engine to the rear axle unit, a backhoe attachable to a rear of the tractor as supported by the vehicle frame, said tractor comprising:a reinforcing frame unit for reinforcing said vehicle frame; and reinforcing frame connecting members for connecting said reinforcing frame unit to said vehicle frame; wherein: said reinforcing frame unit is in form of a gate-shaped frame including a pair of right and left side members and a horizontal member interconnecting upper positions of said side members; and said reinforcing frame connecting members are formed in lower end regions of said side members and rear end regions of said elongate frame members in positions spaced horizontally from rear axle connecting members; and said side members further forming backhoe attaching members.
- 2. A tractor as defined in claim 1, further comprising brace members each connected at one end thereof to one of said side members, and at the other end to a position of one of said elongate frame members vertically spaced from one of said rear axle connecting members.
- 3. A tractor as defined in claim 2, wherein connections between respective said brace members and said elongate frame members are provided in positions spaced vertically from said rear axle connecting members.
- 4. A tractor as defined in claim 1, wherein said reinforcing frame connecting members are formed in lower end regions of said side members and in rear end regions of said elongate frame members in positions spaced horizontally and vertically from said rear axle connecting members.
- 5. A tractor having a vehicle frame with a pair of right and left elongate frame members spaced from each other and extending in a longitudinal direction and interconnected in intermediate positions by a cross member, an engine supported by the elongate frame members in a front region of the vehicle frame, a rear axle unit connected to rear axle connecting members fixed to the elongate frame members in a rear region of the vehicle frame, and a drive transmitting mechanism for transmitting drive from the engine to the rear axle unit, one of a front loader and a backhoe attachable to a front and a rear of the tractor as supported by the vehicle frame, said tractor comprising:a reinforcing frame unit for reinforcing said vehicle frame; and reinforcing frame connecting members for connecting said reinforcing frame unit to said vehicle frame; wherein: said reinforcing frame unit includes a pair of right and left elongated reinforcing frames extending along outer faces of said elongate frame members, respectively, and a gate-shaped frame interconnecting said reinforcing frames, said gate-shaped frame forming a backhoe attaching member; said elongate frame members have front loader post support members projecting laterally outwardly of longitudinally intermediate portions thereof; said reinforcing frame connecting members are formed in a forward end region of each of said reinforcing frames and each of said front loader post support members; said reinforcing frames are connected to said rear axle unit in longitudinally intermediate positions thereof spaced laterally from said rear axle connecting members; and said gate-shaped frame interconnects rear end regions of said reinforcing frames in positions spaced horizontally from connectors with said rear axle connecting members.
Priority Claims (1)
Number |
Date |
Country |
Kind |
2001-363944 |
Nov 2001 |
JP |
|
US Referenced Citations (7)