Claims
- 1. A tractor assembly, comprising a tractor for moving within a borehole, said tractor comprising:an elongated body having first and second pistons longitudinally fixed with respect to said body, each of said pistons having aft and forward surfaces configured to receive longitudinal thrust forces from fluid from a pressurized source, said body having a flow passage; a first gripper assembly longitudinally movably engaged with said body, said first gripper assembly having an actuated position in which said first gripper assembly limits relative movement between said first gripper assembly and an inner surface of said borehole, and a retracted position in which said first gripper assembly permits substantially free relative movement between said first gripper assembly and said inner surface, said first gripper assembly configured to be actuated by fluid; a second gripper assembly longitudinally movably engaged with said body, said second gripper assembly having an actuated position in which said second gripper assembly limits relative movement between said second gripper assembly and an inner surface of said borehole, and a retracted position in which said second gripper assembly permits substantially free relative movement between said second gripper assembly and said inner surface, said second gripper assembly configured to be actuated by fluid; an elongated first propulsion cylinder longitudinally slidably engaged with respect to said body, said first cylinder having an elongated internal propulsion chamber enclosing said first piston, said first piston slidable within and fluidly dividing said internal propulsion chamber of said first cylinder into an aft chamber and a forward chamber; an elongated second propulsion cylinder longitudinally slidably engaged with respect to said body, said second cylinder having an elongated internal propulsion chamber enclosing said second piston, said second piston slidable within and fluidly dividing said internal propulsion chamber of said second cylinder into an aft chamber and a forward chamber; and a valve system comprising: a propulsion control valve having a first position in which said propulsion control valve provides a flow path for the flow of fluid to said aft chamber of said first cylinder, said propulsion control valve having a second position in which said propulsion control valve provides a flow path for the flow of fluid to said aft chamber of said second cylinder, said propulsion control valve being movable from said first position to said second position in response to fluid pressure increases; and a gripper control valve having a first position in which said gripper control valve provides a flow path for the flow of fluid to said first gripper assembly, said gripper control valve having a second position in which said gripper control valve provides a flow path for the flow of fluid to said second gripper assembly; wherein in said first position said gripper control valve prevents fluid pressure from moving said propulsion control valve from said first position to said second position, and in said second position said gripper control valve permits fluid pressure to move said propulsion valve from said first position to said second position.
- 2. The tractor assembly of claim 1, wherein said tractor further comprises:a first cycle valve having a first position and a second position, wherein when said first cycle valve is in said second position said first cycle valve provides a flow path for the flow of fluid to said gripper control valve, said first cycle valve in fluid communication with said aft chamber of said second cylinder and with said forward chamber of said first cylinder.
- 3. The tractor assembly of claim 1, wherein said tractor further comprises:a second cycle valve having a first position and a second position, wherein when said second cycle valve is in said second position said second cycle valve provides a flow path to said gripper control valve, said second cycle valve in fluid communication with said aft chamber of said first cylinder and with said forward chamber of said second cylinder.
- 4. The tractor assembly of claim 1, further comprising a perforation gun assembly.
- 5. The tractor assembly of claim 1, further comprising an acidizing assembly.
- 6. The tractor assembly of claim 1, further comprising a sandwashing assembly.
- 7. The tractor assembly of claim 1, wherein said tractor is connected to a bore plug setting assembly.
- 8. The tractor assembly of claim 1, wherein said tractor further comprises an E-line.
- 9. The tractor assembly of claim 1, further comprising a logging assembly.
- 10. The tractor assembly of claim 1, further comprising a bore casing locator.
- 11. The tractor assembly of claim 1, further comprising a measurement while drilling assembly.
- 12. The tractor assembly of claim 1, further comprising a fishing tool.
- 13. The tractor assembly of claim 1, wherein said tractor can pull at least 500 pounds but can exert no more than 100 psi on a surface surrounding the tractor.
- 14. The tractor assembly of claim 1, wherein said tractor can pull at least 3000 pounds but can exert no more than 3000 psi on a surface surrounding the tractor.
- 15. The tractor assembly of claim 1, wherein said propulsion control valve is moveable from said first position to said second position in response to fluid pressure increases in a flow path for the flow of fluid to the second gripper assembly as the second gripper assembly reaches the actuated position.
- 16. The tractor of claim 1, wherein in said second position said gripper control valve prevents fluid pressure from moving said propulsion control valve from said second position to said first position, and in said first position said gripper control valve permits fluid pressure to move said propulsion valve from said second position to said first position, said propulsion control valve moving from said second position to said first position in response to fluid pressure increases in a flow path for the flow of fluid to the first gripper assembly as the first gripper assembly reaches the actuated position.
- 17. A tractor assembly, comprising a tractor for moving within a borehole, said tractor comprising:an elongated body having first and second pistons longitudinally fixed with respect to said body, each of said pistons having aft and forward surfaces configured to receive longitudinal thrust forces from fluid from a pressurized source, said body having a flow passage; a first gripper assembly longitudinally movably engaged with said body, said first gripper assembly having an actuated position in which said first gripper assembly limits relative movement between said first gripper assembly and an inner surface of said borehole, and a retracted position in which said first gripper assembly permits substantially free relative movement between said first gripper assembly and said inner surface, said first gripper assembly configured to be actuated by fluid; a second gripper assembly longitudinally movably engaged with said body, said second gripper assembly having an actuated position in which said second gripper assembly limits relative movement between said second gripper assembly and an inner surface of said borehole, and a retracted position in which said second gripper assembly permits substantially free relative movement between said second gripper assembly and said inner surface, said second gripper assembly configured to be actuated by fluid; an elongated first propulsion cylinder longitudinally slidably engaged with respect to said body, said first cylinder having an elongated internal propulsion chamber enclosing said first piston, said first piston slidable within and fluidly dividing said internal propulsion chamber of said first cylinder into an aft chamber and a forward chamber; an elongated second propulsion cylinder longitudinally slidably engaged with respect to said body, said second cylinder having an elongated internal propulsion chamber enclosing said second piston, said second piston slidable within and fluidly dividing said internal propulsion chamber of said second cylinder into an aft chamber and a forward chamber; and a valve system comprising: a propulsion valve having a first position in which said propulsion valve provides a flow path for the flow of fluid to said aft chamber of said first cylinder, said propulsion valve having a second position in which said propulsion valve provides a flow path for the flow of fluid to said aft chamber of said second cylinder; a control valve having a first position in which said control valve provides a flow path for the flow of fluid to urge said propulsion valve toward said first position, said control valve having a second position in which said control valve provides a flow path for the flow of fluid to urge said propulsion valve toward said second position; wherein when said control valve is in said first position and said propulsion valve is in said first position, said control valve must move from said first position to said second position before said propulsion valve can move from said first position to said second position.
- 18. The tractor assembly of claim 17, wherein said control valve further comprises a first surface and a second surface which mate with one another to prevent movement of said control valve between said first position and said second position beneath a given pressure threshold greater than an anticipated back pressure in said valve system.
- 19. The tractor assembly of claim 18, wherein said propulsion valve further comprises a first surface and a second surface which mate with one another to prevent movement of said propulsion valve between said first position and said second position beneath a given pressure threshold greater than an anticipated first gripper assembly and second gripper assembly inflation pressure.
- 20. The tractor assembly of claim 19, wherein said tractor further comprises:a first cycle valve having a first position and a second position, wherein when said first cycle valve is in said second position said first cycle valve provides a flow path for the flow of fluid from to said control valve, said first cycle valve in fluid communication with said aft chamber of said second cylinder and with said forward chamber of said first cylinder.
- 21. The tractor assembly of claim 20, wherein said tractor further comprises:a second cycle valve having a first position and a second position, wherein when said second cycle valve is in said second position said second cycle valve provides a flow path to said control valve, said second cycle valve in fluid communication with said aft chamber of said first cylinder and with said forward chamber of said second cylinder.
- 22. The tractor assembly of claim 17, wherein said tractor further comprises:a first cycle valve having a first position and a second position, wherein when said first cycle valve is in said second position said first cycle valve provides a flow path for the flow of fluid from to said control valve, said first cycle valve in fluid communication with said aft chamber of said second cylinder and with said forward chamber of said first cylinder.
- 23. The tractor assembly of claim 22, wherein said tractor further comprises:a second cycle valve having a first position and a second position, wherein when said second cycle valve is in said second position said second cycle valve provides a flow path to said control valve, said second cycle valve in fluid communication with said aft chamber of said first cylinder and with said forward chamber of said second cylinder.
- 24. The tractor assembly of claim 17, wherein said tractor further comprises:a first gripper fluid passage; a second gripper fluid passage; a third gripper fluid passage communicating with said first gripper assembly; a fourth gripper fluid passage communicating with said second gripper assembly; and a reverser valve having a first position wherein said first gripper fluid passage communicates with said third gripper fluid passage and a second position wherein said first gripper fluid passage is in fluid communication with said fourth gripper fluid passage.
- 25. The tractor assembly of claim 24, wherein said reverser valve is separated from said passage by a membrane breakable upon a burst pressure.
- 26. The tractor assembly of claim 24, wherein said reverser valve becomes fixed in one of said first position and said second position after said reverser valve moves between said positions.
- 27. The tractor assembly of claim 24, further wherein said reverser valve is hydraulically actuated.
- 28. The tractor assembly of claim 24, further wherein said reverser valve is actuated by an electrical motor.
- 29. The tractor assembly of claim 17, further comprising a perforation gun assembly.
- 30. The tractor assembly of claim 17, further comprising an acidizing assembly.
- 31. The tractor assembly of claim 17, further comprising a sandwashing assembly.
- 32. The tractor assembly of claim 17, wherein said tractor is connected to a bore plug setting assembly.
- 33. The tractor assembly of claim 17, wherein said tractor further comprises an E-line.
- 34. The tractor assembly of claim 17, further comprising a logging assembly.
- 35. The tractor assembly of claim 17, further comprising a bore casing locator.
- 36. The tractor assembly of claim 17, further comprising a measurement while drilling assembly.
- 37. The tractor assembly of claim 17, further comprising a fishing tool.
- 38. The tractor assembly of claim 17, wherein said tractor can pull at least 500 pounds but can exert no more than 100 psi on a surface surrounding the tractor.
- 39. The tractor assembly of claim 17, wherein said tractor can pull at least 3000 pounds but can exert no more than 3000 psi on a surface surrounding the tractor.
- 40. A tractor assembly, comprising a tractor for moving within a borehole, said tractor configured to be powered by pressurized operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by the operating fluid; and a valve system housed within said body, said valve system configured to receive fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including an entry control valve controlling the flow of operating fluid from said internal passage of said body into said valve system, said entry control valve comprising a valve passage and having at least two secondary passages, said valve passage configured to conduct the operating fluid between said secondary passages; a body movably received within said valve passage, said entry control valve having first and third position ranges in which said entry control valve provides a flow path for operating fluid within said valve system to flow through said entry control valve to the exterior of said tractor and in which said body prevents the flow of operating fluid from said internal passage of said body into said valve system, said entry control valve having a second position range in which said entry control valve provides a flow path for operating fluid from said internal passage of said body to flow into said valve system and in which said entry control valve prevents the flow of operating fluid within said valve system to the exterior of said tractor; wherein said entry valve is in said first position range when the fluid pressure in said internal passage of said body is below a lower shut-off threshold, said entry valve is in said second position range when the fluid pressure in said internal passage is above said lower shut-off threshold and below an upper shut-off threshold, and said entry valve is in said third position range when the fluid pressure in said internal passage is above said upper shut-off threshold.
- 41. The tractor assembly of claim 40, wherein said entry control valve is hydraulically actuated.
- 42. The tractor assembly of claim 41, wherein said entry control valve is moves between said first position range, said second position range and said third position range in response to hydraulic force.
- 43. The tractor assembly of claim 41, wherein said entry control valve is moves between at least one of said first position range, said second position range and said third position range in response to electrical actuation.
- 44. The tractor assembly of claim 41, wherein said entry control valve is electrically actuated.
- 45. The tractor assembly of claim 40, further comprising a perforation gun assembly.
- 46. The tractor assembly of claim 40, further comprising an acidizing assembly.
- 47. The tractor assembly of claim 40, further comprising a sandwashing assembly.
- 48. The tractor assembly of claim 40, wherein said tractor is connected to a bore plug setting assembly.
- 49. The tractor assembly of claim 40, wherein said tractor further comprises an E-line.
- 50. The tractor assembly of claim 40, further comprising a logging assembly.
- 51. The tractor assembly of claim 40, further comprising a bore casing locator.
- 52. The tractor assembly of claim 40, further comprising a measurement while drilling assembly.
- 53. The tractor assembly of claim 40, further comprising a fishing tool.
- 54. The tractor assembly of claim 40, wherein said tractor can pull at least 500 pounds but can exert no more than 100 psi on a surface surrounding the tractor.
- 55. The tractor assembly of claim 40, wherein said tractor can pull at least 3000 pounds but can exert no more than 3000 psi on a surface surrounding the tractor.
- 56. A tractor assembly, comprising a tractor for moving within a borehole, said tractor configured to be powered by pressurized operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by the operating fluid; and a valve system housed within said body, said valve system configured to receive fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including an entry control valve controlling the flow of operating fluid from said internal passage of said body into said valve system, said entry control valve comprising: a housing defining a valve passage and having at least two side passages, said valve passage configured to conduct the operating fluid between said side passages; a body movably received within said valve passage, said body having a first surface configured to be exposed to operating fluid from said internal passage of said body, said first surface configured to receive a longitudinal pressure force in a first direction, said body having first and third position ranges in which said body provides a flow path for operating fluid within said valve system to flow through said entry control valve to the exterior of said tractor and in which said body prevents the flow of operating fluid from said internal passage of said body into said valve system, said body having a second position range between said first and third position ranges in which said body provides a flow path for operating fluid from said internal passage of said body to flow into said valve system and in which said body prevents the flow of operating fluid within said valve system to the exterior of said tractor; and at least one spring biasing said body in a direction opposite to that of said pressure force received by said first surface of said body, such that the magnitude of the fluid pressure in said internal passage determines the deflection of said at least one spring and thus the position of said body; wherein said at least one spring is configured so that said body occupies a position within said first position range when the fluid pressure in said internal passage of said body is below a lower shut-off threshold, so that said body occupies a position within said second position range when the fluid pressure in said internal passage is above said lower shut-off threshold and below an upper shut-off threshold, and so that said body occupies a position within said third position range when the fluid pressure in said internal passage is above said upper shut-off threshold.
- 57. The tractor assembly of claim 56, wherein said conduit comprises coiled tubing.
- 58. The tractor assembly of claim 56, wherein said conduit comprises a rotary drill string.
- 59. The tractor assembly of claim 56, further comprising a perforation gun assembly.
- 60. The tractor assembly of claim 56, further comprising an acidizing assembly.
- 61. The tractor assembly of claim 56, further comprising a sandwashing assembly.
- 62. The tractor assembly of claim 56, wherein said tractor is connected to a bore plug setting assembly.
- 63. The tractor assembly of claim 56, wherein said tractor further comprises an E-line.
- 64. The tractor assembly of claim 56, further comprising a logging assembly.
- 65. The tractor assembly of claim 56, further comprising a bore casing locator.
- 66. The tractor assembly of claim 56, further comprising a measurement while drilling assembly.
- 67. The tractor assembly of claim 56, further comprising a fishing tool.
- 68. The tractor assembly of claim 56, wherein said tractor can pull at least 500 pounds but can exert no more than 100 psi on a surface surrounding the tractor.
- 69. The tractor assembly of claim 56, wherein said tractor can pull at least 3000 pounds but can exert no more than 3000 psi on a surface surrounding the tractor.
- 70. A tractor assembly, comprising a tractor for moving within a borehole, said tractor comprising:an elongated body having first and second pistons longitudinally fixed with respect to said body, each of said pistons having aft and forward surfaces configured to receive longitudinal thrust forces from fluid from a pressurized source, said body having a flow passage; a first gripper assembly longitudinally movably engaged with said body, said first gripper assembly having an actuated position in which said first gripper assembly limits relative movement between said first gripper assembly and an inner surface of said borehole, and a retracted position in which said first gripper assembly permits substantially free relative movement between said first gripper assembly and said inner surface, said first gripper assembly configured to be actuated by fluid; an elongated first propulsion cylinder longitudinally slidably engaged with respect to said body, said first cylinder having an elongated internal propulsion chamber enclosing said first piston, said first piston slidable within and fluidly dividing said internal propulsion chamber of said first cylinder into an aft chamber and a forward chamber; and a valve system comprising: a propulsion valve having a first position in which said propulsion valve provides a flow path for the flow of fluid to said aft chamber of said first cylinder, said propulsion valve having a second position in which said propulsion valve does not provide a flow path for the flow of fluid to said aft chamber of said first cylinder; and a control valve having a first position in which said control valve provides a flow path for the flow of fluid to urge said propulsion valve toward said first position, said control valve having a second position in which said control valve provides a flow path for the flow of fluid to urge said propulsion valve toward said second position; wherein when said control valve is in said first position and said propulsion valve is in said first position, said control valve must move from said first position to said second position before said propulsion valve can move from said first position to said second position.
- 71. The tractor assembly of claim 70, wherein said control valve further comprises a first surface and a second surface which mate with one another to prevent movement of said control valve between said first position and said second position beneath a given pressure threshold greater than an anticipated back pressure in said valve system.
- 72. The tractor assembly of claim 71, wherein said propulsion valve further comprises a first surface and a second surface which mate with one another to prevent movement of said propulsion valve between said first position and said second position beneath a given pressure threshold greater than an anticipated first gripper assembly and second gripper assembly inflation pressure.
- 73. The tractor assembly of claim 70, further comprising a perforation gun assembly.
- 74. The tractor assembly of claim 70, further comprising an acidizing assembly.
- 75. The tractor assembly of claim 70, further comprising a sandwashing assembly.
- 76. The tractor assembly of claim 70, wherein said tractor is connected to a bore plug setting assembly.
- 77. The tractor assembly of claim 70, wherein said tractor further comprises an E-line.
- 78. The tractor assembly of claim 70, further comprising a logging assembly.
- 79. The tractor assembly of claim 70, further comprising a bore casing locator.
- 80. The tractor assembly of claim 70, further comprising a measurement while drilling assembly.
- 81. The tractor assembly of claim 70, further comprising a fishing tool.
- 82. A The tractor assembly of claim 70, wherein said tractor can pull at least 500 pounds but can exert no more than 100 psi on a surface surrounding the tractor.
- 83. The tractor assembly of claim 70, wherein said tractor can pull at least 3000 pounds but can exert no more than 3000 psi on a surface surrounding the tractor.
- 84. A method of moving a tractor assembly within a borehole, said tractor assembly including a tractor having:an elongated body having first and second pistons longitudinally fixed with respect to said body, each of said pistons having aft and forward surfaces configured to receive longitudinal thrust forces from fluid from a pressurized source, said body having a flow passage; a first gripper assembly longitudinally movably engaged with said body, said first gripper assembly having an actuated position in which said first gripper assembly limits relative movement between said first gripper assembly and an inner surface of said borehole, and a retracted position in which said first gripper assembly permits substantially free relative movement between said first gripper assembly and said inner surface, said first gripper assembly configured to be actuated by fluid; a second gripper assembly longitudinally movably engaged with said body, said second gripper assembly having an actuated position in which said second gripper assembly limits relative movement between said second gripper assembly and an inner surface of said borehole, and a retracted position in which said second gripper assembly permits substantially free relative movement between said second gripper assembly and said inner surface, said second gripper assembly configured to be actuated by fluid; an elongated first propulsion cylinder longitudinally slidably engaged with respect to said body, said first cylinder having an elongated internal propulsion chamber enclosing said first piston, said first piston slidable within and fluidly dividing said internal propulsion chamber of said first cylinder into an aft chamber and a forward chamber; an elongated second propulsion cylinder longitudinally slidably engaged with respect to said body, said second cylinder having an elongated internal propulsion chamber enclosing said second piston, said second piston slidable within and fluidly dividing said internal propulsion chamber of said second cylinder into an aft chamber and a forward chamber; and a valve system comprising: a propulsion control valve having a first position in which said propulsion control valve provides a flow path for the flow of fluid to said aft chamber of said first cylinder, said propulsion control valve having a second position in which said propulsion control valve provides a flow path for the flow of fluid to said aft chamber of said second cylinder; and a gripper control valve having a first position in which said gripper control valve provides a flow path for the flow of fluid to the first gripper assembly, said gripper control valve having a second position in which said gripper control valve provides a flow path for the flow of fluid to the second gripper assembly, said valve system being configured such that said gripper control valve is used to pilot said propulsion control valve; wherein said method comprises: providing pressurized fluid from a source; directing said pressurized fluid toward said gripper control valve; directing said pressurized fluid toward said propulsion valve; and when said gripper control valve is in said first position and said propulsion control valve is in said first position, preventing said propulsion control valve from moving from said first position to said second position until said gripper control valve moves from said first position to said second position.
- 85. A method of moving a tractor assembly within a borehole, said tractor assembly including a tractor having:an elongated body having first and second pistons longitudinally fixed with respect to said body, each of said pistons having aft and forward surfaces configured to receive longitudinal thrust forces from fluid from a pressurized source, said body having a flow passage; a first gripper assembly longitudinally movably engaged with said body, said first gripper assembly having an actuated position in which said first gripper assembly limits relative movement between said first gripper assembly and an inner surface of said borehole, and a retracted position in which said first gripper assembly permits substantially free relative movement between said first gripper assembly and said inner surface, said first gripper assembly configured to be actuated by fluid; a second gripper assembly longitudinally movably engaged with said body, said second gripper assembly having an actuated position in which said second gripper assembly limits relative movement between said second gripper assembly and an inner surface of said borehole, and a retracted position in which said second gripper assembly permits substantially free relative movement between said second gripper assembly and said inner surface, said second gripper assembly configured to be actuated by fluid; an elongated first propulsion cylinder longitudinally slidably engaged with respect to said body, said first cylinder having an elongated internal propulsion chamber enclosing said first piston, said first piston slidable within and fluidly dividing said internal propulsion chamber of said first cylinder into an aft chamber and a forward chamber; an elongated second propulsion cylinder longitudinally slidably engaged with respect to said body, said second cylinder having an elongated internal propulsion chamber enclosing said second piston, said second piston slidable within and fluidly dividing said internal propulsion chamber of said second cylinder into an aft chamber and a forward chamber; and a valve system comprising: a propulsion valve having a first position in which said propulsion valve provides a flow path for the flow of fluid to said aft chamber of said first cylinder, said propulsion valve having a second position in which said propulsion valve provides a flow path for the flow of fluid to said aft chamber of said second cylinder; and a control valve having a first position in which said control valve provides a flow path for the flow of fluid to urge said propulsion valve toward said first position, said control valve having a second position in which said control valve provides a flow path for the flow of fluid to urge said propulsion valve toward said second position; wherein said method comprises: providing pressurized fluid from a source; directing said pressurized fluid toward said gripper control valve; directing said pressurized fluid toward said propulsion valve; and when said control valve is in said first position and said propulsion valve is in said first position, preventing said propulsion valve from moving from said first position to said second position before said control valve moves from said first position to said second position.
- 86. A method of moving a tractor assembly within a borehole, said tractor assembly including a tractor having:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by the operating fluid; and a valve system housed within said body, said valve system including an entry control valve; wherein said method comprises: receiving fluid from an internal passage of said body; controlling the flow of operating fluid from said internal passage of said body into said valve system with said entry control valve; preventing the flow of operating fluid from said internal passage of said body into said valve system with said entry control valve when the fluid pressure in said internal passage of said body is below a lower shut-off threshold and when the fluid pressure in said internal passage is above an upper shut-off threshold; and permitting the flow of operating fluid from said internal passage of said body into said valve system when the fluid pressure in said internal passage is above said lower shut-off threshold and below said upper shut-off threshold.
- 87. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a drill string, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the drill string; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by operating fluid from said internal passage of said body; and a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including a spool valve comprising: a spool housing defining an elongated spooi passage and having at least two side passages, said spool passage configured to conduct the operating fluid between said side passages; and an elongated spool longitudinally movably received within said spool passage, said spool having a landing having a first end and a second end, said landing fluidly sealing a portion of said spool passage on the first end of said landing from a portion of said spool passage on the second end of said landing, said landing having at least one circumferential groove in an outer radial surface of said landing.
- 88. The tractor of claim 87, wherein said circumferential groove has a depth between 0.010 and 0.030 inches.
- 89. The tractor of claim 87, wherein said circumferential groove has a width between 0.010 and 0.020 inches.
- 90. The tractor of claim 87, wherein said landing has a plurality of circumferential grooves in said outer radial surface of said landing.
- 91. The tractor of claim 87, wherein said circumferential groove is substantially perpendicular to said spool passage.
- 92. The tractor of claim 87, said spool having a plurality of landings having first ends and second ends, each of said landings fluidly sealing a portion of said spool passage on the first end of said landing from a portion of said spool passage on the second end of said landing, each of said landings having at least one circumferential groove in an outer radial surface of said landing.
- 93. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a drill string, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive operating fluid from the drill string; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by operating fluid from said internal passage of said body; and a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including a spool valve comprising: a spool housing defining an elongated spool passage and having two or more side passages, said spool passage configured to conduct operating fluid between said side passages, said spool housing having a groove in an inner surface of said spool passage; an elongated spool longitudinally movably received within said spool passage, said spool having at least one landing with a tapered outer radial surface; and a resilient stop defining an inner diameter and positioned at least partially within said groove of said spool passage, said stop having a relaxed position in which said stop has a first inner diameter and in which at least an inner portion of said stop is positioned outside of said groove, said stop having a deflected position in which said stop has a second inner diameter larger than said first inner diameter in said relaxed position, said stop in said relaxed position configured to bear against said tapered outer radial surface of said landing, wherein said landing under a longitudinal movement force on said spool is prevented from moving across said stop until said movement force reaches a threshold at which said tapered surface of said landing causes said stop to move to said deflected position and permit said landing to move across said stop.
- 94. The tractor of claim 93, wherein said resilient stop comprises a plurality of circumferentially separated portions extending radially inward from the inner surface of said spool passage.
- 95. The tractor of claim 93, wherein said resilient stop comprises an expandable ring-shaped spring.
- 96. The tractor of claim 95, wherein in said deflected position, substantially all of said spring is positioned within said groove.
- 97. The tractor of claim 93, wherein said groove is circular and transverse to said spool passage.
- 98. A tractor for moving within a borehole, said tractor configured to be powered by pressurized operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having at least one thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive operating fluid from the conduit; at least one gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by receiving pressurized operating fluid from said internal passage of said body and to be retracted when operating fluid within the gripper assembly is permitted to flow to the exterior of the tractor; and a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to and from said at least one gripper assembly and to and from said at least one thrust-receiving portion, said valve system including a spool valve comprising: a spool housing defining an elongated spool passage and having at least two side passages, said spool passage configured to conduct operating fluid between said side passages; an elongated spool having first and second opposing end surfaces configured to receive longitudinal fluid pressure forces, said spool having a landing having two ends and tapered peripheral surfaces on each of said ends; and a resilient element secured at a longitudinal position within said spool passage, said resilient element having a relaxed position in which said resilient element is configured to bear against either one of said tapered peripheral surfaces of said landing to prevent said landing from moving within said spool passage across said resilient element, said resilient element having a deflected position in which said resilient element permits said landing to move within said spool passage across said resilient element; wherein a net fluid pressure force is defined as the difference between the longitudinal fluid pressure forces acting on said first and second end surfaces of said spool, said resilient element and said landing configured such that when said net pressure force pushes said landing against said resilient element and when said net pressure force is below a deflection threshold, said resilient element remains in said relaxed position, and when said net pressure force is above said deflection threshold one of said tapered surfaces of said landing causes said resilient element to move to said deflected position to permit said landing to move longitudinally through said spool passage across said resilient element.
- 99. The tractor of claim 98, wherein said spool housing has a circular groove in an inner surface of said spool passage, said resilient element comprising an expandable generally ring-shaped spring surrounding said spool and positioned at least partially within said circular groove of said spool passage, said spring in said relaxed position having an inner diameter smaller than an outer diameter of said landing so that said landing cannot pass through said spring, said spring in said deflected position having an inner diameter larger than said outer diameter of said landing so that said landing can pass through said spring.
- 100. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a drill string, said tractor comprising:an elongated body having at least one thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal flow passage configured to receive operating fluid from the drill string; first and second gripper assemblies each longitudinally movably engaged with said body, each of said gripper assemblies having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, each of said gripper assemblies configured to be actuated by receiving pressurized operating fluid from said internal passage of said body; and a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to and from said gripper assemblies and to and from said at least one thrust-receiving portion, said valve system including a spool valve comprising: a spool housing defining an elongated spool passage and having at least two side passages, said spool passage configured to conduct operating fluid between said side passages; an elongated spool having first and second opposing end surfaces and being longitudinally movably received within said spool passage, the position of said spool being controlled by longitudinal fluid pressure forces acting on said first and second end surfaces, said spool having a first longitudinal position in which said spool valve directs operating fluid into said first gripper assembly to move said first gripper assembly to its actuated position and in which said spool valve provides a flow path to permit operating fluid to flow from said second gripper assembly to the exterior of said tractor so that said second gripper assembly moves to its retracted position, said spool having a second longitudinal position in which said spool valve directs operating fluid into said second gripper assembly to move said second gripper assembly to its actuated position and in which said spool valve provides a flow path to permit operating fluid to flow from said first gripper assembly to the exterior of said tractor so that said first gripper assembly moves to its retracted position, said spool having a landing having a first tapered peripheral surface on a first end of said landing and a second tapered peripheral surface on a second end of said landing; and a resilient element secured at a longitudinal position within said spool passage, said resilient element having a relaxed position in which said resilient element is configured to bear against either one of said tapered peripheral surfaces of said landing to prevent said landing from moving within said spool passage across said resilient element, said resilient element having a deflected position in which said resilient element permits said landing to move within said spool passage across said resilient element; wherein when said spool is in said first longitudinal position said resilient element is in said relaxed position on said first end of said landing, and when said spool is in said second longitudinal position said resilient element is in said relaxed position on said second end of said landing; wherein said resilient element in said relaxed position prevents said spool from moving between said first and second longitudinal positions when a net longitudinal fluid pressure force acting on said first and second end surfaces of said spool is below a threshold, said net longitudinal fluid pressure force forcing one of said tapered surfaces of said landing into said resilient element; wherein when said net longitudinal fluid pressure force reaches said threshold, one of said tapered surfaces of said landing causes said resilient element to move to said deflected position and permit said landing to move longitudinally through said passage across said resilient element so that said spool moves between the first and second longitudinal positions thereof.
- 101. The tractor of claim 100, wherein said spool housing has a circular groove in an inner surface of said spool passage, said resilient element comprising an expandable generally ring-shaped spring surrounding said spool and positioned at least partially within said circular groove of said spool passage, said spring in said relaxed position having an inner diameter smaller than an outer diameter of said landing so that said landing cannot pass through said spring, said spring in said deflected position having an inner diameter larger than said outer diameter of said landing so that said landing can pass through said spring.
- 102. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a drill string, said tractor comprising:an elongated body having first and second pistons longitudinally fixed with respect to said body, each of said pistons configured to receive hydraulic thrust to move said body and having an aft side and a forward side, said body having an internal passage configured to receive operating fluid from the drill string; a first piston cylinder longitudinally movably engaged with said body and enclosing said first piston; a second piston cylinder longitudinally movably engaged with said body and enclosing said second piston; a first gripper assembly longitudinally movably engaged with said body and longitudinally fixed with respect to said first piston cylinder, said first gripper assembly having an actuated position in which said first gripper assembly limits relative movement between said first gripper assembly and an inner surface of said borehole, and a retracted position in which said first gripper assembly permits substantially free relative movement between said first gripper assembly and said inner surface; a second gripper assembly longitudinally movably engaged with said body and longitudinally fixed with respect to said second piston cylinder, said second gripper assembly having an actuated position in which said second gripper assembly limits relative movement between said second gripper assembly and said inner surface of said borehole, and a retracted position in which said second gripper assembly permits substantially free relative movement between said second gripper assembly and said inner surface; and a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to and from said pistons within said cylinders, said valve system including a spool valve comprising: a spool housing defining an elongated spool passage and having two or more side passages, said spool passage configured to conduct operating fluid between said side passages; an elongated spool having first and second opposing end surfaces and being longitudinally movably received within said spool passage, the position of said spool being controlled by longitudinal fluid pressure forces acting on said first and second end surfaces, said spool having a first longitudinal position in which said spool valve directs operating fluid into said first cylinder on said aft end of said first piston and into said second cylinder on said forward end of said second piston, and in which said spool valve provides a flow path for operating fluid in said first cylinder on said forward end of said first piston and operating fluid in said second cylinder on said aft end of said second piston to flow through said spool valve to the exterior of said tractor, said spool having a second longitudinal position in which said spool valve directs operating fluid into said first cylinder on said forward end of said first piston and into said second cylinder on said aft end of said second piston, and in which said spool valve provides a flow path for operating fluid in said first cylinder on said aft end of said first piston and operating fluid in said second cylinder on said forward end of said second piston to flow through said spool valve to the exterior of said tractor, said spool having a landing having a first tapered peripheral surface on a first end of said landing and a second tapered peripheral surface on a second end of said landing; and a resilient element secured at a longitudinal position within said spool passage, said resilient element having a relaxed position in which said resilient element is configured to bear against either one of said tapered outer radial surfaces of said landing to prevent said landing from moving within said spool passage across said resilient element, said resilient element having a deflected position in which said resilient element permits said landing to move within said spool passage across said resilient element; wherein when said spool is in said first longitudinal position said resilient element is in said relaxed position on said first end of said landing, and when said spool is in said second longitudinal position said resilient element is in said relaxed position on said second end of said landing; wherein said resilient element in said relaxed position prevents said spool from moving between said first and second longitudinal positions when a net longitudinal fluid pressure force acting on said first and second end surfaces of said spool is below a threshold, said net longitudinal fluid pressure force forcing one of said tapered surfaces of said landing into said resilient element; wherein when said net longitudinal fluid pressure force reaches said threshold, one of said tapered surfaces of said landing causes said resilient element to move to said deflected position and permit said landing to move longitudinally through said passage across said resilient element so that said spool moves between the first and second longitudinal positions thereof.
- 103. The tractor of claim 102, wherein said spool housing has a circular groove in an inner surface of said spool passage, said resilient element comprising an expandable generally ring-shaped spring surrounding said spool and positioned at least partially within said circular groove of said spool passage, said spring in said relaxed position having an inner diameter smaller than an outer diameter of said landing so that said landing cannot pass through said spring, said spring in said deflected position having an inner diameter larger than said outer diameter of said landing so that said landing can pass through said spring.
- 104. A tractor for moving within a borehole, said tractor configured to be powered by pressurized operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by the operating fluid; and a valve system housed within said body, said valve system configured to receive fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including an inlet control valve controlling the flow of operating fluid from said internal passage of said body into said valve system, said inlet control valve comprising: a spool housing defining an elongated spool passage and having at least two side passages, said spool passage configured to conduct the operating fluid between said side passages; an elongated spool longitudinally movably received within said spool passage, said spool having an end surface configured to be exposed to operating fluid from said internal passage of said body, said end surface configured to receive a longitudinal pressure force in one direction of said spool passage, said spool having first and third position ranges in which said spool provides a flow path for operating fluid within said valve system to flow through said inlet control spool valve to the exterior of said tractor and in which said spool prevents the flow of operating fluid from said internal passage of said body into said valve system, said spool having a second position range between said first and third position ranges in which said spooi provides a flow path for operating fluid from said internal passage of said body to flow into said valve system and in which said spool prevents the flow of operating fluid within said valve system to the exterior of said tractor; and at least one spring biasing said spool in a direction opposite to that of said longitudinal pressure force received by said end surface of said spool, such that the magnitude of the fluid pressure in said internal passage determines the deflection of said at least one spring and thus the position of said spool; wherein said at least one spring is configured so that said spool occupies a position within said first position range when the fluid pressure in said internal passage of said body is below a lower shut-off threshold, so that said spool occupies a position within said second position range when the fluid pressure in said internal passage is above said lower shut-off threshold and below an upper shut-off threshold, and so that said spool occupies a position within said third position range when the fluid pressure in said internal passage is above said upper shut-off threshold.
- 105. The tractor of claim 104, wherein said conduit comprises coiled tubing.
- 106. The tractor of claim 104, wherein said conduit comprises a rotary drill string.
- 107. The tractor of claim 104, wherein said spool is rotatable about the longitudinal axis of said spool passage, said spool housing including a slot engagement portion on an inner surface of said spool passage, said spool including a deactivation portion comprising:an enlarged diameter portion fixed with respect to the remainder of said spool, said enlarged diameter portion having an outer peripheral surface and at least one slot in said outer peripheral surface, said at least one slot oriented parallel to said longitudinal axis of said spool passage, said at least one slot sized and configured to receive said slot engagement portion of said spool housing, engagement of said slot engagement portion within said at least one slot preventing said deactivation portion from rotating about said longitudinal axis, said enlarged diameter portion having a cam path recess defined partially by first and second annular sidewalls, said annular sidewalls including a plurality of cam surfaces, said at least one slot having first and second ends, said second end extending into said cam path recess; wherein said at least one spring and said spool are configured so that when said spool is within said first and second position ranges said slot engagement portion of said spool housing is received within said at least one slot, when said spool is within said third position range said slot engagement portion is either within said at least one slot or within said cam path recess; wherein said spool is configured such that pressurization of operating fluid in said internal passage of said body above an upper cam-activation pressure above said upper shut-off threshold causes said spool to move longitudinally within said spool passage so that a cam surface on said first annular sidewall of said cam path recess bears against said slot engagement portion, in turn causing said spool to rotate in a first direction of rotation to a position in which said slot engagement portion is not aligned with said at least one slot, and so that upon subsequent depressurization of operating fluid in said internal passage of said body to any level, said slot engagement portion is not permitted to reenter said at least one slot, thereby locking said spool in said third position range thereof.
- 108. The tractor of claim 107, said spool is configured such that said subsequent depressurization of operating fluid in said internal passage of said body to a level below a lower cam-activation pressure, said lower cam-activation pressure being greater than said upper shut-off threshold and lower than said upper cam-activation pressure, causes said spool to move so that a cam surface on said second annular sidewall of said cam path recess bears against said slot engagement portion, in turn causing said spool to further rotate in said first direction of rotation until said slot engagement portion bears against a valley in said second annular sidewall, which locks said spool in said third position range thereof as long as the pressure of operating fluid within said internal passage of said body is lower than said upper cam-activation pressure.
- 109. The tractor of claim 108, wherein said spool is configured such that after said depressurization of operating fluid within said internal passage of said body to said level below said lower cam-activation pressure, a subsequent repressurization of operating fluid within said internal passage to a level above said upper cam-activation pressure causes said spool to move so that a cam surface on said first annular sidewall of said cam path recess bears against said slot engagement portion, in turn causing said spool to further rotate in said first direction of rotation to a position such that a subsequent depressurization of operating fluid within said internal passage to a level below said upper shut-off threshold will cause said at least one slot to align with and receive said slot engagement portion.
- 110. The tractor of claim 107, wherein said slot engagement portion comprises a pin.
- 111. The tractor of claim 107, wherein said spool housing includes two slot engagement portions at the same longitudinal position within said spool passage, on opposite sides of said spool passage, said enlarged diameter portion of said deactivation portion including four slots in said outer peripheral surface, said slots oriented parallel to said longitudinal axis of said spool passage, each of said slots sized and configured to receive one of said slot engagement portions of said spool housing, engagement of said slot engagement portions within said slots preventing said deactivation portion from rotating about said longitudinal axis, each of said slots having first and second ends, said second ends extending into said cam path recess.
- 112. A tractor for moving within a borehole, said tractor configured to be powered by pressurized operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by the operating fluid; and a valve system housed within said body, said valve system configured to receive fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including an inlet control valve controlling the flow of operating fluid from said internal passage of said body into said valve system, said inlet control valve comprising: a spool housing defining an elongated spool passage and having a plurality of side passages, said spool passage configured to conduct operating fluid through said side passages, said spool housing including a slot engagement portion on an inner surface of said spool passage; an elongated spool longitudinally movably received within said spool passage, said spool having at least one closed position range in which operating fluid from said internal passage of said body is prevented from flowing into the remainder of said valve system, said spool having at least one open position range in which operating fluid from said internal passage can flow into said remainder of said valve system, said spool having an enlarged diameter portion with a peripheral surface and at least one slot in said peripheral surface, said at least one slot oriented parallel to a longitudinal axis of said spool passage, said at least one slot sized and configured to receive said slot engagement portion of said spool housing, engagement of said slot engagement portion within said at least one slot preventing said spool from rotating about said longitudinal axis, said enlarged diameter portion including a cam path recess defined partially by first and second annular sidewalls, said annular sidewalls including a plurality of cam surfaces, said at least one slot having first and second ends, said second end extending into said recess; said spool having an end surface configured to be exposed to operating fluid from said internal passage of said body, said end surface configured to receive a longitudinal pressure force in one direction of said spool passage; and at least one spring biasing said spool in a direction opposite to that of said longitudinal pressure force received by said end surface of said spool, such that the magnitude of the fluid pressure in said internal passage determines the deflection of said at least one spring and thus the position of said spool; wherein said inlet control valve is configured such that pressurization of operating fluid in said internal passage of said body above a threshold causes said spool to move so that said slot engagement portion moves out of said slot into said cam path recess and bears against a cam surface of said first annular sidewall, in turn causing said spool to rotate to a position in which said slot engagement portion is not aligned with said slot, in which said slot engagement portion is trapped within said cam path recess, and in which said spool remains trapped within said at least one closed position range.
- 113. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by operating fluid from said internal passage of said body; and a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion, said valve system including a spool valve comprising: a spool housing defining an elongated spool passage and having at least two side passages, said spool passage configured to conduct the operating fluid between said side passages; an elongated spool longitudinally movably received within said spool passage, said spool having at least one landing configured to block flow of operating fluid through said side passages, the position of said spool controlling the flow of operating fluid through said side passages and through said spool passage, said spool comprising separately formed first and second spool portions positioned end-to-end, an end of said first spool portion facing said second spool portion and having a ball-receiving cavity at a center of said end, said ball-receiving cavity of said first spool portion configured to receive a portion of a ball, a first end of said second spool portion facing said end of said first spool portion and having a ball-receiving cavity at a center of said first end, said ball-receiving cavity of said second spool portion configured to receive a portion of a ball, a second end of said second spool portion receiving a fluid pressure force directed toward said first spool portion; a ball interposed between said first and second spool portions, portions of said ball received within said ball-receiving cavities of said first and second spool portions; and at least one spring biasing said first spool portion longitudinally within said spool passage toward said second spool portion.
- 114. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having an internal passage configured to receive the operating fluid from the conduit; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by receiving operating fluid from said internal passage of said body; a valve system housed within said body, said valve system configured to receive operating fluid from said internal passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion; a pressure reduction valve; a first gripper fluid passage extending from said valve system to said pressure reduction valve; and a second gripper fluid passage extending from said pressure reduction valve to said gripper assembly; wherein said pressure reduction valve is configured to provide a flow path for operating fluid to flow from said first gripper fluid passage to said second gripper fluid passage when the pressure within said second gripper fluid passage is below a threshold, and wherein said pressure reduction valve is configured to provide a flow path for operating fluid to flow from said second gripper fluid passage to the exterior of said tractor when the pressure within said second gripper fluid passage is above said threshold.
- 115. The tractor of claim 114, wherein said pressure reduction valve comprises:a spool housing defining an elongated spool passage, said spool passage having at least one inlet side passage fluidly connected to said first gripper fluid passage, at least one outlet side passage fluidly connected to the second gripper fluid passage, and at least one vent side passage fluidly connected to the exterior of said tractor, said spool passage configured to conduct the operating fluid through said side passages; an elongated spool longitudinally movably received within said spool passage, said spool having at least one landing configured to block flow of operating fluid through said side passages, the position of said spool controlling the flow of operating fluid through said side passages and through said spool passage, an end surface of said spool exposed to operating fluid from said second gripper passage and configured to receive a fluid pressure force directed longitudinally within said spool passage; and at least one spring biasing said spool against said fluid pressure force.
- 116. A tractor for moving within a borehole, said tractor configured to be powered by operating fluid received from a conduit extending from the tractor through the borehole to a source of the operating fluid, said tractor comprising:an elongated body having a thrust-receiving portion longitudinally fixed with respect to said body, said body having a flow passage configured to receive the operating fluid from the conduit, said body comprising: a first shaft portion having an end with a mating surface; and a second shaft portion having an end with a mating surface, said mating surfaces of said first and second shaft portions being configured to mate with each other and being silver brazed together; a gripper assembly longitudinally movably engaged with said body, said gripper assembly having an actuated position in which said gripper assembly limits relative movement between said gripper assembly and an inner surface of said borehole, and a retracted position in which said gripper assembly permits substantially free relative movement between said gripper assembly and said inner surface, said gripper assembly configured to be actuated by receiving operating fluid from said flow passage of said body; and a valve system housed within said body, said valve system configured to receive operating fluid from said flow passage of said body and to selectively control the flow of operating fluid to at least one of said gripper assembly and said thrust-receiving portion.
- 117. The tractor of claim 116, wherein said thrust-receiving portion comprises an annular piston secured to said first and second shaft portions such that said piston encloses an outer interface said first and second shaft portions.
- 118. The tractor of claim 116, wherein said piston comprises at least one compression clamp.
- 119. The tractor of claim 116, wherein said piston comprises two compression clamps.
- 120. The tractor of claim 118, wherein said at least one compression clamp comprises a pair of ring-shaped clamp members with tapered wedging surfaces, said at least one compression clamp configured to impart a radial inward compression force onto said body when said clamp members are forced axially together.
- 121. The tractor of claim 120, wherein said clamp members are forced axially together by a locking assembly comprising a pair of ring-shaped locking members.
- 122. The tractor of claim 118, wherein said at least one compression clamp comprises a Ringfeder clamp.
- 123. The tractor of claim 116, wherein said first shaft portion has an elongated end portion having a reduced width, said end portion having a peripheral surface and an end surface, a connecting surface being formed between said end portion and the remainder of said first shaft portion, said mating surface of said first shaft portion comprising said connecting surface, said peripheral surface, and said end surface of said end portion.
- 124. The tractor of claim 123, wherein said connecting surface is generally perpendicular to a longitudinal axis of said first shaft portion.
- 125. The tractor of claim 123, wherein said first and second shaft portions and said elongated end portion of said first shaft portion are generally cylindrical.
- 126. The tractor of claim 123, wherein said elongated end portion has a length of about one inch.
- 127. The tractor of claim 116, wherein said first and second shaft portions are formed from stainless steel.
- 128. The tractor of claim 116, wherein said first and second shaft portions include internal gun-drilled passages.
- 129. The tractor of claim 116, said first shaft portion includes a stress-relief groove proximate said mating surface of said first shaft portion.
- 130. The tractor of claim 119, wherein said stress-relief groove extends along substantially the entire circumference of said first shaft portion.
- 131. The tractor of claim 130, wherein said stress-relief groove is substantially circular.
- 132. The tractor of claim 129, wherein said stress-relief groove is positioned within 0.060 inches of said first mating surface.
- 133. A tractor assembly for moving through a borehole, comprising:an elongated body; a first gripper assembly having an expanded position sized for frictional engagement with an inner wall of said borehole, said first gripper assembly being slidably coupled to said body; a second gripper assembly having an expanded position sized for frictional engagement with an inner wall of said borehole, said second gripper assembly being slidably coupled to said body; a first propulsion mechanism adapted for producing relative movement between said body and said first gripper assembly; a second propulsion mechanism adapted for producing relative movement between said body and said second gripper assembly; and a hydraulic valve system comprising: a gripper control valve having a first position for expanding said first gripper assembly and a second position for expanding said second gripper assembly; and a propulsion control valve for directing pressurized fluid to said first and second propulsion mechanisms, said propulsion control valve having a first position for advancing said body relative to said first gripper assembly while said gripper control valve is in said first position and a second position for advancing said body relative to said second gripper assembly while said gripper control valve is in said second position; wherein fluid flow from said gripper control valve pilots said propulsion control valve such that said gripper control valve must move from said first position to said second position before said propulsion control valve moves from said first position to said second position.
- 134. A hydraulically-controlled tractor adapted for movement through a borehole, comprising:an elongated body; a first gripper assembly having an expanded position sized for frictional engagement with an inner wall of said borehole, said first gripper assembly being slidably coupled to said body; a second gripper assembly having an expanded position sized for frictional engagement with an inner wall of said borehole, said second gripper assembly being slidably coupled to said body; a first propulsion mechanism adapted for producing relative movement between said body and said first gripper assembly; a second propulsion mechanism adapted for producing relative movement between said body and said second gripper assembly; and a hydraulic valve system comprising: a first cycle valve for detecting completion of stroke of said first propulsion mechanism based on a change in fluid pressure; a second cycle valve for detecting completion of stroke of said second propulsion mechanism based on a change in fluid pressure; a gripper control valve having a first position for actuating said first gripper assembly and a second position for actuating said second gripper assembly; a propulsion control valve for directing fluid to said first and second propulsion mechanisms, said propulsion control valve having a first position for directing fluid to advance said body relative to said first gripper assembly and a second position for directing fluid to advance said body relative to said second gripper assembly; and wherein said first and second cycle valves control the position of said gripper control valve and said gripper control valve pilots said propulsion control system.
CLAIM FOR PRIORITY
This application claims the priority benefit under 35 U.S.C. § 119(e) of U.S. Provisional Patent Application Ser. No. 60/250,847, filed Dec. 1, 2000.
This application incorporates by reference the entire disclosures of (1) allowed U.S. patent application Ser. No. 09/453,996, entitled “ELECTRICALLY SEQUENCED TRACTOR” and filed Dec. 3, 1999; (2) U.S. Pat. No. 6,241,031 to Beaufort et al.; (3) U.S. Pat. No. 6,003,606 to Moore et al.; (4) U.S. patent application Ser. No. 09/777,421, entitled “GRIPPER ASSEMBLY FOR DOWNHOLE TRACTORS” and filed Feb. 6, 2001; (5) U.S. Provisional Patent Application Ser. No. 60/250,847, filed Dec. 1, 2000; and (6) a U.S. patent application entitled “GRIPPER ASSEMBLY FOR DOWNHOLE TRACTORS,” filed on the same day as the present application.
US Referenced Citations (62)
Foreign Referenced Citations (2)
Number |
Date |
Country |
WO 9427022 |
Nov 1994 |
EP |
0 257 744 |
Jan 1995 |
EP |
Non-Patent Literature Citations (1)
Entry |
“Kolibomac to Challenge Tradition.” Norwegian Oil Review, 1988, pp. 50 & 52. |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/250847 |
Dec 2000 |
US |