Software-defined wide area networks (SD-WAN) are becoming increasingly common solutions for, e.g., connecting public and/or private cloud datacenters for an enterprise. In an SD-WAN deployment, an edge device typically connects through one or more secure connections with a gateway, with these connections traversing network links that connect the edge device with an external network. As an example, a branch office of an enterprise might operate an SD-WAN edge device that connects to a gateway at an on-premises datacenter. These SD-WANs can handle data traffic for enterprise applications but will often also handle broadband cellular traffic (e.g., 4G or 5G traffic). This broadband cellular traffic will often have its own internal specifications that are opaque to the typical SD-WAN edge or gateway device.
Some embodiments provide a method for an SD-WAN that handles both traffic for a cellular broadband (e.g., 5G) network as well as traffic outside of the cellular broadband network to intelligently prioritize different types of cellular broadband traffic. When an edge device of the SD-WAN receives a data message, the edge device can determine (e.g., by looking at an Internet Protocol (IP) header of the data message) whether the data message is cellular broadband traffic or not and prioritize the traffic relative to other types of traffic. In addition, if the data message is a cellular broadband data message, the edge device of some embodiments examines a set of header fields of a particular type of tunnel header (e.g., a general packet radio service (GPRS) tunneling protocol (GTP) header) associated with the cellular broadband network. Based on the examination of the set of header fields, the edge device identifies a specified traffic priority applicable to the data message and applies that traffic priority to the data message within the SD-WAN.
The application of the traffic priority helps to ensure end-to-end application of the traffic priority specified for the data message by the cellular broadband network. Thus, for example, the SD-WAN will not result in the deprioritization of latency-sensitive user traffic for cellular broadband applications such as automated vehicles, drones, etc. Similarly, cellular broadband control traffic (e.g., traffic between components of a distributed radio access network) may be latency-sensitive, so the SD-WAN will also avoid deprioritizing this traffic.
The SD-WAN of some embodiments may carry cellular broadband traffic in various different situations. For instance, a large retail store with several locations might deploy an SD-WAN that connects these various locations to each other, to a centralized datacenter, and to other external networks. The edge devices at such a location will process SD-WAN traffic relating to various enterprise applications such as billing, inventory, etc. (e.g., sent from various desktop and/or laptop computers, virtual machines, etc.) at the location in addition to various types of cellular broadband traffic.
In addition, the SD-WAN may carry cellular broadband messages at different locations within the cellular broadband network. A cellular broadband message sent by an endpoint device (commonly referred to as user equipment, or UE), for example, typically travels from the endpoint device to a base station. The base station traditionally includes the radio access network (RAN), though the RAN may be distributed in some cases as described in the Open RAN (O-RAN) standard. After RAN processing, the message is then sent to the packet core. In some embodiments, the SD-WAN handles the cellular broadband messages between the RAN and the packet core, with the edge device located at the RAN and the gateway device located at the packet core. In this case, the edge device processes the cellular broadband message after RAN processing is completed and the gateway device processes the message prior to the message being handled by the packet core.
The SD-WAN of some embodiments may instead handle traffic between components of the distributed RAN. In the O-RAN, RAN components may execute in a cloud rather than directly at the base station, and the SD-WAN handles traffic (e.g., control traffic) between different RAN components (e.g., between the distributed unit and the centralized unit). Similarly, the SD-WAN of some embodiments handles traffic between two different RAN instances (e.g., when a mobile device is handed off from one base station to another).
To identify the traffic priority for a cellular broadband message, the edge device is configured in some embodiments to examine fields beyond just the IP header of the message. Specifically, 5G messages processed by an SD-WAN edge typically include (among other headers) an outer (underlay) IP header, a GTP header, and an inner (overlay) IP header. Within the GTP header, a tunnel endpoint identifier field identifies the GTP tunnel (i.e., encompassing both tunnel endpoints) for a protocol data unit (PDU) session. A single PDU session may include numerous flows, and thus the GTP header may include an extension header that, among other fields, can specify a quality of service (QoS) flow identifier (QFI). This QFI may be used to map to a specific QoS level (e.g., a specific 5G QoS Identifier (5QI)). This QoS level in turn maps to a specific set of characteristics that must be met for the packet, including a priority level, packet delay, packet error rate, etc. With the edge device configured to examine the GTP header, the edge device can enforce these QoS characteristics within the SD-WAN.
In addition, to avoid the need to review the GTP header for each data message in a flow, in some embodiments the edge device stores a mapping of an identifier for the flow to the identifier for the set of QoS characteristics. The flow identifier of some embodiments includes only IP and/or transport layer (e.g., TCP, UDP, etc.) header fields. For instance, in some embodiments the flow identifier includes the outer IP header fields, inner IP header fields, and one or more transport layer port numbers (e.g., source and/or destination port numbers) from the inner and/or outer transport layer header.
The preceding Summary is intended to serve as a brief introduction to some embodiments of the invention. It is not meant to be an introduction or overview of all inventive subject matter disclosed in this document. The Detailed Description that follows and the Drawings that are referred to in the Detailed Description will further describe the embodiments described in the Summary as well as other embodiments. Accordingly, to understand all the embodiments described by this document, a full review of the Summary, Detailed Description and the Drawings is needed. Moreover, the claimed subject matters are not to be limited by the illustrative details in the Summary, Detailed Description and the Drawings, but rather are to be defined by the appended claims, because the claimed subject matters can be embodied in other specific forms without departing from the spirit of the subject matters.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
In the following detailed description of the invention, numerous details, examples, and embodiments of the invention are set forth and described. However, it will be clear and apparent to one skilled in the art that the invention is not limited to the embodiments set forth and that the invention may be practiced without some of the specific details and examples discussed.
Some embodiments provide a method for an SD-WAN that handles both traffic for a cellular broadband (e.g., 5G) network as well as traffic outside of the cellular broadband network to intelligently prioritize different types of cellular broadband traffic. When an edge device of the SD-WAN receives a data message, the edge device can determine (e.g., by looking at an Internet Protocol (IP) header of the data message) whether the data message is cellular broadband traffic or not and prioritize the traffic relative to other types of traffic. In addition, if the data message is a cellular broadband data message, the edge device of some embodiments examines a set of header fields of a particular type of tunnel header (e.g., a general packet radio service (GPRS) tunneling protocol (GTP) header) associated with the cellular broadband network. Based on the examination of the set of header fields, the edge device identifies a specified traffic priority applicable to the data message and applies that traffic priority to the data message within the SD-WAN.
The application of the traffic priority helps to ensure end-to-end application of the traffic priority specified for the data message by the cellular broadband network. Thus, for example, the SD-WAN will not result in the deprioritization of latency-sensitive user traffic for cellular broadband applications such as automated vehicles, drones, etc. Similarly, cellular broadband control traffic (e.g., traffic between components of a distributed radio access network) may be latency-sensitive, so the SD-WAN will also avoid deprioritizing this traffic.
In this example, the connected endpoint devices include a connected camera 105, a mobile device 110 (e.g., a smart phone, a tablet, etc.), an automated device 115 (e.g., automated manufacturing equipment, a self-driving vehicle, etc.), a laptop 120, and a virtual machine 125. Three of these devices 105-115 are 5G devices that connect to a 5G base station 130 (e.g., a 5G small cell that operates within the enterprise location 100), while two of the devices 120-125 connect via wired (e.g., Ethernet) or wireless (e.g., 802.11 Wi-Fi) forms of connectivity. In many situations, various other types of connected devices (both 5G devices and non-5G devices) will operate within such an environment. Examples of such 5G devices include remote surgery equipment, remote controlled drones, smart watches, health monitoring equipment, Internet of Things (IoT) appliances, etc., while other non-5G devices could include desktop computers, servers, containers, etc.
Both the 5G base station 130 and the other forms of communication communicate externally via a software-defined wide area network (SD-WAN) 135. This communication includes enterprise application traffic (for billing, inventory, etc.) from the laptop 120 and/or virtual machine 125 as well as various types of 5G traffic (e.g., 5G voice traffic and/or 5G Internet traffic). The SD-WAN 135 of some embodiments may be used to connect multiple branch sites (e.g., the enterprise location 100) to at least one datacenter hub. In this example, the SD-WAN includes at least an edge device 140, a gateway 145, and a controller 150, though in many cases an SD-WAN will include multiple edge devices (e.g., for each of many branch offices, retail locations, etc.), multiple gateways, and/or a hub.
The SD-WAN edge device 140 may be a virtual machine, a container, a program executing on a physical or virtual machine, a stand-alone appliance, etc., that operates at the enterprise location 100 to connect the devices at that location to other devices, hubs, etc. in the SD-WAN or connected to the SD-WAN. Though shown as a single edge 140, this represents a high-availability pair or cluster in some embodiments.
The edge device 140 (and, in many cases, other edge devices of the SD-WAN) exchanges data traffic with the SD-WAN gateway 145 through one or more connection links (e.g., a cable modem link, a fiber optic link, and/or an MPLS link, etc.). The gateway 145 (or a hub, which is not shown in this figure) connects the edge device 140 to other edges (e.g., at other enterprise locations). The gateway 145 may be located in an on-premises datacenter (e.g., a primary datacenter for an enterprise). In some embodiments, traffic from the endpoint devices 105-125 at the enterprise location 100 that is directed externally (e.g., to external destinations not associated with the enterprise location) is routed through the SD-WAN to the gateway 145 before being sent through a public network to its external destination. This includes the 5G traffic from the devices 105-115.
The controller 150, which may be a single controller or a cluster of controllers, serves as a central point for managing (e.g., defining and modifying) configuration data that is provided to the edge 140 and gateway 145, as well as any other SD-WAN nodes (e.g., other edges, hubs, gateways, etc.), to configure some or all of the operations of these SD-WAN nodes. The controller 150 may be located in a private datacenter (e.g., a primary enterprise datacenter) or in a public cloud datacenter (or in multiple datacenters, if operating as a cluster). In some embodiments, the controller 150 actually includes a set of manager servers that define and modify the configuration data, and a set of controller servers that distribute the configuration data to the edge 140, gateway 145, and any other SD-WAN nodes. The configuration data provided to the edge 140 may include routing information (e.g., directing the edge 140 to route data to the gateway 145) as well as tunneling information, quality of service (QoS) configuration information, etc.
Because the 5G base station 130 is located within the enterprise location 100, the SD-WAN 135 is used to carry 5G traffic between the base station 130 and other components of the 5G network. User data traffic from the endpoint devices 105-115 may need to travel to the 5G packet core, traffic may need to be sent from the base station 130 to another base station, a radio access network (RAN) component at the base station 130 may communicate with another RAN component located in a public cloud, etc.
In the example of
Other 5G traffic might pass through an SD-WAN as well, in some embodiments. For instance, Open RAN (O-RAN) implementations can push many of the RAN functionalities (e.g., DU and/or CU operations) to a near-real-time RAN intelligent controller (RIC), which hosts applications (referred to as xApps). Communication on the E2 interface between the CU and DU components and the near-real-time RIC, as well as between RIC components and the xApps or between xApps, may be very latency-sensitive while passing through an SD-WAN. Further detail about the near-real-time RIC, xApps, and messages between these components can be found in U.S. patent Ser. No. 17/384,777, filed Jul. 25, 2021, which is incorporated herein by reference.
Many of these examples of 5G traffic have extremely low latency requirements. Applications like remote surgery, automated cars or manufacturing, remote machinery control, as well as various types of control messaging, require very high quality of service and cannot be caught up in delays that could occur if there is a bottleneck in the SD-WAN (e.g., if other non-5G traffic increases for a period of time). However, the edge nodes in SD-WAN deployments generally prioritize traffic based on the standard network layer (e.g., IP) data message headers (e.g., by examining the differentiated services code point (DSCP) field) in order to differentiate between traffic. While this can work in some cases to differentiate 5G traffic from other traffic, not all 5G traffic should be given the same priority. For instance, remote surgery or automated vehicle traffic should have a higher priority than mobile phone web browsing.
Therefore, to identify the traffic priority for a cellular broadband message, the SD-WAN edge device is configured in some embodiments (e.g., by the SD-WAN controller) to examine fields beyond just the IP header of the message.
As shown, the process 500 begins by receiving (at 505) a data message at the edge device. In some embodiments, this is a data message with an outer IP header. Internally, the data message may be a 5G user data message, a 5G control message, a non-5G message (e.g., an enterprise application message, etc.).
The process 500 determines (at 510) whether stored instructions exist for the flow to which the data message belongs. In some embodiments, the edge device stores a mapping of flow identifiers to processing instructions, which include QoS level information as well as forwarding instructions. The flow identifier of some embodiments includes only IP and/or transport layer (e.g., TCP, UDP, etc.) fields, so that for these data messages the edge device does not need to examine any of the other fields. For instance, in some embodiments the flow identifier includes IP header fields and/or transport layer port numbers (e.g., source and/or destination port numbers) of an outer (encapsulation) header. Some embodiments also include IP and/or transport layer fields from an inner (overlay network) header. As described below, when a data message from a new flow is received and processed, the edge device stores a mapping of the flow identifier for that flow to processing instructions for the flow.
If instructions are stored for the flow to which the received data message belongs, then the process 500 processes (at 515) the data message according to the stored instructions. As mentioned, in addition to specifying forwarding instructions (e.g., routing) for the data message, the stored instructions also indicate a priority for the data message and other QoS-related instructions (e.g., the maximum allowable delay, etc.). This priority may be used by the edge device to schedule transmission of the processed data message relative to other data messages with different priorities. The process 500 then ends.
On the other hand, if no instructions are stored for the flow (e.g., because the data message is the first message in a new flow), the process 500 determines (at 520) whether the data message is a 5G data message. In some embodiments, the edge device can identify a data message as a 5G data message based on a DSCP marking or by identifying the presence of a tunnel header of a particular type associated with 5G data messages (e.g., a GTP header).
If the data message is not a 5G data message, then the process 500 processes (at 525) the data message as IP traffic, using any forwarding and traffic priority configuration configured for the edge device by the SD-WAN controller. This processing can differentiate between different applications based on various factors. For instance, an administrator could configure the SD-WAN to assign higher priority to certain enterprise applications that require lower latency as compared to less latency-sensitive applications (e.g., billing). The process then ends.
When the received data message is a 5G message, the process 500 examines (at (535) a set of fields within the GTP header to determine a QoS level to apply to the data message. In some embodiments, a GTP header includes, among other fields, a tunnel endpoint identifier (TEID) field. This TEID field specifies a tunnel and therefore conveys both endpoints of the tunnel rather than using a separate field for the source and destination tunnel. However, the TEID field on its own is not enough to determine the QoS level, as each GTP tunnel maps to a protocol data unit (PDU) session, which itself may contain numerous separate flows that should be treated differently. The GTP tunnel, in some embodiments, provides connectivity between the endpoint device (UE) and a destination network (e.g., the Internet or a private corporate network). Other fields typically found in the GTP header include a version field, a protocol type extension header flag, a sequence number flag, an N-PDU number flag, a message type, a length, and an extension header type.
While DSCP marking can be associated with a PDU session in some embodiments, this does not help differentiate between the different flows within a PDU session. Thus, the edge device is configured in some embodiments to examine additional information within the GTP header that provides additional information about the particular flow to which a data message belongs. In some embodiments, an extension header within the GTP header includes a PDU session container header, which in turn includes a QoS flow identifier (QFI) field. This QFI field can be used to differentiate between different flows and even to map to a particular QoS level that should be applied. In
The edge device is configured to map the QFI to a QoS level in some embodiments. In some such embodiments, the QoS level is determined according to a 5G QoS identifier (5QI) value, which itself maps to a specific set of QoS characteristics. In the example shown in
In some embodiments, rather than using the QFI field, the edge device is configured to use a service class identifier (SCI) field, which is also part of the GTP extension header. A large range of this SCI field is unassigned and can be customized, so the SD-WAN edge can be customized to map SCI values to QoS levels (e.g., to 5QI values). In various embodiments, the edge device classifies traffic into different QoS levels based on some combination of the TEID, transport layer port numbers (e.g., from the outer or inner header), the QFI, DSCP marking in the outer IP header, and the SCI. In addition, in some embodiments, a RAN container (or new radio (NR) RAN container) field within the extension header may be used to classify front haul traffic vs. backhaul traffic and prioritize traffic for distributed RAN solutions between X2-U, Xn-U, and F1-U user plane interfaces. Finally, the PDU session container is used in some embodiments to classify backhaul traffic to N3 and N9 user plane interfaces, between NG-RAN and user plane function (UPF), or between two UPFs.
Returning to
Because instructions were not previously stored, the process 500 then stores (at 540) instructions to apply to subsequent data messages in the flow. In some embodiments, the edge device stores a mapping of flow identifiers to processing instructions (e.g., the QoS level information as well as forwarding instructions). As described above, the flow identifier of some embodiments includes IP header fields and/or transport layer port numbers (e.g., source and/or destination port numbers) of an outer (encapsulation) header and/or from an inner (overlay network) header. The process 500 then ends.
The bus 705 collectively represents all system, peripheral, and chipset buses that communicatively connect the numerous internal devices of the electronic system 700. For instance, the bus 705 communicatively connects the processing unit(s) 710 with the read-only memory 730, the system memory 725, and the permanent storage device 735.
From these various memory units, the processing unit(s) 710 retrieve instructions to execute and data to process in order to execute the processes of the invention. The processing unit(s) may be a single processor or a multi-core processor in different embodiments.
The read-only-memory (ROM) 730 stores static data and instructions that are needed by the processing unit(s) 710 and other modules of the electronic system. The permanent storage device 735, on the other hand, is a read-and-write memory device. This device is a non-volatile memory unit that stores instructions and data even when the electronic system 700 is off. Some embodiments of the invention use a mass-storage device (such as a magnetic or optical disk and its corresponding disk drive) as the permanent storage device 735.
Other embodiments use a removable storage device (such as a floppy disk, flash drive, etc.) as the permanent storage device. Like the permanent storage device 735, the system memory 725 is a read-and-write memory device. However, unlike storage device 735, the system memory is a volatile read-and-write memory, such a random-access memory. The system memory stores some of the instructions and data that the processor needs at runtime. In some embodiments, the invention's processes are stored in the system memory 725, the permanent storage device 735, and/or the read-only memory 730. From these various memory units, the processing unit(s) 710 retrieve instructions to execute and data to process in order to execute the processes of some embodiments.
The bus 705 also connects to the input and output devices 740 and 745. The input devices enable the user to communicate information and select commands to the electronic system. The input devices 740 include alphanumeric keyboards and pointing devices (also called “cursor control devices”). The output devices 745 display images generated by the electronic system. The output devices include printers and display devices, such as cathode ray tubes (CRT) or liquid crystal displays (LCD). Some embodiments include devices such as a touchscreen that function as both input and output devices.
Finally, as shown in
Some embodiments include electronic components, such as microprocessors, storage and memory that store computer program instructions in a machine-readable or computer-readable medium (alternatively referred to as computer-readable storage media, machine-readable media, or machine-readable storage media). Some examples of such computer-readable media include RAM, ROM, read-only compact discs (CD-ROM), recordable compact discs (CD-R), rewritable compact discs (CD-RW), read-only digital versatile discs (e.g., DVD-ROM, dual-layer DVD-ROM), a variety of recordable/rewritable DVDs (e.g., DVD-RAM, DVD-RW, DVD+RW, etc.), flash memory (e.g., SD cards, mini-SD cards, micro-SD cards, etc.), magnetic and/or solid state hard drives, read-only and recordable Blu-Ray® discs, ultra-density optical discs, any other optical or magnetic media, and floppy disks. The computer-readable media may store a computer program that is executable by at least one processing unit and includes sets of instructions for performing various operations. Examples of computer programs or computer code include machine code, such as is produced by a compiler, and files including higher-level code that are executed by a computer, an electronic component, or a microprocessor using an interpreter.
While the above discussion primarily refers to microprocessor or multi-core processors that execute software, some embodiments are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In some embodiments, such integrated circuits execute instructions that are stored on the circuit itself.
As used in this specification, the terms “computer”, “server”, “processor”, and “memory” all refer to electronic or other technological devices. These terms exclude people or groups of people. For the purposes of the specification, the terms display or displaying means displaying on an electronic device. As used in this specification, the terms “computer readable medium,” “computer readable media,” and “machine readable medium” are entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. These terms exclude any wireless signals, wired download signals, and any other ephemeral signals.
This specification refers throughout to computational and network environments that include virtual machines (VMs). However, virtual machines are merely one example of data compute nodes (DCNs) or data compute end nodes, also referred to as addressable nodes. DCNs may include non-virtualized physical hosts, virtual machines, containers that run on top of a host operating system without the need for a hypervisor or separate operating system, and hypervisor kernel network interface modules.
VMs, in some embodiments, operate with their own guest operating systems on a host using resources of the host virtualized by virtualization software (e.g., a hypervisor, virtual machine monitor, etc.). The tenant (i.e., the owner of the VM) can choose which applications to operate on top of the guest operating system. Some containers, on the other hand, are constructs that run on top of a host operating system without the need for a hypervisor or separate guest operating system. In some embodiments, the host operating system uses name spaces to isolate the containers from each other and therefore provides operating-system level segregation of the different groups of applications that operate within different containers. This segregation is akin to the VM segregation that is offered in hypervisor-virtualized environments that virtualize system hardware, and thus can be viewed as a form of virtualization that isolates different groups of applications that operate in different containers. Such containers are more lightweight than VMs.
Hypervisor kernel network interface modules, in some embodiments, is a non-VM DCN that includes a network stack with a hypervisor kernel network interface and receive/transmit threads. One example of a hypervisor kernel network interface module is the vmknic module that is part of the ESXi™ hypervisor of VMware, Inc.
It should be understood that while the specification refers to VMs, the examples given could be any type of DCNs, including physical hosts, VMs, non-VM containers, and hypervisor kernel network interface modules. In fact, the example networks could include combinations of different types of DCNs in some embodiments.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. In addition, a number of the figures (including
Number | Date | Country | Kind |
---|---|---|---|
202141044684 | Oct 2021 | IN | national |
Number | Name | Date | Kind |
---|---|---|---|
5652751 | Sharony | Jul 1997 | A |
5909553 | Campbell et al. | Jun 1999 | A |
6154465 | Pickett | Nov 2000 | A |
6157648 | Voit et al. | Dec 2000 | A |
6201810 | Masuda et al. | Mar 2001 | B1 |
6363378 | Conklin et al. | Mar 2002 | B1 |
6445682 | Weitz | Sep 2002 | B1 |
6744775 | Beshai et al. | Jun 2004 | B1 |
6976087 | Westfall et al. | Dec 2005 | B1 |
7003481 | Banka et al. | Feb 2006 | B2 |
7280476 | Anderson | Oct 2007 | B2 |
7313629 | Nucci et al. | Dec 2007 | B1 |
7320017 | Kurapati et al. | Jan 2008 | B1 |
7373660 | Guichard et al. | May 2008 | B1 |
7581022 | Griffin et al. | Aug 2009 | B1 |
7680925 | Sathyanarayana et al. | Mar 2010 | B2 |
7681236 | Tamura et al. | Mar 2010 | B2 |
7751409 | Carolan | Jul 2010 | B1 |
7962458 | Holenstein et al. | Jun 2011 | B2 |
8051185 | Lee et al. | Nov 2011 | B2 |
8094575 | Vadlakonda et al. | Jan 2012 | B1 |
8094659 | Arad | Jan 2012 | B1 |
8111692 | Ray | Feb 2012 | B2 |
8141156 | Mao et al. | Mar 2012 | B1 |
8224971 | Miller et al. | Jul 2012 | B1 |
8228928 | Parandekar et al. | Jul 2012 | B2 |
8243589 | Trost et al. | Aug 2012 | B1 |
8259566 | Chen et al. | Sep 2012 | B2 |
8274891 | Averi et al. | Sep 2012 | B2 |
8301749 | Finklestein et al. | Oct 2012 | B1 |
8385227 | Downey | Feb 2013 | B1 |
8516129 | Skene | Aug 2013 | B1 |
8566452 | Goodwin et al. | Oct 2013 | B1 |
8588066 | Goel et al. | Nov 2013 | B2 |
8630291 | Shaffer et al. | Jan 2014 | B2 |
8661295 | Khanna et al. | Feb 2014 | B1 |
8724456 | Hong et al. | May 2014 | B1 |
8724503 | Johnsson et al. | May 2014 | B2 |
8745177 | Kazerani et al. | Jun 2014 | B1 |
8769129 | Watsen et al. | Jul 2014 | B2 |
8797874 | Yu et al. | Aug 2014 | B2 |
8799504 | Capone et al. | Aug 2014 | B2 |
8804745 | Sinn | Aug 2014 | B1 |
8806482 | Nagargadde et al. | Aug 2014 | B1 |
8855071 | Sankaran et al. | Oct 2014 | B1 |
8856339 | Mestery et al. | Oct 2014 | B2 |
8964548 | Keralapura et al. | Feb 2015 | B1 |
8989199 | Sella et al. | Mar 2015 | B1 |
9009217 | Nagargadde et al. | Apr 2015 | B1 |
9015299 | Shah | Apr 2015 | B1 |
9019837 | Lue et al. | Apr 2015 | B2 |
9055000 | Ghosh et al. | Jun 2015 | B1 |
9060025 | Xu | Jun 2015 | B2 |
9071607 | Twitchell, Jr. | Jun 2015 | B2 |
9075771 | Gawali et al. | Jul 2015 | B1 |
9100329 | Jiang et al. | Aug 2015 | B1 |
9135037 | Petrescu-Prahova et al. | Sep 2015 | B1 |
9137334 | Zhou | Sep 2015 | B2 |
9154327 | Marino et al. | Oct 2015 | B1 |
9203764 | Shirazipour et al. | Dec 2015 | B2 |
9225591 | Beheshti-Zavareh et al. | Dec 2015 | B2 |
9306949 | Richard et al. | Apr 2016 | B1 |
9323561 | Ayala et al. | Apr 2016 | B2 |
9336040 | Dong et al. | May 2016 | B2 |
9354983 | Yenamandra et al. | May 2016 | B1 |
9356943 | Lopilato et al. | May 2016 | B1 |
9379981 | Zhou et al. | Jun 2016 | B1 |
9413724 | Xu | Aug 2016 | B2 |
9419878 | Hsiao et al. | Aug 2016 | B2 |
9432245 | Sorenson et al. | Aug 2016 | B1 |
9438566 | Zhang et al. | Sep 2016 | B2 |
9450817 | Bahadur et al. | Sep 2016 | B1 |
9450852 | Chen et al. | Sep 2016 | B1 |
9462010 | Stevenson | Oct 2016 | B1 |
9467478 | Khan et al. | Oct 2016 | B1 |
9485163 | Fries et al. | Nov 2016 | B1 |
9521067 | Michael et al. | Dec 2016 | B2 |
9525564 | Lee | Dec 2016 | B2 |
9542219 | Bryant et al. | Jan 2017 | B1 |
9559951 | Sajassi et al. | Jan 2017 | B1 |
9563423 | Pittman | Feb 2017 | B1 |
9602389 | Maveli et al. | Mar 2017 | B1 |
9608917 | Anderson et al. | Mar 2017 | B1 |
9608962 | Chang | Mar 2017 | B1 |
9614748 | Battersby et al. | Apr 2017 | B1 |
9621460 | Mehta et al. | Apr 2017 | B2 |
9641551 | Kariyanahalli | May 2017 | B1 |
9648547 | Hart et al. | May 2017 | B1 |
9665432 | Kruse et al. | May 2017 | B2 |
9686127 | Ramachandran et al. | Jun 2017 | B2 |
9692714 | Nair et al. | Jun 2017 | B1 |
9715401 | Devine et al. | Jul 2017 | B2 |
9717021 | Hughes et al. | Jul 2017 | B2 |
9722815 | Mukundan et al. | Aug 2017 | B2 |
9747249 | Cherian et al. | Aug 2017 | B2 |
9755965 | Yadav et al. | Sep 2017 | B1 |
9787559 | Schroeder | Oct 2017 | B1 |
9807004 | Koley et al. | Oct 2017 | B2 |
9819540 | Bahadur et al. | Nov 2017 | B1 |
9819565 | Djukic et al. | Nov 2017 | B2 |
9825822 | Holland | Nov 2017 | B1 |
9825911 | Brandwine | Nov 2017 | B1 |
9825992 | Xu | Nov 2017 | B2 |
9832128 | Ashner et al. | Nov 2017 | B1 |
9832205 | Santhi et al. | Nov 2017 | B2 |
9875355 | Williams | Jan 2018 | B1 |
9906401 | Rao | Feb 2018 | B1 |
9923826 | Murgia | Mar 2018 | B2 |
9930011 | Clemons, Jr. et al. | Mar 2018 | B1 |
9935829 | Miller et al. | Apr 2018 | B1 |
9942787 | Tillotson | Apr 2018 | B1 |
9996370 | Khafizov et al. | Jun 2018 | B1 |
10038601 | Becker et al. | Jul 2018 | B1 |
10057183 | Salle et al. | Aug 2018 | B2 |
10057294 | Xu | Aug 2018 | B2 |
10116593 | Sinn et al. | Oct 2018 | B1 |
10135789 | Mayya et al. | Nov 2018 | B2 |
10142226 | Wu et al. | Nov 2018 | B1 |
10178032 | Freitas | Jan 2019 | B1 |
10178037 | Appleby et al. | Jan 2019 | B2 |
10187289 | Chen et al. | Jan 2019 | B1 |
10200264 | Menon et al. | Feb 2019 | B2 |
10229017 | Zou et al. | Mar 2019 | B1 |
10237123 | Dubey et al. | Mar 2019 | B2 |
10250498 | Bales et al. | Apr 2019 | B1 |
10263832 | Ghosh | Apr 2019 | B1 |
10263848 | Wolting | Apr 2019 | B2 |
10320664 | Nainar et al. | Jun 2019 | B2 |
10320691 | Matthews et al. | Jun 2019 | B1 |
10326830 | Singh | Jun 2019 | B1 |
10348767 | Lee et al. | Jul 2019 | B1 |
10355989 | Panchal et al. | Jul 2019 | B1 |
10425382 | Mayya et al. | Sep 2019 | B2 |
10454708 | Mibu | Oct 2019 | B2 |
10454714 | Mayya et al. | Oct 2019 | B2 |
10461993 | Turabi et al. | Oct 2019 | B2 |
10498652 | Mayya et al. | Dec 2019 | B2 |
10511546 | Singarayan et al. | Dec 2019 | B2 |
10523539 | Mayya et al. | Dec 2019 | B2 |
10550093 | Ojima et al. | Feb 2020 | B2 |
10554538 | Spohn et al. | Feb 2020 | B2 |
10560431 | Chen et al. | Feb 2020 | B1 |
10565464 | Han et al. | Feb 2020 | B2 |
10567519 | Mukhopadhyaya et al. | Feb 2020 | B1 |
10574482 | Oré et al. | Feb 2020 | B2 |
10574528 | Mayya et al. | Feb 2020 | B2 |
10594516 | Cidon et al. | Mar 2020 | B2 |
10594591 | Houjyo et al. | Mar 2020 | B2 |
10594659 | El-Moussa et al. | Mar 2020 | B2 |
10608844 | Cidon et al. | Mar 2020 | B2 |
10630505 | Rubenstein et al. | Apr 2020 | B2 |
10637889 | Ermagan et al. | Apr 2020 | B2 |
10666460 | Cidon et al. | May 2020 | B2 |
10666497 | Tahhan et al. | May 2020 | B2 |
10686625 | Cidon et al. | Jun 2020 | B2 |
10693739 | Naseri et al. | Jun 2020 | B1 |
10708144 | Mohan et al. | Jul 2020 | B2 |
10715382 | Guan et al. | Jul 2020 | B2 |
10715427 | Raj et al. | Jul 2020 | B2 |
10749711 | Mukundan et al. | Aug 2020 | B2 |
10778466 | Cidon et al. | Sep 2020 | B2 |
10778528 | Mayya et al. | Sep 2020 | B2 |
10778557 | Ganichev et al. | Sep 2020 | B2 |
10805114 | Cidon et al. | Oct 2020 | B2 |
10805272 | Mayya et al. | Oct 2020 | B2 |
10819564 | Turabi et al. | Oct 2020 | B2 |
10826775 | Moreno et al. | Nov 2020 | B1 |
10841131 | Cidon et al. | Nov 2020 | B2 |
10911374 | Kumar et al. | Feb 2021 | B1 |
10924388 | Burns et al. | Feb 2021 | B1 |
10938693 | Mayya et al. | Mar 2021 | B2 |
10951529 | Duan et al. | Mar 2021 | B2 |
10958479 | Cidon et al. | Mar 2021 | B2 |
10959098 | Cidon et al. | Mar 2021 | B2 |
10992558 | Silva et al. | Apr 2021 | B1 |
10992568 | Michael et al. | Apr 2021 | B2 |
10999100 | Cidon et al. | May 2021 | B2 |
10999137 | Cidon et al. | May 2021 | B2 |
10999165 | Cidon et al. | May 2021 | B2 |
10999197 | Hooda et al. | May 2021 | B2 |
11005684 | Cidon | May 2021 | B2 |
11018995 | Cidon et al. | May 2021 | B2 |
11044190 | Ramaswamy et al. | Jun 2021 | B2 |
11050588 | Mayya et al. | Jun 2021 | B2 |
11050644 | Hegde et al. | Jun 2021 | B2 |
11071005 | Shen et al. | Jul 2021 | B2 |
11089111 | Markuze et al. | Aug 2021 | B2 |
11095612 | Oswal et al. | Aug 2021 | B1 |
11102032 | Cidon et al. | Aug 2021 | B2 |
11108595 | Knutsen et al. | Aug 2021 | B2 |
11108851 | Kurmala et al. | Aug 2021 | B1 |
11115347 | Gupta et al. | Sep 2021 | B2 |
11115426 | Pazhyannur et al. | Sep 2021 | B1 |
11115480 | Markuze et al. | Sep 2021 | B2 |
11121962 | Michael et al. | Sep 2021 | B2 |
11121985 | Cidon et al. | Sep 2021 | B2 |
11128492 | Sethi et al. | Sep 2021 | B2 |
11146632 | Rubenstein | Oct 2021 | B2 |
11153230 | Cidon et al. | Oct 2021 | B2 |
11171885 | Cidon et al. | Nov 2021 | B2 |
11212140 | Mukundan et al. | Dec 2021 | B2 |
11212238 | Cidon et al. | Dec 2021 | B2 |
11223514 | Mayya et al. | Jan 2022 | B2 |
11245641 | Ramaswamy et al. | Feb 2022 | B2 |
11252079 | Michael et al. | Feb 2022 | B2 |
11252105 | Cidon et al. | Feb 2022 | B2 |
11252106 | Cidon et al. | Feb 2022 | B2 |
11258728 | Cidon et al. | Feb 2022 | B2 |
11310170 | Cidon et al. | Apr 2022 | B2 |
11323307 | Mayya et al. | May 2022 | B2 |
11349722 | Mayya et al. | May 2022 | B2 |
11363124 | Markuze et al. | Jun 2022 | B2 |
11374904 | Mayya et al. | Jun 2022 | B2 |
11375005 | Rolando et al. | Jun 2022 | B1 |
11381474 | Kumar et al. | Jul 2022 | B1 |
11381499 | Ramaswamy et al. | Jul 2022 | B1 |
11388086 | Ramaswamy et al. | Jul 2022 | B1 |
11394640 | Ramaswamy et al. | Jul 2022 | B2 |
11418997 | Devadoss et al. | Aug 2022 | B2 |
11438789 | Devadoss et al. | Sep 2022 | B2 |
11444865 | Ramaswamy et al. | Sep 2022 | B2 |
11444872 | Mayya et al. | Sep 2022 | B2 |
11477127 | Ramaswamy et al. | Oct 2022 | B2 |
11489720 | Kempanna et al. | Nov 2022 | B1 |
11489783 | Ramaswamy et al. | Nov 2022 | B2 |
11509571 | Ramaswamy et al. | Nov 2022 | B1 |
11516049 | Cidon et al. | Nov 2022 | B2 |
11522780 | Wallace et al. | Dec 2022 | B1 |
11526434 | Brooker et al. | Dec 2022 | B1 |
11533248 | Mayya et al. | Dec 2022 | B2 |
11552874 | Pragada et al. | Jan 2023 | B1 |
11575591 | Ramaswamy et al. | Feb 2023 | B2 |
11575600 | Markuze et al. | Feb 2023 | B2 |
11582144 | Ramaswamy et al. | Feb 2023 | B2 |
11582298 | Hood et al. | Feb 2023 | B2 |
11582820 | Gundavelli | Feb 2023 | B2 |
11601356 | Gandhi et al. | Mar 2023 | B2 |
11606225 | Cidon et al. | Mar 2023 | B2 |
11606286 | Michael et al. | Mar 2023 | B2 |
11606314 | Cidon et al. | Mar 2023 | B2 |
11606712 | Devadoss et al. | Mar 2023 | B2 |
11611507 | Ramaswamy et al. | Mar 2023 | B2 |
11637768 | Ramaswamy et al. | Apr 2023 | B2 |
11677720 | Mayya et al. | Jun 2023 | B2 |
11689959 | Devadoss et al. | Jun 2023 | B2 |
11700196 | Michael et al. | Jul 2023 | B2 |
11706126 | Silva et al. | Jul 2023 | B2 |
11706127 | Michael et al. | Jul 2023 | B2 |
11709710 | Markuze et al. | Jul 2023 | B2 |
11716286 | Ramaswamy et al. | Aug 2023 | B2 |
11722925 | Devadoss et al. | Aug 2023 | B2 |
11729065 | Ramaswamy et al. | Aug 2023 | B2 |
20020049687 | Helsper et al. | Apr 2002 | A1 |
20020075542 | Kumar et al. | Jun 2002 | A1 |
20020085488 | Kobayashi | Jul 2002 | A1 |
20020087716 | Mustafa | Jul 2002 | A1 |
20020152306 | Tuck | Oct 2002 | A1 |
20020186682 | Kawano et al. | Dec 2002 | A1 |
20020198840 | Banka et al. | Dec 2002 | A1 |
20030050061 | Wu et al. | Mar 2003 | A1 |
20030061269 | Hathaway et al. | Mar 2003 | A1 |
20030088697 | Matsuhira | May 2003 | A1 |
20030112766 | Riedel et al. | Jun 2003 | A1 |
20030112808 | Solomon | Jun 2003 | A1 |
20030126468 | Markham | Jul 2003 | A1 |
20030161313 | Jinmei et al. | Aug 2003 | A1 |
20030161321 | Karam et al. | Aug 2003 | A1 |
20030189919 | Gupta et al. | Oct 2003 | A1 |
20030202506 | Perkins et al. | Oct 2003 | A1 |
20030219030 | Gubbi | Nov 2003 | A1 |
20040059831 | Chu et al. | Mar 2004 | A1 |
20040068668 | Lor et al. | Apr 2004 | A1 |
20040165601 | Liu et al. | Aug 2004 | A1 |
20040224771 | Chen et al. | Nov 2004 | A1 |
20050078690 | DeLangis | Apr 2005 | A1 |
20050149604 | Navada | Jul 2005 | A1 |
20050154790 | Nagata et al. | Jul 2005 | A1 |
20050172161 | Cruz et al. | Aug 2005 | A1 |
20050195754 | Nosella | Sep 2005 | A1 |
20050210479 | Andjelic | Sep 2005 | A1 |
20050265255 | Kodialam et al. | Dec 2005 | A1 |
20060002291 | Alicherry et al. | Jan 2006 | A1 |
20060034335 | Karaoguz et al. | Feb 2006 | A1 |
20060114838 | Mandavilli et al. | Jun 2006 | A1 |
20060171365 | Borella | Aug 2006 | A1 |
20060182034 | Klinker et al. | Aug 2006 | A1 |
20060182035 | Vasseur | Aug 2006 | A1 |
20060193247 | Naseh et al. | Aug 2006 | A1 |
20060193252 | Naseh et al. | Aug 2006 | A1 |
20060195605 | Sundarrajan et al. | Aug 2006 | A1 |
20060245414 | Susai et al. | Nov 2006 | A1 |
20070050594 | Augsburg et al. | Mar 2007 | A1 |
20070064604 | Chen et al. | Mar 2007 | A1 |
20070064702 | Bates et al. | Mar 2007 | A1 |
20070083727 | Johnston et al. | Apr 2007 | A1 |
20070091794 | Filsfils et al. | Apr 2007 | A1 |
20070103548 | Carter | May 2007 | A1 |
20070115812 | Hughes | May 2007 | A1 |
20070121486 | Guichard et al. | May 2007 | A1 |
20070130325 | Lesser | Jun 2007 | A1 |
20070162619 | Aloni et al. | Jul 2007 | A1 |
20070162639 | Chu et al. | Jul 2007 | A1 |
20070177511 | Das et al. | Aug 2007 | A1 |
20070195797 | Patel et al. | Aug 2007 | A1 |
20070237081 | Kodialam et al. | Oct 2007 | A1 |
20070260746 | Mirtorabi et al. | Nov 2007 | A1 |
20070268882 | Breslau et al. | Nov 2007 | A1 |
20080002670 | Bugenhagen et al. | Jan 2008 | A1 |
20080049621 | McGuire et al. | Feb 2008 | A1 |
20080055241 | Goldenberg et al. | Mar 2008 | A1 |
20080080509 | Khanna et al. | Apr 2008 | A1 |
20080095187 | Jung et al. | Apr 2008 | A1 |
20080117930 | Chakareski et al. | May 2008 | A1 |
20080144532 | Chamarajanagar et al. | Jun 2008 | A1 |
20080168086 | Miller et al. | Jul 2008 | A1 |
20080175150 | Bolt et al. | Jul 2008 | A1 |
20080181116 | Kavanaugh et al. | Jul 2008 | A1 |
20080219276 | Shah | Sep 2008 | A1 |
20080240121 | Xiong et al. | Oct 2008 | A1 |
20080263218 | Beerends et al. | Oct 2008 | A1 |
20090013210 | McIntosh et al. | Jan 2009 | A1 |
20090028092 | Rothschild | Jan 2009 | A1 |
20090125617 | Klessig et al. | May 2009 | A1 |
20090141642 | Sun | Jun 2009 | A1 |
20090154463 | Hines et al. | Jun 2009 | A1 |
20090182874 | Morford et al. | Jul 2009 | A1 |
20090247204 | Sennett et al. | Oct 2009 | A1 |
20090268605 | Campbell et al. | Oct 2009 | A1 |
20090274045 | Meier et al. | Nov 2009 | A1 |
20090276657 | Wetmore et al. | Nov 2009 | A1 |
20090303880 | Maltz et al. | Dec 2009 | A1 |
20100008361 | Guichard et al. | Jan 2010 | A1 |
20100017802 | Lojewski | Jan 2010 | A1 |
20100046532 | Okita | Feb 2010 | A1 |
20100061379 | Parandekar et al. | Mar 2010 | A1 |
20100080129 | Strahan et al. | Apr 2010 | A1 |
20100088440 | Banks et al. | Apr 2010 | A1 |
20100091782 | Hiscock | Apr 2010 | A1 |
20100091823 | Retana et al. | Apr 2010 | A1 |
20100098092 | Luo et al. | Apr 2010 | A1 |
20100100768 | Yamamoto et al. | Apr 2010 | A1 |
20100107162 | Edwards et al. | Apr 2010 | A1 |
20100118727 | Draves et al. | May 2010 | A1 |
20100118886 | Saavedra | May 2010 | A1 |
20100128600 | Srinivasmurthy et al. | May 2010 | A1 |
20100165985 | Sharma et al. | Jul 2010 | A1 |
20100191884 | Holenstein et al. | Jul 2010 | A1 |
20100223621 | Joshi et al. | Sep 2010 | A1 |
20100226246 | Proulx | Sep 2010 | A1 |
20100290422 | Haigh et al. | Nov 2010 | A1 |
20100309841 | Conte | Dec 2010 | A1 |
20100309912 | Mehta et al. | Dec 2010 | A1 |
20100322255 | Hao et al. | Dec 2010 | A1 |
20100332657 | Elyashev et al. | Dec 2010 | A1 |
20110001604 | Ludlow et al. | Jan 2011 | A1 |
20110007752 | Silva et al. | Jan 2011 | A1 |
20110032939 | Nozaki et al. | Feb 2011 | A1 |
20110035187 | DeJori et al. | Feb 2011 | A1 |
20110040814 | Higgins | Feb 2011 | A1 |
20110075674 | Li et al. | Mar 2011 | A1 |
20110078783 | Duan et al. | Mar 2011 | A1 |
20110107139 | Middlecamp et al. | May 2011 | A1 |
20110110370 | Moreno et al. | May 2011 | A1 |
20110141877 | Xu et al. | Jun 2011 | A1 |
20110142041 | Imai | Jun 2011 | A1 |
20110153909 | Dong | Jun 2011 | A1 |
20110235509 | Szymanski | Sep 2011 | A1 |
20110255397 | Kadakia et al. | Oct 2011 | A1 |
20110302663 | Prodan et al. | Dec 2011 | A1 |
20120008630 | Ould-Brahim | Jan 2012 | A1 |
20120027013 | Napierala | Feb 2012 | A1 |
20120039309 | Evans et al. | Feb 2012 | A1 |
20120099601 | Haddad et al. | Apr 2012 | A1 |
20120136697 | Peles et al. | May 2012 | A1 |
20120140935 | Kruglick | Jun 2012 | A1 |
20120157068 | Eichen et al. | Jun 2012 | A1 |
20120173694 | Yan et al. | Jul 2012 | A1 |
20120173919 | Patel et al. | Jul 2012 | A1 |
20120182940 | Taleb et al. | Jul 2012 | A1 |
20120221955 | Raleigh et al. | Aug 2012 | A1 |
20120227093 | Shatzkamer et al. | Sep 2012 | A1 |
20120240185 | Kapoor et al. | Sep 2012 | A1 |
20120250682 | Vincent et al. | Oct 2012 | A1 |
20120250686 | Vincent et al. | Oct 2012 | A1 |
20120266026 | Chikkalingaiah et al. | Oct 2012 | A1 |
20120281706 | Agarwal et al. | Nov 2012 | A1 |
20120287818 | Corti et al. | Nov 2012 | A1 |
20120300615 | Kempf et al. | Nov 2012 | A1 |
20120307659 | Yamada | Dec 2012 | A1 |
20120317270 | Vrbaski et al. | Dec 2012 | A1 |
20120317291 | Wolfe | Dec 2012 | A1 |
20130007505 | Spear | Jan 2013 | A1 |
20130019005 | Hui et al. | Jan 2013 | A1 |
20130021968 | Reznik et al. | Jan 2013 | A1 |
20130044764 | Casado et al. | Feb 2013 | A1 |
20130051237 | Ong | Feb 2013 | A1 |
20130051399 | Zhang et al. | Feb 2013 | A1 |
20130054763 | Merwe et al. | Feb 2013 | A1 |
20130086267 | Gelenbe et al. | Apr 2013 | A1 |
20130097304 | Asthana et al. | Apr 2013 | A1 |
20130103729 | Cooney et al. | Apr 2013 | A1 |
20130103834 | Dzerve et al. | Apr 2013 | A1 |
20130117530 | Kim et al. | May 2013 | A1 |
20130124718 | Griffith et al. | May 2013 | A1 |
20130124911 | Griffith et al. | May 2013 | A1 |
20130124912 | Griffith et al. | May 2013 | A1 |
20130128757 | Chowdhary et al. | May 2013 | A1 |
20130128889 | Mathur et al. | May 2013 | A1 |
20130142201 | Kim et al. | Jun 2013 | A1 |
20130170354 | Takashima et al. | Jul 2013 | A1 |
20130173768 | Kundu et al. | Jul 2013 | A1 |
20130173788 | Song | Jul 2013 | A1 |
20130182712 | Aguayo et al. | Jul 2013 | A1 |
20130185446 | Zeng et al. | Jul 2013 | A1 |
20130185729 | Vasic et al. | Jul 2013 | A1 |
20130191688 | Agarwal et al. | Jul 2013 | A1 |
20130223226 | Narayanan et al. | Aug 2013 | A1 |
20130223454 | Dunbar et al. | Aug 2013 | A1 |
20130235870 | Tripathi et al. | Sep 2013 | A1 |
20130238782 | Zhao et al. | Sep 2013 | A1 |
20130242718 | Zhang | Sep 2013 | A1 |
20130254599 | Katkar et al. | Sep 2013 | A1 |
20130258839 | Wang et al. | Oct 2013 | A1 |
20130258847 | Zhang et al. | Oct 2013 | A1 |
20130258939 | Wang | Oct 2013 | A1 |
20130266015 | Qu et al. | Oct 2013 | A1 |
20130266019 | Qu et al. | Oct 2013 | A1 |
20130283364 | Chang et al. | Oct 2013 | A1 |
20130286846 | Atlas et al. | Oct 2013 | A1 |
20130297611 | Moritz et al. | Nov 2013 | A1 |
20130297770 | Zhang | Nov 2013 | A1 |
20130301469 | Suga | Nov 2013 | A1 |
20130301642 | Radhakrishnan et al. | Nov 2013 | A1 |
20130308444 | Sem-Jacobsen et al. | Nov 2013 | A1 |
20130315242 | Wang et al. | Nov 2013 | A1 |
20130315243 | Huang et al. | Nov 2013 | A1 |
20130329548 | Nakil et al. | Dec 2013 | A1 |
20130329601 | Yin et al. | Dec 2013 | A1 |
20130329734 | Chesla et al. | Dec 2013 | A1 |
20130346470 | Obstfeld et al. | Dec 2013 | A1 |
20140016464 | Shirazipour et al. | Jan 2014 | A1 |
20140019604 | Twitchell, Jr. | Jan 2014 | A1 |
20140019750 | Dodgson et al. | Jan 2014 | A1 |
20140040975 | Raleigh et al. | Feb 2014 | A1 |
20140064283 | Balus et al. | Mar 2014 | A1 |
20140071832 | Johnsson et al. | Mar 2014 | A1 |
20140092907 | Sridhar et al. | Apr 2014 | A1 |
20140108665 | Arora et al. | Apr 2014 | A1 |
20140112171 | Pasdar | Apr 2014 | A1 |
20140115584 | Mudigonda et al. | Apr 2014 | A1 |
20140122559 | Branson et al. | May 2014 | A1 |
20140123135 | Huang et al. | May 2014 | A1 |
20140126418 | Brendel et al. | May 2014 | A1 |
20140156818 | Hunt | Jun 2014 | A1 |
20140156823 | Liu et al. | Jun 2014 | A1 |
20140157363 | Banerjee | Jun 2014 | A1 |
20140160935 | Zecharia et al. | Jun 2014 | A1 |
20140164560 | Ko et al. | Jun 2014 | A1 |
20140164617 | Jalan et al. | Jun 2014 | A1 |
20140164718 | Schaik et al. | Jun 2014 | A1 |
20140173113 | Vemuri et al. | Jun 2014 | A1 |
20140173331 | Martin et al. | Jun 2014 | A1 |
20140181824 | Saund et al. | Jun 2014 | A1 |
20140189074 | Parker | Jul 2014 | A1 |
20140208317 | Nakagawa | Jul 2014 | A1 |
20140219135 | Li et al. | Aug 2014 | A1 |
20140223507 | Xu | Aug 2014 | A1 |
20140226664 | Chen et al. | Aug 2014 | A1 |
20140229210 | Sharifian et al. | Aug 2014 | A1 |
20140244851 | Lee | Aug 2014 | A1 |
20140258535 | Zhang | Sep 2014 | A1 |
20140269690 | Tu | Sep 2014 | A1 |
20140279862 | Dietz et al. | Sep 2014 | A1 |
20140280499 | Basavaiah et al. | Sep 2014 | A1 |
20140310282 | Sprague et al. | Oct 2014 | A1 |
20140317440 | Biermayr et al. | Oct 2014 | A1 |
20140321277 | Lynn, Jr. et al. | Oct 2014 | A1 |
20140337500 | Lee | Nov 2014 | A1 |
20140337674 | Ivancic et al. | Nov 2014 | A1 |
20140341109 | Cartmell et al. | Nov 2014 | A1 |
20140351394 | Elisha | Nov 2014 | A1 |
20140355441 | Jain | Dec 2014 | A1 |
20140365834 | Stone et al. | Dec 2014 | A1 |
20140372582 | Ghanwani et al. | Dec 2014 | A1 |
20150003240 | Drwiega et al. | Jan 2015 | A1 |
20150016249 | Mukundan et al. | Jan 2015 | A1 |
20150029864 | Raileanu et al. | Jan 2015 | A1 |
20150039744 | Niazi et al. | Feb 2015 | A1 |
20150046572 | Cheng et al. | Feb 2015 | A1 |
20150052247 | Threefoot et al. | Feb 2015 | A1 |
20150052517 | Raghu et al. | Feb 2015 | A1 |
20150056960 | Egner et al. | Feb 2015 | A1 |
20150058917 | Xu | Feb 2015 | A1 |
20150088942 | Shah | Mar 2015 | A1 |
20150089628 | Lang | Mar 2015 | A1 |
20150092603 | Aguayo et al. | Apr 2015 | A1 |
20150096011 | Watt | Apr 2015 | A1 |
20150100958 | Banavalikar et al. | Apr 2015 | A1 |
20150106809 | Reddy et al. | Apr 2015 | A1 |
20150124603 | Ketheesan et al. | May 2015 | A1 |
20150134777 | Onoue | May 2015 | A1 |
20150139238 | Pourzandi et al. | May 2015 | A1 |
20150146539 | Mehta et al. | May 2015 | A1 |
20150163152 | Li | Jun 2015 | A1 |
20150169340 | Haddad et al. | Jun 2015 | A1 |
20150172121 | Farkas et al. | Jun 2015 | A1 |
20150172169 | DeCusatis et al. | Jun 2015 | A1 |
20150188823 | Williams et al. | Jul 2015 | A1 |
20150189009 | Bemmel | Jul 2015 | A1 |
20150195178 | Bhattacharya et al. | Jul 2015 | A1 |
20150201036 | Nishiki et al. | Jul 2015 | A1 |
20150222543 | Song | Aug 2015 | A1 |
20150222638 | Morley | Aug 2015 | A1 |
20150236945 | Michael et al. | Aug 2015 | A1 |
20150236962 | Veres et al. | Aug 2015 | A1 |
20150244617 | Nakil et al. | Aug 2015 | A1 |
20150249644 | Xu | Sep 2015 | A1 |
20150257081 | Ramanujan et al. | Sep 2015 | A1 |
20150264055 | Budhani et al. | Sep 2015 | A1 |
20150271056 | Chunduri et al. | Sep 2015 | A1 |
20150271104 | Chikkamath et al. | Sep 2015 | A1 |
20150271303 | Neginhal et al. | Sep 2015 | A1 |
20150281004 | Kakadia et al. | Oct 2015 | A1 |
20150312142 | Barabash et al. | Oct 2015 | A1 |
20150312760 | O'Toole | Oct 2015 | A1 |
20150317169 | Sinha et al. | Nov 2015 | A1 |
20150326426 | Luo et al. | Nov 2015 | A1 |
20150334025 | Rader | Nov 2015 | A1 |
20150334696 | Gu et al. | Nov 2015 | A1 |
20150341271 | Gomez | Nov 2015 | A1 |
20150349978 | Wu et al. | Dec 2015 | A1 |
20150350907 | Timariu et al. | Dec 2015 | A1 |
20150358232 | Chen et al. | Dec 2015 | A1 |
20150358236 | Roach et al. | Dec 2015 | A1 |
20150363221 | Terayama et al. | Dec 2015 | A1 |
20150363733 | Brown | Dec 2015 | A1 |
20150365323 | Duminuco et al. | Dec 2015 | A1 |
20150372943 | Hasan et al. | Dec 2015 | A1 |
20150372982 | Herle et al. | Dec 2015 | A1 |
20150381407 | Wang et al. | Dec 2015 | A1 |
20150381462 | Choi et al. | Dec 2015 | A1 |
20150381493 | Bansal et al. | Dec 2015 | A1 |
20160019317 | Pawar et al. | Jan 2016 | A1 |
20160020844 | Hart et al. | Jan 2016 | A1 |
20160021597 | Hart et al. | Jan 2016 | A1 |
20160035183 | Buchholz et al. | Feb 2016 | A1 |
20160036924 | Koppolu et al. | Feb 2016 | A1 |
20160036938 | Aviles et al. | Feb 2016 | A1 |
20160037434 | Gopal et al. | Feb 2016 | A1 |
20160072669 | Saavedra | Mar 2016 | A1 |
20160072684 | Manuguri et al. | Mar 2016 | A1 |
20160080268 | Anand et al. | Mar 2016 | A1 |
20160080502 | Yadav et al. | Mar 2016 | A1 |
20160105353 | Cociglio | Apr 2016 | A1 |
20160105392 | Thakkar et al. | Apr 2016 | A1 |
20160105471 | Nunes et al. | Apr 2016 | A1 |
20160105488 | Thakkar et al. | Apr 2016 | A1 |
20160117185 | Fang et al. | Apr 2016 | A1 |
20160134461 | Sampath et al. | May 2016 | A1 |
20160134527 | Kwak et al. | May 2016 | A1 |
20160134528 | Lin et al. | May 2016 | A1 |
20160134591 | Liao et al. | May 2016 | A1 |
20160142373 | Ossipov | May 2016 | A1 |
20160147607 | Dornemann et al. | May 2016 | A1 |
20160150055 | Choi | May 2016 | A1 |
20160164832 | Bellagamba et al. | Jun 2016 | A1 |
20160164914 | Madhav et al. | Jun 2016 | A1 |
20160173338 | Wolting | Jun 2016 | A1 |
20160191363 | Haraszti et al. | Jun 2016 | A1 |
20160191374 | Singh et al. | Jun 2016 | A1 |
20160192403 | Gupta et al. | Jun 2016 | A1 |
20160197834 | Luft | Jul 2016 | A1 |
20160197835 | Luft | Jul 2016 | A1 |
20160198003 | Luft | Jul 2016 | A1 |
20160205071 | Cooper et al. | Jul 2016 | A1 |
20160210209 | Verkaik et al. | Jul 2016 | A1 |
20160212773 | Kanderholm et al. | Jul 2016 | A1 |
20160218947 | Hughes et al. | Jul 2016 | A1 |
20160218951 | Vasseur et al. | Jul 2016 | A1 |
20160234099 | Jiao | Aug 2016 | A1 |
20160234161 | Banerjee et al. | Aug 2016 | A1 |
20160255169 | Kovvuri et al. | Sep 2016 | A1 |
20160255542 | Hughes et al. | Sep 2016 | A1 |
20160261493 | Li | Sep 2016 | A1 |
20160261495 | Xia et al. | Sep 2016 | A1 |
20160261506 | Hegde et al. | Sep 2016 | A1 |
20160261639 | Xu | Sep 2016 | A1 |
20160269298 | Li et al. | Sep 2016 | A1 |
20160269926 | Sundaram | Sep 2016 | A1 |
20160285736 | Gu | Sep 2016 | A1 |
20160299775 | Madapurath et al. | Oct 2016 | A1 |
20160301471 | Kunz et al. | Oct 2016 | A1 |
20160308762 | Teng et al. | Oct 2016 | A1 |
20160315912 | Mayya et al. | Oct 2016 | A1 |
20160323377 | Einkauf et al. | Nov 2016 | A1 |
20160328159 | Coddington et al. | Nov 2016 | A1 |
20160330111 | Manghirmalani et al. | Nov 2016 | A1 |
20160337202 | Ben-Itzhak et al. | Nov 2016 | A1 |
20160352588 | Subbarayan et al. | Dec 2016 | A1 |
20160353268 | Senarath et al. | Dec 2016 | A1 |
20160359738 | Sullenberger et al. | Dec 2016 | A1 |
20160366187 | Kamble | Dec 2016 | A1 |
20160371153 | Dornemann | Dec 2016 | A1 |
20160378527 | Zamir | Dec 2016 | A1 |
20160380886 | Blair et al. | Dec 2016 | A1 |
20160380906 | Hodique et al. | Dec 2016 | A1 |
20170005986 | Bansal et al. | Jan 2017 | A1 |
20170006499 | Hampel et al. | Jan 2017 | A1 |
20170012870 | Blair et al. | Jan 2017 | A1 |
20170019428 | Cohn | Jan 2017 | A1 |
20170024260 | Chandrasekaran et al. | Jan 2017 | A1 |
20170026273 | Yao et al. | Jan 2017 | A1 |
20170026283 | Williams et al. | Jan 2017 | A1 |
20170026355 | Mathaiyan et al. | Jan 2017 | A1 |
20170034046 | Cai et al. | Feb 2017 | A1 |
20170034052 | Chanda et al. | Feb 2017 | A1 |
20170034129 | Sawant et al. | Feb 2017 | A1 |
20170048296 | Ramalho et al. | Feb 2017 | A1 |
20170053258 | Carney et al. | Feb 2017 | A1 |
20170055131 | Kong et al. | Feb 2017 | A1 |
20170063674 | Maskalik et al. | Mar 2017 | A1 |
20170063782 | Jain et al. | Mar 2017 | A1 |
20170063783 | Yong et al. | Mar 2017 | A1 |
20170063794 | Jain et al. | Mar 2017 | A1 |
20170064005 | Lee | Mar 2017 | A1 |
20170075710 | Prasad et al. | Mar 2017 | A1 |
20170093625 | Pera et al. | Mar 2017 | A1 |
20170097841 | Chang et al. | Apr 2017 | A1 |
20170104653 | Badea et al. | Apr 2017 | A1 |
20170104755 | Arregoces et al. | Apr 2017 | A1 |
20170109212 | Gaurav et al. | Apr 2017 | A1 |
20170118067 | Vedula | Apr 2017 | A1 |
20170118173 | Arramreddy et al. | Apr 2017 | A1 |
20170123939 | Maheshwari et al. | May 2017 | A1 |
20170126475 | Mahkonen et al. | May 2017 | A1 |
20170126516 | Tiagi et al. | May 2017 | A1 |
20170126564 | Mayya et al. | May 2017 | A1 |
20170134186 | Mukundan et al. | May 2017 | A1 |
20170134520 | Abbasi et al. | May 2017 | A1 |
20170139789 | Fries et al. | May 2017 | A1 |
20170142000 | Cai et al. | May 2017 | A1 |
20170149637 | Banikazemi et al. | May 2017 | A1 |
20170155557 | Desai et al. | Jun 2017 | A1 |
20170155566 | Martinsen et al. | Jun 2017 | A1 |
20170155590 | Dillon et al. | Jun 2017 | A1 |
20170163473 | Sadana et al. | Jun 2017 | A1 |
20170171024 | Anerousis et al. | Jun 2017 | A1 |
20170171310 | Gardner | Jun 2017 | A1 |
20170180220 | Leckey et al. | Jun 2017 | A1 |
20170181210 | Nadella et al. | Jun 2017 | A1 |
20170195161 | Ruel et al. | Jul 2017 | A1 |
20170195169 | Mills et al. | Jul 2017 | A1 |
20170201568 | Hussam et al. | Jul 2017 | A1 |
20170201585 | Doraiswamy et al. | Jul 2017 | A1 |
20170207976 | Rovner et al. | Jul 2017 | A1 |
20170214545 | Cheng et al. | Jul 2017 | A1 |
20170214701 | Hasan | Jul 2017 | A1 |
20170223117 | Messerli et al. | Aug 2017 | A1 |
20170236060 | Ignatyev | Aug 2017 | A1 |
20170237710 | Mayya et al. | Aug 2017 | A1 |
20170242784 | Heorhiadi et al. | Aug 2017 | A1 |
20170257260 | Govindan et al. | Sep 2017 | A1 |
20170257309 | Appanna | Sep 2017 | A1 |
20170264496 | Ao et al. | Sep 2017 | A1 |
20170279717 | Bethers et al. | Sep 2017 | A1 |
20170279741 | Elias et al. | Sep 2017 | A1 |
20170279803 | Desai et al. | Sep 2017 | A1 |
20170280474 | Vesterinen et al. | Sep 2017 | A1 |
20170288987 | Pasupathy et al. | Oct 2017 | A1 |
20170289002 | Ganguli et al. | Oct 2017 | A1 |
20170289027 | Ratnasingham | Oct 2017 | A1 |
20170295264 | Touitou et al. | Oct 2017 | A1 |
20170302501 | Shi et al. | Oct 2017 | A1 |
20170302565 | Ghobadi et al. | Oct 2017 | A1 |
20170310641 | Jiang et al. | Oct 2017 | A1 |
20170310691 | Vasseur et al. | Oct 2017 | A1 |
20170317945 | Guo et al. | Nov 2017 | A1 |
20170317954 | Masurekar et al. | Nov 2017 | A1 |
20170317969 | Masurekar et al. | Nov 2017 | A1 |
20170317974 | Masurekar et al. | Nov 2017 | A1 |
20170324628 | Dhanabalan | Nov 2017 | A1 |
20170337086 | Zhu et al. | Nov 2017 | A1 |
20170339022 | Hegde et al. | Nov 2017 | A1 |
20170339054 | Yadav et al. | Nov 2017 | A1 |
20170339070 | Chang et al. | Nov 2017 | A1 |
20170346722 | Smith et al. | Nov 2017 | A1 |
20170364419 | Lo | Dec 2017 | A1 |
20170366445 | Nemirovsky et al. | Dec 2017 | A1 |
20170366467 | Martin et al. | Dec 2017 | A1 |
20170373950 | Szilagyi et al. | Dec 2017 | A1 |
20170374174 | Evens et al. | Dec 2017 | A1 |
20180006995 | Bickhart et al. | Jan 2018 | A1 |
20180007005 | Chanda et al. | Jan 2018 | A1 |
20180007123 | Cheng et al. | Jan 2018 | A1 |
20180013636 | Seetharamaiah et al. | Jan 2018 | A1 |
20180014051 | Phillips et al. | Jan 2018 | A1 |
20180020035 | Boggia et al. | Jan 2018 | A1 |
20180034668 | Mayya et al. | Feb 2018 | A1 |
20180041425 | Zhang | Feb 2018 | A1 |
20180041470 | Schultz et al. | Feb 2018 | A1 |
20180062875 | Tumuluru | Mar 2018 | A1 |
20180062914 | Boutros et al. | Mar 2018 | A1 |
20180062917 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063036 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063193 | Chandrashekhar et al. | Mar 2018 | A1 |
20180063233 | Park | Mar 2018 | A1 |
20180063743 | Tumuluru et al. | Mar 2018 | A1 |
20180069924 | Tumuluru et al. | Mar 2018 | A1 |
20180074909 | Bishop et al. | Mar 2018 | A1 |
20180077081 | Lauer et al. | Mar 2018 | A1 |
20180077202 | Xu | Mar 2018 | A1 |
20180084081 | Kuchibhotla et al. | Mar 2018 | A1 |
20180091370 | Arai | Mar 2018 | A1 |
20180097725 | Wood et al. | Apr 2018 | A1 |
20180114569 | Strachan et al. | Apr 2018 | A1 |
20180123910 | Fitzgibbon | May 2018 | A1 |
20180123946 | Ramachandran et al. | May 2018 | A1 |
20180131608 | Jiang et al. | May 2018 | A1 |
20180131615 | Zhang | May 2018 | A1 |
20180131720 | Hobson et al. | May 2018 | A1 |
20180145899 | Rao | May 2018 | A1 |
20180159796 | Wang et al. | Jun 2018 | A1 |
20180159856 | Gujarathi | Jun 2018 | A1 |
20180167378 | Kostyukov et al. | Jun 2018 | A1 |
20180176073 | Dubey et al. | Jun 2018 | A1 |
20180176082 | Katz et al. | Jun 2018 | A1 |
20180176130 | Banerjee et al. | Jun 2018 | A1 |
20180176252 | Nimmagadda et al. | Jun 2018 | A1 |
20180181423 | Gunda et al. | Jun 2018 | A1 |
20180205746 | Boutnaru et al. | Jul 2018 | A1 |
20180213472 | Ishii et al. | Jul 2018 | A1 |
20180219765 | Michael et al. | Aug 2018 | A1 |
20180219766 | Michael et al. | Aug 2018 | A1 |
20180234300 | Mayya et al. | Aug 2018 | A1 |
20180248790 | Tan et al. | Aug 2018 | A1 |
20180260125 | Botes et al. | Sep 2018 | A1 |
20180261085 | Liu et al. | Sep 2018 | A1 |
20180262468 | Kumar et al. | Sep 2018 | A1 |
20180270104 | Zheng et al. | Sep 2018 | A1 |
20180278541 | Wu et al. | Sep 2018 | A1 |
20180287907 | Kulshreshtha et al. | Oct 2018 | A1 |
20180295101 | Gehrmann | Oct 2018 | A1 |
20180295529 | Jen et al. | Oct 2018 | A1 |
20180302286 | Mayya et al. | Oct 2018 | A1 |
20180302321 | Manthiramoorthy et al. | Oct 2018 | A1 |
20180307851 | Lewis | Oct 2018 | A1 |
20180316606 | Sung et al. | Nov 2018 | A1 |
20180351855 | Sood et al. | Dec 2018 | A1 |
20180351862 | Jeganathan et al. | Dec 2018 | A1 |
20180351863 | Vairavakkalai et al. | Dec 2018 | A1 |
20180351882 | Jeganathan et al. | Dec 2018 | A1 |
20180359323 | Madden | Dec 2018 | A1 |
20180367445 | Bajaj | Dec 2018 | A1 |
20180373558 | Chang et al. | Dec 2018 | A1 |
20180375744 | Mayya et al. | Dec 2018 | A1 |
20180375824 | Mayya et al. | Dec 2018 | A1 |
20180375967 | Pithawala et al. | Dec 2018 | A1 |
20190013883 | Vargas et al. | Jan 2019 | A1 |
20190014038 | Ritchie | Jan 2019 | A1 |
20190020588 | Twitchell, Jr. | Jan 2019 | A1 |
20190020627 | Yuan | Jan 2019 | A1 |
20190021085 | Mochizuki et al. | Jan 2019 | A1 |
20190028378 | Houjyo et al. | Jan 2019 | A1 |
20190028552 | Johnson et al. | Jan 2019 | A1 |
20190036808 | Shenoy et al. | Jan 2019 | A1 |
20190036810 | Michael et al. | Jan 2019 | A1 |
20190036813 | Shenoy et al. | Jan 2019 | A1 |
20190046056 | Khachaturian et al. | Feb 2019 | A1 |
20190058657 | Chunduri et al. | Feb 2019 | A1 |
20190058709 | Kempf et al. | Feb 2019 | A1 |
20190068470 | Mirsky | Feb 2019 | A1 |
20190068493 | Ram et al. | Feb 2019 | A1 |
20190068500 | Hira | Feb 2019 | A1 |
20190075083 | Mayya et al. | Mar 2019 | A1 |
20190081894 | Yousaf et al. | Mar 2019 | A1 |
20190103990 | Cidon et al. | Apr 2019 | A1 |
20190103991 | Cidon et al. | Apr 2019 | A1 |
20190103992 | Cidon et al. | Apr 2019 | A1 |
20190103993 | Cidon et al. | Apr 2019 | A1 |
20190104035 | Cidon et al. | Apr 2019 | A1 |
20190104049 | Cidon et al. | Apr 2019 | A1 |
20190104050 | Cidon et al. | Apr 2019 | A1 |
20190104051 | Cidon et al. | Apr 2019 | A1 |
20190104052 | Cidon et al. | Apr 2019 | A1 |
20190104053 | Cidon et al. | Apr 2019 | A1 |
20190104063 | Cidon et al. | Apr 2019 | A1 |
20190104064 | Cidon et al. | Apr 2019 | A1 |
20190104109 | Cidon et al. | Apr 2019 | A1 |
20190104111 | Cidon et al. | Apr 2019 | A1 |
20190104413 | Cidon et al. | Apr 2019 | A1 |
20190109769 | Jain et al. | Apr 2019 | A1 |
20190132221 | Boutros et al. | May 2019 | A1 |
20190132234 | Dong et al. | May 2019 | A1 |
20190132322 | Song et al. | May 2019 | A1 |
20190140889 | Mayya et al. | May 2019 | A1 |
20190140890 | Mayya et al. | May 2019 | A1 |
20190149525 | Gunda et al. | May 2019 | A1 |
20190158371 | Dillon et al. | May 2019 | A1 |
20190158605 | Markuze et al. | May 2019 | A1 |
20190199539 | Deng et al. | Jun 2019 | A1 |
20190220703 | Prakash et al. | Jul 2019 | A1 |
20190222499 | Chen et al. | Jul 2019 | A1 |
20190238364 | Boutros et al. | Aug 2019 | A1 |
20190238446 | Barzik et al. | Aug 2019 | A1 |
20190238449 | Michael et al. | Aug 2019 | A1 |
20190238450 | Michael et al. | Aug 2019 | A1 |
20190238483 | Marichetty et al. | Aug 2019 | A1 |
20190238497 | Tourrilhes et al. | Aug 2019 | A1 |
20190268421 | Markuze et al. | Aug 2019 | A1 |
20190268973 | Bull et al. | Aug 2019 | A1 |
20190278631 | Bernat et al. | Sep 2019 | A1 |
20190280962 | Michael et al. | Sep 2019 | A1 |
20190280963 | Michael et al. | Sep 2019 | A1 |
20190280964 | Michael et al. | Sep 2019 | A1 |
20190288875 | Shen et al. | Sep 2019 | A1 |
20190306197 | Degioanni | Oct 2019 | A1 |
20190306282 | Masputra et al. | Oct 2019 | A1 |
20190313278 | Liu | Oct 2019 | A1 |
20190313907 | Khachaturian et al. | Oct 2019 | A1 |
20190319847 | Nahar et al. | Oct 2019 | A1 |
20190319881 | Maskara et al. | Oct 2019 | A1 |
20190327109 | Guichard et al. | Oct 2019 | A1 |
20190334786 | Dutta et al. | Oct 2019 | A1 |
20190334813 | Raj et al. | Oct 2019 | A1 |
20190334820 | Zhao | Oct 2019 | A1 |
20190342201 | Singh | Nov 2019 | A1 |
20190342219 | Liu et al. | Nov 2019 | A1 |
20190356736 | Narayanaswamy et al. | Nov 2019 | A1 |
20190364099 | Thakkar et al. | Nov 2019 | A1 |
20190364456 | Yu | Nov 2019 | A1 |
20190372888 | Michael et al. | Dec 2019 | A1 |
20190372889 | Michael et al. | Dec 2019 | A1 |
20190372890 | Michael et al. | Dec 2019 | A1 |
20190394081 | Tahhan et al. | Dec 2019 | A1 |
20200014609 | Hockett et al. | Jan 2020 | A1 |
20200014615 | Michael et al. | Jan 2020 | A1 |
20200014616 | Michael et al. | Jan 2020 | A1 |
20200014661 | Mayya et al. | Jan 2020 | A1 |
20200014663 | Chen et al. | Jan 2020 | A1 |
20200021514 | Michael et al. | Jan 2020 | A1 |
20200021515 | Michael et al. | Jan 2020 | A1 |
20200036624 | Michael et al. | Jan 2020 | A1 |
20200044943 | Bor-Yaliniz et al. | Feb 2020 | A1 |
20200044969 | Hao et al. | Feb 2020 | A1 |
20200059420 | Abraham | Feb 2020 | A1 |
20200059457 | Raza et al. | Feb 2020 | A1 |
20200059459 | Abraham et al. | Feb 2020 | A1 |
20200067831 | Spraggins et al. | Feb 2020 | A1 |
20200092207 | Sipra et al. | Mar 2020 | A1 |
20200097327 | Beyer et al. | Mar 2020 | A1 |
20200099625 | Yigit et al. | Mar 2020 | A1 |
20200099659 | Cometto et al. | Mar 2020 | A1 |
20200106696 | Michael et al. | Apr 2020 | A1 |
20200106706 | Mayya et al. | Apr 2020 | A1 |
20200119952 | Mayya et al. | Apr 2020 | A1 |
20200127905 | Mayya et al. | Apr 2020 | A1 |
20200127911 | Gilson et al. | Apr 2020 | A1 |
20200153701 | Mohan et al. | May 2020 | A1 |
20200153736 | Liebherr et al. | May 2020 | A1 |
20200159661 | Keymolen et al. | May 2020 | A1 |
20200162407 | Tillotson | May 2020 | A1 |
20200169473 | Rimar et al. | May 2020 | A1 |
20200177503 | Hooda et al. | Jun 2020 | A1 |
20200177550 | Valluri et al. | Jun 2020 | A1 |
20200177629 | Hooda et al. | Jun 2020 | A1 |
20200186471 | Shen et al. | Jun 2020 | A1 |
20200195557 | Duan et al. | Jun 2020 | A1 |
20200204460 | Schneider et al. | Jun 2020 | A1 |
20200213212 | Dillon et al. | Jul 2020 | A1 |
20200213224 | Cheng et al. | Jul 2020 | A1 |
20200218558 | Sreenath et al. | Jul 2020 | A1 |
20200235990 | Janakiraman et al. | Jul 2020 | A1 |
20200235999 | Mayya et al. | Jul 2020 | A1 |
20200236046 | Jain et al. | Jul 2020 | A1 |
20200241927 | Yang et al. | Jul 2020 | A1 |
20200244721 | S et al. | Jul 2020 | A1 |
20200252234 | Ramamoorthi et al. | Aug 2020 | A1 |
20200259700 | Bhalla et al. | Aug 2020 | A1 |
20200267184 | Vera-Schockner | Aug 2020 | A1 |
20200267203 | Jindal et al. | Aug 2020 | A1 |
20200280587 | Janakiraman et al. | Sep 2020 | A1 |
20200287819 | Theogaraj et al. | Sep 2020 | A1 |
20200287976 | Theogaraj et al. | Sep 2020 | A1 |
20200296011 | Jain et al. | Sep 2020 | A1 |
20200296026 | Michael et al. | Sep 2020 | A1 |
20200301764 | Thoresen et al. | Sep 2020 | A1 |
20200314006 | Mackie et al. | Oct 2020 | A1 |
20200314614 | Moustafa et al. | Oct 2020 | A1 |
20200322230 | Natal et al. | Oct 2020 | A1 |
20200322287 | Connor et al. | Oct 2020 | A1 |
20200336336 | Sethi et al. | Oct 2020 | A1 |
20200344089 | Motwani et al. | Oct 2020 | A1 |
20200344143 | Faseela et al. | Oct 2020 | A1 |
20200344163 | Gupta et al. | Oct 2020 | A1 |
20200351188 | Arora et al. | Nov 2020 | A1 |
20200358878 | Bansal et al. | Nov 2020 | A1 |
20200366530 | Mukundan et al. | Nov 2020 | A1 |
20200366562 | Mayya et al. | Nov 2020 | A1 |
20200382345 | Zhao et al. | Dec 2020 | A1 |
20200382387 | Pasupathy et al. | Dec 2020 | A1 |
20200403821 | Dev et al. | Dec 2020 | A1 |
20200412483 | Tan et al. | Dec 2020 | A1 |
20200412576 | Kondapavuluru et al. | Dec 2020 | A1 |
20200413283 | Shen et al. | Dec 2020 | A1 |
20210006482 | Hwang et al. | Jan 2021 | A1 |
20210006490 | Michael et al. | Jan 2021 | A1 |
20210021538 | Meck et al. | Jan 2021 | A1 |
20210029019 | Kottapalli | Jan 2021 | A1 |
20210029088 | Mayya et al. | Jan 2021 | A1 |
20210036888 | Makkalla et al. | Feb 2021 | A1 |
20210036987 | Mishra et al. | Feb 2021 | A1 |
20210037159 | Shimokawa | Feb 2021 | A1 |
20210049191 | Masson et al. | Feb 2021 | A1 |
20210067372 | Cidon et al. | Mar 2021 | A1 |
20210067373 | Cidon et al. | Mar 2021 | A1 |
20210067374 | Cidon et al. | Mar 2021 | A1 |
20210067375 | Cidon et al. | Mar 2021 | A1 |
20210067407 | Cidon et al. | Mar 2021 | A1 |
20210067427 | Cidon et al. | Mar 2021 | A1 |
20210067442 | Sundararajan et al. | Mar 2021 | A1 |
20210067461 | Cidon et al. | Mar 2021 | A1 |
20210067464 | Cidon et al. | Mar 2021 | A1 |
20210067467 | Cidon et al. | Mar 2021 | A1 |
20210067468 | Cidon et al. | Mar 2021 | A1 |
20210073001 | Rogers et al. | Mar 2021 | A1 |
20210092062 | Dhanabalan et al. | Mar 2021 | A1 |
20210099360 | Parsons et al. | Apr 2021 | A1 |
20210105199 | H et al. | Apr 2021 | A1 |
20210111998 | Saavedra | Apr 2021 | A1 |
20210112034 | Sundararajan et al. | Apr 2021 | A1 |
20210126830 | R. et al. | Apr 2021 | A1 |
20210126853 | Ramaswamy et al. | Apr 2021 | A1 |
20210126854 | Guo et al. | Apr 2021 | A1 |
20210126860 | Ramaswamy et al. | Apr 2021 | A1 |
20210144091 | H et al. | May 2021 | A1 |
20210160169 | Shen et al. | May 2021 | A1 |
20210160813 | Gupta et al. | May 2021 | A1 |
20210176255 | Hill et al. | Jun 2021 | A1 |
20210184952 | Mayya et al. | Jun 2021 | A1 |
20210184966 | Ramaswamy et al. | Jun 2021 | A1 |
20210184983 | Ramaswamy et al. | Jun 2021 | A1 |
20210194814 | Roux et al. | Jun 2021 | A1 |
20210204164 | Yavuz | Jul 2021 | A1 |
20210226880 | Ramamoorthy et al. | Jul 2021 | A1 |
20210234728 | Cidon et al. | Jul 2021 | A1 |
20210234775 | Devadoss et al. | Jul 2021 | A1 |
20210234786 | Devadoss et al. | Jul 2021 | A1 |
20210234804 | Devadoss et al. | Jul 2021 | A1 |
20210234805 | Devadoss et al. | Jul 2021 | A1 |
20210235312 | Devadoss et al. | Jul 2021 | A1 |
20210235313 | Devadoss et al. | Jul 2021 | A1 |
20210266262 | Subramanian et al. | Aug 2021 | A1 |
20210279069 | Salgaonkar et al. | Sep 2021 | A1 |
20210314289 | Chandrashekhar et al. | Oct 2021 | A1 |
20210314385 | Pande et al. | Oct 2021 | A1 |
20210328835 | Mayya et al. | Oct 2021 | A1 |
20210336880 | Gupta et al. | Oct 2021 | A1 |
20210377109 | Shrivastava et al. | Dec 2021 | A1 |
20210377156 | Michael et al. | Dec 2021 | A1 |
20210392060 | Silva et al. | Dec 2021 | A1 |
20210392070 | Tootaghaj et al. | Dec 2021 | A1 |
20210392171 | Srinivas et al. | Dec 2021 | A1 |
20210399920 | Sundararajan et al. | Dec 2021 | A1 |
20210399978 | Michael et al. | Dec 2021 | A9 |
20210400113 | Markuze et al. | Dec 2021 | A1 |
20210400512 | Agarwal et al. | Dec 2021 | A1 |
20210409277 | Jeuk et al. | Dec 2021 | A1 |
20220006726 | Michael et al. | Jan 2022 | A1 |
20220006751 | Ramaswamy et al. | Jan 2022 | A1 |
20220006756 | Ramaswamy et al. | Jan 2022 | A1 |
20220029902 | Shemer et al. | Jan 2022 | A1 |
20220035673 | Markuze et al. | Feb 2022 | A1 |
20220038370 | Vasseur et al. | Feb 2022 | A1 |
20220038557 | Markuze et al. | Feb 2022 | A1 |
20220045927 | Liu et al. | Feb 2022 | A1 |
20220052928 | Sundararajan et al. | Feb 2022 | A1 |
20220061059 | Dunsmore et al. | Feb 2022 | A1 |
20220086035 | Devaraj et al. | Mar 2022 | A1 |
20220094644 | Cidon et al. | Mar 2022 | A1 |
20220123961 | Mukundan et al. | Apr 2022 | A1 |
20220131740 | Mayya et al. | Apr 2022 | A1 |
20220131807 | Srinivas et al. | Apr 2022 | A1 |
20220131898 | Hooda et al. | Apr 2022 | A1 |
20220141184 | Oswal et al. | May 2022 | A1 |
20220158923 | Ramaswamy et al. | May 2022 | A1 |
20220158924 | Ramaswamy et al. | May 2022 | A1 |
20220158926 | Wennerström et al. | May 2022 | A1 |
20220166713 | Markuze et al. | May 2022 | A1 |
20220191719 | Roy | Jun 2022 | A1 |
20220198229 | López et al. | Jun 2022 | A1 |
20220210035 | Hendrickson et al. | Jun 2022 | A1 |
20220210041 | Gandhi et al. | Jun 2022 | A1 |
20220210042 | Gandhi et al. | Jun 2022 | A1 |
20220210122 | Levin et al. | Jun 2022 | A1 |
20220217015 | Vuggrala et al. | Jul 2022 | A1 |
20220231949 | Ramaswamy et al. | Jul 2022 | A1 |
20220231950 | Ramaswamy et al. | Jul 2022 | A1 |
20220232411 | Vijayakumar et al. | Jul 2022 | A1 |
20220239596 | Kumar et al. | Jul 2022 | A1 |
20220272033 | Jain | Aug 2022 | A1 |
20220286391 | Agarwal | Sep 2022 | A1 |
20220294701 | Mayya et al. | Sep 2022 | A1 |
20220335027 | Seshadri et al. | Oct 2022 | A1 |
20220337553 | Mayya et al. | Oct 2022 | A1 |
20220353152 | Ramaswamy | Nov 2022 | A1 |
20220353171 | Ramaswamy et al. | Nov 2022 | A1 |
20220353175 | Ramaswamy et al. | Nov 2022 | A1 |
20220353182 | Ramaswamy et al. | Nov 2022 | A1 |
20220353190 | Ramaswamy et al. | Nov 2022 | A1 |
20220360500 | Ramaswamy et al. | Nov 2022 | A1 |
20220407773 | Kempanna et al. | Dec 2022 | A1 |
20220407774 | Kempanna et al. | Dec 2022 | A1 |
20220407790 | Kempanna et al. | Dec 2022 | A1 |
20220407820 | Kempanna et al. | Dec 2022 | A1 |
20220407915 | Kempanna et al. | Dec 2022 | A1 |
20230006929 | Mayya et al. | Jan 2023 | A1 |
20230025586 | Rolando et al. | Jan 2023 | A1 |
20230026330 | Rolando et al. | Jan 2023 | A1 |
20230026865 | Rolando et al. | Jan 2023 | A1 |
20230028872 | Ramaswamy | Jan 2023 | A1 |
20230039869 | Ramaswamy et al. | Feb 2023 | A1 |
20230041916 | Zhang et al. | Feb 2023 | A1 |
20230054961 | Ramaswamy et al. | Feb 2023 | A1 |
20230121871 | Mayya et al. | Apr 2023 | A1 |
20230164158 | Fellows et al. | May 2023 | A1 |
20230179445 | Cidon et al. | Jun 2023 | A1 |
20230179502 | Ramaswamy et al. | Jun 2023 | A1 |
20230179521 | Markuze et al. | Jun 2023 | A1 |
20230179543 | Cidon et al. | Jun 2023 | A1 |
20230216768 | Zohar et al. | Jul 2023 | A1 |
20230216801 | Markuze et al. | Jul 2023 | A1 |
20230216804 | Zohar et al. | Jul 2023 | A1 |
20230221874 | Markuze et al. | Jul 2023 | A1 |
20230224356 | Markuze et al. | Jul 2023 | A1 |
20230224759 | Ramaswamy | Jul 2023 | A1 |
20230231845 | Manoharan et al. | Jul 2023 | A1 |
20230239234 | Zohar et al. | Jul 2023 | A1 |
20230261974 | Ramaswamy et al. | Aug 2023 | A1 |
20230308421 | Mayya et al. | Sep 2023 | A1 |
Number | Date | Country |
---|---|---|
1483270 | Mar 2004 | CN |
1926809 | Mar 2007 | CN |
102577270 | Jul 2012 | CN |
102811165 | Dec 2012 | CN |
104205757 | Dec 2014 | CN |
104956329 | Sep 2015 | CN |
106230650 | Dec 2016 | CN |
106656847 | May 2017 | CN |
106998284 | Aug 2017 | CN |
110447209 | Nov 2019 | CN |
111198764 | May 2020 | CN |
1031224 | Mar 2005 | EP |
1912381 | Apr 2008 | EP |
2538637 | Dec 2012 | EP |
2763362 | Aug 2014 | EP |
3041178 | Jul 2016 | EP |
3297211 | Mar 2018 | EP |
3509256 | Jul 2019 | EP |
3346650 | Nov 2019 | EP |
2002368792 | Dec 2002 | JP |
2010233126 | Oct 2010 | JP |
2014200010 | Oct 2014 | JP |
2017059991 | Mar 2017 | JP |
2017524290 | Aug 2017 | JP |
20170058201 | May 2017 | KR |
2574350 | Feb 2016 | RU |
2000078004 | Dec 2000 | WO |
03073701 | Sep 2003 | WO |
2005071861 | Aug 2005 | WO |
2007016834 | Feb 2007 | WO |
2012167184 | Dec 2012 | WO |
2015092565 | Jun 2015 | WO |
2016061546 | Apr 2016 | WO |
2016123314 | Aug 2016 | WO |
2017083975 | May 2017 | WO |
2019070611 | Apr 2019 | WO |
2019094522 | May 2019 | WO |
2020012491 | Jan 2020 | WO |
2020018704 | Jan 2020 | WO |
2020091777 | May 2020 | WO |
2020101922 | May 2020 | WO |
2020112345 | Jun 2020 | WO |
2021040934 | Mar 2021 | WO |
WO-2021040935 | Mar 2021 | WO |
2021118717 | Jun 2021 | WO |
2021150465 | Jul 2021 | WO |
2021211906 | Oct 2021 | WO |
2022005607 | Jan 2022 | WO |
2022082680 | Apr 2022 | WO |
2022154850 | Jul 2022 | WO |
2022159156 | Jul 2022 | WO |
2022231668 | Nov 2022 | WO |
2022235303 | Nov 2022 | WO |
2022265681 | Dec 2022 | WO |
2023009159 | Feb 2023 | WO |
Entry |
---|
Non-Published Commonly Owned U.S. Appl. No. 18/083,536, filed Dec. 18, 2022, 27 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/102,685, filed Jan. 28, 2023, 124 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/102,687, filed Jan. 28, 2023, 172 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/102,688, filed Jan. 28, 2023, 49 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/102,689, filed Jan. 28, 2023, 46 pages, VMware, Inc. |
Taleb, Tarik, “D4.1 Mobile Network Cloud Component Design,” Mobile Cloud Networking, Nov. 8, 2013, 210 pages, MobileCloud Networking Consortium, retrieved from http://www.mobile-cloud-networking.eu/site/index.php?process=download&id=127&code=89d30565cd2ce087d3f8e95f9ad683066510a61f. |
Valtulina, Luca, “Seamless Distributed Mobility Management (DMM) Solution in Cloud Based LTE Systems,” Master Thesis, Nov. 2013, 168 pages, University of Twente, retrieved from http://essay.utwente.nl/64411/1/Luca_Valtulina_MSc_Report_final.pdf. |
Non-Published Commonly Owned U.S. Appl. No. 18/222,864, filed Jul. 17, 2023, 350 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/222,868, filed Jul. 17, 2023, 22 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/224,466, filed Jul. 20, 2023, 56 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 18/235,879, filed Aug. 20, 2023, 173 pages, VMware, Inc. |
Author Unknown, “VeloCloud Administration Guide: VMware SD-WAN by VeloCloud 3.3,” Month Unknown 2019, 366 pages, VMware, Inc., Palo Alto, CA, USA. |
Non-Published Commonly Owned U.S. Appl. No. 18/137,584, filed Apr. 21, 2023, 57 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/943,147, filed Sep. 12, 2022, 42 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/967,795, filed Oct. 17, 2022, 39 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/976,784, filed Oct. 29, 2022, 55 pages, VMware, Inc. |
Zakurdaev, Gieorgi, et al., “Dynamic On-Demand Virtual Extensible LAN Tunnels via Software-Defined Wide Area Networks,” 2022 IEEE 12th Annual Computing and Communication Workshop and Conference, Jan. 26-29, 2022, 6 pages, IEEE, Las Vegas, NV, USA. |
Funabiki, Nobuo, et al., “A Frame Aggregation Extension of Routing Algorithm for Wireless Mesh Networks,” 2014 Second International Symposium on Computing and Networking, Dec. 10-12, 2014, 5 pages, IEEE, Shizuoka, Japan. |
Non-Published Commonly Owned U.S. Appl. No. 18/197,090, filed May 14, 2023, 36 pages, Nicira, Inc. |
Alsaeedi, Mohammed, et al., “Toward Adaptive and Scalable OpenFlow-SDN Flow Control: A Survey,” IEEE Access, Aug. 1, 2019, 34 pages, vol. 7, IEEE, retrieved from https://ieeexplore.ieee.org/document/8784036. |
Alvizu, Rodolfo, et al., “SDN-Based Network Orchestration for New Dynamic Enterprise Networking Services,” 2017 19th International Conference on Transparent Optical Networks, Jul. 2-6, 2017, 4 pages, IEEE, Girona, Spain. |
Barozet, Jean-Marc, “Cisco SD-WAN as a Managed Service,” BRKRST-2558, Jan. 27-31, 2020, 98 pages, Cisco, Barcelona, Spain, retrieved from https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKRST-2558.pdf. |
Barozet, Jean-Marc, “Cisco SDWAN,” Deep Dive, Dec. 2017, 185 pages, Cisco, Retreived from https://www.coursehero.com/file/71671376/Cisco-SDWAN-Deep-Divepdf/. |
Bertaux, Lionel, et al., “Software Defined Networking and Virtualization for Broadband Satellite Networks,” IEEE Communications Magazine, Mar. 18, 2015, 7 pages, vol. 53, IEEE, retrieved from https://ieeexplore.ieee.org/document/7060482. |
Cox, Jacob H., et al., “Advancing Software-Defined Networks: A Survey,” IEEE Access, Oct. 12, 2017, 40 pages, vol. 5, IEEE, retrieved from https://ieeexplore.ieee.org/document/8066287. |
Del Piccolo, Valentin, et al., “A Survey of Network Isolation Solutions for Multi-Tenant Data Centers,” IEEE Communications Society, Apr. 20, 2016, vol. 18, No. 4, 37 pages, IEEE. |
Duan, Zhenhai, et al., “Service Overlay Networks: SLAs, QoS, and Bandwidth Provisioning,” IEEE/ACM Transactions on Networking, Dec. 2003, 14 pages, vol. 11, IEEE, New York, NY, USA. |
Fortz, Bernard, et al., “Internet Traffic Engineering by Optimizing OSPF Weights,” Proceedings IEEE INFOCOM 2000, Conference on Computer Communications, Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Mar. 26-30, 2000, 11 pages, IEEE, Tel Aviv, Israel, Israel. |
Francois, Frederic, et al., “Optimizing Secure SDN-enabled Inter-Data Centre Overlay Networks through Cognitive Routing,” 2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), Sep. 19-21, 2016, 10 pages, IEEE, London, UK. |
Guo, Xiangyi, et al., (U.S. Appl. 62/925,193), filed Oct. 23, 2019, 26 pages. |
Huang, Cancan, et al., “Modification of Q.SD-WAN,” Rapporteur Group Meeting—Doc, Study Period 2017-2020, Q4/11-DOC1 (190410), Study Group 11, Apr. 10, 2019, 19 pages, International Telecommunication Union, Geneva, Switzerland. |
Jivorasetkul, Supalerk, et al., “End-to-End Header Compression over Software-Defined Networks: a Low Latency Network Architecture,” 2012 Fourth International Conference on Intelligent Networking and Collaborative Systems, Sep. 19-21, 2012, 2 pages, IEEE, Bucharest, Romania. |
Lasserre, Marc, et al., “Framework for Data Center (DC) Network Virtualization,” RFC 7365, Oct. 2014, 26 pages, IETF. |
Li, Shengru, et al., “Source Routing with Protocol-oblivious Forwarding (POF) to Enable Efficient e-Health Data Transfers,” 2016 IEEE International Conference on Communications (ICC), May 22-27, 2016, 6 pages, IEEE, Kuala Lumpur, Malaysia. |
Lin, Weidong, et al., “Using Path Label Routing in Wide Area Software-Defined Networks with Open Flow,” 2016 International Conference on Networking and Network Applications, Jul. 2016, 6 pages, IEEE. |
Ong, Feng, “Research and Application of Cloud Storage Technology in University Information Service,” Chinese Excellent Masters' Theses Full-text Database, Mar. 2013, 72 pages, China Academic Journals Electronic Publishing House, China. |
Michael, Nithin, et al., “HALO: Hop-by-Hop Adaptive Link-State Optimal Routing,” IEEE/ACM Transactions on Networking, Dec. 2015, 14 pages, vol. 23, No. 6, IEEE. |
Ming, Gao, et al., “A Design of SD-WAN-Oriented Wide Area Network Access,” 2020 International Conference on Computer Communication and Network Security (CCNS), Aug. 21-23, 2020, 4 pages, IEEE, Xi'an, China. |
Mishra, Mayank, et al., “Managing Network Reservation for Tenants in Oversubscribed Clouds,” 2013 IEEE 21st International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunication Systems, Aug. 14-16, 2013, 10 pages, IEEE, San Francisco, CA, USA. |
Mudigonda, Jayaram, et al., “NetLord: A Scalable Multi-Tenant Network Architecture for Virtualized Datacenters,” Proceedings of the ACM SIGCOMM 2011 Conference, Aug. 15-19, 2011, 12 pages, ACM, Toronto, Canada. |
Non-Published Commonly Owned U.S. Appl. No. 17/351,327, filed Jun. 18, 2021, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/351,342, filed Jun. 18, 2021, 47 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/351,345, filed Jun. 18, 2021, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/384,735, filed Jul. 24, 2021, 62 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/384,736, filed Jul. 24, 2021, 63 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/384,738, filed Jul. 24, 2021, 62 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,517, filed Jan. 6, 2022, 49 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,519, filed Jan. 6, 2022, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,520, filed Jan. 6, 2022, 50 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,522, filed Jan. 6, 2022, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,523, filed Jan. 6, 2022, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,524, filed Jan. 6, 2022, 48 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/569,526, filed Jan. 6, 2022, 27 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/574,225, filed Jan. 12, 2022, 56 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/574,236, filed Jan. 12, 2022, 54 pages, VMware, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/827,972, filed May 30, 2022, 30 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 17/850,11, filed Jun. 27, 2022, 41 pages, Nicira, Inc. |
Non-Published Commonly Owned U.S. Appl. No. 15/803,964, filed Nov. 6, 2017, 15 pages, The Mode Group. |
Noormohammadpour, Mohammad, et al., “DCRoute: Speeding up Inter-Datacenter Traffic Allocation while Guaranteeing Deadlines,” 2016 IEEE 23rd International Conference on High Performance Computing (HiPC), Dec. 19-22, 2016, 9 pages, IEEE, Hyderabad, India. |
Ray, Saikat, et al., “Always Acyclic Distributed Path Computation,” University of Pennsylvania Department of Electrical and Systems Engineering Technical Report, May 2008, 16 pages, University of Pennsylvania ScholarlyCommons. |
Sarhan, Soliman Abd Elmonsef, et al., “Data Inspection in SDN Network,” 2018 13th International Conference on Computer Engineering and Systems (ICCES), Dec. 18-19, 2018, 6 pages, IEEE, Cairo, Egypt. |
Tootaghaj, Diman Zad, et al., “Homa: An Efficient Topology and Route Management Approach in SD-WAN Overlays,” IEEE INFOCOM 2020—IEEE Conference on Computer Communications, Jul. 6-9, 2020, 10 pages, IEEE, Toronto, ON, Canada. |
Webb, Kevin C., et al., “Blender: Upgrading Tenant-Based Data Center Networking,” 2014 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Oct. 20-21, 2014, 11 pages, IEEE, Marina del Rey, CA, USA. |
Xie, Junfeng, et al., A Survey of Machine Learning Techniques Applied to Software Defined Networking (SDN): Research Issues and Challenges, IEEE Communications Surveys & Tutorials, Aug. 23, 2018, 38 pages, vol. 21, Issue 1, IEEE. |
Yap, Kok-Kiong, et al., “Taking the Edge off with Espresso: Scale, Reliability and Programmability for Global Internet Peering,” SIGCOMM '17: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Aug. 21-25, 2017, 14 pages, Los Angeles, CA. |
Number | Date | Country | |
---|---|---|---|
20230105680 A1 | Apr 2023 | US |