Trailer assembly for transport of containers of proppant material

Information

  • Patent Grant
  • 10518828
  • Patent Number
    10,518,828
  • Date Filed
    Tuesday, May 23, 2017
    7 years ago
  • Date Issued
    Tuesday, December 31, 2019
    4 years ago
Abstract
Embodiments of the present disclosure include a trailer assembly for transporting a plurality of proppant containers along a roadway, and associated methods. The trailer assembly includes a skeletal frame having open areas between structural components to enhance weight reduction of the frame, and first, second, third, and connector sections. Additionally, the frame includes a pair of spaced-apart side rails and three or more wheel and axle assemblies to facilitate movement of the trailer assembly. The trailer assembly includes a first pair of outriggers coupled to and arranged transverse the pair of side rails, and a second pair of outriggers arranged proximate the first pair of outriggers. The outriggers have a coupling element positioned at each distal end to engage and secure a proppant container of the plurality of proppant containers to the trailer assembly. Each distal end is positioned to extend outwardly from an axis of the trailer.
Description
BACKGROUND

Field of the Invention


The present disclosure relates to container trailer assemblies. Additionally, the present disclosure relates to systems and methods for transporting proppant material. More particularly, the present invention relates to a trailer assembly that is particularly suitable for the transport of containers of proppant material, and associated methods.


Description of Related Art


Hydraulic fracturing or “fracking” has been used for decades to stimulate production from conventional oil and gas wells. In recent years, the use of fracking has increased due to the development of new drilling technology such as horizontal drilling and multi-stage fracking. Such techniques reach previously-unavailable deposits of natural gas and oil. Fracking generally includes pumping fluid into a wellbore at high pressure. Inside the wellbore, the fluid is forced into the formation being produced. When the fluid enters the formation the fluid fractures, or creates fissures, in the formation. Water, as well as other fluids, and some solid proppants, are then pumped into the fissures to stimulate the release of oil and gas from the formation.


By far the dominant proppant is silica sand, made up of ancient weathered quartz, the most common mineral in the Earth's continental crust. Unlike common sand, which often feels gritty when rubbed between your fingers, sand used as a proppant tends to roll to the touch as a result of its round, spherical shape and tightly-graded particle distribution. Sand quality is a function of both deposit and processing. Furthermore, certain types of proppant are formed from coated sand and/or man-made material, such as ceramics. Grain size is critical, as any given proppant should reliably fall within certain mesh ranges, subject to downhole conditions and completion design. Generally, coarser proppant allows a higher capacity due to the larger pore spaces between grains. This type of proppant, however, may break down or crush more readily under stress due to the relatively fewer grain-to-grain contact points to bear the stress often incurred in deep oil- and gas-bearing formations.


Typically, in hydraulic fracturing operations, large amounts of proppant are utilized. As such, large amounts of proppant are transported to well sites, presenting significant logistical issues and difficulties. For example, often government regulations limit an amount of weight that may be transported on a road, such as on a highway or over a bridge, to avoid damage to the structural integrity of the road. Moreover, there may be height limitations (e.g., 4 meters, 5 meters, 6 meters, or the like) for transport vehicles and their associated loads, for example, to pass under bridges or through toll plazas. Furthermore, challenges are presented relating to the safe transportation of large quantities of material. For example, proppant may shift during transportation, causing stability and turning concerns. Accordingly, it is now recognized that it is desirable to develop systems and methods to transport large quantities of proppant.


SUMMARY

Applicants recognized the problems noted above herein and conceived and developed embodiments of systems and methods, according to the present disclosure, to transport proppant containers.


In an embodiment a trailer assembly for transporting a plurality of proppant containers along a roadway includes a frame having a skeletal structure to support the plurality of proppant containers in a side-by-side arrangement. The frame can include a first section arranged at a rearward end of the trailer assembly, relative to a direction of travel of the trailer assembly; a connector section to connect the trailer to a vehicle; a second section positioned between the first section and the connector section. The second section can have a first pair of outriggers, and a first section elevation can be greater than a second section elevation, relative to a ground plane, so as to enable distribution and stability of a load of the plurality of proppant containers when substantially filled with proppant and positioned on the lower-elevated second section. The frame can also include a third section positioned between the second section and the connector section, the third section having a second pair of outriggers, and open areas positioned between structural components to enhance weight reduction of the frame. In certain embodiments, the frame includes a pair of spaced-apart side rails, the pair of side rails being substantially parallel to one another, structurally strengthened to support and stabilize the plurality of proppant containers when substantially filled with proppant and positioned thereon, and arranged to extend along at least a portion of a length of the frame so as to distribute the load applied to the frame. The frame also includes three or more wheel and axle assemblies positioned proximate the first section, each wheel and axle assembly including a plurality of wheels rotatably connected to each axle to facilitate movement of the trailer assembly. The wheel and axle assemblies are positioned rearward of the load, relative to the direction of travel of the trailer assembly, to enable distribution and stability of the load along the length of the frame. Additionally, the connector section can be positioned at a front end of the frame and can include a vehicle coupling element to facilitate connection being made between the trailer assembly and a work vehicle. The first pair of outriggers can be connected to and arranged transverse the pair of side rails. Each of the first pair of outriggers have a distal end positioned to extend outwardly from an axis of the trailer such that each distal end of the first pair of outriggers extends wider than the pair of side rails. The second pair of outriggers can be arranged proximate the first pair of outriggers. The second pair of outriggers can be connected to and arranged transverse the pair of side rails and have a distal end positioned to extend outwardly from the axis of the trailer such that each distal end of the second pair of outriggers extends wider than the pair of side rails.


In an embodiment, each distal end portion of the first pair of outriggers can include a first proppant container coupling element positioned adjacent each distal end portion thereof to engage and secure a first proppant container of the plurality of proppant containers to the trailer assembly. In an embodiment, each distal end portion of the second pair of outriggers can include a second proppant container coupling element positioned at each distal end portion thereof to engage and secure a second proppant container coupling element positioned at each distal end portion thereof to engage and secure a second proppant container of the plurality of proppant containers to the trailer assembly.


In an embodiment, the first pair of outriggers can include a first outrigger positioned at the front end of the frame and a second outrigger positioned at a rear end of the frame, and the second pair of outriggers can include a dual outrigger positioned at a middle portion of the frame between the first outrigger and the second outrigger. In an embodiment, the dual outrigger can have one or more pairs of proppant container coupling elements positioned at each distal end thereof to engage and secure one or more proppant containers of the plurality of proppant containers to the trailer assembly.


In an embodiment, the one or more pairs of proppant container coupling elements can further include a mounting platform and one or more locking mechanism to secure the one or more proppant containers to a top surface of the dual outrigger.


In an embodiment, each of the one or more locking mechanisms can include a lever positioned to rotate a body portion of the locking mechanism to engage the proppant container of the plurality of proppant containers so as to secure the proppant container to the top surface of the dual outrigger.


In an embodiment, the second section elevation can be substantially equal to a third section elevation, relative to the ground plane, so as to enable distribution and stability of the load along the second section and the third section.


In an embodiment, the first section can include a plurality of support beams positioned transverse the pair of side rails and arranged so as to provide structural support to the three or more wheel and axle assemblies and to distribute the load among the three or more wheel and axle assemblies.


In an embodiment, the pair of side rails can extend along the at least a portion of the length of the frame at a first side rail elevation, and the pair of side rails can extend along at least a portion of a length of the connector section at a second side rail elevation, the second side rail elevation being greater than the first side rail elevation with respect to the ground plane.


In an embodiment, the pair of side rails can extend along the at least a portion of the length of the connector section. The pair of side rails can include a first portion having the second elevation and a second portion extending from the second elevation to a third elevation in the direction of travel, and the second elevation can be greater than the third elevation.


In an embodiment, the trailer assembly can further include a jack connected to the connector section, the jack having a retractable leg that is movable between an in position and an out position, to provide support and stability to the trailer assembly when the trailer assembly is stationary and when the jack is in the out position.


In an embodiment, a cross-sectional shape of each of the first pair of outriggers and the second pairs of outriggers can include a first width of a bottom surface of the outrigger and a second width of a top surface of the outrigger. In an embodiment, the first width can be greater than or equal to the second width so as to distribute and stabilize the load over a larger surface area.


In another embodiment a trailer assembly for transporting a plurality of proppant containers along a roadway includes a frame having a skeletal structure with a first section, a second section, a third section, and a fourth section, the first section positioned at a rearward end of the frame, relative to a direction of travel of the trailer assembly, the fourth section positioned at a forward end of the frame, relative to the direction of travel, and the second section and the third section being positioned between the first section and the fourth section. The frame is positioned to support the plurality of proppant containers in a side-by-side arrangement and includes a first pair of spaced-apart side rails forming the first section. The first pair of side rails are substantially parallel to one another. The frame also includes a plurality of transversely-extending members extending between the first pair of spaced-apart side rails and open areas positioned between adjacent transversely-extending members of the plurality of transversely-extending members. In certain embodiments, the frame includes a second pair of spaced-apart side rails forming the second section and the third section, the second pair of side rails being substantially parallel to one another and arranged to receive and support the plurality of proppant containers when substantially filled with proppant and positioned thereon, so as to stabilize and distribute a load applied to the frame. Moreover, the frame includes a third pair of spaced-apart side rails forming the fourth section, the third pair of side rails being substantially parallel to one another, the plurality of transversely-extending members extending between the third pair of spaced-apart side rails, and open areas arranged between adjacent transversely-extending members of the plurality of transversely-extending members. Additionally, the frame includes three or more wheel and axle assemblies positioned proximate the first section, each wheel and axle assembly including a plurality of wheels rotatably connected to each axle to facilitate movement of the trailer assembly. The wheel and axle assemblies are positioned to redistribute at least a portion of the load transferred to the trailer assembly by the plurality of proppant containers from the second section and the third section when positioned thereon. In certain embodiments, the trailer assembly includes a first pair of outriggers positioned to extend transverse the second pair of spaced-apart side rails and extending outwardly from the second pair of side rails. Moreover, the trailer assembly includes a second pair of outriggers arranged proximate an outrigger of the first pair of outriggers and transverse the second pair of spaced-apart side rails and extending outwardly from the second pair of side rails.


In an embodiment, the trailer assembly can further include a plurality of transversely-extending members arranged between the second pair of spaced-apart side rails, the transversely-extending members being positioned proximate the first pair of outriggers and the second pair of outriggers to enhance the structural integrity and stability of the frame.


In an embodiment, the plurality of proppant containers can be arranged in the side-by-side arrangement substantially co-axial along a trailer axis extending along a length of the trailer assembly, each proppant container of the plurality of proppant containers being connected to a respective pair of outriggers such that the proppant containers are secured to the trailer assembly.


In an embodiment, each distal end portion of the first pair of outriggers further includes a first proppant container coupling element positioned adjacent each distal end portion thereof to engage and secure a first proppant container of the plurality of proppant containers to the trailer assembly, and each distal end portion of the second pair of outriggers includes a second proppant container coupling element positioned at each distal end portion thereof to secure a second proppant container of the plurality of proppant containers to the trailer assembly.


In an embodiment, the first pair of outriggers can include a first outrigger positioned at the front end of the frame and a second outrigger positioned at a rear end of the frame, and the second pair of outriggers can include a dual outrigger positioned at a middle portion of the frame between the first outrigger and the second outrigger. In an embodiment, the dual outrigger can have one or more pairs of proppant container coupling elements positioned at each distal end thereof to engage and secure one or more proppant containers of the plurality of proppant containers to the trailer assembly.


In an embodiment, the one or more pairs of proppant container coupling elements can further include a mounting platform and one or more locking mechanism to secure the one or more proppant containers to a top surface of the dual outrigger.


In an embodiment, the plurality of proppant containers can be arranged in the side-by-side arrangement on one or more of the second section and the third section of the frame. In an embodiment, a first section elevation and a fourth section elevation are each greater than a second section elevation and a third section elevation, so as to enable distribution and stability of the load at the lower-elevated second section and lower-elevated third section.


In another embodiment, a method for transporting a plurality of proppant containers along a roadway is described. In an embodiment, the method can include positioning the plurality of proppant containers in a side-by-side arrangement on a skeletal frame structure, the frame structure having open areas positioned between structural components to enhance a weight reduction of the frame. In an embodiment, the method can further include supporting the plurality of proppant containers with a pair of spaced-apart side rails on the frame structure, the pair of side rails being substantially parallel to one another, the pair of side rails being structurally strengthened to support and stabilize the plurality of proppant containers when substantially filled with proppant and positioned thereon, and arranged to extend along at least a portion of a length of the frame structure so as to distribute a load of the plurality of containers applied to the frame. In an embodiment, the method can further include securing the plurality of containers to the frame structure via a first pair of outriggers and a second pair of outriggers. In an embodiment, the first pair of outriggers can be connected to and arranged transverse the pair of side rails, each of the first pair of outriggers having a distal end portion being positioned to extend outwardly from an axis of the trailer such that each distal end of the first pair of outriggers extends wider than the pair of side rails. In an embodiment, the second pair of outriggers can be arranged proximate the first pair of outriggers, the second pair of outriggers connected to and arranged transverse the pair of side rails, each of the second pair of outriggers having a distal end being positioned to extend outwardly from the axis of the trailer such that each distal end of the second pair of outriggers extends wider than the pair of side rails. In an embodiment, the method can further include transporting the plurality of proppant containers on the frame structure via three or more wheel and axle assemblies positioned proximate a rear end of the frame, relative to a direction of travel of the trailer assembly, each wheel and axle assembly including a plurality of wheels rotatably connected to each axle to enable distribution and stability of the load along the length of the frame.





BRIEF DESCRIPTION OF DRAWINGS

The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the disclosure illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.



FIG. 1 is a front perspective view of an embodiment of a trailer assembly, according to an embodiment of the present disclosure;



FIG. 2 is a top plan view of the trailer assembly of FIG. 1, according to an embodiment of the present disclosure;



FIG. 3 is a side elevational view of the trailer assembly of FIG. 1, according to an embodiment of the present disclosure;



FIG. 4 is a rear elevational view of the trailer assembly of FIG. 1, according to an embodiment of the present disclosure;



FIG. 5 is a partial top plan view of an embodiment of an outrigger, according to an embodiment of the present disclosure;



FIG. 6 is a partial side view of the outrigger of FIG. 5, according to an embodiment of the present disclosure;



FIG. 7 is a partial top plan view of an embodiment of an outrigger, according to an embodiment of the present disclosure;



FIG. 8 is a partial side view of the outrigger of FIG. 7, according to an embodiment of the present disclosure;



FIG. 9 is a cross-sectional view of an embodiment of an outrigger, according to an embodiment of the present disclosure;



FIG. 10 is a cross-sectional view of an embodiment of an outrigger, according to an embodiment of the present disclosure;



FIG. 11 is a cross-sectional view of an embodiment of an outrigger, according to an embodiment of the present disclosure;



FIG. 12 is a side elevational view of an embodiment of a trailer assembly having proppant containers positioned thereon, according to an embodiment of the present disclosure;



FIG. 13 is a top plan view of an embodiment of a trailer assembly having a dual outrigger, according to an embodiment of the present disclosure;



FIG. 14 is a side-elevational view of the trailer assembly of FIG. 13, according to an embodiment of the present disclosure;



FIG. 15 is a partial top plan view of an embodiment of a dual outrigger, according to an embodiment of the present disclosure;



FIG. 16 is a cross-sectional view of an embodiment of a dual outrigger, according to an embodiment of the present disclosure;



FIG. 17 is a cross-sectional view of an embodiment of a dual outrigger, according to an embodiment of the present disclosure; and



FIG. 18 is a cross-sectional view of an embodiment of a dual outrigger, according to an embodiment of the present disclosure;





DETAILED DESCRIPTION

The foregoing aspects, features, and advantages of the present disclosure will be further appreciated when considered with reference to the following description of embodiments and accompanying drawings. In describing the embodiments of the invention illustrated in the appended drawings, specific terminology will be used for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms used, and it is to be understood that each specific term includes equivalents that operate in a similar manner to accomplish a similar purpose.


When introducing elements of various embodiments of the present disclosure, the articles “a,” “an,” “the,” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. Any examples of operating parameters and/or environmental conditions are not exclusive of other parameters/conditions of the disclosed embodiments. Additionally, it should be understood that references to “one embodiment,” “an embodiment,” “certain embodiments,” or “other embodiments” of the present disclosure are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Furthermore, reference to terms such as “above,” “below,” “upper,” “lower,” “side,” “front,” “back,” or other terms regarding orientation are made with reference to the illustrated embodiments and are not intended to be limiting or exclude other orientations.


Embodiments of the present disclosure include a trailer assembly for transporting a plurality of proppant containers to and from well sites, and associated methods. In certain embodiments, the trailer assembly includes a skeletal frame structure having a middle section positioned to receive the plurality of proppant containers, that is positioned at a lower elevation, relative to a ground plane, than a rear section and a connector section, so as to enable distribution and stability of a load of the plurality of proppant containers when substantially filled with proppant and positioned on the lower-elevated middle section. The skeletal frame structure is formed from a pair of spaced-apart, substantially parallel side rails structurally strengthened to support and stabilize the plurality of proppant containers when substantially filled with proppant and positioned on the skeletal frame structure, and arranged to extend along at least a length of the frame so as to distribute the load applied to the frame substantially along the length of the frame. Open areas positioned between structural components of the frame can enhance weight reduction of the frame, to allow for heavier proppant loads to be carried, subject to highway weight regulations. In certain embodiments, pairs of outriggers are arranged along the middle section and positioned to extend through the side rails, arranged transverse the pair of side rails. The outriggers are arranged to extend outwardly from a trailer assembly axis to distribute a load from the plurality of proppant containers along a wider area, thereby increasing the structural integrity and support capabilities of the trailer assembly. In certain embodiments, the pairs of outriggers extend through holes formed in the side rails. Moreover, in certain embodiments, the pairs of outriggers extend through slots formed in the side rails. Accordingly, a plurality of proppant containers can be positioned in a side-by-side arrangement on the trailer assembly and coupled to the outriggers to facilitate movement along roadways. Three or more wheel and axle assemblies positioned proximate a rear portion of the frame, relative to the direction of travel of the trailer assembly, can each include a plurality of wheels rotatably connected to each axle to facilitate movement of the trailer assembly. By positioning the wheel and axle assemblies rearward of the proppant container load, relative to the direction of travel, distribution and stability of the load along the length of the frame can be achieved.


In some embodiments, the described trailer assembly is utilized in a method for transporting a plurality of proppant containers along a roadway. For example, the method can include positioning the plurality of containers in a side-by-side arrangement on a skeletal frame structure as described above. The skeletal frame structure can include open areas positioned between structural components to enhance weight reduction of the frame, in order to maximize proppant storage and transport weights, while still complying with highway weight regulations. The method can also include supporting the plurality of proppant containers with a pair of spaced-apart side rails on the frame structure. As described above, the pair of side rails can be substantially parallel to one another, and can be structurally strengthened to support and stabilize the plurality of proppant containers, particularly when the proppant containers are substantially filled and positioned on the parallel side rails of the frame. The side rails can be arranged to extend along at least a portion of a length of the frame structure so as to distribute the load applied by the plurality of proppant containers to the frame.


In some examples, the method can further include securing the plurality of containers to the frame structure with a series of outriggers. For example, a first pair of outriggers can be connected to and arranged transverse the pair of side rails. As described above, each of the first pair of outriggers can have a distal end portion positioned to extend outwardly from an axis of the trailer such that each distal end of the first pair of outriggers extends wider than the pair of side rails. This arrangement can provide for stability and support for the proppant containers on the frame. A second pair of outriggers can be arranged proximate the first pair of outriggers, and can similarly be connected to and arranged transverse the pair of side rails. As with the first pair of outriggers, the second pair of outriggers can have a distal end portion positioned to extend outwardly from an axis of the trailer such that each distal end of the first pair of outriggers extends wider than the pair of side rails.


In an embodiment, the method can further include transporting the plurality of proppant containers on the frame structure via three or more wheel and axle assemblies positioned proximate a rear end of the frame, relative to a direction of travel of the trailer assembly. Each wheel and axle assembly can include a plurality of wheels rotatably connected to each axle to enable distribution and stability of the load along the length of the frame.



FIG. 1 is a front perspective view of an embodiment of a trailer assembly 10. As shown, the trailer assembly 10 includes a frame 12 forming a skeletal, light-weight structure to support one or more containers. For example, the skeletal structure of the frame 12 reduces the material utilized to form the frame 12, while still providing sufficient structural rigidity and strength to accommodate one or more containers which may be filled with fracking proppant. For example, as will be described below, in certain embodiments the skeletal frame may include one or more transversely-extending members extending between substantially parallel side rails to provide structural support to the frame 12 while reducing weight by forming open areas in the frame 12.


In the illustrated embodiment, the skeletal frame 12 includes a first section 14, a second section 16, a third section 18, and a fourth section 20 (e.g., a connector section). As shown, the first section 14 is arranged near a rearward portion of the trailer assembly 10, relative to a direction of travel 22 of the trailer assembly 10. In certain embodiments, the first section 14 includes one or more pairs of wheels 24 rotatably coupled to axles 26 to facilitate movement of the trailer assembly 10 along roadways. In the embodiment illustrated in FIG. 1, the trailer assembly 10 includes three axles 26 that support the wheels 24. Moreover, in the illustrated embodiment, each axle 26 includes four wheels 24 (e.g., two wheels 24 on each end of each axel 26). While the illustrated embodiment includes three axles 26, in certain embodiments the trailer assembly 10 may include 1, 2, 4, 5, 6, 7, 8, 9, 10 or any other suitable number of axles 26. Furthermore, while the illustrated embodiment includes two wheels 24 on each end of each axle 26, in other embodiments there may be 1, 3, 4, 5, or any suitable number of wheels 24. Highway regulations often limit an amount of weight transported per axle; accordingly, embodiments providing greater numbers of axles—and associated wheels—can allow for transportation of greater amounts of proppant on a single trailer assembly. For example, a trailer assembly 10 having three axles 26, as illustrated in FIG. 1, can be permitted to carry more weight in proppant containers than a similar trailer assembly having only two axles, and therefore can be more efficient and cost effective in transporting proppant.


In order to support the additionally permitted proppant weight, axles 26 can be reinforced by support beams of frame 12. For example, a plurality of support beams can be arranged transverse the pair of side rails 82, 84, which can be arranged parallel to one another to form the first section 14 of frame 12. This plurality of support beams can extend between the pair of side rails 82, 84 and can provide physical reinforcement to each of axles 26 to allow for distribution and stabilization of the weight of the proppant container load along the length of frame 12.


Moreover, in the illustrated embodiment, the axles 26 and wheels 24 are illustrated as being positioned proximate the first section 14. However, in certain embodiments, the axles 26 and wheels 24 may be positioned proximate the second section 16, the third section 18, and/or the fourth section 20 to facilitate distribution of the weight of the proppant containers. Moreover, the arrangement of the wheels 24 may be distributed along each of the first, second, third, and fourth sections 14, 16, 18, 20 and/or at particularly selected positions. For example, wheels 24 may be positioned proximate the first and second sections 14, 16, the first and third sections 14, 18 and/or any other combination of sections 14, 16, 18, 20 in order to facilitate transportation of proppant containers via the frame assembly 10.


As shown in FIG. 1, the first section 14 is coupled to the second section 16. Moreover, in the illustrated embodiment, the first section 14 is arranged at a first section elevation 28 that is higher than a second section elevation 30, relative to a ground plane 32. In other words, the first section 14 is farther away from the ground plane 32 than the second section 16. As will be described in detail below, lowering the second section 16 enables containers with higher elevations to be transported on the trailer assembly 10 and still comply with governmental regulations for shipping heights to enable passage of the trailer assembly 10 along common roadways while still maintaining sufficient clearance for driving beneath bridges, toll plazas, elevated roadways, and the like. Furthermore, arranging the proppant containers lower to the ground plane 32 lowers the center of gravity of the trailer assembly 10, thereby improving stability and turning capabilities.


In the illustrated embodiment, the first section 14 partially overlaps the second section 16. That is, a front portion 34 of the first section 14 overlaps a rear portion 36 of the second section 16. In some embodiments, the overlapping portions of the first section 14 and the second section 16 can include the side rails 82, 84 of first section 14 overlapping the side rails 86, 88 of second section 16. In some embodiments, the side rails 82, 84 of first section 14 can overlap the side rails 86, 88 of second section 16 by several inches or several feet in order to increase stability and balance of trailer assembly 10. In other embodiments, the side rails 82, 84 of first section 14 can overlap the side rails 86, 88 of second section 16 by only a few inches or a few feet in order to decrease weight of trailer assembly 10. In some embodiments, the front portion 34 of the first section 14 overlapping the rear portion 36 of the second section 16 can be coupled by a fastener, such as a bolt, a nail, a screw, a rivet, or any other suitable fastener to secure the first section 14 to the second section 16.


As described above, the front portion 34 and rear portion 36 are described with reference to the direction of travel 22. In the illustrated embodiment, the second section 16 and the third section 18 are arranged side-by-side and coaxial such that the second section 16 substantially abuts the third section 18. That is, the second section 16 and the third section 18 are arranged along a trailer axis 38 and form at least a portion of the frame 12. Moreover, the second section elevation 30 is substantially equal to a third section elevation 40. As will be described in detail below, the second and third sections 16, 18 are arranged to receive one or more proppant containers on outriggers 42. In the illustrated embodiment, the outriggers 42 include proppant container coupling elements 44 to receive, align, and secure the proppant containers to the trailer assembly 10.


Returning to the frame 12, as illustrated in FIG. 1 the third section 18 is coupled to the fourth section 20 at an end opposite the connection to the second section 16. In the illustrated embodiment, the fourth section 20 is a goose-neck connector to enable coupling to a work vehicle, such as a truck. For example, in the illustrated embodiment the fourth section 20 includes a vehicle coupling element 46 to facilitate connection between the trailer assembly 10 and the truck.


In certain embodiments, the fourth section 20 is positioned on the third section 18. That is, the fourth section 20 at least partially overlaps the third section 18. As a result, a fourth section elevation 48 may be higher, relative to the ground plane 32, than the second and third section elevations 30, 40. Furthermore, in the illustrated embodiment, the fourth section 20 includes an outer frame 50 that substantially aligns with the outriggers 42. The outer frame 50 extends outwardly from the trailer axis 38 and includes a plurality of supports 52. In the illustrated embodiment, the plurality of supports 52 are positioned transverse the trailer axis 38 and the side rails 90, 92. In other embodiments, the plurality of supports 52 can be positioned parallel to the trailer axis 38 and the side rails 90, 92. As shown, the plurality of supports 52 extend perpendicularly away from the side rails 90, 92 to an outer perimeter of the outer frame 50. In some embodiments, a width of outer frame 50 can be equal to a width of one or more outriggers 42, such that the skeletal frame of trailer assembly 10 has a consistent width, which in some examples can be determined based on highway regulations. In other embodiments, the width of outer frame 50 can be greater than or less than the width of one or more outriggers 42, for example to increase stability or to reduce weight, respectively.


As illustrated in FIG. 1, side rails 90, 92 of fourth section 20 extend at an angle parallel to the ground plane 32 for a portion of the length of fourth section 20, and then extend at a downward angle toward the ground plane 32 towards vehicle coupling element 46. This configuration may better allow for coupling of the trailer assembly 10 to a work vehicle via vehicle coupling element 46. In other embodiments, side rails 90, 92 may maintain a substantially constant elevation with respect to and parallel to the ground plane 32.


As shown, the outer frame 50 and the plurality of supports 52 further form a substantially skeletal structure, having open areas 106 between the plurality of supports 52 and side rails 90, 92, to minimize weight of the frame. Furthermore, in certain embodiments, the frame 50 and supports 52 may not be coupled to the fourth section 20.


As shown in FIG. 1, in certain embodiments the fourth section 20 includes a jack or footer 54. The jack 54 includes a retractable leg 56 that includes a base plate 58 for contacting the ground plane 32. For example, the retractable leg 56 may be positioned in an out position 60, as shown in FIG. 1, when the trailer assembly 10 is not coupled to a work vehicle. However, the retractable leg 56 may be positioned in an in position 62 (as illustrated in FIG. 3) when the trailer assembly 10 is coupled to a work vehicle. Accordingly, the jack 54 may be utilized to stage and/or position the trailer assembly 10 in preparation for being connected to the work vehicle.



FIG. 2 is a top plan view of an embodiment of the trailer assembly 10. As illustrated, the fourth section 20 is coupled to the third section 18, which is also coupled to the second section 16, which is further coupled to the first section 14. Moreover, each section 14, 16, 18, 20 is substantially coaxial along the trailer axis 38. In other words, the sections 14, 16, 18, 20 are axially aligned along a length 80 of the trailer assembly 10 to thereby form the trailer assembly 10.


In the illustrated embodiment, the frame 12 includes a first pair of spaced-apart and substantially parallel side rails 82, 84. Moreover, the frame 12 includes a second pair of spaced-apart and substantially parallel side rails 86, 88. Additionally, the frame 12 includes a third pair of spaced-apart and substantially parallel side rails 90, 92. While the illustrated embodiment includes three pairs of side rails, it is understood that, in certain embodiments, there may be one pair of side rails, two pairs of side rails, four pairs of side rails, or any suitable number of pairs of side rails to form the frame 12. Furthermore, while the illustrated embodiment includes substantially parallel side rails, in other embodiments, the side rails may not be substantially parallel. For example, the side rails may be arranged at acute or obtuse angles relative to one another.


As shown in FIG. 2, the second section 16 includes a pair of outriggers 42. As used herein, outrigger 42 refers to a member having two opposite ends that extend transverse the trailer axis 38. That is, in certain embodiments, the outriggers 42 extend transverse the side rails 86, 88 and further extend outwardly from the side rails 86, 88. In order words, the outriggers 42 extend across the trailer axis 38 and the side rails 86, 88 to a position where the ends of the outriggers 42 extend beyond the side rails 86, 88. For example, a first outrigger 94 and a second outrigger 96 are arranged in a spaced-apart and substantially parallel relationship to one another. In certain embodiments, the outriggers 94, 96 are spaced approximately 2.7 meters apart (approximately 9 feet apart) to accommodate the proppant container. However, it is understood that the spaced-apart relationship of the outriggers 94, 96 can be any distance to facilitate the transportation of the one or more proppant containers. For example, the outriggers 94, 96 may be approximately 2.4 meters apart (approximately 8 feet), approximately 3 meters apart (approximately 10 feet), approximately 3.3 meters apart (approximately 11 feet), or any suitable distance apart from one another. As shown, the outriggers 94, 96 extend outwardly from the trailer axis 38 to a position that is substantially aligned with the width at which wheels 24 extend beyond the side rails 86, 88. However, it is appreciated that, in certain embodiments, the outriggers 94, 96 may not be aligned with the wheels 24. Moreover, an outrigger length 98 may be defined by the structural dimensions of the proppant container. For example, the outriggers 94, 96 may be sufficiently long to receive and support the proppant container.


Furthermore, as illustrated in FIG. 2, the third section 18 also includes a pair of outriggers 42. For example, a third outrigger 100 and a fourth outrigger 102 are arranged in a spaced-apart and substantially parallel relationship to one another and to the first and second outriggers 94, 96. As shown, the second outrigger 96 and the third outrigger 100 are closely positioned to one another. However, the second outrigger 96 and third outrigger 100 are spaced apart such that one or more proppant containers can be positioned on the trailer assembly 10 in a side-by-side configuration along the trailer axis 38. For example, a first proppant container can be positioned on the second section 16 and a second proppant container can be positioned on the third section 18 without the first and second proppant containers contacting one another. In this manner, two or more proppant containers can be transported by the trailer assembly 10.


Moreover, as illustrated in FIG. 2, in certain embodiments the outrigger length 98 of each of the first outrigger 94, second outrigger 96, third outrigger 100, and fourth outrigger 102 can be substantially equal. In this manner, modular proppant containers having substantially similar dimensions can be easily loaded onto the trailer assembly onto the second section 16 or the third section 18, thereby simplifying loading procedures. In other embodiments, the outrigger length 98 can be different for one or more of the first outrigger 94, second outrigger 96, third outrigger 100, and fourth outrigger 102.


As will be described in detail below, the trailer assembly 10 can haul a plurality of proppant containers (e.g., two, three, four, five, etc.) on the outriggers 42. In the illustrated embodiment, the proppant containers will be positioned in a middle or central portion of the trailer assembly (e.g., along the second section 16 and third section 18). As a result, the load applied to the trailer assembly 10 by the proppant containers will be distributed over the length 80 of the trailer (e.g., between the fourth section 20 and the first section 14). For example, in the illustrated embodiment, the trailer assembly 10 includes three axles 26, which can include a wheel and axle assembly. As a result, the trailer assembly 10 can hold more weight because the weight per axle is decreased when compared to, for example, two axle trailers. Often, government regulations limit the weight per axle a trailer can transport along roadways. By increasing the number of axles, greater loads can be transported along roadways. Moreover, the stability of the trailer assembly 10 is increased because the load is evenly distributed along more axles over a greater surface area. That is, the load is distributed over more wheels 24 along a greater length (e.g., represented by the offset distance of the wheels 24 relative to one another). Furthermore, at least a portion of the load is transferred to the fourth section 20, thereby further distributing the load over the length 80 of the trailer assembly 10. For example, in certain embodiments, the load may be distributed along the length 80 of the trailer assembly 10 such that the fourth section 20 receives approximately 2×105 N (approximately 46,600 pounds) and the first section 14 receives approximately 2.2×105 N (approximately 49,500 pounds) due to the configuration of the trailer assembly 10. Therefore, a majority of the weight is transferred to the first section 14 and fourth section 20 while enabling the load to be arranged on the lower second section 16 and third section 18 to improve stability and decrease overall height. Accordingly, by positioning the outriggers 42 along the middle section of the trailer assembly 10 and increasing the number of axles, the present disclosure enables greater loads of proppant to be transported while also improving stability of the trailer assembly 10.


As described above, the frame 12 has a skeletal structure to reduce the weight of the trailer assembly 10, thereby enabling greater total loads to be hauled because the portion of the load attributed to the trailer assembly 10 is decreased. In certain embodiments, the frame 12 includes transversely-extending cross members 104 extending between the substantially parallel side rails 82, 84, 86, 88, 90, 92. For example, in the illustrated embodiment, the transversely-extending cross members 104 are arranged at the first section 14 to extend between the side rails 82, 84. As a result, additional support is provided to the first section 14 without substantially increasing the weight of the trailer assembly 10 because the transversely-extending cross members 104 may be particularly located to strengthen the trailer assembly 10 at particular locations. For example, the transversely-extending cross members 104 can be positioned at areas proximate the axles 26 because the loads on the trailer assembly 10 may be distributed across the wheels 24.


Moreover, in the illustrated embodiment, the fourth section 20 includes transversely-extending cross members 104 extending between the side rails 90, 92. In certain embodiments, the transversely-extending cross members 104 can extend through the side rails 90, 92 to the outer frame 50, thereby at least partially forming the supports 52. As described above, the transversely-extending cross members 104 can be utilized to strengthen the frame assembly 10 at the fourth section 20 where the frame assembly 10 is coupled to the work vehicle, via the vehicle coupling element 46 (as illustrated in FIG. 1). In this manner, larger loads can be hauled by the trailer assembly 10 due to the increased strength of the trailer assembly 10.


In certain embodiments, the transversely-extending cross members 104 may be positioned on the second section 16 and third section 18 of the trailer assembly 10. That is, the transversely-extending cross members 104 can be arranged to extend between the side rails 86, 88. In certain embodiments, there may not be transversely-extending cross members 104 positioned on the second section 16 and third section 18. However, in certain embodiments, the transversely-extending cross members 104 may be arranged proximate the outriggers 42 to provide additional structural support to the frame 12 at locations where loads are anticipated. For example, by strengthening the areas around the outriggers 42, the frame 12 can support a greater amount of weight, thereby increasing the hauling capacity of the trailer assembly 10. It should be appreciated that the transversely-extending cross members 104 include open areas 106 between adjacent transversely-extending cross members 104, thereby further providing a skeletal structure to the frame 12 and reducing the overall weight of the frame 12, while still providing sufficient support to transport large quantities of proppant.


In the illustrated embodiment, the first section 14 includes a bumper member 108 coupled to the side rails 82, 84. The bumper member 108 is positioned rearward of the front portion 34 of the first section 14, relative to the direction of travel 22. In other words, the bumper member 108 is at the farthest rearward portion of the trailer assembly 10. As will be described below, the bumper member 108 is positioned to receive and support various indicators and features of the trailer assembly 10 to enhance travel along roadways. For example, the bumper member 108 may include mud flaps, signal lights, holders for license plates, and the like.



FIG. 3 is a side elevational view of an embodiment of the trailer assembly 10. In the illustrated embodiment, and as will be described in detail below, the outriggers 42 are arranged such that the proppant container coupling elements 44 position the proppant container substantially flush with a top surface 120 of the second section 16 and a top surface 122 of the third section 18. As a result, in certain embodiments, the proppant container positioned on the trailer assembly 10 can contact the outriggers 42 and the respective top surfaces 120, 122. However, in other embodiments, the proppant containers positioned on the trailer assembly 10 can only contact the outriggers 42, only contact the top surfaces 120, 122, or some other combination thereof. In other words, an elevation of a mounting surface of the proppant container coupling element 44 and/or top surface of the outriggers 42 can be substantially flush with the top surfaces 120, 122, can be greater than the top surfaces 120, 122, or can be less than the top surfaces 120, 122. Moreover, the outriggers 42 utilized in the second section 16 and the third section 18 can be different. For example, the outriggers 100, 102 of the third section 18 can have a higher or lower elevation than the outriggers 94, 96 of the second section 16. Additionally, in certain embodiments, the outriggers 100, 102 of the third section 18 and the outriggers 94, 96 of the second section 16 can have a substantially equal elevation, relative to the ground plane 32.


As shown in FIG. 3, the outriggers 42 are positioned such that they extend through the side rails 82, 84. For example, as will be described in detail below, in certain embodiments the outriggers 42 extend through an opening formed in the side rails 82, 84. Moreover, in certain embodiments, the outriggers 42 extend through a notch or cut-out formed in the side rails 82, 84. However, in certain embodiments, the outriggers 42 are positioned to abut and/or bear against the side rails 82, 84.


In the illustrated embodiment, the outriggers 42 have a polygonal shape, such as generally triangular or quadrilateral. As a result, a lower outrigger portion 124 is wider than an upper outrigger portion 126. That is, a lower outrigger width 128 is greater than an upper outrigger width 130, in the illustrated embodiment. In this manner, the weight of the proppant containers can be evenly distributed along an outrigger thickness 132 and transferred to the frame 12, thereby enabling the trailer assembly 10 to carry large loads, for example, more than 2.2×105 N (approximately 50,000 pounds), more than 2.7×105 N (approximately 60,000 pounds), more 3.1×105 N (approximately 70,000 pounds), more than 3.5×105 N (approximately 80,000 pounds), more than 4×105 N (approximately 90,000 pounds), more than 4.4×105 N (approximately 100,000 pounds), more than 4.9×105 N (approximately 110,000 pounds), more than 6.6×105 N (approximately 150,000 pounds), or any other suitable weight to enable the transportation of fracking proppant to a well site. Furthermore, while the embodiment illustrated in FIG. 3 includes outriggers 42 that are generally polygonal having a different upper width 130 than lower width 128, in certain embodiments, the outriggers 42 can have a substantially equal upper width 130 and lower width 128. For example, the outriggers 42 may be generally square or rectangular. Moreover, in certain embodiments, the outriggers 42 may be circular, arcuate, elliptical, oval or egg-shaped, or any other suitable shape to enable distribution of weight positioned on the outriggers 42. Furthermore, each outrigger 42 utilized by the trailer assembly 10 need not be the same shape. For example, the outriggers 100, 102 associated with the third section 18 can be triangular or polygonal while the outriggers 94, 96 associated with the second section 16 can be elliptical or circular. In this manner, the trailer assembly 10 can be customized to enable efficient transportation of large quantities of proppant.


In the illustrated embodiment, the wheels 24 are positioned along the first section 14 and extend upwardly such that the wheels 24 are higher than the top surfaces of the second and third sections 120, 122. While the illustrated embodiment includes wheels 24 that extend above an elevation of the top surfaces 120, 122, in certain embodiments the wheels 24 may be substantially equal to or below the elevation of the top surfaces 120, 122. As shown, the axles 26 are coupled to the bottom of the first section 14, thereby enabling the wheels 24 to rotate about the axles 26 to facilitate movement of the trailer assembly 10. In certain embodiments, because of the positioning of the wheels outward of the side rails 82, 84, cargo may be positioned onto the first section 14. For example, cargo may be arranged on the side rails 82, 84 and secured to the trailer assembly 10 for transport.


As shown in FIG. 3, the jack 54 is in the in position 62. As a result, the retractable leg 56 is not extending downwardly toward the ground plane 32, thereby enabling movement of the trailer assembly 10 via the wheels 24. As described above, the jack 54 is positioned forward of the first section 14, second section 16, and third section 18, relative to the direction of travel 22. However, it should be appreciated that in certain embodiments the jack 54 may be arranged on any of the first section 14, second section 16, and third section 18. Moreover, multiple jacks 54 may be positioned along the length 80 of the trailer assembly 10, grouped on a single section or spaced across multiple sections, or a combination thereof.



FIG. 4 is a rear elevational view of an embodiment of the trailer assembly 10. In the illustrated embodiment, the bumper member 108 includes indicators 140 arranged side-by-side along the bumper member 108. In certain embodiments, the indicators 140 correspond to brake lights, turn signals, reverse lights, and the like. Accordingly, the trailer assembly 10 includes certain features that governmental regulations impose to enable trailers to transport materials along roadways. Moreover, in the illustrated embodiment, the bumper member 108 includes mud flaps 142 extending downwardly and obscuring the view of the wheels 24. The mud flaps 142 prevent mud and debris stuck to the wheels 24 from flying off and impacting other vehicles travelling behind the trailer assembly 10. It should be appreciated that in certain embodiments the mud flaps 142 may not be coupled to the bumper member 108.


As illustrated, the bumper member 108 obscures the view of the outriggers 42, because in certain embodiments the bumper member 108 has a substantially equal width to that of the outriggers 42. As a result, the width of the trailer assembly 10 may be particularly selected to enable transportation of goods, such as fracking proppant, along common roadways without specialized permitting for wide loads.



FIG. 5 is a top plan view of an embodiment of the outrigger 42 extending through the side rail 86. As described above, in certain embodiments, the outriggers 42 extend through a hole or chamber formed in the side rails 86, 88. In the illustrated embodiment, the outrigger 42 extending through the side rail 86 is represented by the broken lines. Accordingly, it should be understood that the top surface 120 of the second section 16 is positioned over the hole or chamber formed through the side rail 86.


In the illustrated embodiment, the proppant container coupling element 44 is positioned on a distal end 160 of the outrigger 42, relative to the trailer axis 38 and the side rail 86. In other words, the proppant container coupling element 44 is outwardly positioned from the side rail 86. In this manner, by distributing the weight of the proppant container over a wider area, the stability and supporting capabilities of the trailer assembly 10 are increased. As shown, the proppant container coupling element 44 includes a mounting platform 162 and a locking mechanism 164, such as a twist lock, positioned on a top surface 166 of the outrigger 42. In certain embodiments, the mounting platform 162 has a thickness such that the proppant container, when positioned on the mounting platform 162, is elevated above a top surface 166 of the outrigger 42. However, in certain embodiments, the proppant container may contact the top surface 166 of the outrigger 42 when positioned on the mounting platform 162. In the illustrated embodiment, the locking mechanism 164 is a twist lock having a body portion 168 that is rotated via a lever 170. Upon activation of the lever 170, the body portion 168 rotates to engage the proppant container, thereby securing the proppant container to the trailer assembly 10. While the illustrated embodiment includes the twist lock locking mechanism 164, in other embodiments the locking mechanism 164 and/or proppant container coupling element 44 may include tongue and groove fasteners, cable ties, and the like.


In the illustrated embodiment, the outrigger 42 is secured to the side rail 86 via a fastener 172. For example, the fastener 172 may include a bolt, a nail, a screw, a rivet, or any other suitable fastener to secure the outrigger 42 to the side rail 86. Moreover, while the illustrated embodiment includes one fastener 172, in certain embodiments a plurality of fasteners 172 may be utilized to secure the outrigger 42 to the side rail 86. Moreover, the fastener 172 may secure the outrigger 42 to the side rail 86 from the bottom, as opposed to the illustrated embodiment which includes securement through the top surface 120 of the side rail 86.



FIG. 6 is a partial side view of an embodiment of the outrigger 42 extending through the side rail 86. As described above with respect to FIG. 5, in certain embodiments the outrigger 42 extends through a hole 180 formed in the side rail 86. As a result, the top surface 120 of the side rail 86 is arranged above the top surface 166 of the outrigger 42. Moreover, as shown in FIG. 6, in certain embodiments gussets 182 are utilized to provide additional support to the outriggers 42. For example, in the illustrated embodiment, the gussets 182 are angled bars extending between the side rail 86 and the outrigger 42. As shown, the gussets 182 can be arranged on the top surface 166 and/or a bottom surface 184 of the outrigger 42. Moreover, in certain embodiments, the gussets 182 can be utilized on a side of the outrigger 42. Furthermore, in certain embodiments, the gussets 182 may not be used at all. For example, the fastener 172 and hole 180 may be sufficient to secure the outrigger 42 to the side rail 86.


In the illustrated embodiment, the top surface 120 of the side rail 86 is at a higher elevation 186, relative to the ground plane 32, than an elevation 188 of the top surface 166 of the outrigger 42. However, the mounting platform 162 of the proppant container coupling element 44 has a mounting platform thickness 190 that is substantially equal to the difference in elevation between the top surface 166 and the top surface 120. As a result, an elevation 192 of the mounting platform 162 and the elevation 186 of the top surface 120, relative to the ground plane 32, may be substantially equal. However, it should be appreciated that, in certain embodiments, the mounting platform 162 may extend to an elevation higher than the top surface 120 or to an elevation lower than the top surface 120.



FIG. 7 is a top plan view of an embodiment of the outrigger 42 coupled to the side rail 86. As described above, in certain embodiments, the outrigger 42 can be coupled to the side rail 86 via a slot formed in the side rail 86. Thereafter, the fastener 172 can further secure the outrigger 42 to the side rail 86. As a result, in the illustrated embodiment, the top surface 166 is illustrated as extending through the side rail 86.



FIG. 8 is a partial side elevational view of an embodiment of the outrigger 42 coupled to the side rail 86. In the illustrated embodiment, the outrigger 42 is positioned within a slot 198 formed within the side rail 86. As will be appreciated, the slot 198 is sized to accommodate the size and shape of the outrigger 42. For example, a substantially square or rectangular outrigger 42 would be positioned within a corresponding square or rectangular slot 198. Furthermore, in the illustrated embodiment, the fastener 172 secures the outrigger 42 to the side rail 86.


In the illustrated embodiment, the mounting platform 162 is positioned above the top surface 120 of the side rail 86. That is, the mounting platform 162 positions the proppant containers at an elevation higher than the top surface 120, relative to the ground plane 32. However, it should be appreciated that, in certain embodiments, the mounting platform 162 may be substantially flush with the top surface 120.



FIGS. 9-11 are cross-sectional views of embodiments of the outriggers 42. Turning to FIG. 9, the outrigger 42 has a shape that is substantially triangular. That is, the lower outrigger width 128 is larger than the upper outrigger width 130. As a result, loads positioned on the outrigger 42 may be distributed over a larger surface area, thereby improving the stability and load carry capabilities of the outrigger 42. In the illustrated embodiment, the outrigger 42 includes the proppant container coupling element 44 positioned on the top surface 166. As a result, in certain embodiments, the proppant container positioned on the outrigger 42 may be placed above the top surface 166 because of the mounting platform 162. However, in other embodiments, the mounting platform 162 may be recessed into the outrigger 42, thereby being substantially flush with the top surface 166.



FIG. 10 is an embodiment of the outrigger 42 having a substantially rectangular cross section. In the embodiment illustrated in FIG. 10, the lower outrigger width 128 is substantially equal to the upper outrigger width 130. Moreover, as illustrated, the proppant container coupling element 44 is arranged on the top surface 166. As described above, in certain embodiments the mounting platform 162 is above the top surface 166. However, in certain embodiments, the mounting platform 162 can be recessed into the outrigger 42.



FIG. 11 is an embodiment of the outrigger 42 having a substantially half-circle, arcuate, or curved cross section. In the embodiment illustrated in FIG. 11, the outrigger 42 includes an arcuate portion 200 and the top surface 166. The arcuate shape of the arcuate portion 200 enables the transfer and distribution of forces acting on the top surface 166 along the curved path, thereby redirecting the force and enabling transportation and support of large volumes of proppant material. While the illustrated embodiment includes a substantially half-circle arcuate portion 200, in other embodiments the arcuate portion 200 may be elliptical, arced, or any other curved shape. Moreover, as illustrated, the proppant container coupling element 44 is arranged on the top surface 166. As described above, in certain embodiments the mounting platform 162 is above the top surface 166. However, in certain embodiments, the mounting platform 162 can be recessed into the outrigger 42.



FIG. 12 is a side elevational view of an embodiment of the trailer assembly 10 with proppant containers 210 arranged on the second section 16 and third section 18. As described above, in certain embodiments, the trailer assembly 10 receives, secures, and transports one or more proppant containers 210. The proppant containers 210 can be filled with proppant material and weight approximately 50,000 pounds (approximately 2.2×105 N) each. As illustrated, each of the second section 16 and third section 18 receives the proppant container 210 on the respective outriggers 42. For example, the outriggers 94, 96 positioned on the second section 16 are arranged to receive and support the proppant container 210a and the outriggers 100, 102 positioned on the third section 18 are arranged to receive and support the proppant container 210b. The proppant containers 210a, 210b are arranged in a side-by-side configuration along the length 80 of the trailer assembly 10 substantially co-axially with the trailer axis 38. By arranging the proppant containers 210a, 210b side-by-side along the length 80 of the trailer assembly 10, the width of the trailer assembly 10 is approximately equal to the width of the proppant containers 210a, 210b, thereby enabling transportation along roadways without special permitting for extra wide loads. Accordingly, shipping costs may be decreased.


As shown in FIG. 12, the outriggers 96, 100 are spaced apart such that both proppant containers 210a, 210b can be positioned on the trailer assembly 10 at the same time. Accordingly, shipping costs may be decreased because more proppant can be delivered to a well site at one time, thereby reducing the total number of trips. In certain embodiments, shipping companies charge by the mile and/or trip, and as a result, hauling greater loads per trip reduces the total number of trips, reducing prices for delivering proppant to well sites.



FIG. 13 is a top plan view of an embodiment of the trailer assembly 10 having a dual outrigger 220 arranged between the second and third sections 16, 18. As used herein, dual outrigger 220 refers to an outrigger having two or more coupling elements 44 arranged on each distal end 160 of the dual outrigger 220. As a result, the dual outrigger 220 may at least partially support the load of two proppant containers 210. The dual outrigger 220 is coupled to the side rails 86, 88 in the same manner as described above. For example, the dual outrigger 220 may extend through the hole 180 formed in the side rails 86, 88. Additionally, in certain embodiments, the dual outrigger 220 may be positioned in the slot 198 formed to receive the dual outrigger 220. As will be described below, the dual outrigger 220 may have a cross-sectional shape similar to the outriggers 42.



FIG. 14 is a side elevational view of an embodiment of the trailer assembly 10 having the dual outrigger 220. As illustrated, the dual outrigger is positioned between the second and third sections 16, 18 and is substantially aligned with the outriggers 94, 102. That is, the top surface 166 of the dual outrigger 220 is substantially aligned with the top surfaces 166 of the outriggers 94, 102. As a result, the proppant containers 210 can be supported on the trailer assembly 10. In the illustrated embodiment, the dual outrigger 220 has a triangular and/or polygonal cross-sectional shape. That is, the upper outrigger width 130 is less than the lower outrigger width 128. Accordingly, the load positioned on the dual outrigger 220 is distributed to the frame 12 over a wider surface area at the bottom of the dual outrigger 220, thereby enabling a larger load to be carried. In other embodiments, the dual outrigger 220 may have a different shape, such as a rectangular or arcuate shape, for example as illustrated in FIGS. 9-11.



FIG. 15 is a partial top plan view of the dual outrigger 220 coupled to the side rail 86. In the illustrated embodiment, the dual outrigger 220 extends through the hole 180 formed in the body of the side rail 86. Moreover, the dual outrigger 220 is coupled to the side rail 86 via the fastener 172. As will be appreciated, while the illustrated embodiment includes one fastener 172, in certain embodiments there may be a plurality of fasteners coupling the dual outrigger 220 to the side rail 86. In the illustrated embodiment, dual outrigger 220 includes two coupling elements 44, each of which includes a mounting platform 162 and a locking mechanism 164, such as a twist lock, positioned on a top surface 166 of the dual outrigger 220. In other embodiments, a single proppant container coupling element 44, capable of coupling two proppant containers to dual outrigger 220, may be utilized.



FIGS. 16-18 are cross-sectional views of embodiments of the outriggers 42. Turning to FIG. 16, the outrigger 42 has a shape that is substantially triangular. That is, the lower outrigger width 128 is larger than the upper outrigger width 130. As a result, loads positioned on the outrigger 42 may be distributed over a larger surface area, thereby improving the stability and load carrying capabilities of the outrigger 42. In the illustrated embodiment, the outrigger 42 includes the proppant container coupling element 44 positioned on the top surface 166. As a result, in certain embodiments, the proppant container (or, in some embodiments, two proppant containers) positioned on the outrigger 42 may be placed above the top surface 166 because of the mounting platform 162. However, in other embodiments, the mounting platform 162 may be recessed into the outrigger 42, thereby being substantially flush with the top surface 166.



FIG. 17 is an embodiment of the outrigger 42 having a substantially rectangular cross section. In the embodiment illustrated in FIG. 10, the lower outrigger width 128 is substantially equal to the upper outrigger width 130. Moreover, as illustrated, the proppant container coupling element 44 is arranged on the top surface 166. As described above, in certain embodiments the mounting platform 162 is above the top surface 166. However, in certain embodiments, the mounting platform 162 can be recessed into the outrigger 42.



FIG. 18 is an embodiment of the outrigger 42 having a substantially half-circle, arcuate, or curved cross section. In the embodiment illustrated in FIG. 18, the outrigger 42 includes an arcuate portion 200 and the top surface 166. The arcuate shape of the arcuate portion 200 enables the transfer and distribution of forces acting on the top surface 166 along the curved path, thereby redirecting the force and enabling transportation and support of large volumes of proppant material. While the illustrated embodiment includes a substantially half-circle arcuate portion 200, in other embodiments the arcuate portion 200 may be elliptical, arced, or any other curved shape. Moreover, as illustrated, the proppant container coupling element 44 is arranged on the top surface 166. As described above, in certain embodiments the mounting platform 162 is above the top surface 166. However, in certain embodiments, the mounting platform 162 can be recessed into the outrigger 42.


As illustrated in each of FIGS. 16-18, the dual outrigger 220 includes two coupling elements 44, each including a respective mounting platform 162 and respective locking mechanisms 164. When the proppant containers 210 are positioned on the dual outrigger 220 (as illustrated in FIG. 12, for example), an operator may activate the locking mechanisms 14 to secure the proppant containers 210 to the trailer assembly 10. In this manner, the proppant containers 210 can be transported, for example, to a well site.


As described in detail above, embodiments of the present disclosure include the trailer assembly 10 having the skeletal frame 12 for transporting proppant containers along roadways. In certain embodiments, the frame 12 is formed from spaced-apart side rails 82, 84, 86, 88, 90, 92 utilizing minimal materials to improve the structural integrity of the frame 12, while also reducing the weight of the trailer assembly 10. In certain embodiments, the outriggers 42 extend through the side rails 86, 88 to provide a predetermined location to position the proppant containers 210. For example, in certain embodiments, the outriggers 42 extend through the holes 180 and secure the proppant containers 210 to the trailer assembly 10 via the locking mechanisms 164. Moreover, in certain embodiments, the outriggers 42 extend through the slots 198 and secure the proppant containers 210 to the trailer assembly 10 via the locking mechanisms 164. In this manner, the proppant containers 210 can be positioned on and secured to the trailer assembly 10 for transportation along roadways.


This application claims priority to, and the benefit of, U.S. Provisional Application No. 62/345,295, filed Jun. 3, 2016, titled “Trailer Assembly for Transport of Containers of Proppant Material,” which is hereby incorporated by reference in its entirety.


The foregoing disclosure and description of the disclosed embodiments is illustrative and explanatory of the embodiments of the invention. Various changes in the details of the illustrated embodiments can be made within the scope of the appended claims without departing from the true spirit of the disclosure. The embodiments of the present disclosure should only be limited by the following claims and their legal equivalents.

Claims
  • 1. A trailer assembly for transporting a plurality of proppant containers along a roadway, the trailer assembly comprising: a frame including structural components with open areas positioned therebetween defining a skeletal structure having a first section arranged at a rearward end of the trailer assembly, a second section arranged forward of the first section, a third section arranged forward of the second section and a connector section arranged at a forward end of the trailer assembly, wherein the second and third sections are configured to support the plurality of proppant containers in a side-by-side arrangement along a longitudinal axis of the frame, the structural components including: a first pair of spaced-apart side rails extending longitudinally along the first section;a second pair of spaced-apart side rails extending longitudinally along the second and third sections and structurally strengthened to support and stabilize the plurality of proppant containers, wherein the first pair of side rails is supported on a top surface of the second pair of side rails such that a first section elevation from a ground plane to a top surface of the first pair of side rails is greater than a second section elevation from the ground plane to the top surface of the second pair of side rails and configured to distribute and stabilize said plurality of proppant containers positioned on the lower-elevated second and third sections;a first pair of outriggers including a first front beam member and a first rear beam member connected to and transversely extending from the second pair of side rails, each of the first front and rear beam members having distal ends positioned outwardly from the second pair of side rails such that a top surface of the first front and first rear beam members lie in a plane defined by the top surface of the second pair of side rails and a first mounting platform disposed on each distal end such that a first mounting platform elevation is greater than the second section elevation but less than the first section elevation, wherein the first mounting platforms are configured to support a first of said filled proppant containers;a second pair of outriggers including a second front beam member and a second rear beam member connected to and transversely extending from the second pair of side rails proximate the first pair of outriggers, each of the second front and rear beam members having distal ends positioned outwardly from the second pair of side rails such that a top surface of the second front and rear beam members lie in the plane defined by the top surface of the second pair of side rails and a second mounting platform disposed on each distal end such that a second mounting platform elevation is greater than the second section elevation but less than the first section elevation, wherein the second mounting platforms are configured to support a second of said proppant containers in the side-by-side arrangement; andat least three wheel and axle assemblies positioned subjacent to the first pair of side rails and rearward of the second pair of side rails, each wheel and axle assembly including a plurality of wheels rotatably connected to an axle to enable rolling movement of the frame.
  • 2. The trailer assembly of claim 1, wherein each distal end portion of the first front and rear beam members includes a first proppant container coupling element positioned adjacent each distal end portion thereof to engage and secure the first proppant container, and wherein each distal end portion of the second front and rear beam members includes a second proppant container coupling element positioned at each distal end portion thereof to engage and secure the second proppant container.
  • 3. The trailer assembly of claim 2, wherein the first front beam member and the second rear beam member are integrally formed to provide a dual outrigger positioned at a medial portion of the frame.
  • 4. The trailer assembly of claim 3, wherein each of the proppant container coupling elements comprises a locking mechanism to secure the first or second proppant containers to a top surface of the dual outrigger.
  • 5. The trailer assembly of claim 4, wherein each of the locking mechanisms comprises a lever positioned to rotate a body portion of the locking mechanism to engage the first or second proppant container so as to secure the proppant container to the top surface of the dual outrigger.
  • 6. The trailer assembly of claim 1, the first section further comprising a plurality of support beams positioned transverse the first pair of side rails and arranged so as to provide structural support to the three or more wheel and axle assemblies and to distribute the load among the three or more wheel and axle assemblies.
  • 7. The trailer assembly of claim 1, further comprising a jack connected to the connector section, the jack having a retractable leg that is movable between an in position and an out position, to provide support and stability to the trailer assembly when the trailer assembly is stationary and when the jack is in the out position.
  • 8. The trailer assembly of claim 1, wherein a cross-sectional shape of each of the first pair of outriggers and the second pairs of outriggers comprises a first width of a bottom surface of the outrigger and a second width of a top surface of the outrigger, wherein the first width is greater than or equal to the second width so as to distribute and stabilize the load over a larger surface area.
RELATED APPLICATIONS

This application claims priority to, and the benefit of, U.S. Provisional Application No. 62/345,295, filed Jun. 3, 2016, titled “Trailer Assembly for Transport of Containers of Proppant Material,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (580)
Number Name Date Kind
137871 Worsley Apr 1873 A
150894 Safely May 1874 A
384443 Hoover Jun 1888 A
448238 Johnson Mar 1891 A
710611 Ray Oct 1902 A
711632 Johnson Oct 1902 A
917649 Otto Apr 1909 A
1143641 McGregor Jun 1915 A
1331883 Stuart Feb 1920 A
1344768 Messiter Jun 1920 A
1434488 Forsythe et al. Nov 1922 A
1520560 Burno Dec 1923 A
1506936 Lea Sep 1924 A
1526527 Butler Feb 1925 A
1573664 Wetherill Feb 1926 A
1807447 Smith May 1931 A
1850000 Fernand Mar 1932 A
1932320 Steward Oct 1933 A
1973312 Hardinge Sep 1934 A
2020628 Woodruff Nov 1935 A
2233005 Garlinghouse Feb 1941 A
2255448 Morris Sep 1941 A
2293160 Miller et al. Aug 1942 A
2368672 McNamara Feb 1945 A
2381103 Frank Aug 1945 A
2385245 Willoughby Sep 1945 A
2413661 Stokes Dec 1946 A
2423879 De Frees Jul 1947 A
2563470 Kane Aug 1951 A
2564020 Mengel Aug 1951 A
2603342 Martinson Jul 1952 A
2616758 Meyers Nov 1952 A
2622771 Tulou Dec 1952 A
2652174 Shea et al. Sep 1953 A
2670866 Glesby Mar 1954 A
2678145 Ejuzwiak et al. May 1954 A
2693282 Sensibar Nov 1954 A
2700574 Tourneau Jan 1955 A
2792262 Hathorn Apr 1955 A
2774515 Johansson et al. Dec 1956 A
2791973 Dorey May 1957 A
2801125 Page et al. Jul 1957 A
2808164 Glendinning Oct 1957 A
2812970 Martinson Nov 1957 A
2837369 Stopps Jun 1958 A
2865521 Fisher et al. Dec 1958 A
2873036 Noble Feb 1959 A
2894666 Campbell, Jr. Jul 1959 A
2988235 Ronyak Jun 1961 A
2994460 Matthews Aug 1961 A
3041113 Sackett Jun 1962 A
3049248 Heltzel et al. Aug 1962 A
3064832 Heltzel Nov 1962 A
3083879 Coleman Apr 1963 A
3090527 Rensch May 1963 A
3109389 Karlsson Nov 1963 A
3122258 Raymond Feb 1964 A
3134606 Oyler May 1964 A
3135432 McKinney Jun 1964 A
3163127 Gutridge et al. Dec 1964 A
3187684 Ortner Jun 1965 A
3198494 Curran et al. Aug 1965 A
3199585 Cronberger Aug 1965 A
3248026 Kemp Apr 1966 A
3255927 Ruppert et al. Jun 1966 A
3265443 Simas Aug 1966 A
3270921 Nadolske et al. Sep 1966 A
3281006 Tonchung Oct 1966 A
3294306 Areddy Dec 1966 A
3318473 Jones et al. May 1967 A
3326572 Murray Jun 1967 A
3343688 Ross Sep 1967 A
3353599 Swift Nov 1967 A
3354918 Coleman Nov 1967 A
3378152 Warner Apr 1968 A
3387570 Pulcrano et al. Jun 1968 A
3396675 Stevens Aug 1968 A
3397654 Snyder Aug 1968 A
3406995 McCarthy Oct 1968 A
3407971 Oehler Oct 1968 A
3425599 Sammarco et al. Feb 1969 A
3455474 Truncali Jul 1969 A
3476270 Cox et al. Nov 1969 A
3486787 Campbell Dec 1969 A
3499694 Coppel Mar 1970 A
3508762 Pratt Apr 1970 A
3524567 Coleman Aug 1970 A
3528570 Pase Sep 1970 A
3561633 Morrison et al. Feb 1971 A
3587834 Dugge Jun 1971 A
3596609 Ortner Aug 1971 A
3601244 Ort et al. Aug 1971 A
3602400 Cooke Aug 1971 A
3650567 Danielson Mar 1972 A
3653521 Bridge Apr 1972 A
3661293 Gerhard et al. May 1972 A
3692363 Tenebaum et al. Sep 1972 A
3704797 Suykens Dec 1972 A
3721199 Hassenauer Mar 1973 A
3729121 Cannon Apr 1973 A
3734215 Smith May 1973 A
3738511 Lemon et al. Jun 1973 A
3752511 Racy Aug 1973 A
3777909 Rheinfrank Dec 1973 A
3785534 Smith Jan 1974 A
3800712 Krug, Jr. Apr 1974 A
3802584 Sackett Apr 1974 A
3817261 Rogge Jun 1974 A
3820762 Bostrom et al. Jun 1974 A
3827578 Hough Aug 1974 A
3840141 Allom et al. Oct 1974 A
3854612 Snape Dec 1974 A
3861716 Baxter et al. Jan 1975 A
3883005 Stevens May 1975 A
3904105 Booth Sep 1975 A
3909223 Schmidt Sep 1975 A
3913933 Visser Oct 1975 A
3933100 Dugge Jan 1976 A
3963149 Fassauer Jun 1976 A
3970123 Poulton et al. Jul 1976 A
3986708 Heltzel et al. Oct 1976 A
3997089 Clarke et al. Dec 1976 A
3999290 Wood Dec 1976 A
4003301 Norton Jan 1977 A
4004700 Empey Jan 1977 A
4019635 Boots Apr 1977 A
4057153 Weaver Nov 1977 A
4058239 Van Mill Nov 1977 A
4063656 Lambert Dec 1977 A
4073410 Melcher Feb 1978 A
4125195 Sasadi Nov 1978 A
4138163 Calvert et al. Feb 1979 A
4178117 Brugler Dec 1979 A
4204773 Bates May 1980 A
4210273 Hegele Jul 1980 A
4210963 Ricciardi et al. Jul 1980 A
RE30358 Sensibar Aug 1980 E
4222498 Brock Sep 1980 A
4227732 Kish Oct 1980 A
4232884 Dewitt Nov 1980 A
4239424 Pavolka Dec 1980 A
4245820 Muryn Jan 1981 A
4247228 Gray et al. Jan 1981 A
4247370 Nijhawan et al. Jan 1981 A
4258953 Johnson Mar 1981 A
4265266 Kierbow et al. May 1981 A
4278190 Oory et al. Jul 1981 A
4280640 Daloisio Jul 1981 A
4282988 Hulbert, Jr. Aug 1981 A
4287921 Sanford Sep 1981 A
4287997 Rolfe et al. Sep 1981 A
4289353 Merritt Sep 1981 A
4299597 Oetiker et al. Nov 1981 A
4306895 Thompson et al. Dec 1981 A
4329106 Adler May 1982 A
4350241 Wenzel Sep 1982 A
4359176 Johnson Nov 1982 A
4363396 Wolf et al. Dec 1982 A
4395052 Rash Jul 1983 A
4397406 Croley Aug 1983 A
4398653 Daloisio Aug 1983 A
4402392 Fabian et al. Sep 1983 A
4407202 McCormick Oct 1983 A
4408886 Sampson et al. Oct 1983 A
4410106 Kierbow et al. Oct 1983 A
4420285 Loyer et al. Dec 1983 A
4427133 Kierbow et al. Jan 1984 A
4428504 Bassett et al. Jan 1984 A
4449861 Saito May 1984 A
4453645 Usui et al. Jun 1984 A
4474204 West Oct 1984 A
4475672 Whitehead Oct 1984 A
4478155 Cena et al. Oct 1984 A
4483462 Heintz Nov 1984 A
4513755 Baroni Apr 1985 A
4525071 Horowitz Jun 1985 A
4526353 Stomp Jul 1985 A
4532098 Campbell Jul 1985 A
4534869 Seibert Aug 1985 A
4552573 Weis Nov 1985 A
4569394 Sweatman et al. Feb 1986 A
4570967 Allnutt Feb 1986 A
4571143 Hellerich Feb 1986 A
4588605 Frei et al. May 1986 A
4608931 Ruhmann et al. Sep 1986 A
4619531 Dunstan Oct 1986 A
4624729 Bresciani et al. Nov 1986 A
4626155 Hlinsky et al. Dec 1986 A
4626166 Jolly Dec 1986 A
4628825 Taylor et al. Dec 1986 A
4639015 Pitts Jan 1987 A
4648584 Wamser Mar 1987 A
4660733 Snyder et al. Apr 1987 A
4701095 Berryman et al. Oct 1987 A
4714010 Smart Dec 1987 A
4715754 Scully Dec 1987 A
4724976 Lee Feb 1988 A
4738774 Patrick Apr 1988 A
4741273 Sherwood May 1988 A
4761039 Hilaris Aug 1988 A
4779751 Munroe Oct 1988 A
4798039 Deglise Jan 1989 A
4801389 Brannon et al. Jan 1989 A
4819830 Schultz Apr 1989 A
4836510 Weber et al. Jun 1989 A
4836735 Dennehy Jun 1989 A
4848605 Wise Jul 1989 A
4882784 Tump Nov 1989 A
4889219 Key Dec 1989 A
4901649 Fehrenbach et al. Feb 1990 A
4909378 Webb Mar 1990 A
4909556 Koskinen Mar 1990 A
4917019 Hesch et al. Apr 1990 A
4919583 Speakman, Jr. Apr 1990 A
4923358 Van Mill May 1990 A
4946068 Erickson et al. Aug 1990 A
4947760 Dawson et al. Aug 1990 A
4949714 Orr Aug 1990 A
4954975 Kalata Sep 1990 A
4956821 Fenelon Sep 1990 A
4964243 Reiter Oct 1990 A
4975205 Sloan Dec 1990 A
4975305 Biginelli Dec 1990 A
4988115 Steinke Jan 1991 A
4995522 Barr Feb 1991 A
5004400 Handke Apr 1991 A
5028002 Whitford Jul 1991 A
5036979 Selz Aug 1991 A
5042538 Wiese Aug 1991 A
5069352 Harbolt et al. Dec 1991 A
5080259 Hadley Jan 1992 A
5082304 Preller Jan 1992 A
5102281 Handke Apr 1992 A
5102286 Fenton Apr 1992 A
5105858 Levinson Apr 1992 A
5131524 Uehara Jul 1992 A
5167719 Tamaki Dec 1992 A
5190182 Copas et al. Mar 1993 A
5195861 Handke Mar 1993 A
5199826 Lawrence Apr 1993 A
5201546 Lindsay Apr 1993 A
5224635 Wise Jul 1993 A
5253746 Friesen et al. Oct 1993 A
5253776 Decroix et al. Oct 1993 A
5265763 Heinrici et al. Nov 1993 A
5277014 White Jan 1994 A
5280883 Ibar Jan 1994 A
5286158 Zimmerman Feb 1994 A
5286294 Ebi et al. Feb 1994 A
5290139 Hedrick Mar 1994 A
5317783 Williamson Jun 1994 A
5320046 Hesch Jun 1994 A
5324097 DeCap Jun 1994 A
5339996 Dubbert Aug 1994 A
5345982 Nadeau et al. Sep 1994 A
5358137 Shuert et al. Oct 1994 A
5373792 Pileggi et al. Dec 1994 A
5392946 Holbrook et al. Feb 1995 A
5402915 Hogan Apr 1995 A
5413154 Hurst et al. May 1995 A
5429259 Robin Jul 1995 A
5441321 Karpisek Aug 1995 A
5465829 Kruse Nov 1995 A
5470175 Jensen et al. Nov 1995 A
5470176 Corcoran et al. Nov 1995 A
5493852 Stewart Feb 1996 A
5498119 Faivre Mar 1996 A
5507514 Jacques Apr 1996 A
5538286 Hoff Jul 1996 A
5549278 Sidler Aug 1996 A
5564599 Barber et al. Oct 1996 A
5570743 Padgett et al. Nov 1996 A
5590976 Kilheffer et al. Jan 1997 A
5601181 Lindhorst Feb 1997 A
5602761 Spoerre et al. Feb 1997 A
5613446 DiLuigi et al. Mar 1997 A
5617974 Sawyer Apr 1997 A
5647514 Toth et al. Jul 1997 A
RE35580 Heider et al. Aug 1997 E
5667298 Musil Sep 1997 A
5687881 Rouse et al. Nov 1997 A
5690466 Gaddis et al. Nov 1997 A
5697535 Coleman Dec 1997 A
5706614 Wiley et al. Jan 1998 A
5718555 Swalheim Feb 1998 A
5722552 Olson Mar 1998 A
5722688 Garcia Mar 1998 A
5746258 Huck May 1998 A
5761854 Johnson et al. Jun 1998 A
5762222 Liu Jun 1998 A
5772390 Walker Jun 1998 A
5782524 Heider et al. Jul 1998 A
5785421 Milek Jul 1998 A
5803296 Olson Sep 1998 A
5806863 Heger et al. Sep 1998 A
5836480 Epp et al. Nov 1998 A
5845799 Deaton Dec 1998 A
5876172 Di Rosa Mar 1999 A
5878903 Ung Mar 1999 A
5906471 Schwoerer May 1999 A
5911337 Bedeker Jun 1999 A
5924829 Hastings Jul 1999 A
5927558 Bruce Jul 1999 A
5960974 Kee Oct 1999 A
5971219 Karpisek Oct 1999 A
5993202 Yamazaki et al. Nov 1999 A
5997099 Collins Dec 1999 A
6002063 Bilak et al. Dec 1999 A
6006918 Hart Dec 1999 A
6069118 Hinkel et al. May 2000 A
6077068 Okumura Jun 2000 A
6092974 Roth Jul 2000 A
6109486 Lee Aug 2000 A
6120233 Adam Sep 2000 A
D431358 Willemsen Oct 2000 S
6155175 Rude et al. Dec 2000 A
6186654 Gunteret et al. Feb 2001 B1
6190107 Lanigan et al. Feb 2001 B1
6192985 Hinkel et al. Feb 2001 B1
6196590 Kim Mar 2001 B1
6205938 Foley et al. Mar 2001 B1
6210088 Crosby Apr 2001 B1
6231284 Kordel May 2001 B1
6247594 Garton Jun 2001 B1
6263803 Dohr et al. Jul 2001 B1
6269849 Fields Aug 2001 B1
6273154 Laug Aug 2001 B1
6283212 Hinkel et al. Sep 2001 B1
6286986 Grimland Sep 2001 B2
6296109 Nohl Oct 2001 B1
6306800 Samuel et al. Oct 2001 B1
6328156 Otsman Dec 2001 B1
6328183 Coleman Dec 2001 B1
6364584 Taylor Apr 2002 B1
6374915 Andrews Apr 2002 B1
6382446 Hinkle et al. May 2002 B1
6390742 Breeden May 2002 B1
6401983 McDonald et al. Jun 2002 B1
6412422 Dohr et al. Jul 2002 B2
6415909 Mitchell et al. Jul 2002 B1
6416271 Pigott et al. Jul 2002 B1
6422413 Hall et al. Jul 2002 B1
6425725 Ehlers Jul 2002 B1
6450522 Yamada et al. Sep 2002 B1
6457291 Wick Oct 2002 B2
6498976 Ehlbeck et al. Dec 2002 B1
6505760 Werner Jan 2003 B1
6508387 Simon et al. Jan 2003 B1
6508615 Taylor Jan 2003 B2
6523482 Wingate Feb 2003 B2
6537002 Gloystein Mar 2003 B2
6557896 Stobart May 2003 B1
6575614 Tosco et al. Jun 2003 B2
6660693 Miller et al. Dec 2003 B2
6663373 Yoshida Dec 2003 B2
6666573 Grassi Dec 2003 B2
6675066 Moshgbar Jan 2004 B2
6675073 Kieman et al. Jan 2004 B2
6705449 Wagstaffe Mar 2004 B2
6720290 England et al. Apr 2004 B2
6772912 Schall et al. Aug 2004 B1
6774318 Beal et al. Aug 2004 B2
6776235 England Aug 2004 B1
6783032 Fons Aug 2004 B2
6811048 Lau Nov 2004 B2
6828280 England et al. Dec 2004 B2
6835041 Albert Dec 2004 B1
6882960 Miller Apr 2005 B2
6902061 Elstone Jun 2005 B1
6915854 England et al. Jul 2005 B2
6953119 Wening Oct 2005 B1
6955127 Taylor Oct 2005 B2
6964551 Friesen Nov 2005 B1
6968946 Shuert Nov 2005 B2
6974021 Boevers Dec 2005 B1
7008163 Russell Mar 2006 B2
7051661 Herzog et al. May 2006 B2
7084095 Lee et al. Aug 2006 B2
7104425 Le Roy Sep 2006 B2
7140516 Bothor Nov 2006 B2
7146914 Morton et al. Dec 2006 B2
7201290 Mehus et al. Apr 2007 B2
7214028 Boasso May 2007 B2
7240681 Saik Jul 2007 B2
7252309 Eng Soon et al. Aug 2007 B2
7284579 Elgan et al. Oct 2007 B2
7284670 Schmid Oct 2007 B2
7316333 Wegner Jan 2008 B2
7367271 Early May 2008 B2
7377219 Brandt May 2008 B2
7410623 Mehus et al. Aug 2008 B2
7475796 Garton Jan 2009 B2
7500817 Furrer et al. Mar 2009 B2
7513280 Brashears et al. Apr 2009 B2
7591386 Hooper Sep 2009 B2
7640075 Wietgrefe Dec 2009 B2
7695538 Cheng Apr 2010 B2
7753637 Benedict et al. Jul 2010 B2
7798558 Messier Sep 2010 B2
7802958 Garcia et al. Sep 2010 B2
7803321 Lark et al. Sep 2010 B2
7837427 Beckel Nov 2010 B2
7841394 McNeel et al. Nov 2010 B2
7845516 Pessin et al. Dec 2010 B2
7858888 Lucas et al. Dec 2010 B2
7867613 Smith Jan 2011 B2
7891304 Herzog et al. Feb 2011 B2
7891523 Mehus et al. Feb 2011 B2
7896198 Mehus et al. Mar 2011 B2
7921783 Forbes et al. Apr 2011 B2
7967161 Townsend Jun 2011 B2
7980803 Brandstätter et al. Jul 2011 B2
7997213 Gauthier et al. Aug 2011 B1
7997623 Williams Aug 2011 B2
8083083 Mohns Dec 2011 B1
8201520 Meritt Jun 2012 B2
8313278 Simmons et al. Nov 2012 B2
8366349 Beachner Feb 2013 B2
8375690 LaFargue et al. Feb 2013 B2
8379927 Taylor Feb 2013 B2
8387824 Wietgrefe Mar 2013 B2
8393502 Renyer et al. Mar 2013 B2
8424666 Berning et al. Apr 2013 B2
8469065 Schroeder et al. Jun 2013 B2
D688351 Oren Aug 2013 S
8505780 Oren Aug 2013 B2
8544419 Spalding et al. Oct 2013 B1
8545148 Wanek-Pusset et al. Oct 2013 B2
8562022 Nadeau et al. Oct 2013 B2
8573387 Trimble Nov 2013 B2
8573917 Renyer Nov 2013 B2
8585341 Oren Nov 2013 B1
D694670 Oren Dec 2013 S
8616370 Allegretti Dec 2013 B2
8622251 Oren Jan 2014 B2
8636832 Stutzman et al. Jan 2014 B2
8646641 Moir Feb 2014 B2
8662525 Dierks Mar 2014 B1
8668430 Oren Mar 2014 B2
D703582 Oren Apr 2014 S
8820559 Beitler et al. Sep 2014 B2
8827118 Oren Sep 2014 B2
8881749 Smith Nov 2014 B1
8887914 Allegretti Nov 2014 B2
8905266 De Brabanter Dec 2014 B2
8915691 Mintz Dec 2014 B2
9051801 Mintz Jun 2015 B1
9052034 Wegner et al. Jun 2015 B1
D740556 Huber Oct 2015 S
9162261 Smith Oct 2015 B1
9267266 Cutler et al. Feb 2016 B2
9296572 Houghton et al. Mar 2016 B2
9309064 Sheesley Apr 2016 B2
9410414 Tudor Aug 2016 B2
D780883 Schaffner et al. Mar 2017 S
D783771 Stegemoeller et al. Apr 2017 S
D783772 Stegemoeller, III et al. Apr 2017 S
9624036 Luharuka et al. Apr 2017 B2
9688492 Stutzman et al. Jun 2017 B2
9796318 Nolasco Oct 2017 B1
20010022308 Epp et al. Sep 2001 A1
20010038777 Cassell Nov 2001 A1
20010045338 Ransil et al. Nov 2001 A1
20020134550 Leeson et al. Sep 2002 A1
20020139643 Peltier et al. Oct 2002 A1
20030006248 Gill et al. Jan 2003 A1
20030024971 Jones Feb 2003 A1
20030111470 Fouillet et al. Jun 2003 A1
20030145418 Ikeda et al. Aug 2003 A1
20030156929 Russell Aug 2003 A1
20040065699 Schoer et al. Apr 2004 A1
20040074922 Bother et al. Apr 2004 A1
20040084874 McDougall et al. May 2004 A1
20040206646 Goh Oct 2004 A1
20040245284 Mehus et al. Dec 2004 A1
20050158158 Porta Jul 2005 A1
20050201851 Jonkka Sep 2005 A1
20060012183 Marchiori et al. Jan 2006 A1
20060027582 Beach Feb 2006 A1
20060053582 Engel et al. Mar 2006 A1
20060091072 Schmid et al. May 2006 A1
20060151058 Salaoras et al. Jul 2006 A1
20060180062 Furrer et al. Aug 2006 A1
20060180232 Glewwe et al. Aug 2006 A1
20060239806 Yelton Oct 2006 A1
20060267377 Lusk et al. Nov 2006 A1
20060277783 Garton Dec 2006 A1
20060289166 Stromquist et al. Dec 2006 A1
20070096537 Hicks May 2007 A1
20070125543 McNeel et al. Jun 2007 A1
20070194564 Garceau et al. Aug 2007 A1
20080008562 Beckel et al. Jan 2008 A1
20080029546 Schuld Feb 2008 A1
20080029553 Culleton Feb 2008 A1
20080058228 Wilson Mar 2008 A1
20080179054 McGough et al. Jul 2008 A1
20080179324 McGough et al. Jul 2008 A1
20080213073 Benedict et al. Sep 2008 A1
20080226434 Smith et al. Sep 2008 A1
20080264641 Slabaugh et al. Oct 2008 A1
20080277423 Garton Nov 2008 A1
20080315558 Cesterino Dec 2008 A1
20090038242 Cope Feb 2009 A1
20090078410 Krenek et al. Mar 2009 A1
20090223143 Esposito Sep 2009 A1
20090278326 Rowland et al. Nov 2009 A1
20100021258 Kim Jan 2010 A1
20100037572 Cheng Feb 2010 A1
20100038143 Burnett et al. Feb 2010 A1
20100040446 Renyer Feb 2010 A1
20100065466 Perkins Mar 2010 A1
20100072308 Hermann et al. Mar 2010 A1
20100080681 Bain Apr 2010 A1
20100108711 Wietgrefe May 2010 A1
20100129193 Sherrer May 2010 A1
20100199668 Coustou et al. Aug 2010 A1
20100207371 Van Houdt et al. Aug 2010 A1
20100278621 Redekop Nov 2010 A1
20100288603 Schafer Nov 2010 A1
20100320727 Haut et al. Dec 2010 A1
20110011893 Cerny Jan 2011 A1
20110017693 Thomas Jan 2011 A1
20110101040 Weissbrod May 2011 A1
20110109073 Williams May 2011 A1
20110121003 Moir May 2011 A1
20110127178 Claussen Jun 2011 A1
20110160104 Wu et al. Jun 2011 A1
20110162838 Mackenzie et al. Jul 2011 A1
20110168593 Neufeld et al. Jul 2011 A1
20110222983 Dugic et al. Sep 2011 A1
20110297702 Hildebrandt et al. Dec 2011 A1
20120017812 Renyer Jan 2012 A1
20120090956 Brobst Apr 2012 A1
20120103848 Allegretti et al. May 2012 A1
20120219391 Teichrob et al. Aug 2012 A1
20120247335 Stutzman et al. Oct 2012 A1
20120255539 Kolecki Oct 2012 A1
20130004272 Mintz Jan 2013 A1
20130022441 Uhryn et al. Jan 2013 A1
20130206415 Sheesley Aug 2013 A1
20130209204 Sheesley Aug 2013 A1
20130233545 Mahoney Sep 2013 A1
20130284729 Cook et al. Oct 2013 A1
20130309052 Luharuka Nov 2013 A1
20130323005 Rexius et al. Dec 2013 A1
20140020765 Oren Jan 2014 A1
20140020892 Oren Jan 2014 A1
20140023465 Oren et al. Jan 2014 A1
20140034662 Chalmers et al. Feb 2014 A1
20140044507 Naizer et al. Feb 2014 A1
20140077484 Harrell Mar 2014 A1
20140083554 Harris Mar 2014 A1
20140093319 Harris et al. Apr 2014 A1
20140097182 Sheesley Apr 2014 A1
20140166647 Sheesley Jun 2014 A1
20140202590 Higgins Jul 2014 A1
20140203046 Allegretti Jul 2014 A1
20140234059 Thomeer Aug 2014 A1
20140305769 Eiden et al. Oct 2014 A1
20140321950 Krenek Oct 2014 A1
20140377042 McMahon Dec 2014 A1
20150004895 Hammers et al. Jan 2015 A1
20150069052 Allegretti et al. Mar 2015 A1
20150079890 Stutzman et al. Mar 2015 A1
20150086307 Stefan Mar 2015 A1
20150086308 McIver et al. Mar 2015 A1
20150107822 Tudor Apr 2015 A1
20150110565 Harris Apr 2015 A1
20150115589 Thiessen Apr 2015 A1
20150159232 Zucchi et al. Jun 2015 A1
20150209829 De Siqueira et al. Jul 2015 A1
20150284183 Houghton et al. Oct 2015 A1
20160148813 Rogers et al. May 2016 A1
20160177678 Morris et al. Jun 2016 A1
20160185522 Herman et al. Jun 2016 A1
20160273355 Gosney et al. Sep 2016 A1
20160280480 Smith et al. Sep 2016 A1
20170129721 Harris et al. May 2017 A1
20170217353 Vander Pol Aug 2017 A1
20180009401 Miller et al. Jan 2018 A1
Foreign Referenced Citations (68)
Number Date Country
2023138 Feb 1992 CA
2791088 Mar 2013 CA
2037354 May 1989 CN
2059909 Aug 1990 CN
2075632 Apr 1991 CN
1329562 Jan 2002 CN
2517684 Oct 2002 CN
1635965 Jul 2005 CN
2913250 Jun 2007 CN
201161588 Dec 2008 CN
201390486 Jan 2010 CN
101823630 Sep 2010 CN
102101595 Jun 2011 CN
201881469 Jun 2011 CN
102114985 Jul 2011 CN
203033469 Jul 2013 CN
103350017 Oct 2013 CN
203580948 May 2014 CN
3108121 Sep 1982 DE
3342281 Jun 1985 DE
4008147 Sep 1990 DE
4217329 May 1993 DE
20317967 Mar 2004 DE
0016977 Oct 1980 EP
0019967 Dec 1980 EP
322283 Jun 1989 EP
0564969 Oct 1993 EP
0997607 May 2000 EP
1052194 Nov 2000 EP
1167236 Jan 2002 EP
1598288 Nov 2005 EP
1775190 Apr 2007 EP
1795467 Jun 2007 EP
2062832 May 2009 EP
2311757 Apr 2011 EP
2173445 Oct 1973 FR
2640598 Jun 1990 FR
1000621 Aug 1965 GB
1296736 Nov 1972 GB
1333976 Oct 1973 GB
2066220 Jul 1981 GB
2204847 Nov 1988 GB
2374864 Oct 2002 GB
S4871029 Sep 1973 JP
S4876041 Sep 1973 JP
S58161888 Oct 1983 JP
410087046 Apr 1998 JP
10264882 Oct 1998 JP
11034729 Feb 1999 JP
2007084151 Apr 2007 JP
2012011046 Oct 2013 MX
8105283 Jun 1983 NL
1990008082 Jul 1990 WO
1992002437 Feb 1992 WO
1993001997 Feb 1993 WO
1993006031 Apr 1993 WO
1996025302 Aug 1996 WO
2003024815 Mar 2003 WO
2006039757 Apr 2006 WO
2007005054 Jan 2007 WO
2007057398 May 2007 WO
2007061310 May 2007 WO
2008012513 Jan 2008 WO
2009087338 Jul 2009 WO
2010026235 Mar 2010 WO
2011099358 Aug 2011 WO
2012021447 Feb 2012 WO
2012058059 Mar 2012 WO
Non-Patent Literature Citations (192)
Entry
Non-Final Office Action dated Oct. 27, 2016 for co-pending U.S. Appl. No. 15/219,676.
Non-Final Office Action dated Nov. 9, 2016 for co-pending U.S. Appl. No. 14/948,494.
Final Office Action dated Nov. 4, 2016 for co-pending U.S. Appl. No. 14/738,485.
Non-Final Office Action dated Dec. 28, 2016 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Jan. 13, 2017 for co-pending U.S. Appl. No. 14/923,920.
Final Office Action dated Jan. 12, 2017 for co-pending U.S. Appl. No. 14/841,942.
Non-Final Office Action dated Dec. 23, 2016 for co-pending U.S. Appl. No. 14/485,686.
Non-Final Office Action dated Jan. 27, 2017 for co-pending U.S. Appl. No. 14/485,687.
Non-Final Office Action dated Dec. 20, 2016 for co-pending U.S. Appl. No. 14/831,924.
Final Office Action dated Jan. 19, 2017 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Nov. 25, 2016 for co-pending U.S. Appl. No. 15/152,744.
Non-Final Office Action dated Dec. 15, 2016 for co-pending U.S. Appl. No. 14/848,447.
Non-Final Office Action dated Dec. 9, 2016 for co-pending U.S. Appl. No. 14/927,614.
International Search Report for PCT Application No. PCT/US2016/050859 dated Dec. 9, 2016.
Non-Final Office Action dated Feb. 24, 2017 for co-pending U.S. Appl. No. 14/943,182.
Non-Final Office Action dated Feb. 14, 2017 for co-pending U.S. Appl. No. 14/943,111.
Final Office Action dated Mar. 7, 2017 for co-pending U.S. Appl. No. 15/144,296.
Non-Final Office Action dated Apr. 6, 2017 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated Mar. 6, 2017 for co-pending U.S. Appl. No. 15/152,744.
Non-Final Office Action dated Apr. 3, 2017 for co-pending U.S. Appl. No. 13/555,635.
Arrows Up, Inc., Jumbo BTS—Bulk Transport System, Aug. 1, 2014.
Arrows Up, Inc., Reusable Packaging Association, Member Spotlight: John Allegretti, President & CEO, Arrows Up, Inc., Jun. 23, 2016.
Seed Today, Arrows Up, Inc. Bulk Transport System (BTS), Country Journal Publishing Co., Decatur, IL, Mar. 2, 2011.
SeedQuest, Arrows Up, Inc. launches innovative bulk transport system for see, Barrington, IL, Mar. 2, 2011.
Monster Tanks, Inc., Sand Monster Website, http://monstertanksinc.com/sandmonster.html, 2012.
Solaris Oilfield Infrastructure, Mobile Sand Silo System, 2016.
Final Office Action dated Sep. 27, 2016 for co-pending U.S. Appl. No. 13/555,635.
Non-Final Office Action dated Mar. 23, 2016 for co-pending U.S. Appl. No. 13/555,635.
Final Office Action dated Jul. 30, 2015 for co-pending U.S. Appl. No. 13/555,635.
Non-Final Office Action dated Oct. 22, 2014 for co-pending U.S. Appl. No. 13/555,635.
Final Office Action dated Jun. 21, 2016 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Feb. 23, 2016 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Sep. 22, 2015 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Jul. 28, 2015 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Mar. 24, 2015 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Sep. 18, 2014 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/831,924.
Non-Final Office Action dated Feb. 16, 2016 for co-pending U.S. Appl. No. 14/831,924.
Final Office Action dated Jun. 27, 2016 for co-pending U.S. Appl. No. 14/923,920.
Non-Final Office Action dated Feb. 9, 2016 for co-pending U.S. Appl. No. 14/923,920.
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/943,111.
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 14/943,111.
Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 14/948,494.
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/948,494.
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/144,296.
Non-Final Office Action dated Jul. 25, 2016 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Apr. 28, 2016 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Oct. 6, 2015 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Aug. 6, 2015 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Apr. 29, 2015 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Dec. 17, 2014 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Sep. 4, 2014 for co-pending U.S. Appl. No. 13/660,855.
Final Office Action dated Sep. 24, 2013 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated May 14, 2013 for co-pending U.S. Appl. No. 13/660,855.
Non-Final Office Action dated Jul. 5, 2016 for co-pending U.S. Appl. No. 14/996,362.
Non-Final Office Action dated Jul. 6, 2016 for co-pending U.S. Appl. No. 15/144,450.
Final Office Action dated Sep. 29, 2016 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated Apr. 5, 2016 for co-pending U.S. Appl. No. 13/768,962.
Final Office Action dated Oct. 9, 2015 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated May 1, 2015 for co-pending U.S. Appl. No. 13/768,962.
Non-Final Office Action dated Jul. 18, 2016 for co-pending U.S. Appl. No. 15/152,744.
Non-Final Office Action dated Apr. 13, 2016 for co-pending U.S. Appl. No. 14/738,485.
Non-Final Office Action dated Sep. 7, 2016 for co-pending U.S. Appl. No. 14/841,942.
Final Office Action dated May 12, 2016 for co-pending U.S. Appl. No. 14/841,942.
Non-Final Office Action dated Nov. 30, 2015 for co-pending U.S. Appl. No. 14/841,942.
Non-Final Office Action dated Jul. 21, 2016 for co-pending U.S. Appl. No. 15/083,596.
Non-Final Office Action dated Aug. 19, 2016 for co-pending U.S. Appl. No. 15/084,613.
Non-Final Office Action dated Sep. 6, 2016 for co-pending U.S. Appl. No. 15/143,942.
Final Office Action dated Sep. 1, 2016 for co-pending U.S. Appl. No. 14/848,447.
Non-Final Office Action dated Apr. 8, 2016 for co-pending U.S. Appl. No. 14/848,447.
International Search Report and Written Opinion for PCT/US2017/012271, dated May 22, 2017.
Non-Final Office Action dated Apr. 24, 2017 for co-pending U.S. Appl. No. 14/738,485.
Final Office Action dated May 4, 2017 for co-pending U.S. Appl. No. 15/143,942.
Final Office Action dated May 30, 2017 for co-pending U.S. Appl. No. 13/625,675.
Final Office Action dated Apr. 19, 2017 for co-pending U.S. Appl. No. 15/219,640.
Non-Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 15/219,640.
Final Office Action dated May 2, 2017 for co-pending U.S. Appl. No. 15/219,676.
Non-Final Office Action dated May 10, 2017 for co-pending U.S. Appl. No. 14/882,973.
International Search Report for related International Application No. PCT/US2012/066639, dated Feb. 25, 2013.
International Search Report for related International Application No. PCT/US2013/035442, dated Jun. 23, 2013.
International Search Report for related International Application No. PCT/US2013/032819, dated May 23, 2013.
International Search Report for related International Application No. PCT/US2013/049028, dated Mar. 4, 2014.
International Preliminary Report on Patentability for PCT/US2012/066639, dated Feb. 26, 2013.
International Preliminary Report on Patentability for PCT/US2013/032819, dated Sep. 23, 2014.
International Search Report for PCT/US2015/012990, dated May 6, 2015. (15 pages).
FS-35 Desert Frac-Sanders. NOV (National Oilwell Varco). Mar. 19, 2012. (https://web.archive.org/web/20120319070423/http://www.nov.com/Well_Service_and_Completion/Frac_Sand_Handling_Equipment/Frac_Sanders/FS-35.aspx).
File History for U.S. Appl. No. 61/538,616, Robert A. Harris, Sep. 23, 2011. (21 pages).
International Search Report for PCT/US2015/024810, dated Jul. 8, 2015. (13 pages).
European Search Report for Application No. 15167039.5, dated Sep. 8, 2015. (7 pages).
SandBox Logistics, “Mine to Wellhead Logistics,” Houston, TX, May 2011.
SandBox Logistics, LLC, screenshots from video made in Apr. 2013 and publicly shown in May 2013, Arnegard, North Dakota.
International Search Report for PCT/US15/35635, dated Oct. 30, 2015. (12 pages).
PCT International Search Report for PCT/US15/49074, dated Dec. 17, 2015. (11 pages).
PCT International Search Report for PCT/US15/57601, dated May 6, 2016. (11 pages).
SandBox Logistics, LLC, screenshots from video dated Sep. 19, 2013.
SandBox Logistics, LLC, screenshots from video dated Aug. 22, 2014.
SandBox Logistics, LLC, screenshots from video dated Oct. 11, 2011.
SandBox Logistics, LLC, screenshots from video dated Apr. 10, 2011.
Grit Energy Solutions, LLC, Fidelity, Screenshots from video dated May 16, 2014.
Grit Energy Solutions, LLC, Gate, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack.
Grit Energy Solutions, LLC, Screen, Screenshots from video dated Dec. 6, 2013, https://www.youtube.com/user/gritstack.
Grit Energy Solutions, LLC, The Grit Stack System—Live Frac, Screenshots from video dated Jun. 15, 2015, https://www.youtube.com/user/gritstack.
Grit Energy Solutions, LLC, The Grit Stack System, Screenshots from video dated Feb. 7, 2014, https://www.youtube.com/user/gritstack.
Frac Sand Primer by Brian D. Olmen, Kelrick, LLC, from Hydraulic Fracturing by Michael Berry Smith and Carl Montgomery (CRC Press, Dec. 16, 2015), p. 384.
Premier Silica LLC, Sands Application in the Energy Market, Irving, TX, Copyright 2016.
Getty, John, Montana Tech; ASTM International, Overview of Proppants and Existing Standards and Practices, Jacksonville, FL, Jan. 29, 2013.
Non-Final Office Action dated May 13, 2016 for co-pending U.S. Appl. No. 14/986,826.
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/922,836.
Non-Final Office Action dated Feb. 4, 2016 for co-pending U.S. Appl. No. 14/922,836.
Final Office Action dated Aug. 25, 2016 for co-pending U.S. Appl. No. 14/927,614.
Non-Final Office Action dated Mar. 1, 2016 for co-pending U.S. Appl. No. 14/927,614.
Non-Final Office Action dated Apr. 29, 2016 for co-pending U.S. Appl. No. 14/943,182.
Final Office Action dated Sep. 15, 2016 for co-pending U.S. Appl. No. 14/882,973.
Non-Final Office Action dated Feb. 11, 2016 for co-pending U.S. Appl. No. 14/882,973.
Non-Final Office Action dated Aug. 11, 2016 for co-pending U.S. Appl. No. 13/625,675.
Final Office Action dated Nov. 11, 2015 for co-pending U.S. Appl. No. 13/625,675.
Non-Final Office Action dated Mar. 11, 2015 for co-pending U.S. Appl. No. 13/625,675.
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/475,354.
Non-Final Office Action dated Sep. 8, 2017 for co-pending U.S. Appl. No. 15/143,942.
International Search Report and Written Opinion for PCT/US17/34603 dated Aug. 22, 2017.
Non-Final Office Action dated Aug. 30, 2017 for co-pending U.S. Appl. No. 14/943,182.
Non-Final Office Action dated Aug. 4, 2017 for co-pending U.S. Appl. No. 13/625,675.
Yergin, Daniel, The Quest: Energy, Security, and the Remaking of the Modern World, 2011.
Gold, Russell, The Boom: How Fracking Ignited the American Energy Revolution and Changed the World, 2014.
Yergin, Daniel, Stepping on the Gas, Wall Street Journal, Apr. 2, 2011.
Raimi, Daniel et al., Dunn County and Wafford City, North Dakota: A case study of the fiscal effects of Bakken shale development, Duke University Energy Initiative, May 2016.
Local Economic Impacts Related to Marcellus Shale Development, The Center for Rural Pennyslvania, Sep. 2014.
Eagle Ford Shale Task Force Report, Railroad Commission of Texas, Convened and Chaired by David Porter, Mar. 2013.
Sandbox Logistics LLC et al v. Grit Energy Solutions LLC, 3:16-cv-00012, 73.Parties' P.R. 4-3 Joint Claim Construction and Prehearing Statement by Oren Technologies LLC, SandBox Enterprises LLC, SandBox Logistics LLC, Nov. 17, 2016.
Beard, Tim, Fracture Design in Horizontal Shale Wells—Data Gathering to Implementation, EPA Hydraulic Fracturing Workshop, Mar. 10-11, 2011.
Economic Impact of the Eagle Ford Shale, Center for Community and Business Research at the University of Texas at San Antonio's Institute for Economic Development, Sep. 2014.
Kelsey, Timothy W. et al., Economic Impacts of Marcellus Shale in Pennsylvania: Employment and Income in 2009, The Marcellus Shale Education & Training Center, Aug. 2011.
2006 Montana Commercial Vehicle Size and Weight and Safety Trucker's Handbook, Montana Department of Transportation Motor Carrier Services Division, Fifth Edition, Jun. 2010.
Budzynski, Brian W., Never Meant to Take the Weight, Roads & Bridges, Apr. 2015.
Interstate Weight Limits, 23 C.F.R. § 658, Apr. 1, 2011.
VIN Requirements, 49 C.F.R. § 565, Oct. 1, 2011.
Benson, Mary Ellen et al., Frac Sand in the United States—A Geological and Industry Overview, U.S. Department of the Interior, U.S. Geological Survey, 2015-2017.
Beekman, Thomas J. et al., Transportation Impacts of the Wisconsin Fracture Sand Industry, Wisconsin Department of Transportation, Mar. 2013.
U.S. Silica Company, Material Safety Data Sheet, Jan. 2011.
Texas Transportation Code, Chapter 621, General Provisions Relating to Vehicle Size and Weight (Sec. 621.101 effective Sep. 1, 2005 and Section 621.403 effective Sep. 1, 1995).
Garner, Dwight, Visions of an Age When Oil Isn't King, New York Times, Sep. 20, 2011.
Randy Lafollette, Key Considerations for Hydraulic Fracturing of Gas Shales, May 12, 2010.
Case No. 4:17-cv-00589, Plaintiffs' P.R. 3-1 and 3-2 Infringement Contentions and Disclosures, Jun. 8, 2017.
Final Office Action dated Oct. 13, 2017 for co-pending U.S. Appl. No. 15/398,950.
Non-Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 15/413,822.
Non-Final Office Action dated Oct. 5, 2017 for co-pending U.S. Appl. No. 14/848,447.
Final Office Action dated Sep. 21, 2017 for co-pending U.S. Appl. No. 14/922,836.
Non-Final Office Action dated Sep. 27, 2017 for co-pending U.S. Appl. No. 14/996,362.
Non-Final Office Action dated Sep. 28, 2017 for co-pending U.S. Appl. No. 13/628,702.
Non-Final Office Action dated Jul. 26, 2017 for co-pending U.S. Appl. No. 15/463,201.
Final Office Action dated Jul. 27, 2017 for co-pending U.S. Appl. No. 14/738,485.
Non-Final Office Action dated Aug. 3, 2017 for co-pending U.S. Appl. No. 15/219,676.
Beckwith, Robin, Proppants: Where in the World, Proppant Shortage, JPT, Apr. 2011 (6 pages).
Kullman, John, The Complicated World of Proppant Selection . . . , South Dakota School of Mines & Technology, Oct. 2011 (65 pages).
Lafollette, Randy, Key Considerations for Hydraulic Fracturing of Gas Shales, BJ Services Company, Sep. 9, 2010 (53 pages).
WW Trailers Inc., Model GN2040EZ datasheet, Portland, OR, Jan. 2007 (4pages).
WW Trailers Inc., Model GN204S9A datasheet, Portland, OR, Jan. 2007 (4pages).
Final Office Action dated Jun. 1, 2017 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Jul. 3, 2017 for co-pending U.S. Appl. No. 14/923,920.
Non-Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 15/589,185.
Final Office Action dated Jun. 7, 2017 for co-pending U.S. Appl. No. 14/848,447.
Final Office Action dated Jun. 28, 2017 for co-pending U.S. Appl. No. 14/485,687.
Final Office Action dated Jun. 6, 2017 for co-pending U.S. Appl. No. 14/927,614.
Final Office Action dated Jun. 21, 2017 for co-pending U.S. Appl. No. 14/943,182.
Itsumi Nagahama, English translation of Japan Unexamined Application No. S4871029, Dec. 14, 1971.
Non-Final Office Action dated Apr. 26, 2018 for co-pending U.S. Appl. No. 15/616,783.
Final Office Action dated Apr. 23, 2018 for co-pending U.S. Appl. No. 14/848,447.
Final Office Action dated Mar. 16, 2018 for co-pending U.S. Appl. No. 14/996,362.
Final Office Action dated Mar. 14, 2018 for co-pending U.S. Appl. No. 15/144,450.
International Organization for Standardization, ISO 668:1995(E).
International Organization for Standardization, ISO 668:1995(E)/Amd.1:2005(E).
International Organization for Standardization, ISO 668:1995(E)/Amd.2:2005(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.1:1993(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.2:1998(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.3:2005(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.4:2006(E).
International Organization for Standardization, ISO 1496-1:1990/Amd.5:2006(E).
Rastikian, K. et al., Modelling of sugar drying in a countercurrent cascading rotary dryer from stationary profiles of temperature and moisture, Journal of Food Engineering 41 (1999).
ISO 1496-1: International Standard, Series 1 Freight Containers—Specification and Testing—Part 1, General Cargo Containers, Fifth Edition, Aug. 15, 1990.
ISO 6346: International Standard, Freight Containers—Coding, Identification and Marking, Third Edition, Dec. 1, 1995.
ISO/IEC 15416: International Standard, Information Technology—Automatic Identification and Data Capture Techniques—Bar Code Print Quality Test Specification—Linear Symbols, First Edition, Aug. 15, 2000.
Noel, Lester A., Giuliano, Genevieve and Meyer, Michael D., Portions of Intermodal Transportation: Moving Freight in a Global Economy, Copyright Eno Transportation Foundation, 2011.
Smith, Ryan E., Prefab Architecture, A Guide to Modular Design and Construction, John Wiley & Sons, Inc., 2010.
OSHA-NIOSH, Hazard Alert: Worker Exposure to Silica during Hydraulic Fracturing, Jun. 2012.
Tremoglie, Michael P., Legal NewsLine, OSHA, NIOSH issue fracking health alert (/stories/510527440-oshaniosh-issue-fracking-health-alert), Jun. 25, 2012.
Beckwith, Robin, Proppants: Where in the World, Journal of Petroleum Technology, Apr. 2011.
Final Office Action dated Feb. 27, 2018 for co-pending U.S. Appl. No. 15/143,942.
Final Office Action dated Jan. 22, 2018 for co-pending U.S. Appl. No. 13/628,702.
Final Office Action dated Dec. 27, 2017 for co-pending U.S. Appl. No. 14/943,182.
Final Office Action dated Feb. 6, 2018 for co-pending U.S. Appl. No. 15/475,354.
Non-Final Office Action dated Feb. 9, 2018 for co-pending U.S. Appl. No. 15/587,926.
Non-Final Office Action dated Feb. 15, 2018 for co-pending U.S. Appl. No. 14/922,836.
Related Publications (1)
Number Date Country
20170349226 A1 Dec 2017 US
Provisional Applications (1)
Number Date Country
62345295 Jun 2016 US