Trailer backup assist system with object detection

Information

  • Patent Grant
  • 9499200
  • Patent Number
    9,499,200
  • Date Filed
    Thursday, March 26, 2015
    9 years ago
  • Date Issued
    Tuesday, November 22, 2016
    7 years ago
Abstract
A system for backing a vehicle and a trailer is provided herein. A sensing system is configured to detect objects located in an operating environment of the vehicle and trailer. A backup assist system is configured to communicate with the sensing system and automatically control a braking system of the vehicle to slow or stop the vehicle during a backing maneuver.
Description
FIELD OF THE INVENTION

The present invention generally relates to trailer backup assist systems, and more particularly, to a system and method for backing a trailer with object detection.


BACKGROUND OF THE INVENTION

Backing a vehicle with an attached trailer can be very challenging for many drivers. While a backing maneuver is being executed, the driver may have difficulty keeping track of possible objects in the environment in which the vehicle and trailer are operating. As such, there is a need for a system having object detection capabilities to reduce potential collisions involving the vehicle, trailer, and other objects in the operating environment.


SUMMARY OF THE INVENTION

According to one aspect of the present invention, a system for backing a vehicle and a trailer is provided. A sensing system is configured to detect objects in an operating environment of the vehicle and trailer. A backup assist system is configured to receive information from the sensing system and automatically modify a speed of the vehicle to prevent the vehicle or trailer from colliding with a detected object during a backing maneuver.


According to another aspect of the present invention, a method for backing a vehicle and trailer is provided. The method includes the steps of: executing a backing maneuver of the vehicle and trailer; detecting objects in an operating environment of the vehicle and trailer; and automatically controlling a braking system of the vehicle to modify a speed of the vehicle during the backing maneuver.


According to yet another aspect of the present invention, a method for backing a vehicle and trailer is provided. The method includes the steps of: executing a backing maneuver of the vehicle and trailer; detecting objects in an operating environment of the vehicle and trailer; and automatically controlling a braking system of the vehicle to modify a speed of the vehicle during the backing maneuver.


These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:



FIG. 1 illustrates a schematic diagram of a vehicle and a trailer, according to one embodiment;



FIG. 2 illustrates a vehicle and trailer being backed along a backing path, according to one embodiment;



FIG. 3 illustrates a backing scenario according to one embodiment;



FIG. 4 illustrates a backing scenario according to another embodiment; and



FIG. 5 illustrates a flow chart of a method for backing a vehicle and trailer, according to one embodiment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

As required, detailed embodiments of the present invention are disclosed herein.


However, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design and some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.


As used herein, the term “and/or,” when used in a list of two or more items, means that any one of the listed items can be employed by itself, or any combination of two or more of the listed items can be employed. For example, if a composition is described as containing components A, B, and/or C, the composition can contain A alone; B alone; C alone; A and B in combination; A and C in combination; B and C in combination; or A, B, and C in combination.


Referring to FIG. 1, a schematic diagram of a vehicle 10 and trailer 12 is shown according to one embodiment. The vehicle 10 may be any vehicle with towing capabilities and includes at least the following equipment or systems: a gas pedal 14, a braking system 16 having a brake pedal 18 and brakes 20, a display 22, an audio system 23, a steering system 24 having an electric power assisted steering (EPAS) system 25 and a steering wheel 26, a driveline system 28, a sensing system 32, a powertrain system 34, a GPS system 36, and a backup assist system 38 having a trajectory planner 40. The trailer 12 may be any type of trailer and may include a target 42 disposed thereon that is monitored by the sensing system 32. Additionally, the vehicle 10 and trailer 12 described herein may include other suitable equipment or systems in lieu of those described above.


Referring to FIG. 2, a schematic diagram is shown of the vehicle 10 and trailer 12 backing along a backing path P according to one embodiment. In the illustrated embodiment, the sensing system 32 includes ultrasonic sensors S1-S8 disposed variously on a front F, side S, and rear R portion of the vehicle 10. Ultrasonic sensors S9-16 may also be disposed variously on a front F, side S, and rear R portion of the trailer 12. The sensing system 32 may include one or more cameras disposed on the vehicle 10 and/or trailer 12. As shown, a rear vehicle mounted camera 44 may be provided to monitor the position of the target 42 so that a hitch angle λ can be determined between the vehicle 10 and the trailer 12. It should be appreciated, however, that the number and/or location of the ultrasonic sensors S1-S16 may be other than illustrated, if so desired. Additionally or alternatively, the sensing system 32 may include radar, lidar, lasers, thermal sensors, or a combination thereof.


In operation, the ultrasonic sensors S1-S12 are configured to detect objects in an operating environment 46 of the vehicle 10 and trailer 12. With respect to the disclosure herein, the operating environment 46 should be seen to correspond to areas surrounding the vehicle 10 and/or trailer 12. The ultrasonic sensors S1-S14 each transmit ultrasonic waves outwardly from the vehicle 10 or trailer 12 and receive ultrasonic waves that are reflected off of neighboring objects in the operating environment 46. Based on the time in which an ultrasonic wave is transmitted and received, the location of an object relative to the current position of the vehicle 10 and/or trailer 12 can be determined. As exemplarily shown in FIG. 2, detectable objects in the operating environment 46 may include objects that are fixed such as building 48 and stop sign 50 in addition to objects that are capable of moving such as vehicle 52. In some instances, fixed objects can also be detected by accessing a location database through the GPS system 36. Furthermore, ultrasonic sensors such as S4, S5, S9, S16, or a combination thereof, may be used to detect the relative location between the vehicle 10 and trailer 12.


Depending on the location of a detected object, the backup assist system 38 may modify the speed in which the vehicle 10 and trailer 12 are travelling. For example, if the detected object is in close proximity to the vehicle 10 or trailer 12, the backup assist system 38 may automatically control the braking system 16 to apply brakes 20 to the vehicle 10 or otherwise limit the allowable speed of the vehicle 10. In alternative embodiments, the backup assist system 38 may instruct the driver to apply brakes (e.g., depress the brake pedal 18) to slow or stop the vehicle 10 and trailer 12. The instruction may be embodied as a text message on the display 22, an audio alert played through the audio system 23, or other suitable means.


One backing scenario is depicted in FIG. 3, in which the vehicle 10 and trailer 12 near detected objects O1 and O2 while a backing maneuver is being executed along backing path P. As the vehicle and 10 and trailer 12 near the detected objects O1, O2, the backup assist system 38 may slowly apply the brakes 20 to reduce the speed of the vehicle 10 or execute a hard brake to quickly stop the vehicle 10 and trailer 12 in the event a collision with one or more of detected objects O1, O2 is imminent. For example, as the vehicle 10 and trailer 12 are backed along backing path P, a front corner 54 of the vehicle 10 may eventually collide with detected object O1 unless backward progress along the backing path P is halted. In deciding whether to slow or stop the vehicle 10 and trailer 12, the backup assist system 38 may take into account the location of the detected objects O1, O2 relative to the vehicle 10 and trailer 12 in addition to the trajectory of the vehicle 10 and trailer 12. The trajectory of the vehicle 10 and trailer 12 may be determined based on the angle of the steering wheel 26 and the hitch angle λ between the vehicle 10 and trailer 12.


Another backing scenario is depicted in FIG. 4, in which the vehicle 10 and trailer 12 are executing a backing maneuver along a curved section 56 of backing path P. In such scenarios, the hitch angle λ between the vehicle 10 and trailer 12 generally increases with increased path curvature. With respect to some vehicle and trailer configurations, it becomes possible for the front F of the trailer 12 to collide with the rear R of the vehicle 10 when the hitch angle λ there between becomes sufficiently large. For example, a front corner 58 of the trailer 12 may ultimately collide with a rear corner 60 of the vehicle 10 unless backward progress along the backing path P is halted. Recognizing this, the backup assist system 38 may automatically apply the brakes 20 to reduce the speed of the vehicle 10 as the hitch angle between the vehicle 10 and trailer 12 begins to increase and may automatically execute a hard stop of the vehicle 10 should the distance between corners 58 and 60 be below a minimum allowable distance indicative of a potential collision. According to one embodiment, the minimum allowable distance between corners 58 and 60 may be determined based on the dimensions of the vehicle 10 and trailer 12 as well as the time needed in which to execute a hard stop of the vehicle 10 at the current vehicle speed. Additionally, the backup assist system 38 may determine the degree by which to reduce the speed of the vehicle 10 and trailer 12 based on hitch angle measurements received from the rear vehicle mounted camera 44.


Thus, with respect to the scenarios provided above, it is to be understood that a collision can occur between the vehicle and an object that is not the trailer 12, between the trailer 12 and an object that is not the vehicle 10, and between the vehicle 10 and the trailer 12. Furthermore, if a collision involves the vehicle 10, it should be appreciated that the vehicle 10 may sustain damage to the front F, sides S, rear R, or a combination thereof. Likewise, in trailer related collisions, the trailer may sustain damage to the front F, sides S, rear R, or a combination thereof. As described previously herein, the corners of the vehicle 10 and trailer 12 are especially susceptible to collisions with other objects or with each other while a backing maneuver is underway.


Referring to FIG. 5, a flow chart of a method 62 for backing a vehicle and trailer is shown according to one embodiment. The method 62 is described below as being executed using the vehicle 10 and trailer 12 described previously herein with reference to FIGS. 1-4. The method 62 includes step A, where the driver is instructed to place the vehicle 10 in reverse and apply gas to the vehicle 10 (e.g., depress gas pedal 14) so that the vehicle 10 and trailer 12 can begin executing a backing maneuver along a backing path P. According to one embodiment, the backing path P may be generated by the trajectory planner 40 of the backup assist system 38 based on information received from the sensing system 32, the GPS system 36, and or user inputted waypoints.


Additional information for generating a backing path can be found in U.S. Patent Publication No. 2014/0303849 A1 to Hafner et al., entitled “TRAILER BACKUP ASSIST SYSTEM WITH TRAJECTORY PLANNER FOR MULTIPLE WAYPOINTS,” filed Apr. 21, 2014; and U.S. Patent Publication 2014/0358424 to Lavoie et al., entitled “SYSTEM AND METHOD OF INPUTTING AN INTENDED BACKING PATH,” filed on Aug. 14, 2014, both of which are incorporated herein by reference in their entirety.


While the vehicle 10 and trailer 12 are executing the backing maneuver, the backup assist system 38 may automatically steer the vehicle 10 at step B to guide the vehicle 10 and trailer 12 along the backing path P. Alternatively, the driver may elect to manually steer the vehicle 10 using the steering wheel 26 or other device. Additionally, at step C, the backup assist system 38 may limit the speed of the vehicle 10 by controlling the output of the driveline system 28 thereby ensuring that the vehicle 10 and trailer 12 are backed at manageable speeds. As the vehicle 10 and trailer 12 execute the backing maneuver, the sensing system 32 detects for objects in the operating environment 46 at step D. If a detected object is in close proximity to the vehicle 10 or trailer 12, the backup assist system 38 may apply the brakes 20 to either reduce the speed of the vehicle 10 and trailer 12 or execute a hard stop at step E. Alternatively, the backup assist system 38 may instruct the driver of the vehicle 10 to do the same. If a hard stop is executed, the driver may be required to reposition the vehicle 10 and trailer 12 in order to resume course along the backing path P. For example, the driver may be required to pull the vehicle 10 and trailer 12 forward some distance before returning to the backing maneuver. Once the vehicle 10 and trailer 12 move past the detected object(s), the backup assist system 38 may increase the allowable speed of the vehicle 10 and trailer 12 at step F. Thereafter, any of the steps described above may be repeated as often as necessary until the vehicle 10 and trailer 12 arrive at a final destination.


Accordingly, a system and method for backing a vehicle and trailer have been advantageously provided herein. Vehicles and trailers equipped with the features described herein are not only capable of executing semi-autonomous backing maneuvers, but are also capable of automatically controlling the speed of the vehicle 10 and trailer 12 to avoid collisions with other objects or each other. As a result, the process of executing a backing maneuver is greatly simplified for the driver.


It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.

Claims
  • 1. A system for backing a vehicle and a trailer, comprising: ultrasonic sensors configured to detect a relative positioning between the vehicle and the trailer; anda backup assist system configured to receive information from the ultrasonic sensors and automatically modify a speed of the vehicle to prevent the vehicle from colliding with the trailer during a backing maneuver based on a distance between a corner of the vehicle and the trailer being below a minimum allowable distance.
  • 2. The system of claim 1, wherein the ultrasonic sensors are each disposed on the vehicle or the trailer.
  • 3. The system of claim 1, wherein the backup assist system communicates with a braking system of the vehicle to apply brakes to the vehicle to reduce vehicle speed as the distance between the corner of the vehicle and the trailer decreases.
  • 4. The system of claim 3, wherein the backup assist system communicates with a braking system of the vehicle to execute a hard stop of the vehicle if the distance between the corner of the vehicle and the trailer is indicative of a potential collision between the vehicle and the trailer.
  • 5. The system of claim 1, wherein the backup assist system is further configured to automatically steer the vehicle during the backing maneuver.
  • 6. The system of claim 1, wherein the minimum allowable distance is determined based on dimensions of the vehicle and the trailer and a time needed in which to execute the hard stop of the vehicle.
  • 7. A system for backing a vehicle and a trailer, comprising: a sensing system configured to detect a relative positioning between the vehicle and the trailer; anda backup assist system configured to communicate with the sensing system and automatically control a braking system of the vehicle to execute a hard stop during a backing maneuver based on a distance between a corner of the vehicle and the trailer being below a minimum allowable distance.
  • 8. The system of claim 7, wherein the sensing system comprises ultrasonic sensors, each disposed on a front, side, or rear portion of the vehicle or the trailer.
  • 9. The system of claim 7, wherein the backup assist system is configured to automatically slow the vehicle when the distance between the corner of the vehicle and the trailer approaches the minimum allowable distance.
  • 10. The system of claim 7, wherein the minimum allowable distance is indicative of a potential collision between the vehicle and the trailer.
  • 11. A method for backing a vehicle and trailer, comprising the steps of: executing a backing maneuver of the vehicle and trailer;detecting a relative positioning between the vehicle and trailer; andautomatically controlling a braking system of the vehicle to modify a speed of the vehicle during the backing maneuver based on a distance between a corner of the vehicle and the trailer.
  • 12. The method of claim 11, wherein the step of executing a backing maneuver comprises automatically steering the vehicle.
  • 13. The method of claim 12, wherein the step of automatically controlling a braking system further comprises executing a hard stop if the distance between the corner of the vehicle and the trailer falls below the minimum allowable distance.
  • 14. The method of claim 13, wherein the minimum allowable distance is determined based on dimensions of the vehicle and the trailer and a time needed in which to execute the hard stop of the vehicle.
  • 15. The method of claim 11, wherein the step of automatically controlling a braking system comprises slowing the vehicle when the distance between the corner of the vehicle and the trailer approaches a minimum allowable distance.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is continuation-in-part of U.S. patent application Ser. No. 13/759,022 which was filed on Feb. 4, 2013, entitled “TRAILER ACTIVE BACK-UP ASSIST WITH OBJECT AVOIDANCE,” which is hereby incorporated by reference in entirety.

US Referenced Citations (138)
Number Name Date Kind
3542390 Fikse Nov 1970 A
3756624 Taylor Sep 1973 A
3860257 Mesly Jan 1975 A
4042132 Bohman et al. Aug 1977 A
4735432 Brown Apr 1988 A
4752080 Rogers Jun 1988 A
4848499 Martinet et al. Jul 1989 A
5001639 Breen Mar 1991 A
5108158 Breen Apr 1992 A
5246242 Penzotti Sep 1993 A
5247442 Kendall Sep 1993 A
5558350 Kimbrough et al. Sep 1996 A
5586814 Steiner Dec 1996 A
6042196 Nakamura et al. Mar 2000 A
6056371 Lin et al. May 2000 A
6292094 Deng et al. Sep 2001 B1
6351698 Kubota et al. Feb 2002 B1
6409288 Yoshida et al. Jun 2002 B2
6494476 Masters et al. Dec 2002 B2
6498977 Wetzel et al. Dec 2002 B2
6567731 Chandy May 2003 B2
6838979 Deng et al. Jan 2005 B2
7032705 Zheng et al. Apr 2006 B2
7117077 Michi et al. Oct 2006 B2
7136754 Hahn et al. Nov 2006 B2
7139650 Lubischer Nov 2006 B2
7154385 Lee et al. Dec 2006 B2
7165820 Rudd, III Jan 2007 B2
7219913 Atley May 2007 B2
7319927 Sun et al. Jan 2008 B1
7690737 Lu Apr 2010 B2
7793965 Padula Sep 2010 B2
7969326 Sakakibara Jun 2011 B2
8010253 Lundquist Aug 2011 B2
8033955 Farnsworth Oct 2011 B2
8036792 Dechamp Oct 2011 B2
8108116 Mori et al. Jan 2012 B2
8170726 Chen et al. May 2012 B2
8244442 Craig et al. Aug 2012 B2
8260518 Englert Sep 2012 B2
8267485 Barlsen et al. Sep 2012 B2
8280607 Gatti et al. Oct 2012 B2
8374749 Tanaka Feb 2013 B2
8430792 Noll Apr 2013 B2
8469125 Yu et al. Jun 2013 B2
8571758 Klier et al. Oct 2013 B2
8755982 Heckel et al. Jun 2014 B2
8755984 Rupp et al. Jun 2014 B2
8798860 Dechamp Aug 2014 B2
8825328 Rupp Sep 2014 B2
8909426 Rhode et al. Dec 2014 B2
8930140 Trombley et al. Jan 2015 B2
9102271 Trombley et al. Aug 2015 B2
9108598 Headley Aug 2015 B2
9132856 Shepard Sep 2015 B2
9180890 Lu et al. Nov 2015 B2
9248858 Lavoie et al. Feb 2016 B2
9315212 Kyrtsos et al. Apr 2016 B1
9335162 Kyrtsos et al. May 2016 B2
9340228 Xu et al. May 2016 B2
20010037164 Hecker Nov 2001 A1
20010052434 Ehrlich Dec 2001 A1
20050146607 Linn Jul 2005 A1
20050168331 Gunderson Aug 2005 A1
20050206225 Offerle et al. Sep 2005 A1
20050236201 Spannheimer et al. Oct 2005 A1
20050236896 Offerle et al. Oct 2005 A1
20060103511 Lee et al. May 2006 A1
20060142936 Dix Jun 2006 A1
20070027581 Bauer et al. Feb 2007 A1
20070198190 Bauer et al. Aug 2007 A1
20080177443 Lee et al. Jul 2008 A1
20090082935 Leschuk et al. Mar 2009 A1
20090157260 Lee Jun 2009 A1
20090198425 Englert Aug 2009 A1
20090271078 Dickinson Oct 2009 A1
20090306854 Dechamp Dec 2009 A1
20090306861 Schumann et al. Dec 2009 A1
20090326775 Nishida Dec 2009 A1
20100152989 Smith et al. Jun 2010 A1
20110087398 Lu et al. Apr 2011 A1
20120041658 Turner Feb 2012 A1
20120095649 Klier et al. Apr 2012 A1
20120200706 Greenwood et al. Aug 2012 A1
20120271512 Rupp et al. Oct 2012 A1
20120271514 Lavoie et al. Oct 2012 A1
20120271515 Rhode Oct 2012 A1
20120271522 Rupp et al. Oct 2012 A1
20120283909 Dix Nov 2012 A1
20120310594 Watanabe Dec 2012 A1
20120316732 Auer Dec 2012 A1
20130024064 Shepard Jan 2013 A1
20130148748 Suda Jun 2013 A1
20130179038 Goswami et al. Jul 2013 A1
20130268160 Trombley et al. Oct 2013 A1
20140052337 Lavoie et al. Feb 2014 A1
20140058614 Trombley et al. Feb 2014 A1
20140058622 Trombley et al. Feb 2014 A1
20140058655 Trombley et al. Feb 2014 A1
20140058668 Trombley et al. Feb 2014 A1
20140067154 Yu et al. Mar 2014 A1
20140067155 Yu et al. Mar 2014 A1
20140085472 Lu et al. Mar 2014 A1
20140121930 Allexi et al. May 2014 A1
20140160276 Pliefke et al. Jun 2014 A1
20140172232 Rupp et al. Jun 2014 A1
20140188344 Lavoie Jul 2014 A1
20140188346 Lavoie Jul 2014 A1
20140210456 Crossman Jul 2014 A1
20140218506 Trombley et al. Aug 2014 A1
20140218522 Lavoie et al. Aug 2014 A1
20140222288 Lavoie et al. Aug 2014 A1
20140236532 Trombley et al. Aug 2014 A1
20140249691 Hafner et al. Sep 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140267689 Lavoie Sep 2014 A1
20140277942 Kyrtsos et al. Sep 2014 A1
20140297128 Lavoie et al. Oct 2014 A1
20140297129 Lavoie et al. Oct 2014 A1
20140303847 Lavoie Oct 2014 A1
20140309888 Smit et al. Oct 2014 A1
20140324295 Lavoie Oct 2014 A1
20140343795 Lavoie Nov 2014 A1
20140379217 Rupp et al. Dec 2014 A1
20150025732 Min et al. Jan 2015 A1
20150057903 Rhode et al. Feb 2015 A1
20150066296 Trombley et al. Mar 2015 A1
20150066298 Sharma et al. Mar 2015 A1
20150120141 Lavoie et al. Apr 2015 A1
20150134183 Lavoie et al. May 2015 A1
20150138340 Lavoie May 2015 A1
20150158527 Hafner et al. Jun 2015 A1
20150203156 Hafner et al. Jul 2015 A1
20150210317 Hafner et al. Jul 2015 A1
20150217693 Pliefke et al. Aug 2015 A1
20150232092 Fairgrieve et al. Aug 2015 A1
20160009288 Yu Jan 2016 A1
20160052548 Singh et al. Feb 2016 A1
Foreign Referenced Citations (28)
Number Date Country
202159367 Mar 2012 CN
3931518 Apr 1991 DE
9208595 Aug 1992 DE
10154612 May 2003 DE
102005043466 Mar 2007 DE
102005043467 Mar 2007 DE
102005043468 Mar 2007 DE
102006002294 Jul 2007 DE
102007029413 Jan 2009 DE
102006035021 Apr 2010 DE
102008043675 May 2010 DE
102009007990 Aug 2010 DE
102009012253 Sep 2010 DE
102010029184 Nov 2011 DE
0418653 Mar 1991 EP
1361543 Nov 2003 EP
1655191 May 2006 EP
1810913 Jul 2007 EP
2388180 Nov 2011 EP
2644477 Oct 2013 EP
2515379 Apr 1983 FR
09267762 Oct 1997 JP
10119739 May 1998 JP
2012166580 Sep 2012 JP
0044605 Aug 2000 WO
2012059207 May 2012 WO
2012103193 Aug 2012 WO
2013186208 Dec 2013 WO
Non-Patent Literature Citations (21)
Entry
Haviland, G S, “Automatic Brake Control for Trucks—What Good Is It?”, TRID, Society of Automotive Engineers, Sep. 1968, 1 pg.
Altafini, C.; Speranzon, A.; Wahlberg, B., “A Feedback Control Scheme for Reversing a Truck and Trailer Vehicle”, IEEE, Robotics and Automation, IEEE Transactions, Dec. 2001, vol. 17, No. 6, 2 pgs.
Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson, “Hybrid Control of a Truck and Trailer Vehicle”, Springer-Verlag Berlin Heidelberg, HSCC 2002, LNCS 2289; 2002, pp. 21-34.
Divelbiss, A.W.; Wen, J.T.; “Trajectory Tracking Control of a Car-Trailer System”, IEEE, Control Systems Technology, Aug. 6, 2002, vol. 5, No. 3, 1 pg.
Guanrong, Chen; Delin, Zhang; “Backing up a Truck-Trailer with Suboptimal Distance Trajectories”, IEEE, Proceedings of the Fifth IEEE International Conference, vol. 2, Aug. 6, 2002, New Orleans, LA, ISBN:0-7803-3645-3, 1 pg.
“Understanding Tractor-Trailer Performance”, Caterpillar, 2006, pp. 1-28.
C. Lundquist; W. Reinelt; O. Enqvist, “Back Driving Assistant for Passenger Cars with Trailer”, ZF Lenksysteme GmbH, Schwäbisch Gmünd, Germany, 2006 (SAE Int'l) Jan. 2006, pp. 1-8.
Olof Enqvist, “AFS-Assisted Trailer Reversing,” Institutionen för systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, 57 pgs.
Cedric Pradalier, Kane Usher, “Robust Trajectory Tracking for a Reversing Tractor-Trailer System”, (Draft), Field and Service Robotics Conference, CSIRO ICT Centre, Jul. 2007, 16 pages.
Hodo, D. W.; Hung, J.Y.; Bevly, D. M.; Millhouse, S., “Effects of Sensor Placement and Errors on Path Following Control of a Mobile Robot-Trailer System”, IEEE, American Control Conference, Jul. 30, 2007, 1 pg.
Cedric Pradalier, Kane Usher, “Experiments in Autonomous Reversing of a Tractor-Trailer System”, 6th International Conference on Field and Service Robotics, inria-00195700, Version 1, Dec. 2007, 10 pgs.
Zhe Leng; Minor, M., “A Simple Tractor-Trailer Backing Control Law for Path Following”, IEEE, Intelligent Robots and Systems (IROS) IEEE/RSJ International Conference, Oct. 2010, 2 pgs.
“2012 Edge—Trailer Towing Selector”, Brochure, Preliminary 2012 RV & Trailer Towing Guide Information, 2011, 3 pgs.
“Ford Super Duty: Truck Technologies”, Brochure, Sep. 2011, 2 pgs.
J. Roh; H. Lee; W. Chung, “Control of a Car with a Trailer Using the Driver Assistance System”, IEEE, International Conference on Robotics and Biomimetics; Phuket, Thailand, Dec. 2011, 1 pg.
Payne, M.L.;Hung, J.Y, and Bevy, D.M; “Control of a Robot-Trailer System Using a Single Non-Collacted Sensor”, IEEE, 38th Annual Conference on IEEE Industrial Electronics Society, Oct. 25-28, 2012, 2 pgs.
“Optionally Unmanned Ground Systems for any Steering-Wheel Based Vehicle” Universal. Unmanned., Kairos Autonomi, website: http://www.kairosautonomi.com/pronto4—system.html, retrieved Sep. 26, 2014, 2 pgs.
Micah Steele, R. Brent Gillespie, “Shared Control Between Human and Machine: Using a Haptic Steering Wheel to Aid in Land Vehicle Guidance”, University of Michigan, Date Unknown, 5 pgs.
Sh. Azadi, H.R. Rezaei Nedamani, and R. Kazemi, “Automatic Parking of an Articulated Vehicle Using ANFIS”, Global Journal of Science, Engineering and Technology (ISSN: 2322-2441), 2013, pp. 93-104, Issue No. 14.
F. Cuesta and A. Ollero, “Intelligent System for Parallel Parking of Cars and Tractor-Trailers”, Intelligent Mobile Robot Navigation, STAR, 2005, pp. 159-188, Springer-Verlag Berlin Heidelberg.
M. Khatib, H. Jaouni, R. Chatila, and J.P. Laumond; “Dynamic Path Modification for Car-Like Nonholonomic Mobile Robots,” IEEE, International Conference on Robotics and Automation, Albuquerque, New Mexico, Apr. 1997, 6 pages.
Related Publications (1)
Number Date Country
20150197282 A1 Jul 2015 US
Continuation in Parts (1)
Number Date Country
Parent 13759022 Feb 2013 US
Child 14669130 US