The disclosure made herein relates generally to trailer motion and parameter estimation, and more particularly to a length estimation for a trailer using yaw signals in a system to assist with vehicle guidance of the trailer, such as a trailer backup assist system.
Reversing a vehicle while towing a trailer can be challenging for many drivers, particularly for drivers that drive with a trailer on an infrequent basis or with various types of trailers. Systems used to assist a driver with backing a trailer frequently estimate the position of the trailer relative to the vehicle with a sensor that determines a steering input for the vehicle based on an input trailer curvature path and determined a hitch angle. Both the hitch angle determination and the steering input determination require use of a kinematic model of the combined trailer and vehicle that includes the length of the trailer, more particularly, from the point of attachment with the vehicle to the front axle thereof. While some systems have relied on user input for the trailer length, doing so may place an undesired burden on the user and may introduce inaccuracies that some such systems are unequipped to handle. The accuracy and reliability of the calculations involving trailer length can be critical to the operation of the backup assist system. Accordingly, improvements related to automated system estimation of trailer length in an accurate manner may be desired.
According to one aspect of the present invention, a backup assist system for a vehicle reversing a trailer includes a trailer sensor module generating a trailer yaw rate and a vehicle sensor system generating a vehicle yaw rate and a vehicle speed. The system further includes a controller determining an estimated length of the trailer based on an estimated hitch angle, the vehicle yaw rate, the vehicle speed, and the trailer yaw rate in view of a kinematic relationship.
According to another aspect of the present invention, a system for estimating the length of a trailer towed by a vehicle includes a first sensor coupled with the trailer for determining a trailer yaw rate and a second sensor coupled with the vehicle for determining a vehicle yaw rate. The system further includes a controller determining an estimated length of the trailer based on an estimated hitch angle, the vehicle yaw rate, the vehicle speed, and the trailer yaw rate in view of a kinematic relationship between the trailer and the vehicle.
According to another aspect of the present invention, a method for estimating the length of a trailer towed by a vehicle includes receiving a trailer yaw rate signal, receiving a vehicle yaw rate signal, and receiving a vehicle speed signal. The method further includes determining an estimated length of the trailer based on an estimated hitch angle, the vehicle yaw rate signal, the vehicle speed signal, and the trailer yaw rate signal in view of a kinematic relationship between the trailer and the vehicle.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
For purposes of description herein, it is to be understood that the disclosed trailer backup assist system and the related methods may assume various alternative embodiments and orientations, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. While various aspects of the trailer backup assist system and the related methods are described with reference to a particular illustrative embodiment, the disclosed invention is not limited to such embodiments, and additional modifications, applications, and embodiments may be implemented without departing from the disclosed invention. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.
Referring to
With respect to the general operation of the trailer backup assist system 10, a steering input device 18 may be provided, such as a rotatable knob 30, for a driver to provide the desired curvature 26 of the trailer 12. As such, the steering input device 18 may be operable between a plurality of selections, such as successive rotated positions of a knob 30, that each provide an incremental change to the desired curvature 26 of the trailer 12. Upon inputting the desired curvature 26, the controller may generate a steering command for the vehicle 14 to guide the trailer 12 on the desired curvature 26 based on the estimated hitch angle γ and a kinematic relationship between the trailer 12 and the vehicle 14. Therefore, the accuracy of the hitch angle estimation, and accordingly, the trailer length estimation is critical to operating the trailer backup assist system 10.
With reference to the embodiment shown in
Still referring to
In the illustrated embodiment, the yaw rate sensor 25 and the accelerometer 27 are contained within the housed sensor cluster 21, although other configurations are conceivable. It is conceivable that the accelerometer 27, in some embodiments, may be two or more separate sensors and may be arranged at an offset angle, such as two sensors arranged at plus and minus forty-five degrees from the longitudinal direction of the trailer or arranged parallel with the longitudinal and lateral directions of the trailer, to generate a more robust acceleration signal. It is also contemplated that these sensor signals could be compensated and filtered to remove offsets or drifts, and smooth out noise. Further, the controller 28 may utilizes processed signals received outside of the sensor system 16, including standard signals from the brake control system 72 and the power assist steering system 62, such as vehicle yaw rate ω1, vehicle speed v1, and steering angle δ, to estimate the trailer hitch angle γ, trailer speed, and related trailer parameters. As described in more detail below, the controller 28 may estimate the hitch angle γ based on the trailer yaw rate ω2, the vehicle yaw rate ω1, and the vehicle speed v1 in view of a kinematic relationship between the trailer 12 and the vehicle 14. The controller 28 of the trailer backup assist system 10 may also utilize the estimated trailer variables and trailer parameters to control the steering system 62, brake control system 72, and the powertrain control system 74, such as to assist backing the vehicle-trailer combination or to mitigate a trailer sway condition.
The sensor system 16 may also include a vision-based hitch angle sensor 44 for estimating the hitch angle γ between the vehicle 14 and the trailer 12. In an embodiment wherein the hitch angle γ is estimated using the trailer yaw rate ω2, the vehicle yaw rate ω1, and the vehicle speed v1 in view of the kinematic relationship between the trailer 12 and the vehicle 14, the vision-based hitch angle sensor 44 may be used as a backup system or as an additional check on the value obtained using the kinematic relationship. In another embodiment, the vision-based hitch angle sensor 44 may be omitted entirely. When present, the illustrated hitch angle sensor 44 employs a camera 46 (e.g. video imaging camera) that may be located proximate an upper region of the vehicle tailgate 48 at the rear of the vehicle 14, as shown, such that the camera 46 may be elevated relative to the tongue 36 of the trailer 12. The illustrated camera 46 has an imaging field of view 50 located and oriented to capture one or more images of the trailer 12, including a region containing one or more desired target placement zones for at least one target 52 to be secured. Although it is contemplated that the camera 46 may capture images of the trailer 12 without a target 52 to determine the hitch angle γ, in the illustrated embodiment, the trailer backup assist system 10 includes a target 52 placed on the trailer 12 to allow the trailer backup assist system 10 to utilize information acquired via image acquisition and processing of the target 52. For instance, the illustrated camera 46 may include a video imaging camera that repeatedly captures successive images of the trailer 12 that may be processed to identify the target 52 and its location on the trailer 12 for determining movement of the target 52 and the trailer 12 relative to the vehicle 14 and the corresponding hitch angle γ. It should also be appreciated that the camera 46 may include one or more video imaging cameras and may be located at other locations on the vehicle 14 to acquire images of the trailer 12 and the desired target placement zone, such as on a passenger cab 54 of the vehicle 14 to capture images of a gooseneck trailer. Furthermore, it is contemplated that additional embodiments of the hitch angle sensor 44 and the sensor system 16 for providing the hitch angle γ may include one or a combination of a potentiometer, a magnetic-based sensor, an optical sensor, a proximity sensor, a rotational sensor, a capacitive sensor, an inductive sensor, or a mechanical based sensor, such as a mechanical sensor assembly mounted to the pivoting ball joint connection 42, energy transducers of a reverse aid system, a blind spot system, and/or a cross traffic alert system, and other conceivable sensors or indicators of the hitch angle γ to supplement or be used in place of the vision-based hitch angle sensor 44.
With reference to the embodiment of the trailer backup assist system 10 shown in
As further shown in
In alternative embodiments, some vehicles have a power assist steering system 62 that allows a steering wheel 68 to be partially decoupled from movement of the steered wheels 64 of such a vehicle. Accordingly, the steering wheel 68 can be rotated independent of the manner in which the power assist steering system 62 of the vehicle controls the steered wheels 64 (e.g., autonomous steering as commanded by the trailer backup assist system 10). As such, in these types of vehicles where the steering wheel 68 can be selectively decoupled from the steered wheels 64 to allow independent operation thereof, the steering wheel 68 may be used as a steering input device 18 for the trailer backup assist system 10, as disclosed in greater detail herein.
Referring again to the embodiment illustrated in
As also illustrated in
The powertrain control system 74, as shown in the embodiment illustrated in
With continued reference to
As further illustrated in
Still referring to the embodiment shown in
With reference to
As shown in
δ: steering angle at steered front wheels of the vehicle;
α: yaw angle of the vehicle;
β: yaw angle of the trailer;
γ: hitch angle (γ=β−α);
W: wheel base of the vehicle;
L: drawbar length between hitch point and rear axle of the vehicle;
D: distance (trailer length) between hitch point and axle of the trailer or effective axle for a multiple axle trailer; and
r2: curvature radius for the trailer.
One embodiment of a kinematic relationship between trailer path radius of curvature r2 at the midpoint of an axle of the trailer 12, steering angle δ of the steered wheels 64 of the vehicle 14, and the hitch angle γ can be expressed in the equation provided below. As such, if the hitch angle γ is provided, the trailer path curvature κ2 can be controlled based on regulating the steering angle δ (where {dot over (β)} is trailer yaw rate and {dot over (η)} is trailer velocity).
This relationship can be expressed to provide the steering angle δ as a function of trailer path curvature κ2 and hitch angle γ.
Accordingly, for a particular vehicle and trailer combination, certain parameters (e.g., D, W and L) of the kinematic relationship are constant and assumed known. V is the vehicle longitudinal speed and g is the acceleration due to gravity. K is a speed dependent parameter which when set to zero makes the calculation of steering angle independent of vehicle speed. For example, vehicle-specific parameters of the kinematic relationship can be predefined in an electronic control system of the vehicle 14 and trailer-specific parameters of the kinematic relationship can be inputted by a driver of the vehicle 14, determined from sensed trailer behavior in response to vehicle steering commands, or otherwise determined from signals provided by the trailer 12. Trailer path curvature κ2 can be determined from the driver input via the steering input device 18. Through the use of the equation for providing steering angle, a corresponding steering command can be generated by the curvature routine 98 for controlling the power assist steering system 62 of the vehicle 14.
In an additional embodiment, an assumption may be made by the curvature routine 98 that a longitudinal distance L between the pivoting connection and the rear axle of the vehicle 14 is equal to zero for purposes of operating the trailer backup assist system 10 when a gooseneck trailer or other similar trailer is connected with the a hitch ball or a fifth wheel connector located over a rear axle of the vehicle 14. The assumption essentially assumes that the pivoting connection with the trailer 12 is substantially vertically aligned with the rear axle of the vehicle 14. When such an assumption is made, the controller 28 may generate the steering angle command for the vehicle 14 as a function independent of the longitudinal distance L between the pivoting connection and the rear axle of the vehicle 14. It is appreciated that the gooseneck trailer mentioned generally refers to the tongue configuration being elevated to attach with the vehicle 14 at an elevated location over the rear axle, such as within a bed of a truck, whereby embodiments of the gooseneck trailer may include flatbed cargo areas, enclosed cargo areas, campers, cattle trailers, horse trailers, lowboy trailers, and other conceivable trailers with such a tongue configuration.
As can be appreciated based on the foregoing, there are various ones of the kinematic parameters in the curvature κ2 and steering input δ equations that are generally fixed and correspond to the dimensions of the vehicle 14 and trailer 12 combination. Specifically, the length D of the trailer 12, the wheel base W of the vehicle 14, and the distance L from the hitch connection H to the rear axle of the vehicle 14 are generally fixed and may be stored in the memory 86 of system 10 (
In one aspect, vehicle 12 may include various features to facilitate the accurate measuring of the trailer length D by a user. In particular, such features may provide a mechanism to allow flexibility for the user in measuring the trailer length D with a reduced risk of error and a streamlined process for inputting the measured value for the trailer length D without manual numeric input using HMI 80 or the like. In a particular aspect, an encoder similar to an electronic tape measure device may be mounted on the rear of vehicle 14. The encoder may include a string, wire, tape, or similar structure that can be extended outwardly from vehicle 14 by a user until it extends to the first axle of the trailer 12 installed with vehicle 14. The module, would automatically read the distance by which the measuring structure is extended from the module, either by reading a series of visible, physical, or magnetic markings along the measuring structure, or using a potentiometer operably coupled with a reel on which the measuring structure is stored. The module can be electrically coupled with controller 28 or the like such that controller 28 can store the measured trailer length D in memory (which, in an example, can correspond to a maximum length of withdrawn measuring structure prior to release by the user and withdrawing thereof by the module). In one example, controller 28 can be restricted in storing such a measurement to when a “calibration mode” has been entered, such as by a user, when a new trailer 12 has been installed with the vehicle 14.
In another aspect, a short-range radar module may be incorporated into vehicle 14. Such short-range radar (which may already be present in vehicle 14 for use by a backup warning system, an active cruise control system, or the like) may be electrically coupled with and used by controller 28 to locate one or more “corner cubes” that can be strategically placed on trailer 12 in relation to (e.g. directly above) the front axle thereof. Corner cubes are generally known and are accepted as reliable reflectors of radar and can be used reliably for distance measurements. In an example, corner cubes with magnetic bases can be provided with vehicle 14 for mounting on the particular trailer 12 installed with vehicle 14 at a given time. Further, by using a triangulation method, two corner cubes placed on opposite sides of trailer 12 can also be used to determine the hitch angle γ.
Turning now to
More specifically, according to the embodiment shown in
It is noted that, according to the kinematic relationship illustrated in
However, these general equations require the trailer length D to be known. As can be appreciated in light of these equations, by obtaining a condition where the trailer yaw rate ω2 is zero, the equation no longer depends on trailer length D and may, accordingly, be used in trailer length estimation routine for obtaining the initial reference hitch angle γref(t0) when the condition is initially met.
In using the above equation for determining initial reference hitch angle γref(t0), vehicle speed v1 may be derived from vehicle wheel speed sensor 58. Vehicle yaw rate ω1 may be derived from yaw rate sensor 60, mounted on vehicle 14 or, alternatively, from a calculation utilizing separate left and right wheel speed sensors. As a further alternative, vehicle yaw rate ω1 can be derived from steering angle δ and vehicle speed v1, using the equation:
Similarly, trailer yaw rate ω2 may be derived from trailer yaw rate sensor 25, which may be mounted on trailer 12 or from left and right trailer wheel speed sensors. As a further alternative trailer yaw rate ω2 may be determined using trailer accelerometer 27 to obtain a value for trailer lateral acceleration ay2, which can be used in with trailer speed v2 (obtained from trailer wheel speed sensor 23) in calculating trailer yaw rate ω2 according to the equation:
As an alternative for the condition in 142, initial reference hitch angle γref(t0) can be determined if vehicle 14 is driving straight, in which case, initial reference hitch angle γref/(t0) can be set as equal to zero. Such a condition can be identified using steering angle δ(obtained from steering angle sensor 67) vehicle lateral acceleration ay1, vehicle wheel speed sensor signals, or the like.
Continuing with reference to
γref=γref(t0)+∫t
As shown in the above equation, this integration is done over time, starting at the time, t0, at which the initial reference hitch angle γref(t0) was taken. By continuing to calculate the reference hitch angle γref, over such a time, an instantaneous reference hitch angle γref can be obtained for a given time t, where t≠0 and in which, which can be used in step 148 to obtain a time-dependent trailer length estimate {circumflex over (D)}. In particular, the reference hitch angle γref can be calculated over a predetermined interval, such as about three seconds to about five seconds, for example, during which time, the kinematic state of the combined vehicle 14 and trailer 12 can diverge from the initial condition such that either ω2 or δ, depending on the specified condition in step 142, is nonzero, with the reference angle γref obtained in a manner that remains independent of trailer length D.
By using the reference angle γref obtained in step 146, trailer length estimate {circumflex over (D)} can be calculated in step 148 by either the of the equations:
The results of step 148 can be filtered in step 150 to provide a more accurate estimate. Additionally or alternatively, a number of different estimates for trailer length {circumflex over (D)}k can be taken at various intervals or under various conditions such that the various trailer length estimates {circumflex over (D)}k can be taken and averaged together to arrive at a final weighted estimate for trailer length D. As further shown in
An embodiment of the curvature routine 98 of the trailer backup assist system 10 is illustrated in
As also shown in
Where,
κ2 represents the desired curvature of the trailer 12 or 1/r2 as shown in
δ represents the steering angle;
L represents the distance from the rear axle of the vehicle 14 to the hitch pivot point;
D represents the distance from the hitch pivot point to the axle of the trailer 12; and
W represents the distance from the rear axle to the front axle of the vehicle 14.
With further reference to
As also shown in
It is contemplated that the PI controller may have gain terms based on trailer length D since shorter trailers will generally have faster dynamics. In addition, the hitch angle regulator 90 may be configured to prevent the desired hitch angle γ(d) to reach or exceed a jackknife angle γ(j), as computed by the controller or otherwise determined by the trailer backup assist system 10, as disclosed in greater detail herein.
Referring now to
A kinematic model representation of the vehicle 14 and the trailer 12 can also be used to determine a jackknife angle for the vehicle-trailer combination. Accordingly, with reference to
Solving the above equation for hitch angle γ allows jackknife angle γ(j) to be determined. This solution, which is shown in the following equation, can be used in implementing trailer backup assist functionality in accordance with the disclosed subject matter for monitoring hitch angle γ in relation to jackknife angle.
where,
a=L2 tan2 δ(max)+W2;
b=2 LD tan2 δ(max); and
c=D2 tan2 δ(max)−W2.
In certain instances of backing the trailer 12, a jackknife enabling condition can arise based on current operating parameters of the vehicle 14 in combination with a corresponding hitch angle γ. This condition can be indicated when one or more specified vehicle operating thresholds are met while a particular hitch angle γ is present. For example, although the particular hitch angle γ is not currently at the jackknife angle for the vehicle 14 and attached trailer 12, certain vehicle operating parameters can lead to a rapid (e.g., uncontrolled) transition of the hitch angle γ to the jackknife angle for a current commanded trailer curvature and/or can reduce an ability to steer the trailer 12 away from the jackknife angle. One reason for a jackknife enabling condition is that trailer curvature control mechanisms (e.g., those in accordance with the disclosed subject matter) generally calculate steering commands at an instantaneous point in time during backing of a trailer 12. However, these calculations will typically not account for lag in the steering control system of the vehicle 14 (e.g., lag in a steering EPAS controller). Another reason for the jackknife enabling condition is that trailer curvature control mechanisms generally exhibit reduced steering sensitivity and/or effectiveness when the vehicle 14 is at relatively high speeds and/or when undergoing relatively high acceleration.
Jackknife determining information may be received by the controller 28, according to one embodiment, to process and characterize a jackknife enabling condition of the vehicle-trailer combination at a particular point in time (e.g., at the point in time when the jackknife determining information was sampled). Examples of the jackknife determining information include, but are not limited to, information characterizing an estimated hitch angle γ, information characterizing a vehicle accelerator pedal transient state, information characterizing a speed of the vehicle 14, information characterizing longitudinal acceleration of the vehicle 14, information characterizing a brake torque being applied by a brake system of the vehicle 14, information characterizing a powertrain torque being applied to driven wheels of the vehicle 14, and information characterizing the magnitude and rate of driver requested trailer curvature. In this regard, jackknife determining information would be continually monitored, such as by an electronic control unit (ECU) that carries out trailer backup assist (TBA) functionality. After receiving the jackknife determining information, a routine may process the jackknife determining information for determining if the vehicle-trailer combination attained the jackknife enabling condition at the particular point in time. The objective of the operation for assessing the jackknife determining information is determining if a jackknife enabling condition has been attained at the point in time defined by the jackknife determining information. If it is determined that a jackknife enabling condition is present at the particular point in time, a routine may also determine an applicable countermeasure or countermeasures to implement. Accordingly, in some embodiments, an applicable countermeasure will be selected dependent upon a parameter identified as being a key influencer of the jackknife enabling condition. However, in other embodiments, an applicable countermeasure will be selected as being most able to readily alleviate the jackknife enabling condition. In still another embodiment, a predefined countermeasure or predefined set of countermeasures may be the applicable countermeasure(s).
As previously disclosed with reference to the illustrated embodiments, during operation of the trailer backup assist system 10, a driver of the vehicle 14 may be limited in the manner in which steering inputs may be made with the steering wheel 68 of the vehicle 14 due to the power assist steering system 62 being directly coupled to the steering wheel 68. Accordingly, the steering input device 18 of the trailer backup assist system 10 may be used for inputting a desired curvature 26 of the trailer 12, thereby decoupling such commands from being made at the steering wheel 68 of the vehicle 14. However, additional embodiments of the trailer backup assist system 10 may have the capability to selectively decouple the steering wheel 68 from movement of steerable wheels of the vehicle 14, thereby allowing the steering wheel 68 to be used for commanding changes in the desired curvature 26 of a trailer 12 or otherwise selecting a desired backing path during such trailer backup assist.
Referring now to
The rotatable knob 30, as illustrated in
As shown in
Referring to
After activating the trailer backup assist system 10 (e.g., before, after, or during the pull-thru sequence), the driver begins to back the trailer 12 by reversing the vehicle 14 from the first backup position B1. So long as the rotatable knob 30 of the trailer backup steering input device 18 remains in the at-rest position P(AR) and no other steering input devices 18 are activated, the trailer backup assist system 10 will steer the vehicle 14 as necessary for causing the trailer 12 to be backed along a substantially straight path of travel, as defined by the longitudinal direction 22 of the trailer 12, specifically the centerline axis L2 of the trailer 12, at the time when backing of the trailer 12 began. When the trailer 12 reaches the second backup position B2, the driver rotates the rotatable knob 30 to command the trailer 12 to be steered to the right (i.e., a knob position R(R) clockwise rotation). Accordingly, the trailer backup assist system 10 will steer the vehicle 14 for causing the trailer 12 to be steered to the right as a function of an amount of rotation of the rotatable knob 30 with respect to the at-rest position P(AR), a rate movement of the knob, and/or a direction of movement of the knob with respect to the at-rest position P(AR). Similarly, the trailer 12 can be commanded to steer to the left by rotating the rotatable knob 30 to the left. When the trailer 12 reaches backup position B3, the driver allows the rotatable knob 30 to return to the at-rest position P(AR) thereby causing the trailer backup assist system 10 to steer the vehicle 14 as necessary for causing the trailer 12 to be backed along a substantially straight path of travel as defined by the longitudinal centerline axis L2 of the trailer 12 at the time when the rotatable knob 30 was returned to the at-rest position P(AR). Thereafter, the trailer backup assist system 10 steers the vehicle 14 as necessary for causing the trailer 12 to be backed along this substantially straight path to the fourth backup position B4. In this regard, arcuate portions of a path of travel POT of the trailer 12 are dictated by rotation of the rotatable knob 30 and straight portions of the path of travel POT are dictated by an orientation of the centerline longitudinal axis L2 of the trailer 12 when the knob is in/returned to the at-rest position P(AR).
In the embodiment illustrated in
With reference to
At step 134, the method is initiated by the trailer backup assist system 10 being activated. It is contemplated that this may be done in a variety of ways, such a making a selection on the display 82 of the vehicle HMI 80. The next step 136, then determines the kinematic relationship between the attached trailer 12 and the vehicle 14. To determine the kinematic relationship, various parameters of the vehicle 14 and the trailer 12 must be sensed, input by the driver, or otherwise determined for the trailer backup assist system 10 to generate steering commands to the power assist steering system 62 in accordance with the desired curvature or backing path 26 of the trailer 12. As disclosed with reference to
In one aspect, after the kinematic relationship is determined, the trailer backup assist system 10 may proceed at step 160 to determine the current hitch angle by processing the hitch angle estimation routine 130. As shown in
This kinematic equation can be rearranged to estimate trailer hitch angle γ, as follows:
Turning now to
Specifically, the hitch angle {circumflex over (γ)} estimate can be determined in block 172 according to either of the modified equations:
The trailer hitch angle {circumflex over (γ)} obtained using the above equations may include inaccuracies, because the initial trailer length estimate D0 or the trailer length estimate {circumflex over (D)}k at a given sampling period k may not yet have converged to a reliably accurate value. Accordingly, simultaneously, with the hitch angle estimate {circumflex over (γ)}, an initial reference hitch angle γref(t0) is calculated according to the trailer length D independent equation described above with respect to step 144 in
if (γref(k)>0 and {circumflex over (γ)}(k)>0)
{
{circumflex over (D)}k+1={circumflex over (D)}k+(γref(k)−{circumflex over (γ)}(k))·kD
}
else if (γref (k)<0 and {circumflex over (γ)}(k)<0)
{
{circumflex over (D)}k+1={circumflex over (D)}k−(γref(k)−{circumflex over (γ)}(k)))·kD
}.
The loop, according to the above, is then continued, with {circumflex over (D)} converging over time to an accurate or true value for the trailer length D.
Returning to
In parallel with performing the operations for receiving the trailer backup assist requests, determining the desired curvature 26 of the trailer 12, and generating the vehicle steering commands, the trailer backup assist system 10 may perform an operation for monitoring if an unacceptable trailer backup condition exists. Examples of such monitoring include, but are not limited to assessing a hitch angle γ to determine if a hitch angle γ threshold is exceeded, assessing a backup speed to determine if a backup speed threshold is exceeded, assessing vehicle steering angle to determine if a vehicle steering angle threshold is exceeded, assessing other operating parameters (e.g., vehicle longitudinal acceleration, throttle pedal demand rate and hitch angle rate) for determining if a respective threshold value is exceeded, and the like. Backup speed can be determined from the wheel speed information obtained from one or more speed sensors 58 of the vehicle 14. If it is determined that an unacceptable trailer backup condition exists, an operation may be performed for causing the current path of travel of the trailer 12 to be inhibited (e.g., stopping motion of the vehicle 14), followed by the operation being performed for ending the current trailer backup assist instance. It is disclosed herein that prior to and/or in conjunction with causing the current trailer path to be inhibited, one or more actions (e.g., operations) can be implemented for providing the driver with feedback (e.g., a warning) that such an unacceptable hitch angle condition is impending or approaching. In one example, if such feedback results in the unacceptable hitch angle condition being remedied prior to achieving a critical condition, the method can continue with providing trailer backup assist functionality in accordance with operations. Otherwise, the method can proceed to operation for ending the current trailer backup assist instance. In conjunction with performing the operation for ending the current trailer backup assist instance, an operation can be performed for controlling movement of the vehicle 14 to correct or limit a jackknife condition (e.g., steering the vehicle 14, decelerating the vehicle 14, limiting magnitude and/or rate of driver requested trailer curvature input, limiting magnitude and/or rate of the steering command, and/or the like to preclude the hitch angle from being exceeded).
With the sensor system 16 and/or controller 28 providing the trailer yaw rate ω2, this parameter may additionally or alternatively be utilized to improve the electronic stability control provided with the power assist steering system 62 when the vehicle 14 is towing a trailer. Some electronic stability control systems use a so called bicycle model (without trailer) to obtain a reference vehicle yaw rate commanded by the driver. However, when the vehicle is towing a trailer, the towing vehicle may exhibit more oversteer or more understeer tendencies during a turn, compared to the same vehicle without a trailer attached. Thus the electronic stability control performance may degrade, and/or unintended activations may occur, when the vehicle is towing a trailer.
By using the sensed or otherwise determined trailer yaw rate signal ω2, together with other electronic stability control signals, the additional oversteer or understeer tendencies of the vehicle (compared to when not towing a trailer) can be identified. Accordingly, the existing electronic stability control system can be sensitized or desensitized (e.g., by modifying the control thresholds for the brake and engine controllers). The brake and engine control actions can also be increased or reduced by changing the controller gains. Therefore, an additional controller which uses trailer yaw rate signal ω2 (or the difference between trailer and vehicle yaw rate, i.e., ω2−ω1) and its derivative may be integrated with the existing electronic stability control system. Such a controller is beneficial for improving the overall vehicle-trailer combination stability
In addition, it is contemplated that using the trailer yaw rate signal ω2 and trailer lateral acceleration signal ay2, together with other standard electronic stability control signals, may further identify additional oversteer or understeer tendencies of the vehicle. It is also conceivable that a controller that uses the trailer hitch angle γ as a feedback signal may be integrated with the existing electronic stability control system for improving the overall vehicle-trailer combination stability.
As previously mentioned, the hitch angle γ determined by the hitch angle estimation routine 130 may also be used to identify and stabilize a swaying trailer. More specifically, the vehicle-trailer combination becomes less damped when its speed is increased. With any driver inputs or external disturbances, the trailer may start to oscillate and the oscillation may sustain for a long time. If the speed is above certain “critical speed”, the system may become unstable, causing the oscillation amplitude to grow larger and eventually cause vehicle instability and/or a jackknife condition. A controller which uses trailer yaw rate signal ω2 (or the difference between trailer and vehicle yaw rate, i.e., ω2−ω1) and its derivative can be designed to actively control the vehicle/trailer to damping out the oscillation. In addition, the trailer yaw rate ω2 and the trailer lateral acceleration ay2, together with other standard electronic stability control signals, may be used to stabilize a swaying trailer. Since both trailer yaw rate signal ω2 and trailer lateral acceleration signal ay2 directly provide information about the trailer motion, they can be used to quickly identify whether the trailer is swaying.
It will be understood by one having ordinary skill in the art that construction of the described invention and other components is not limited to any specific material. Other exemplary embodiments of the invention disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its forms, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the invention as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present invention. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
4727419 | Yamada et al. | Feb 1988 | A |
4778060 | Wessner, Jr. | Oct 1988 | A |
5132851 | Bomar et al. | Jul 1992 | A |
5455557 | Noll et al. | Oct 1995 | A |
5523947 | Breen | Jun 1996 | A |
5541778 | DeFlorio | Jul 1996 | A |
6292094 | Deng et al. | Sep 2001 | B1 |
6301548 | Gerum | Oct 2001 | B1 |
6806809 | Lee et al. | Oct 2004 | B2 |
6820888 | Griffin | Nov 2004 | B1 |
6959970 | Tseng | Nov 2005 | B2 |
6999856 | Lee et al. | Feb 2006 | B2 |
7447585 | Tandy, Jr. et al. | Nov 2008 | B2 |
7715953 | Shepard | May 2010 | B2 |
7731302 | Tandy, Jr. et al. | Jun 2010 | B2 |
7798263 | Tandy, Jr. et al. | Sep 2010 | B2 |
7904222 | Lee et al. | Mar 2011 | B2 |
7974444 | Hongo | Jul 2011 | B2 |
8010252 | Getman et al. | Aug 2011 | B2 |
8073594 | Lee et al. | Dec 2011 | B2 |
8190364 | Rekow | May 2012 | B2 |
8498757 | Bowden et al. | Jul 2013 | B2 |
8547401 | Mallinson et al. | Oct 2013 | B2 |
8571777 | Greene | Oct 2013 | B2 |
8576115 | Basten | Nov 2013 | B2 |
8675953 | Elwell et al. | Mar 2014 | B1 |
8755984 | Rupp et al. | Jun 2014 | B2 |
8811698 | Kono et al. | Aug 2014 | B2 |
8886400 | Kossira et al. | Nov 2014 | B2 |
8909426 | Rhode et al. | Dec 2014 | B2 |
8930140 | Trombley et al. | Jan 2015 | B2 |
9042603 | Elwart et al. | May 2015 | B2 |
9102271 | Trombley et al. | Aug 2015 | B2 |
9132856 | Shepard | Sep 2015 | B2 |
9164955 | Lavoie et al. | Oct 2015 | B2 |
9248858 | Lavoie et al. | Feb 2016 | B2 |
9315212 | Kyrtsos et al. | Apr 2016 | B1 |
9335162 | Kyrtsos et al. | May 2016 | B2 |
9340228 | Xu et al. | May 2016 | B2 |
9352777 | Lavoie et al. | May 2016 | B2 |
20020128764 | Hecker et al. | Sep 2002 | A1 |
20040222881 | Deng et al. | Nov 2004 | A1 |
20050055138 | Lee | Mar 2005 | A1 |
20050074143 | Kawai | Apr 2005 | A1 |
20060244579 | Raab | Nov 2006 | A1 |
20080231701 | Greenwood et al. | Sep 2008 | A1 |
20090005932 | Lee et al. | Jan 2009 | A1 |
20090085775 | Otsuka et al. | Apr 2009 | A1 |
20090248346 | Fennel et al. | Oct 2009 | A1 |
20090280859 | Bergh | Nov 2009 | A1 |
20100272370 | Schilling et al. | Oct 2010 | A1 |
20110125457 | Lee et al. | May 2011 | A1 |
20110160956 | Chung et al. | Jun 2011 | A1 |
20110181457 | Basten | Jul 2011 | A1 |
20120200706 | Greenwood et al. | Aug 2012 | A1 |
20120221168 | Zeng | Aug 2012 | A1 |
20120271522 | Rupp et al. | Oct 2012 | A1 |
20130158863 | Skvarce et al. | Jun 2013 | A1 |
20130268160 | Trombley et al. | Oct 2013 | A1 |
20130321347 | Kim | Dec 2013 | A1 |
20140005918 | Qiang | Jan 2014 | A1 |
20140012465 | Shank et al. | Jan 2014 | A1 |
20140052337 | Lavoie et al. | Feb 2014 | A1 |
20140058614 | Trombley et al. | Feb 2014 | A1 |
20140058622 | Trombley et al. | Feb 2014 | A1 |
20140058655 | Trombley et al. | Feb 2014 | A1 |
20140058668 | Trombley et al. | Feb 2014 | A1 |
20140085472 | Lu et al. | Mar 2014 | A1 |
20140160276 | Pliefke et al. | Jun 2014 | A1 |
20140172232 | Rupp et al. | Jun 2014 | A1 |
20140188344 | Lavoie | Jul 2014 | A1 |
20140210456 | Crossman | Jul 2014 | A1 |
20140218506 | Trombley et al. | Aug 2014 | A1 |
20140218522 | Lavoie et al. | Aug 2014 | A1 |
20140222288 | Lavoie et al. | Aug 2014 | A1 |
20140236532 | Trombley et al. | Aug 2014 | A1 |
20140249691 | Hafner et al. | Sep 2014 | A1 |
20140267688 | Aich et al. | Sep 2014 | A1 |
20140267689 | Lavoie | Sep 2014 | A1 |
20140277942 | Kyrtsos et al. | Sep 2014 | A1 |
20140297128 | Lavoie et al. | Oct 2014 | A1 |
20140297129 | Lavoie et al. | Oct 2014 | A1 |
20140303847 | Lavoie | Oct 2014 | A1 |
20140309888 | Smit et al. | Oct 2014 | A1 |
20140324295 | Lavoie | Oct 2014 | A1 |
20140343795 | Lavoie | Nov 2014 | A1 |
20140379217 | Rupp et al. | Dec 2014 | A1 |
20150057903 | Rhode et al. | Feb 2015 | A1 |
20150066296 | Trombley et al. | Mar 2015 | A1 |
20150120141 | Lavoie et al. | Apr 2015 | A1 |
20150134183 | Lavoie et al. | May 2015 | A1 |
20150138340 | Lavoie | May 2015 | A1 |
20150149040 | Hueger et al. | May 2015 | A1 |
20150158527 | Hafner et al. | Jun 2015 | A1 |
20150203156 | Hafner et al. | Jul 2015 | A1 |
20150210317 | Hafner et al. | Jul 2015 | A1 |
20150269444 | Lameyre et al. | Sep 2015 | A1 |
20160039456 | Lavoie et al. | Feb 2016 | A1 |
20160059888 | Bradley et al. | Mar 2016 | A1 |
20160129939 | Singh et al. | May 2016 | A1 |
20160152263 | Singh et al. | Jun 2016 | A1 |
20160153778 | Singh et al. | Jun 2016 | A1 |
20160280267 | Lavoie et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
3931518 | Apr 1991 | DE |
9208595 | Aug 1992 | DE |
10154612 | May 2003 | DE |
102004050149 | Apr 2006 | DE |
102005042957 | Mar 2007 | DE |
102006002294 | Jul 2007 | DE |
102006035021 | Apr 2010 | DE |
102008043675 | May 2010 | DE |
102009007990 | Aug 2010 | DE |
102011108440 | Jan 2013 | DE |
102012006206 | Oct 2013 | DE |
0418653 | Mar 1991 | EP |
1593552 | Mar 2007 | EP |
1810913 | Jul 2007 | EP |
2487454 | Aug 2012 | EP |
2551132 | Jan 2013 | EP |
2012059207 | May 2012 | WO |
2014019730 | Feb 2014 | WO |
2014070047 | May 2014 | WO |
2015187467 | Dec 2015 | WO |
Entry |
---|
Tofel, Kevin C., “How to measure anything with a camera and software”, Feb. 6, 2007, 6 pgs. ≢Retrieved from http://giaom.com/2007/06/how—to—measure/ on Sep. 4, 2014. |
Novak, Domen; Dovzan, Dejan; Grebensek, Rok; Oblak, Simon, “Automated Parking System for a Truck and Trailer”, International Conference on Advances in the Internet, Processing, Systems and Interdisciplinary Research, Florence, 2007, WorldCat.org, 13 pgs. |
Sonnenberg, Jan, “Service and User Interface Transfer from Nomadic Devices to Car Infotainment Systems”, Second International Conference on Automotive User Interfaces and Interactive Vehicular Applications (Automotive UI), Nov. 11-12, 2010, pp. 162-165. |
Ratajczak, Robert; Grajek, Tomasz; Wegner, Krzysztof; Klimaszewski, Krzusztof; Kurc, Maciej; Domanski, Marek, “Vehicle Dimensions Estimation Scheme Using AAM on Sterescopic Video”, date unknown, pp. 4321-4325. |
“Measure and Calculate Distance”, Help Forum, Google Maps, 1 pg. [Retrieved from https://support.google.com/maps/answer/1628031?hl=en on Sep. 4, 2014]. |
De Brito, Jr., Jailson A.; De Campos, Luis Edmundo Prado; “Automatic Vehicle Classification Using Learning-based Computer Vision and Fuzzy Logic”, Departmento de Ciencia da Computacao, Instituto de Matematics, Universidade Federal da Bahia, date unknown, 4 pgs. |
Dlagnekov, Louka; Belongie, Serge, “Recognizing Cars”, Department of Computer Science and Engineering, University of California, San Diego, CA, date unknown, pp. 1-8. |
Olof Enqvist, “AFS-Assisted Trailer Reversing,” Institutionen för systemteknik Deartment of Electrical Engineering, Jan. 27, 2006, pp. 1-57. |
Number | Date | Country | |
---|---|---|---|
20160362135 A1 | Dec 2016 | US |