Embodiments of the invention relate to a method and device for detecting the presence of a trailer or semi-trailer of a motor vehicle.
Stability is a primary concern for a vehicle towing a trailer, especially when the vehicle towing the trailer is traveling at high speed or making a turn. Since the trailer significantly affects the dynamics of the towing vehicle, many control systems use techniques to improve the stability of the towing vehicle especially when a trailer is present. For example, systems such as anti-lock braking system (“ABS”), tire control system (“TCS”), and vehicle dynamics control (“VDC”) are configured to perform different functions for the vehicle and the trailer in order to improve stability. Furthermore, the towing vehicle can better control its transmission if the presence of a trailer is known.
Existing methods used to detect the presence of a trailer generally require additional sensors and hardware to be installed on the towing vehicle. In some cases, the vehicle can require additional hardware including electronic circuits and relays, which can increase the cost of the vehicle and/or trailer. In some other cases, the towing vehicle uses a current measurement of its brake lights to detect the trailer presence. In some other cases, signals from an electronic stability program (“ESP”) are used to detect a trailer oscillation (the program assumes that a trailer is present).
Accordingly, there is a need for improved methods and systems for detecting the presence of a trailer or semi-trailer. The following summary sets forth certain embodiments of such methods and systems. However, it does not set forth all such embodiments and should in no way be construed as limiting of any particular embodiment.
Generally, according to an embodiment of the invention, a hitch force is first estimated based on a vehicle dynamics model using parameters such as steering angle, yaw rate, vehicle speed, and lateral acceleration signals. These parameters are generally available within a vehicle control system such as an ESP system. Based on the estimated hitch force, a detection algorithm is then used to detect whether a trailer is connected to the vehicle.
In another form, the invention provides a method of detecting a vehicle trailer. The method includes sensing a first vehicle condition that indicates a movement of the vehicle, and sensing a second vehicle condition that indicates an angle such as a steered angle of the vehicle. The method also includes determining a disturbance from the movement and the angle of the vehicle, and detecting a trailer presence when the determined disturbance is above a threshold.
In another form, the invention provides a system for detecting a vehicle trailer. The system includes a plurality of sensors that sense vehicle conditions that can include a movement and a speed of the vehicle, and an estimator that estimates a disturbance based on the movement of the vehicle and the speed of the vehicle. The system also includes a detector that detects a trailer presence when the estimated disturbance is above a threshold.
In another form, the invention provides a method of detecting a vehicle trailer. The method includes modeling a plurality of dynamics of the vehicle, and determining a plurality of hitch force values from the modeled dynamics of the vehicle. The method also includes summing the determined hitch force values, and detecting a trailer presence when the sum of the hitch force values exceeds a threshold.
In another form, the invention provides a system for detecting a vehicle trailer. The system includes a means for modeling a plurality of dynamics of the vehicle, and a means for determining a plurality of hitch force values from the means for modeling. The system includes a means for determining a sum of the determined hitch force values, and a means for detecting a trailer presence when the sum exceeds a threshold.
Other features and advantages of the invention will become apparent to those skilled in the art upon review of the following detailed description, claims, and drawings.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless limited otherwise, the terms “connected,” “coupled,” and “mounted” and variations thereof herein are used broadly and encompass direct and indirect connections, couplings, and mountings. In addition, the terms “connected” and “coupled” and variations thereof are not restricted to physical or mechanical connections or couplings.
As should also be apparent to one of ordinary skill in the art, the systems shown in the figures are models of what actual systems might be like. As noted, many of the modules and logical structures described are capable of being implemented in software executed by a microprocessor or a similar device or of being implemented in hardware using a variety of components including, for example, application specific integrated circuits (“ASICs”). Terms like “processor” may include or refer to both hardware and/or software. Furthermore, throughout the specification capitalized terms are used. Such terms are used to conform to common practices and to help correlate the description with the coding examples, equations and/or drawings. However, no specific meaning is implied or should be inferred simply due to the use of capitalization. Thus, the claims should not be limited to the specific examples or terminology or to any specific hardware or software implementation or combination of software or hardware.
Embodiments of the invention relate to a method and system for detecting the presence of a trailer or semi-trailer of a motor vehicle. In one embodiment, a hitch force is considered a disturbance to a model describing a plurality of towing vehicle dynamics. The hitch force is estimated based on the model.
In a specific embodiment, a first vehicle condition that indicates a movement of the vehicle is sensed. A second vehicle condition that indicates an angle of the vehicle is also sensed. A hitch force is then estimated from the movement and the angle of the vehicle. The presence or absence of a trailer is then detected based on the estimated hitch force.
In one embodiment, a hitch detection system 160 (
In one embodiment, the towing vehicle sensor array 168 detects and monitors some specific conditions of the vehicle 100. For example, the sensors 112A, 112B, 112C, and 112D are used to sense a condition of the vehicle that is indicative of a movement or a speed of the towing vehicle 100. Sensed conditions are then transduced and converted into calibrated signals that are indicative of acceleration of the vehicle 100. If the sensors 112A, 112B, 112C, and 112D are equipped with any calibration circuitry or microprocessor therein, the speed can be converted internally to a calibrated form in the sensors 112A, 112B, 112C, and 112D. Otherwise, the conditions can be converted into calibrated signals by other external processes in a manner known in the art. Furthermore, other sensors such as the steering sensor 120, the yaw rate sensor 124, and the lateral acceleration sensor 128 are used to detect or sense events such as movements, such as side-to-side movements, side-to-side acceleration of the towing vehicle, and angles of the movements. Collectively, values of the signals outputted by the sensors 112A, 112B, 112C, 112D, 120, 124, 128, or by the sensor array 168 are referred to as sensed values, or values, hereinafter. As a result, the ECU 116 and the hitch detection system 160 can use data from existing sensors available in a standard control system to determine a presence of a trailer. In this way, additional hardware or sensors are unnecessary. Furthermore, since only data from the towing vehicle 100 needs to be used, data from the trailer is then also unnecessary.
The ECU 116 includes a processor 164 that receives the values from the towing vehicle sensor array 168. The processor 164 then processes the values from the towing vehicle sensor array 168 according to a program stored in a memory 170. Although the memory 170 is shown as being external to the processor 164, the memory 170 can also be internal to the processor 164. Similarly, although the hitch detection system 160 is shown as being external to the processor 164, the hitch detection system 160 can also be internal to the processor 164, or integrated in other control systems of the vehicle 100. Furthermore, the processor 164 can be a general-purpose micro-controller, a general-purpose microprocessor, a dedicated microprocessor or controller, a signal processor, an application-specific-integrated circuit (“ASIC”), or the like. In some embodiments, the hitch detection system 160 and its functions described are implemented in a combination of firmware, software, hardware, and the like. To be more specific, as illustrated in
Particularly,
Using the exemplary free-body diagram 200 as shown in
In some embodiments, the towing vehicle dynamics are represented by a linear bicycle model as shown in EQN. (1):
wherein the variable β is a body slip angle, the variable {dot over (ψ)} is a yaw rate, the steering angle δf is a system input, M is a mass of the vehicle, v is a longitudinal speed of the towing vehicle, the variable Iz is the moment of inertia of the towing vehicle around CG 220, Cf, Cr are cornering stiffness of front and rear tires, respectively, lf and lr are the distances from the front and rear axle or wheels 204, 208 to CG 220, and lh is the length from the rear axle or wheel to the hitch 216. In some other embodiments, other towing vehicle models such as two-track model, non-linear bicycle model, single-track model and the like can also be applied.
In general, the vehicle speed (v) is calculated from the wheel speed sensor signals of all four wheels. Of course, the wheel speed signals from a different number of wheels can also be used depending on the particular application. Thereafter, assuming {circumflex over (β)} and {dot over ({circumflex over (ψ)} are estimates of the body slip angle β and the yaw rate {dot over (ψ)}, respectively, and measuring β and {dot over (ψ)}, the hitch force estimate ({circumflex over (F)}yh) can be determined as shown in EQN. (2).
{circumflex over (F)}yh(t)={circumflex over (F)}yh(t−1)+K1(v)(β−{circumflex over (β)})+K2(v)({dot over (ψ)}−{dot over ({circumflex over (ψ)}). (2)
EQN. (2) shows that the hitch force estimate ({circumflex over (F)}yh) at time t can be dependent on the hitch force estimate ({circumflex over (F)}yh) at a previous time instant, a body slip angle β, a body slip angle estimate {circumflex over (β)}, a yaw rate {dot over (ψ)}, and a yaw rate estimate {dot over ({circumflex over (ψ)}. Particularly, in some embodiments, EQN. (2) also shows that when the body slip angle β is equal to the body slip angle estimate {circumflex over (β)}, and the yaw rate {dot over (ψ)} is equal to the yaw rate estimate {dot over ({circumflex over (ψ)}, the hitch force estimate ({circumflex over (F)}yh) converges into a specific value. The estimation of the hitch force (Fyh) can be considered accurate when the hitch force estimate ({circumflex over (F)}yh) converges. In some embodiments, {circumflex over (β)} and {dot over ({circumflex over (ψ)} are given by EQN. (3) as follows.
{circumflex over (β)}(t)={circumflex over (β)}(t−1)+K3(v){circumflex over (β)}(t−1)+K4(v){dot over ({circumflex over (ψ)}+K9(v)(β−{circumflex over (β)}(t−1))+K10(v)({dot over (ψ)}−{dot over ({circumflex over (ψ)}(t−1))+K5δf,
and
{dot over ({circumflex over (ψ)}(t)={dot over ({circumflex over (ψ)}(t−1)+K6(v){circumflex over (β)}(t−1)+K7(v){dot over ({circumflex over (ψ)}+K11(v)(β−{circumflex over (β)}(t−1))+K12(v)({dot over (ψ)}−{dot over ({circumflex over (ψ)}(t−1))+K8δf (3)
wherein K1(v), K2(v), K3(v), K4(v), K5(v), K6(v), K7(v), K8(v), K9(v), K10(v), K11(v), and K12(v) are coefficients. These coefficients can generally be derived from the dynamic model selected such as the model of EQN. (1), detailed hereinafter.
Similar to EQN. (2), values of the body slip angle estimate {circumflex over (β)}, and the yaw rate estimate {dot over ({circumflex over (ψ)} at time t depend on the values of the body slip angle estimate {circumflex over (β)}, and the yaw rate estimate {dot over ({circumflex over (ψ)} at a previous time instant, respectively, among other things. Furthermore, the values of the body slip angle estimate {circumflex over (β)}, and the yaw rate {dot over (ψ)} at time t are also dependent on the differences between the estimates and the values from the respective sensors or from the towing vehicle sensor array 168. In some embodiments, if only the yaw rate {dot over (ψ)} from the yaw rate sensor 124 is available, K1(v) is set to 0. In some embodiments, if only the body slip angle β from the body slip angle sensor 132 is available, K2(v) is set to 0. In some embodiments, the body slip angle β can also be calculated from a lateral acceleration ay from the lateral acceleration sensor 128 by EQN. (4):
Some exemplary values of K1(v), K2(v), K3(v), K4(v), K5(v), K6(v), K7(v), K8(v), K9(v), K10(v), K11(v), and K12(v) can be derived from EQN. (1) as follows.
wherein D and E are adjustable parameters. In this case, only the yaw rate {dot over (ψ)} is used as a feedback measurement. In some embodiments, the value of D ranges from about −8000 to about −4000, and the value of E ranges from about −100 to about −10. Once the values of the parameters are obtained from the respective sensors, the coefficients can be determined with EQN. (5). As a result, values of the body slip angle estimate {circumflex over (β)}, and the yaw rate estimate {dot over ({circumflex over (ψ)} of EQN. (3) can be determined. Similarly, values of the hitch force estimate ({circumflex over (F)}yh) can also be obtained from EQN. (2) when the towing vehicle is moving.
Particularly, at block 304, the trailer detection process 300 determines if a wheel speed of v of the towing vehicle 100 (see
Brakes can be applied to the wheels 204, 208 of the towing vehicle 100, or the towing vehicle 100 can be accelerating in many instances. As a result, the hitch force estimate ({circumflex over (F)}yh) can be inaccurate without a consideration of a plurality of wheel torques such as, but not limited to, driving and brake torques at the wheels. Consequently, a subsequent calculation of the hitch force estimate ({circumflex over (F)}yh) may be necessary to adjust the hitch force estimate ({circumflex over (F)}yh). At block 308, the hitch force estimate ({circumflex over (F)}yh) is adjusted. Specifically, if Tbf and Taf are a longitudinal brake torque and a driving torque of the front wheels 204, respectively, a torque difference between the driving torque Taf and the longitudinal brake torque Tbf is determined. In general, the driving torque Taf and the longitudinal brake torque Tbf are available from the electronic stability program of the towing vehicle 100. Specifically, the driving torque Taf comes from an engine control system while the longitudinal brake torque Tbf is typically estimated based on a hydraulic brake pressure. A torque adjustment value is obtained by multiplying the torque difference by the value of the steering angle (δf) at block 308. The hitch force estimate ({circumflex over (F)}yh) is then adjusted by subtracting the torque adjustment value from the hitch force estimate ({circumflex over (F)}yh) to obtain an updated hitch force estimate (Fh) at block 308. Of course, a plurality of longitudinal torques of the rear wheel 208, and a rear steering angle can also be used in some other embodiments.
Then, the updated hitch force estimate (Fh) can be integrated to a hitch force estimate absolute value, Fsum, by adding an absolute value of the updated hitch force estimate (Fh) to the value of an existing Fsum at block 312. However, the process 300 also limits a number of times that the hitch force estimate ({circumflex over (F)}yh) and the hitch force estimate absolute value Fsum are updated by incrementing a counter at block 316. In this way, the duration of integration can be limited through the counter.
If the counter is less than a predetermined number (P5) (block 320), the process 300 repeats updating the hitch force estimate ({circumflex over (F)}yh) and the hitch force estimate absolute value Fsum as described starting with block 308. Otherwise, the hitch force estimate absolute value, Fsum, is compared to a predetermined hitch force threshold (P6) (block 324). If the hitch force estimate absolute value Fsum is greater than the predetermined hitch force threshold (P6), a trailer has been detected and the process 300 terminates at block 328. Otherwise, if the hitch force estimate absolute value Fsum is less than the predetermined hitch force threshold (P6), no trailer has been detected, and the process 300 is repeated starting at block 304. In some embodiments, the values of P5 and P6 are between 0.5 and 2 seconds, and between 1500 N to 5000 N, respectively.
Various features and advantages of the invention are set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3908782 | Lang et al. | Sep 1975 | A |
4023863 | Sisson et al. | May 1977 | A |
4023864 | Lang et al. | May 1977 | A |
4034822 | Stedman | Jul 1977 | A |
4232910 | Snyder | Nov 1980 | A |
4275898 | Muste Llambrich | Jun 1981 | A |
4697817 | Jefferson | Oct 1987 | A |
4706984 | Esler et al. | Nov 1987 | A |
4850249 | Kirstein | Jul 1989 | A |
5011170 | Forbes et al. | Apr 1991 | A |
5139374 | Holt et al. | Aug 1992 | A |
5333940 | Topfer | Aug 1994 | A |
5348331 | Hawkins | Sep 1994 | A |
5380072 | Breen | Jan 1995 | A |
5707071 | Prestidge et al. | Jan 1998 | A |
5861802 | Hungerink et al. | Jan 1999 | A |
6223114 | Boros et al. | Apr 2001 | B1 |
6234447 | Boyden et al. | May 2001 | B1 |
6272407 | Scholl | Aug 2001 | B1 |
6311111 | Leimbach et al. | Oct 2001 | B1 |
6349247 | Schramm et al. | Feb 2002 | B1 |
6438464 | Woywod et al. | Aug 2002 | B1 |
6446998 | Koenig et al. | Sep 2002 | B1 |
6452485 | Schutt et al. | Sep 2002 | B1 |
6466028 | Coppinger et al. | Oct 2002 | B1 |
6494281 | Faye et al. | Dec 2002 | B1 |
6501376 | Dieckmann et al. | Dec 2002 | B2 |
6523911 | Rupp et al. | Feb 2003 | B1 |
6553284 | Holst et al. | Apr 2003 | B2 |
6600974 | Traechtler | Jul 2003 | B1 |
6604035 | Wetzel et al. | Aug 2003 | B1 |
6636047 | Arlt et al. | Oct 2003 | B2 |
6655710 | Lindell et al. | Dec 2003 | B2 |
6756890 | Lindell et al. | Jun 2004 | B1 |
20040246116 | Polzin | Dec 2004 | A1 |
20050006946 | Traechtler et al. | Jan 2005 | A1 |
20050065694 | Nenninger | Mar 2005 | A1 |
20050125132 | Stumpp et al. | Jun 2005 | A1 |
20050206229 | Lu et al. | Sep 2005 | A1 |
20060125313 | Gunne et al. | Jun 2006 | A1 |
Number | Date | Country |
---|---|---|
EP 1477338 | Nov 2004 | DE |
2402453 | Aug 2004 | GB |
Number | Date | Country | |
---|---|---|---|
20060187008 A1 | Aug 2006 | US |