Trailer sway mitigation using measured distance between a trailer and a tow vehicle

Information

  • Patent Grant
  • 8838353
  • Patent Number
    8,838,353
  • Date Filed
    Friday, July 24, 2009
    14 years ago
  • Date Issued
    Tuesday, September 16, 2014
    9 years ago
Abstract
A method of controlling a vehicle and a trailer. The vehicle has a front and a rear end, and the trailer is coupled to the rear end. The method includes sensing a plurality of vehicle characteristics, sensing a distance between the vehicle and the trailer with at least one sensor positioned on the rear end of the vehicle, determining an oscillatory action of the trailer based on the sensed distance, and applying a braking force on at least one wheel of the vehicle in response to the oscillatory action.
Description
BACKGROUND

The present invention relates to trailer sway mitigation. More specifically, the invention relates to the use of ultrasonic or radar sensors in trailer sway mitigation.


Towing a trailer behind a vehicle often presents stability problems for both the vehicle and the trailer. Trailers tend to oscillate or sway back and forth in a lateral direction when being pulled behind a vehicle. The oscillations can be caused by a number of circumstances including excessive driving speed and severe changes in direction. For example, an operator of the vehicle may swerve to yield to a vehicle merging from a freeway ramp. The quick swerving movement is transferred to the trailer and the trailer may begin to oscillate. Without proper damping, the oscillations may continue to increase in magnitude. If the oscillations are not decreased, the vehicle and trailer may become unstable.


SUMMARY

Some methods have been developed to dampen and substantially decrease the frequency and magnitude of trailer oscillations in order to bring the vehicle and trailer back to a stable operating condition. For example, trailer sway mitigation (“TSM”) in vehicles is described in U.S. patent application Ser. No. 11/503,875, filed on Aug. 11, 2006 (which is incorporated herein by reference). However, many current methods of trailer-sway mitigation use sensors that only detect vehicle characteristics. The position and oscillatory action of the trailer is not measured directly. As a result, current methods are subject to error, such as false activation when no trailer is present. In addition, the accuracy of the current methods is low because the actual trailer position and oscillatory behavior is estimated with no method for confirming the accuracy of the estimation.


The present invention provides a method of mitigating trailer sway by providing a direct and accurate measurement of the distance from a rear end of the vehicle to the trailer and providing the accurate measurements to an electronic control unit that implements the trailer sway mitigation. Thus, the method is only activated when the trailer is present. Furthermore, the method is more accurate because the actual trailer distances are measured and used as inputs to the method.


In one embodiment, the invention provides a method of controlling a vehicle and a trailer. The vehicle has a front and a rear end, and the trailer is coupled to the rear end. The method includes sensing a plurality of vehicle characteristics, sensing a distance between the vehicle and the trailer with a sensor positioned on the rear end of the vehicle, determining an oscillatory action of the trailer based on the sensed distance, and applying a braking force on at least one wheel of the vehicle in response to the oscillatory action.


In another embodiment, the invention provides a system for controlling a vehicle and a trailer. The vehicle has a front end and a rear end, and the trailer is coupled to the rear end. The system includes a plurality of vehicle characteristic sensors, at least one distance sensor, and an electronic control unit (“ECU”). Each of the plurality of vehicle characteristic sensors is configured to output a sensor signal. The distance sensor is coupled to the rear end of the vehicle and senses a distance between the rear end and the trailer and output a signal indicative of the sensed distance. The ECU receives the sensor signals and the distance signal, and determines a plurality of target characteristics based on the sensor signals. The ECU compares the sensor signals to the target characteristics and produces an error signal based on the comparison. A braking force is applied to the wheels of the vehicle in response to the error signal.


Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic of a vehicle and a trailer.



FIG. 2 is a schematic similar to FIG. 1 illustrating the sensors and measured parameters.



FIG. 3 is a schematic of the control system used in FIGS. 1 and 2.



FIG. 4 is a schematic similar to FIGS. 1 and 2 including a system with one sensor.





DETAILED DESCRIPTION

Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.



FIG. 1 illustrates a vehicle 10 that has a front end 12, rear end 14, right side 16, left side 18, and four wheels 20A, 20B, 20C, and 20D. The front wheels 20A and 20B are coupled to a front axle 22, and the rear wheels 20C and 20D are coupled to a rear axle 24. The vehicle 10 includes an engine 26 and an electronic control unit (“ECU”) 28. An operator of the vehicle 10 is assumed to be positioned in a driver's seat (on the left side in “left-hand drive” countries). The operator turns a steering wheel to direct the vehicle in a desired direction such as the direction of the arrow 30.


The vehicle 10 includes a plurality of sensors that provide information to the ECU 28. The sensors include a steering angle sensor 32, an engine torque sensor 34, a wheel speed sensor corresponding to each wheel 36A, 36, 36C, and 36D, a brake-system master cylinder pressure sensor 38, a lateral acceleration sensor 40, a yaw rate sensor 42, a right distance sensor 44, and a left distance sensor 46. Of course, in other embodiments, the vehicle 10 could include more or less sensors. The vehicle 10 defines a longitudinal vehicle axis 48.


A trailer 50 is coupled to the rear end of the vehicle by a hitch 52. The trailer 50 includes a front end 54, rear end 56, right side 58, left side 60, and four wheels 62A, 62B, 62C, and 62D. The front wheels 62A and 62B are coupled to a front axle 64, and the rear wheels 62C and 62D are coupled to a rear axle 66. Trailers with more or less axles can be used with embodiments of the invention. The trailer 50 also has a longitudinal trailer axis 68 and rear taillights that operate in response to operator input from the vehicle 10 such as braking and turn signals. Unlike the vehicle 10, the trailer 50 does not include an electronic control unit.


As noted, the trailer 50 may begin to oscillate when towed and the oscillation may affect the vehicle 10. The vehicle operator may respond to the oscillation by steering or pressing a brake pedal in an attempt to compensate for movement of the vehicle 10. The operator may over-steer and may lose control of the vehicle.


The vehicle 10 includes a trailer sway mitigation (“TSM”) function to increase the stability of the vehicle 10 when towing the trailer 50, the logic of the TSM function is illustrated in FIG. 3. The TSM function uses an electronic stability control (“ESC”) application or module 70. The module 70 is a software program that is executed by the ECU 28. The ECU 28 receives signals 72 corresponding to vehicle characteristics from the vehicle sensors (e.g., the steering angle sensor 32, the engine torque sensor 34, wheel speed sensors 36, master cylinder pressure sensor 38, lateral acceleration sensor 40, and yaw rate sensor 42). In addition, the ESC module 70 also receives input 74 from the right and left distance sensors 44 and 46, which can be ultrasonic or radar based sensors.


In general terms, the TSM increases the stability of the vehicle 10 by causing the brakes (or, more broadly, wheel torque) to be controlled in a specified manner. Symmetric and asymmetric braking (or, more broadly, torque control) is applied to the vehicle wheels 20 to dampen trailer oscillations. Symmetric braking forces are applied equally to the vehicle wheels typically all four wheels (or the two front wheels or the two rear wheels). Asymmetric braking forces are applied unequally to one or more of the wheels. For example, a braking force may be applied to only the front right wheel (or only the rear right, or both right wheels). Then, a similar barking force may be applied to only the front left wheel (or only the rear left, or both left wheels). Various asymmetric braking may be carried out until trailer oscillations decrease.


The ESC module 70 determines a gain value K based on the vehicle speed and vehicle yaw rate. As shown on FIG. 2, the road wheel angle ψ(t) of the vehicle is a function of the steering wheel steering input from the vehicle operator or driver (input lws). The vehicle road wheel angle ψ(t) is visually illustrated in FIG. 2 and is calculated using Equation 1.

ψ(t)=f(lws)  Equation 1


The right distance sensor 44 and the left distance sensor 46 are mounted on the rear end 14 of the vehicle 10 and are spaced from each other. As illustrated, the right sensor 44 is a distance l1 from the longitudinal axis 48 and the left sensor 46 is a distance l2 from the longitudinal axis 48. The distances l1 and l2 do not change and the values of l1 and l2 (in meters) are stored in a memory of the ECU 28.


During operation, the target trailer position is calculated. For example, when the operator turns the steering wheel, the target trailer position, defined by a target trailer sway angle θso(t), is determined based on the steering angle input lws using Equation 2.

θso(t)=K*ψ(t)  Equation 2


The target trailer sway angle θso(t) describes the relationship between the longitudinal vehicle axis 48 and the longitudinal trailer axis 68. When the trailer 50 is in line with the vehicle 10, then the longitudinal vehicle axis 48 and the longitudinal trailer axis 68 are parallel to each other and θ(t) is equal to zero degrees.


The right target distance d1so(t) and the left target distance d2so(t) are calculated using Equation 3. The right target distance d1so(t) is the distance from the rear end 14 of the vehicle 10 adjacent the right sensor 44 to the front end 54 of the trailer 50. Similarly, the left target distance d2so(t) is the distance from the rear end 14 of the vehicle 10 adjacent the left sensor 46 to the front end 54 of the trailer 50, along a line that is substantially parallel to the longitudinal vehicle axis 48. If a line 76 parallel to the rear end 14 of the vehicle 10 is extended and a line parallel 78 to the front end 54 of the vehicle 50 is extended, the lines intersect at a point 80. The angle between the lines 76 and 78 is equal to the trailer sway angle θ(t). The length l(t) is defined as the distance from the left sensor 46 to the point 80, as illustrated in FIG. 2. Thus, the relationship between the variables can be described using similar right triangles, and the target distances d1so(t) and d2so(t) are calculated using Equation 3.










tan







θ
so



(
t
)



=




d

2

so




(
t
)



l


(
t
)



=



d

1

so




(
t
)




l


(
t
)


+

l
1

+

l
2








Equation





3







The actual right distance d1(t) and the actual left distance d2(t) are determined by analyzing the signals produced and received by the right and left distance sensors 44 and 46. The right and left distance sensors 44 and 46 can be ultrasonic sensors, radar sensors, or the like. The right distance sensor 44 emits a signal 82 in the direction of the trailer 50. At least a portion of the signal 82 is reflected back toward the right sensor 44 and the sensor determines the right distance d1(t) based on the amount of elapsed time. The left distance sensor 46 emits a signal 84 in the direction of the trailer 50 and determines the amount of time for the signal 84 to reach the front end of the trailer 54 and reflect back to the left distance sensor 46.


After the target right and left distances d1so(t) and d2so(t) are calculated and the actual right and left distances d1(t) and d2(t) are received from the distance sensors, a right error signal ε1(t) 86 and a left error signal ε2(t) 88 are calculated using Equations 4 and 5, respectively.

ε1(t)=d1(t)−d1so(t)  Equation 4
ε2(t)=d2(t)−d2so(t)  Equation 5


A summing node 90 sums the error signals 86 and 88 calculated by the ESC using Equations 4 and 5 and outputs the sum (controller input) 92 to a proportional-integral-derivative (PID) controller 94. The ESC sensors 32, 34, 36, 38, 40 and 42 also provide outputs 96 that are filtered using a bandpass filter 98 and are provided to the PID controller 94. The PID controller 94 uses the error signal 92 and the filtered ESC sensor outputs 100 to produce a control signal 102 that is provided to a hydraulic unit 104. The hydraulic unit 104 produces an output 106 to apply symmetric braking, asymmetric braking, or both to the vehicle 10. The process is repeated until the trailer oscillations are below a predetermined threshold value.


The output 106 of the hydraulic unit 104 also depends upon an analysis of certain thresholds, including (1) θ(t) converges to θso(t), i.e. |θ(t)−θso(t)|<3° and








(
2
)










(

θ


(
t
)


)




t



<
0.





If the absolute value of the difference between the actual or measured sway angle θ(t) and the target sway angle θso(t) is greater than three (3) degrees, braking is applied. Symmetric braking is applied when










(

θ


(
t
)


)




t


<=
0.





Asymmetric braking is applied when











(

θ


(
t
)


)




t







is

>
0.





If the actual sway angle θ(t) is negative, braking is applied to the left wheels. If θ(t) is positive, braking is applied to the right wheels.



FIG. 4 schematically illustrates a plan view of a vehicle 112 similar to the vehicle 10 of FIGS. 1 and 2 having only one distance sensor 114. The vehicle includes a front end 116, a rear end 118, a right side 120, a left side 122, and four wheels 124A, 124B, 124C, and 124D. The vehicle also defines a longitudinal axis 126. A trailer 128 is coupled to the vehicle 112 by a hitch 130. The trailer 128 includes a front end 132, a rear end 134, a right side 136, and a left side 138. The trailer 128 includes a longitudinal trailer axis 140.


The distance sensor 114 is positioned adjacent the hitch 130 and is aimed toward the trailer 128 along a line substantially parallel to the longitudinal vehicle axis 126. The logic of FIG. 3 also applies to the system of FIG. 4 except only one error signal is calculated by the ESC module 70. Thus, no summing node is required for the system of FIG. 4. The ESC sensors determine vehicle characteristics and provide sensor outputs 72 to the ESC module 70 and to the PID controller 94. The distance sensor outputs a signal 74 representative of the distance d(t) from the rear end 118 of the vehicle 112 to the front end 132 of the trailer 128. From the sensor output 74, the ESC module 70 calculates the vehicle road wheel angle ψ(t) as described above with respect to Equation 1. The ESC module 70 determines the gain value K based on the vehicle speed and vehicle yaw rate, and uses the gain value K to the vehicle road wheel angle ψ(t) to calculate the target trailer sway θso(t) using Equation 2 above.


The target distance dso(t) is calculated using Equation 6.











d
so



(
t
)


=


d
o


cos







θ
so



(
t
)








Equation





6







d0 is the distance between the vehicle and the trailer when θ=0 (i.e., the trailer is aligned with the vehicle). The ESC module 70 receives the sensed distance d(t) and compares the sensed distance d(t) to the target distance dso(t) to determine an error signal ε(t) using Equation 7.

ε(t)=d(t)−dso(t)  Equation 7


The error signal 92 is used by the PID controller 94 to determine whether to apply symmetric braking, asymmetric braking, or both to the wheels. The control signal 102 produced by the PID controller 94 is provided to the hydraulic unit 104 to apply braking force to the wheels of the vehicle 112. Thus, trailer oscillations are decreased and the stability of both the vehicle 112 and the trailer 128 is increased.


Thus, the invention provides, among other things, a method of controlling a vehicle and a trailer using a trailer sway mitigation control system. Various features and advantages of the invention are set forth in the following claims.

Claims
  • 1. A method of controlling a vehicle and a trailer, the vehicle having a front end and a rear end and the trailer coupled to the rear end, the method comprising: sensing a steering angle of the vehicle;sensing, during vehicle operation, a distance between the vehicle and the trailer with a sensor positioned on the rear end of the vehicle;calculating, during vehicle operation, a target distance between the rear end of the vehicle and the trailer based on the sensed steering angle of the vehicle;determining an error signal based on the sensed distance and the target distance; andduring a vehicle turn, applying a braking force on at least one wheel of the vehicle in response to the error signal.
  • 2. The method of claim 1, wherein the sensor includes an ultrasonic sensor.
  • 3. The method of claim 2, wherein sensing the distance between the vehicle and the trailer further comprises emitting an ultrasonic pulse from the ultrasonic sensor coupled to the rear end of the vehicle, receiving a reflection of the ultrasonic pulse with the ultrasonic sensor, calculating an amount of time to receive the reflection, and determining the distance based on the amount of time.
  • 4. The method of claim 1, wherein the sensor includes a radar sensor.
  • 5. The method of claim 1, wherein calculating the target distance includes calculating the target distance based on the steering angle, a vehicle speed, and a vehicle yaw rate.
  • 6. The method of claim 1, further comprising determining a sway angle of the trailer.
  • 7. The method of claim 1, further comprising: sensing a second distance between the vehicle and the trailer,calculating a second target distance between the rear end of the vehicle and the trailer;determining a second error signal based on the sensed second distance and the second target distance; andapplying the braking force in response to the second error signal.
  • 8. The method of claim 1, wherein applying the braking force further comprises applying one of a symmetric braking force and an asymmetric braking force.
  • 9. The method of claim 8, further comprising applying the asymmetric braking force if a change in a measured sway angle of the trailer is greater than zero.
  • 10. A system for controlling a vehicle and a trailer, the vehicle having a front end and a rear end and the trailer coupled to the rear end, the system comprising: a sensor configured to output a steering angle of the vehicle;at least one distance sensor coupled to the rear end of the vehicle, the at least one distance sensor configured to sense a distance between the rear end and the trailer and to output a distance signal indicative of the sensed distance;an electronic control unit coupled to the vehicle and configured to receive the steering angle of the vehicle and the distance signal, the electronic control unit configured to calculate, during vehicle operation, a target trailer distance based on the steering angle of the vehicle, to determine an error signal based on the sensed distance and the target trailer distance, and to apply, during a vehicle turn, a braking force to at least one wheel of the vehicle in response to the error signal.
  • 11. The system of claim 10, wherein the distance sensor is an ultrasonic sensor.
  • 12. The system of claim 10, wherein the distance sensor is a radar sensor.
  • 13. The system of claim 10, further comprising a second distance sensor coupled to the rear end, the second distance sensor spaced from the first distance sensor, wherein the electronic control unit is configured to receive the first distance signal from the first distance sensor and a second distance signal from the second distance sensor, to calculate a second target trailer distance based on the steering angle of the vehicle, to determine a second error signal based on the second sensed distance and the second target trailer, and to apply the braking force in response to the second error signal.
  • 14. The system of claim 10, wherein the electronic control unit is configured to calculate the target trailer based on the steering angle, a vehicle speed, and a vehicle yaw rate.
  • 15. The system of claim 10, wherein applying the braking force includes one of applying a symmetric braking force and applying an asymmetric braking force to the wheels of the vehicle.
  • 16. The system of claim 15, wherein the electronic control unit applies the symmetric braking force when the error signal is above a first threshold value and applies the asymmetric braking force when the error signal is equal to or below the first threshold value and above a second threshold value.
US Referenced Citations (101)
Number Name Date Kind
3908782 Lang et al. Sep 1975 A
4023863 Sisson et al. May 1977 A
4023864 Lang et al. May 1977 A
4034822 Stedman Jul 1977 A
4232910 Snyder Nov 1980 A
RE30550 Reise Mar 1981 E
4254998 Marshall et al. Mar 1981 A
4275898 Muste Llambrich Jun 1981 A
4697817 Jefferson Oct 1987 A
4706984 Esler et al. Nov 1987 A
4850249 Kirstein Jul 1989 A
5011170 Forbes et al. Apr 1991 A
5022714 Breen Jun 1991 A
5029948 Breen et al. Jul 1991 A
5139374 Holt et al. Aug 1992 A
5333940 Topfer Aug 1994 A
5348331 Hawkins Sep 1994 A
5380072 Breen Jan 1995 A
5671982 Wanke Sep 1997 A
5707071 Prestidge et al. Jan 1998 A
5747683 Gerum et al. May 1998 A
5799745 Fukatani Sep 1998 A
5861802 Hungerink et al. Jan 1999 A
5964819 Naito Oct 1999 A
5986544 Kaisers et al. Nov 1999 A
6012780 Duvernay Jan 2000 A
6042196 Nakamura et al. Mar 2000 A
6074020 Takahashi et al. Jun 2000 A
6223114 Boros et al. Apr 2001 B1
6272407 Scholl Aug 2001 B1
6311111 Leimbach et al. Oct 2001 B1
6324447 Schramm et al. Nov 2001 B1
6349247 Schramm et al. Feb 2002 B1
6438464 Woywod et al. Aug 2002 B1
6446998 Koenig et al. Sep 2002 B1
6450019 Wetzel et al. Sep 2002 B1
6452485 Schutt et al. Sep 2002 B1
6466028 Coppinger et al. Oct 2002 B1
6476730 Kakinami et al. Nov 2002 B2
6480104 Wall et al. Nov 2002 B1
6494281 Faye et al. Dec 2002 B1
6498977 Wetzel et al. Dec 2002 B2
6501376 Dieckmann et al. Dec 2002 B2
6516260 Wetzel et al. Feb 2003 B2
6516925 Napier et al. Feb 2003 B1
6522956 Hecker et al. Feb 2003 B2
6523911 Rupp et al. Feb 2003 B1
6553284 Holst et al. Apr 2003 B2
6600974 Traechtler Jul 2003 B1
6604035 Wetzel et al. Aug 2003 B1
6636047 Arlt et al. Oct 2003 B2
6655710 Lindell et al. Dec 2003 B2
6668225 Oh et al. Dec 2003 B2
6756890 Schramm et al. Jun 2004 B1
6788190 Bishop Sep 2004 B2
6873891 Moser et al. Mar 2005 B2
6959970 Tseng Nov 2005 B2
7114786 Bess et al. Oct 2006 B2
7125086 Tanaka et al. Oct 2006 B2
7204564 Brown et al. Apr 2007 B2
7226134 Horn et al. Jun 2007 B2
7272481 Einig et al. Sep 2007 B2
7277786 Stumpp et al. Oct 2007 B2
7301479 Regan Nov 2007 B2
7302332 Nenninger Nov 2007 B2
7394354 Yu Jul 2008 B2
7401871 Lu et al. Jul 2008 B2
7561953 Yu Jul 2009 B2
7798263 Tandy et al. Sep 2010 B2
7904222 Lee et al. Mar 2011 B2
7917274 Hackney et al. Mar 2011 B2
8010252 Getman et al. Aug 2011 B2
8060288 Choby Nov 2011 B2
20040021291 Haug et al. Feb 2004 A1
20040246116 Polzin Dec 2004 A1
20040249547 Nenninger Dec 2004 A1
20050006946 Traechtler Jan 2005 A1
20050065694 Nenninger Mar 2005 A1
20050161901 Ahner et al. Jul 2005 A1
20050206224 Lu Sep 2005 A1
20060025896 Traechtler et al. Feb 2006 A1
20060033308 Waldbauer et al. Feb 2006 A1
20060125313 Gunne et al. Jun 2006 A1
20060155457 Waldbauer et al. Jul 2006 A1
20060204347 Waldbauer et al. Sep 2006 A1
20060206253 Yu Sep 2006 A1
20060229782 Deng et al. Oct 2006 A1
20060273657 Wanke et al. Dec 2006 A1
20070260385 Tandy, Jr. et al. Nov 2007 A1
20080036296 Wu et al. Feb 2008 A1
20080172163 Englert et al. Jul 2008 A1
20080177454 Bond et al. Jul 2008 A1
20080262686 Kieren et al. Oct 2008 A1
20090005932 Lee et al. Jan 2009 A1
20090005946 Futamura et al. Jan 2009 A1
20090093928 Getman et al. Apr 2009 A1
20090105906 Hackney et al. Apr 2009 A1
20090198425 Englert Aug 2009 A1
20090210112 Waldbauer et al. Aug 2009 A1
20090228182 Waldbauer et al. Sep 2009 A1
20090306861 Schumann et al. Dec 2009 A1
Foreign Referenced Citations (11)
Number Date Country
1661392 Aug 2005 CN
19964048 Jan 2001 DE
10212582 Sep 2003 DE
1477338 Nov 2004 EP
1516792 Mar 2005 EP
2402453 Dec 2004 GB
2001191964 Jul 2001 JP
2002243423 Aug 2002 JP
2005132360 May 2005 JP
2006000578 Jan 2006 WO
2008021942 Feb 2008 WO
Non-Patent Literature Citations (14)
Entry
U.S. Appl. No. 12/512,783, filed Jul. 30, 2009, Wu et al.
Kimbrough, Scott, et al., “A Control Strategy for Stabilizing Trailers Via Selective Actuation of Brakes”, Dynamic Systems of Control Division (Publication) DSC, vol. 44, Transportation Systems, 1992, pp. 413-428, ASME 1992.
“Automobiles”, 81 pages, Copyright 2004 by Marcel Dekker, Inc.
Tamura, Kazuya, et al., “Autonomous Vehicle Control System of ICVS City Pal: Electrical Tow-bar Function”, Proceedings of the IEEE Intelligent Vehicles Symposium 2000, pp. 702-707, Dearborn (MI), USA, Oct. 3-5, 2000.
Kimbrough, Scott, “Coordinated Braking and Steering Control for Emergency Stops and Accelerations”, American Society of Mechanical Engineers, Design Engineering Division (Publication) DE, vol. 40, Advanced Automotive Technologies, pp. 229-244, ASME 1991.
Liebemann, E., et al., “Light Commercial Vehicles—Challenges for Vehicle Stability Control”, Robert Bosch GmbH, Chassis Systems Control, Germany, Paper No. 07-0269.
Deng, Weiwen, et al., “Parametric Study on Vehicle-Trailer Dynamics for Stability Control”, SAE International, SAE Technical Paper Series, 2003-01-1321, 2003 SAE World Congress, Detroit, Michigan, Mar. 3-6, 2003.
Kimbrough, Scott, et al., “A Brake Control Algorithm for Emergency Stops (Which May Involve Steering) of Tow-Vehicle/Trailer Combinations”, Proceedings of the American Control Conference, vol. 1, pp. 409-414, 1991.
Chen, Chieh, et al., “Steering and Independent Braking Control for Tractor-Semitrailer Vehicles in Automated Highway Systems”, Proceedings of the 34th Conference on Decision and Control, New Orleans, LA, vol. 2, pp. 1561-1566, Dec. 13-15, 1995.
Tseng, et al., “The Development of Vehicle Stability Control at Ford”, IEEE/ASME Transactions on Mechatronics, vol. 4, No. 3., pp. 223-234, Sep. 1999.
Wu, Kevin, “Enhancement of Trailer Sway Mitigation by Using Trailer Brakes”, Trailer Sway Mitigation, Vehicle Dynamics Expo USA, 2008 Conference, Bosch TSM, Oct. 23, 2008.
Wang, Guo-Lin, et al., “Breaking Stability Analysis of Car-Trailer”, Journal of Jiangsu University, Natural Science Edition, vol. 27, No. 2. pp. 130-132, Mar. 2006.
PCT/US2007/075561 International Search Report and Written Opinion, 15 pages, dated Dec. 7, 2007.
Office Action from the Japanese Patent Office for Application No. 2009-524739 dated Jul. 13, 2012 (Translation only, 2 pages).
Related Publications (1)
Number Date Country
20110022282 A1 Jan 2011 US