The present disclosure is directed generally toward trailing edge device catchers and associated systems and methods.
Deployable leading and trailing edge devices have been used for many years to control the attitude and lift/drag characteristics of modern aircraft. In particular, conventional trailing edge ailerons located on left and right aircraft wings are deployed asymmetrically to roll the aircraft. Trailing edge flaps are generally deployed symmetrically to create high lift wing configurations suitable for landing and take-off. The flaps are then stowed for more efficient operation at cruise conditions.
Conventional trailing edge devices typically include flaps, ailerons, or flaperons that are hinged relative to the wing, and are driven between the stowed and deployed positions by one or more actuators. Such devices are typically supported with multiple pins arranged along a hinge axis. Each pin can be supported by a bracket pair consisting of a wing bracket carried by the wing, and a trailing edge device bracket carried by the trailing edge device. Multiple (e.g., three or more) bracket pairs and corresponding pins provide for system redundancy, so that if one bracket or pin fails, the remaining brackets and pins can support the trailing edge device relative to the wing.
The foregoing approach for providing redundant support systems for a trailing edge device is typically used when the trailing edge device has a relatively large spanwise dimension, as is the case for some existing aircraft wings. For smaller devices, space constraints have resulted in alternate design approaches. In such cases, the spanwise dimension may be too small to readily accommodate more than two pairs of wing/trailing edge device brackets and associated pins. Accordingly, such trailing edge devices may be outfitted with a “catcher” or other arrangement that prevents the trailing edge device from separating from the wing in the event that one of the brackets or pins fails. Catchers have been installed on existing aircraft.
While the foregoing arrangements for providing redundant support for the aileron 30 have proven suitable, aircraft manufacturers are under continuing pressure to reduce the weight and improve the efficiency of such devices. Accordingly, there remains an unmet need in this technology.
Aspects of the present disclosure are directed generally to trailing edge device catchers and associated systems and methods. A system in accordance with a particular embodiment includes a wing having a wing support, and a trailing edge device carried by and moveable relative to the wing and having a device support. A coupling is connected between the wing and the trailing edge device. The coupling can include a pivot joint that in turn includes a pivot element aligned along a pivot axis and connected between the wing support and the device support, and an actuator coupled between the wing and the trailing edge device. The actuator has a first position in which the trailing edge device is stowed, and a second position in which the trailing edge device is deployed. An airflow gap is located between the wing and the trailing edge device when the trailing edge device is in the second position. The coupling can further include a cam track carried by one of the wing and the trailing edge device, and a cam carried by the other of the wing and the trailing edge device. The cam track can have opposing cam track surfaces fixed relative to each other, with the cam positioned within the cam track between the opposing cam track surfaces and offset from the pivot axis. During normal operation, the cam carries no load or a first load along a load path that includes the cam track. When a decrease in support provided by at least one of the pivot element, the wing support, and the device support occurs, the cam carries a second, non-zero load greater than the first load along the load path.
In a further particular embodiment, the system further includes a hinge panel carried by the wing and movable relative to the wing to control the size of the airflow gap. In an aspect of this embodiment, the cam track is the third of at least three cam tracks, the cam is a third cam, and the system further includes first and second generally parallel, laterally offset cam tracks carried by the wing, and corresponding first and second cams carried by the trailing edge device. Each one of the first and second cams is engaged with a corresponding one of the first and second cam tracks and the third cam track is discontinuous with both the first and second cam tracks. First and second hinge panel links are coupled between the hinge panel and a corresponding one of the first and second cams.
Other embodiments are directed to methods for operating an aircraft system. One such method includes movably supporting a trailing edge device relative to a wing with a coupling that includes a wing support, a device support, and a pivot element pivotably coupled between the wing support and the device support. The wing can have one of a cam track and a cam, and the trailing edge can have the other of the cam track and the cam, with the cam track having opposing fixed cam track surfaces, and with the cam positioned between the cam track surfaces. The method further includes pivoting the trailing edge device about the pivot element (during normal operation) while the cam carries no load or a first load along a load path that includes the cam track. The method still further includes supporting the trailing edge device relative to the wing (if support provided by the coupling decreases) while the cam carries a second non-zero load greater than the first load along the load path.
Aspects of the present disclosure are directed generally to redundant support arrangements for aircraft trailing edge devices (e.g., “catchers”) and associated systems and methods. Several details describing structures or processes that are well-known and often associated with such systems and methods are not set forth in the following description for purposes of brevity. Moreover, although the following disclosure sets forth several representative embodiments of trailing edge device systems and methods, several other embodiments can have different configurations and/or different components than those described in this section. Accordingly, such embodiments may include additional elements and/or may eliminate one or more of the elements described below with reference to
The wing 210 includes multiple wing supports 214 (two are shown in
The pivot axis 253 is positioned so that as the trailing edge device 230 deploys, it opens a gap 216 relative to the wing 210. For example, the pivot axis 253 can be positioned below and outside the general contour of the wing 230. In a particular embodiment, the system 200 can further include a hinge panel (e.g., a rigid hinge panel) 215 that moves in concert with the trailing edge device 230 to control the size of the gap 216. Accordingly, the coupling 250 between the wing 210 and the trailing edge device 230 can include one or more cam tracks 254. The cam tracks 254 can provide a “programming” function to control the motion of one system component relative to another, and/or a “catcher” function to prevent separation of one or more components. For example,
In the illustrated embodiment, one of the wing cam brackets 218 carries the first and third cam tracks 254a, 254c, and the other carries the second cam track 254b and the fourth cam track 254d (not visible in
The third cam track 254c can have a generally arcuate shape, forming a portion of a circular arc around the pivot axis 253. Accordingly, when the trailing edge device 230 rotates about the pivot joint 251, the third cam 257c (carried by the device cam bracket 238) moves along an arcuate path within the third cam track 254c. Accordingly, in a particular embodiment, the third cam track 254c can include opposing cam track surfaces 258 that are fixed relative to each other and within which the third cam 257c is received.
In a particular embodiment, the third cam 257c does not contact either of the opposing cam track surfaces 258 during normal operation. For example, the third cam 257c can have a maximum extent within the third cam track 254c that is less then the distance between the opposing cam track surfaces 258. In another embodiment, the third cam 257c may have incidental contact with one or the other cam track surface 258, but will not contact both cam track surfaces 258 simultaneously so as to prevent binding. The third cam 257c can include a roller so that if it does engage one of the cam track surfaces 258, it rolls along that surface. In other embodiments, the third cam 257c can be fixed, e.g., the third cam 257c can include a fixed, cylindrical-shaped element that slides rather than rolls along the cam track surfaces 258. In general, the third cam 257c may include a roller when incidental contact with the cam track surfaces 258 is more likely, and can include a fixed device when such contact is less likely. In either embodiment, however, the third cam 257c may have little or no contact with the cam track surfaces 258 during normal operation to avoid wearing and/or excessively loading the cam track surfaces 258. One of the hinge panel links 220 can be pivotably connected to the trailing edge device 230 at or near the third cam 257c, as show in
In the unlikely event that a decrease occurs in the support provided by the pivot joint 251, the wing support 214, and/or the device support 234, the trailing edge device 230 may shift slightly relative to the wing 210, causing the third cam 257c to come into contact with one or the other of the cam track surfaces 258. Accordingly, the third cam track 254c can support the trailing edge device 230 despite the decrease in support provided by one or more other components of the coupling 250. In one aspect of this embodiment, the actuator 256 can have a fixed length when such a decrease occurs, and the third cam 257c (now engaged with one of the cam track surfaces 258) can prevent the trailing edge device 230 from moving relative to the wing 210. In another embodiment, the actuator 256 can be operated despite the decrease in support, driving the trailing edge device 230 relative to the wing 210 under the guidance provided by the third cam 257c as it moves along the third cam track 254c. In any of these embodiments, the decrease in support provided by one or more components of the coupling 250 can include an actual breakage or fracture of the component, as well as other degradations of the component that significantly reduce its load-carrying capability.
In a particular embodiment, the third cam track 254c and the first cam track 254a can be formed from a unitary structure, as shown in
One aspect of at least some of the foregoing embodiments described above with reference to
Another aspect of at least some of the foregoing embodiments is that the third cam track 254c is offset (e.g., radially outwardly and in a particular embodiment, upwardly) from the pivot joint 251. An advantage of this arrangement is that the third cam track 254c can be placed within (e.g., above the lower portion of) the composite external contour 219 of the wing 210, rather than outside the composite external contour 219. Accordingly, the fairing 235 that aerodynamically shields the pivot joint 251 need not be made larger to accommodate the catcher 255 provided by the third cam track 254c and the corresponding third cam 257c. This arrangement can reduce the impact of the catcher on overall system weight and drag.
Still another feature of at least some of the foregoing embodiments is that the catchers 255 can have a relatively low forward facing area. Accordingly, they can be installed on a trailing edge device 230 having a relatively short span, without unnecessarily interfering with airflow through the gap 216. In a particular arrangement, the third cam track 254c can be aligned in a streamwise manner with the first cam track 254a so that it provides little or no additional frontal area beyond that already provided by the existing first cam track 254a. In addition to allowing the structure carrying the third cam track 254c to be integrated with the structure carrying the first cam track 254a and thereby reduce the overall weight of these components, this arrangement can reduce or eliminate any additional blockage presented by the third cam track 254c in the gap 216, thereby allowing for more efficient aerodynamic operation of the trailing edge device 230 in its deployed position. Although the foregoing structures can be integrated as described above, the corresponding cam tracks themselves (e.g., the constant radius third cam track 254c and the more complexly curved first cam track 254a) are generally discontinuous from each other because each carries a different cam.
From the foregoing, it will be appreciated that specific embodiments of the disclosure have been described herein for purposes of illustration, but that various modifications may be made without deviating from the disclosure. For example, the various brackets, linkages, actuators and couplings can have arrangements different that those specifically illustrated in the Figures, while still including operationally similar catcher features. The foregoing arrangement can be applied to a flaperon, as shown generally in the Figures, and/or to other trailing edge devices, installed on aircraft of the general type shown in
Certain aspects of the disclosure described in the context of particular embodiments may be combined or eliminated in other embodiments. For example, the hinge panels described above can be eliminated in some embodiments, along with the associated cams and cam tracks. Further, while advantages associated with certain embodiments have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the disclosure. Accordingly, the disclosure can include other embodiments not specifically described or shown above.
Number | Name | Date | Kind |
---|---|---|---|
1724456 | Crook | Aug 1929 | A |
1770575 | Ksoll | Jul 1930 | A |
2086085 | Lachmann et al. | Jul 1937 | A |
2169416 | Griswold | Aug 1939 | A |
2282516 | Hans et al. | May 1942 | A |
2289704 | Grant | Jul 1942 | A |
2319383 | Zap | May 1943 | A |
2347230 | Zuck | Apr 1944 | A |
2358985 | McAndrew | Sep 1944 | A |
2378528 | Arsandaux | Jun 1945 | A |
2383102 | Zap | Aug 1945 | A |
2385351 | Davidsen | Sep 1945 | A |
2387492 | Blaylock et al. | Oct 1945 | A |
2389274 | Pearsall et al. | Nov 1945 | A |
2406475 | Rogers | Aug 1946 | A |
2422296 | Flader et al. | Jun 1947 | A |
2444293 | Holt | Jun 1948 | A |
2458900 | Erny | Jan 1949 | A |
2502315 | Earhart | Mar 1950 | A |
2504684 | Harper | Apr 1950 | A |
2518854 | Badenoch | Aug 1950 | A |
2563453 | Briend | Aug 1951 | A |
2652812 | Fenzl | Sep 1953 | A |
2665084 | Feeney et al. | Jan 1954 | A |
2851229 | Clark | Sep 1958 | A |
2864239 | Taylor | Dec 1958 | A |
2877968 | Granan et al. | Mar 1959 | A |
2886008 | Geyer et al. | May 1959 | A |
2891740 | Campbell | Jun 1959 | A |
2892312 | Allen et al. | Jun 1959 | A |
2899152 | Weiland | Aug 1959 | A |
2912190 | MacDonough | Nov 1959 | A |
2920844 | Marshall et al. | Jan 1960 | A |
2938680 | Greene et al. | May 1960 | A |
2990144 | Hougland | Jun 1961 | A |
2990145 | Hougland | Jun 1961 | A |
3013748 | Westburg | Dec 1961 | A |
3089666 | Quenzler | May 1963 | A |
3102607 | Roberts | Sep 1963 | A |
3112089 | Dornier | Nov 1963 | A |
3136504 | Carr | Jun 1964 | A |
3166271 | Zuck | Jan 1965 | A |
3191147 | Majendie | Jun 1965 | A |
3203275 | Hoover | Aug 1965 | A |
3203647 | Alvarez-Calderon | Aug 1965 | A |
3263946 | Roberts et al. | Aug 1966 | A |
3282535 | Steiner | Nov 1966 | A |
3375998 | Alvarez-Calderon | Apr 1968 | A |
3423858 | Speno | Jan 1969 | A |
3447763 | Allcock | Jun 1969 | A |
3463418 | Miksch | Aug 1969 | A |
3504870 | Cole et al. | Apr 1970 | A |
3528632 | Miles et al. | Sep 1970 | A |
3539133 | Robertson | Nov 1970 | A |
3556439 | Autry et al. | Jan 1971 | A |
3583660 | Hurkamp et al. | Jun 1971 | A |
3587311 | Hays, Jr. | Jun 1971 | A |
3589648 | Gorham et al. | Jun 1971 | A |
3594851 | Swatton | Jul 1971 | A |
3642234 | Kamber et al. | Feb 1972 | A |
3653611 | Trupp et al. | Apr 1972 | A |
3659810 | Robertson | May 1972 | A |
3677504 | Schwarzler et al. | Jul 1972 | A |
3704828 | Studer et al. | Dec 1972 | A |
3704843 | Jenny | Dec 1972 | A |
3711039 | James | Jan 1973 | A |
3730459 | Zuck | May 1973 | A |
3743219 | Gorges et al. | Jul 1973 | A |
3767140 | Johnson | Oct 1973 | A |
3794276 | Maltby et al. | Feb 1974 | A |
3804267 | Cook et al. | Apr 1974 | A |
3807447 | Masuda | Apr 1974 | A |
3813062 | Prather | May 1974 | A |
3827658 | Hallworth | Aug 1974 | A |
3831886 | Burdges et al. | Aug 1974 | A |
3836099 | O'Neill et al. | Sep 1974 | A |
3837601 | Cole | Sep 1974 | A |
3853289 | Nevermann et al. | Dec 1974 | A |
3862730 | Heiney | Jan 1975 | A |
3874617 | Johnson | Apr 1975 | A |
3897029 | Calderon et al. | Jul 1975 | A |
3904152 | Hill | Sep 1975 | A |
3910530 | James et al. | Oct 1975 | A |
3913450 | MacGregor | Oct 1975 | A |
3917192 | Alvarez-Calderon et al. | Nov 1975 | A |
3931374 | Moutet nee Layrisse et al. | Jan 1976 | A |
3941334 | Cole | Mar 1976 | A |
3941341 | Brogdon, Jr. | Mar 1976 | A |
3949957 | Portier et al. | Apr 1976 | A |
3968946 | Cole | Jul 1976 | A |
3985319 | Dean et al. | Oct 1976 | A |
3987983 | Cole | Oct 1976 | A |
3991574 | Frazier | Nov 1976 | A |
3992979 | Smith et al. | Nov 1976 | A |
3993584 | Owen et al. | Nov 1976 | A |
3994451 | Cole | Nov 1976 | A |
4011888 | Welchel et al. | Mar 1977 | A |
4015787 | Maieli et al. | Apr 1977 | A |
4106730 | Spitzer et al. | Aug 1978 | A |
4117996 | Sherman | Oct 1978 | A |
4120470 | Whitener | Oct 1978 | A |
4131253 | Zapel | Dec 1978 | A |
4146200 | Borzachillo | Mar 1979 | A |
4171787 | Zapel | Oct 1979 | A |
4180222 | Thornburg | Dec 1979 | A |
4181275 | Moelter et al. | Jan 1980 | A |
4189120 | Wang | Feb 1980 | A |
4189121 | Harper et al. | Feb 1980 | A |
4189122 | Miller | Feb 1980 | A |
4200253 | Rowarth et al. | Apr 1980 | A |
4202519 | Fletcher | May 1980 | A |
4240255 | Benilan et al. | Dec 1980 | A |
4247843 | Miller | Jan 1981 | A |
4262868 | Dean | Apr 1981 | A |
4267990 | Staudacher et al. | May 1981 | A |
4275942 | Steidl | Jun 1981 | A |
4283029 | Rudolph | Aug 1981 | A |
4285482 | Lewis | Aug 1981 | A |
4293110 | Middleton | Oct 1981 | A |
4312486 | Mc Kinney | Jan 1982 | A |
4325123 | Graham | Apr 1982 | A |
4351502 | Statkus | Sep 1982 | A |
4353517 | Rudolph | Oct 1982 | A |
4358077 | Coronel | Nov 1982 | A |
4360176 | Brown | Nov 1982 | A |
4363098 | Buus et al. | Dec 1982 | A |
4365774 | Coronel | Dec 1982 | A |
4368937 | Palombo et al. | Jan 1983 | A |
4384693 | Pauly | May 1983 | A |
4399970 | Evans | Aug 1983 | A |
4427168 | McKinney et al. | Jan 1984 | A |
4441675 | Boehringer | Apr 1984 | A |
4444368 | Andrews | Apr 1984 | A |
4448375 | Herndon | May 1984 | A |
4459084 | Clark | Jul 1984 | A |
4461449 | Turner | Jul 1984 | A |
4471925 | Kunz et al. | Sep 1984 | A |
4471927 | Rudolph et al. | Sep 1984 | A |
4472780 | Chenoweth et al. | Sep 1984 | A |
4475702 | Cole | Oct 1984 | A |
4479620 | Rogers et al. | Oct 1984 | A |
4485992 | Rao | Dec 1984 | A |
4496121 | Berlin | Jan 1985 | A |
4498646 | Proksch | Feb 1985 | A |
4528775 | Einarsson et al. | Jul 1985 | A |
4533096 | Baker | Aug 1985 | A |
4542869 | Brine | Sep 1985 | A |
4544117 | Schuster et al. | Oct 1985 | A |
4553722 | Cole | Nov 1985 | A |
4575030 | Gratzer | Mar 1986 | A |
4575099 | Nash | Mar 1986 | A |
4576347 | Opsahl | Mar 1986 | A |
4605187 | Stephenson | Aug 1986 | A |
4637573 | Perin | Jan 1987 | A |
4650140 | Cole | Mar 1987 | A |
4687162 | Johnson et al. | Aug 1987 | A |
4691879 | Greene | Sep 1987 | A |
4700911 | Zimmer | Oct 1987 | A |
4702441 | Wang | Oct 1987 | A |
4702442 | Weiland et al. | Oct 1987 | A |
4706913 | Cole | Nov 1987 | A |
4712752 | Victor | Dec 1987 | A |
4717097 | Sepstrup | Jan 1988 | A |
4720066 | Renken et al. | Jan 1988 | A |
4729528 | Borzachillo | Mar 1988 | A |
4747375 | Williams | May 1988 | A |
4763862 | Steinhauer et al. | Aug 1988 | A |
4779822 | Burandt et al. | Oct 1988 | A |
4784355 | Brine | Nov 1988 | A |
4786013 | Pohl et al. | Nov 1988 | A |
4789119 | Bellego et al. | Dec 1988 | A |
4796192 | Lewis | Jan 1989 | A |
4808023 | Arnold et al. | Feb 1989 | A |
4823836 | Bachmann et al. | Apr 1989 | A |
4834319 | Ewy et al. | May 1989 | A |
4834326 | Stache | May 1989 | A |
4838503 | Williams et al. | Jun 1989 | A |
4854528 | Hofrichter et al. | Aug 1989 | A |
4856735 | Lotz | Aug 1989 | A |
4867394 | Patterson, Jr. | Sep 1989 | A |
4892274 | Pohl et al. | Jan 1990 | A |
4899284 | Lewis et al. | Feb 1990 | A |
4962902 | Fortes | Oct 1990 | A |
4991800 | Schwarz | Feb 1991 | A |
5039032 | Rudolph | Aug 1991 | A |
5046688 | Woods | Sep 1991 | A |
5050081 | Abbott et al. | Sep 1991 | A |
5056741 | Bliesner et al. | Oct 1991 | A |
5074495 | Raymond | Dec 1991 | A |
5082207 | Tulinius | Jan 1992 | A |
5088665 | Vijgen et al. | Feb 1992 | A |
5094411 | Rao | Mar 1992 | A |
5094412 | Narramore | Mar 1992 | A |
5100082 | Archung | Mar 1992 | A |
5114100 | Rudolph et al. | May 1992 | A |
5129597 | Manthey | Jul 1992 | A |
5158252 | Sakurai | Oct 1992 | A |
5167383 | Nozaki | Dec 1992 | A |
5203619 | Welsch | Apr 1993 | A |
5207400 | Jennings | May 1993 | A |
5244269 | Harriehausen | Sep 1993 | A |
5259293 | Brunner et al. | Nov 1993 | A |
5280863 | Schmittle | Jan 1994 | A |
5282591 | Walters et al. | Feb 1994 | A |
5310387 | Savagian | May 1994 | A |
5351914 | Nagao et al. | Oct 1994 | A |
5388788 | Rudolph | Feb 1995 | A |
5420582 | Kubbat et al. | May 1995 | A |
5441218 | Mueller | Aug 1995 | A |
5474265 | Capbern et al. | Dec 1995 | A |
5493497 | Buus | Feb 1996 | A |
5535852 | Bishop | Jul 1996 | A |
5542684 | Squirrell et al. | Aug 1996 | A |
5544847 | Bliesner | Aug 1996 | A |
5564655 | Garland et al. | Oct 1996 | A |
5600220 | Thoraval et al. | Feb 1997 | A |
5609020 | Jackson et al. | Mar 1997 | A |
5680124 | Bedell | Oct 1997 | A |
5682537 | Davies et al. | Oct 1997 | A |
5686907 | Bedell | Nov 1997 | A |
5711496 | Nusbaum | Jan 1998 | A |
5715163 | Bang | Feb 1998 | A |
5735485 | Ciprian et al. | Apr 1998 | A |
5740991 | Gleine et al. | Apr 1998 | A |
5743490 | Gillingham | Apr 1998 | A |
5788190 | Siers | Aug 1998 | A |
5839698 | Moppert | Nov 1998 | A |
5839699 | Bliesner | Nov 1998 | A |
5875998 | Gleine et al. | Mar 1999 | A |
5915653 | Koppelman | Jun 1999 | A |
5921506 | Appa | Jul 1999 | A |
5927656 | Hinkleman | Jul 1999 | A |
5934615 | Treichler | Aug 1999 | A |
5978715 | Briffe et al. | Nov 1999 | A |
5984230 | Orazi | Nov 1999 | A |
6015117 | Broadbent et al. | Jan 2000 | A |
6033180 | Machida et al. | Mar 2000 | A |
6045204 | Frazier | Apr 2000 | A |
6057786 | Briffe | May 2000 | A |
6073624 | Laurent | Jun 2000 | A |
6076767 | Farley et al. | Jun 2000 | A |
6076776 | Breitbach | Jun 2000 | A |
6079672 | Lam et al. | Jun 2000 | A |
6082679 | Crouch et al. | Jul 2000 | A |
6085129 | Schardt | Jul 2000 | A |
6109567 | Saiz et al. | Aug 2000 | A |
6112141 | Briffe | Aug 2000 | A |
6145791 | Diller et al. | Nov 2000 | A |
6152405 | Muller et al. | Nov 2000 | A |
6161801 | Kelm et al. | Dec 2000 | A |
6164598 | Young et al. | Dec 2000 | A |
6173924 | Young et al. | Jan 2001 | B1 |
6188937 | Sherry | Feb 2001 | B1 |
6189837 | Matthews | Feb 2001 | B1 |
6213433 | Gruensfelder | Apr 2001 | B1 |
6227498 | Arata | May 2001 | B1 |
6244542 | Young et al. | Jun 2001 | B1 |
6293497 | Kelley-Wickemeyer | Sep 2001 | B1 |
6328265 | Dizdarevic | Dec 2001 | B1 |
6349798 | McKay et al. | Feb 2002 | B1 |
6349903 | Caton et al. | Feb 2002 | B2 |
6364254 | May et al. | Apr 2002 | B1 |
6375126 | Sakurai et al. | Apr 2002 | B1 |
6382566 | Ferrel et al. | May 2002 | B1 |
6389333 | Hansman | May 2002 | B1 |
6431498 | Watts et al. | Aug 2002 | B1 |
6439512 | Hart | Aug 2002 | B1 |
6443394 | Weisend | Sep 2002 | B1 |
6450457 | Sharp et al. | Sep 2002 | B1 |
6464175 | Yada et al. | Oct 2002 | B2 |
6466141 | McKay et al. | Oct 2002 | B1 |
6478541 | Charles et al. | Nov 2002 | B1 |
6481667 | Ho | Nov 2002 | B1 |
6484969 | Sprenger | Nov 2002 | B2 |
6499577 | Kitamoto et al. | Dec 2002 | B2 |
6536714 | Gleine et al. | Mar 2003 | B2 |
6547183 | Farnsworth | Apr 2003 | B2 |
6554229 | Lam et al. | Apr 2003 | B1 |
6561463 | Yount et al. | May 2003 | B1 |
6568189 | Blot-Carretero et al. | May 2003 | B2 |
6591169 | Jones et al. | Jul 2003 | B2 |
6598829 | Kamstra | Jul 2003 | B2 |
6598834 | Nettle et al. | Jul 2003 | B2 |
6601801 | Prow et al. | Aug 2003 | B1 |
6622972 | Urnes, Sr. et al. | Sep 2003 | B2 |
6622974 | Dockter et al. | Sep 2003 | B1 |
6625982 | Van Den Bossche et al. | Sep 2003 | B2 |
6644599 | Perez | Nov 2003 | B2 |
6651930 | Gautier et al. | Nov 2003 | B1 |
6698523 | Barber | Mar 2004 | B2 |
6729583 | Milliere et al. | May 2004 | B2 |
6745113 | Griffin, III et al. | Jun 2004 | B2 |
6755375 | Trikha | Jun 2004 | B2 |
6796526 | Boehringer | Sep 2004 | B2 |
6796534 | Beyer et al. | Sep 2004 | B2 |
6799739 | Jones | Oct 2004 | B1 |
6802475 | Davies et al. | Oct 2004 | B2 |
6824099 | Jones | Nov 2004 | B1 |
6843452 | Vassberg et al. | Jan 2005 | B1 |
6860452 | Bacon et al. | Mar 2005 | B2 |
6870490 | Sherry et al. | Mar 2005 | B2 |
7226020 | Pohl et al. | Jul 2005 | B2 |
6978971 | Dun | Dec 2005 | B1 |
6981676 | Milliere et al. | Jan 2006 | B2 |
7007889 | Charron | Mar 2006 | B2 |
7007897 | Wingett et al. | Mar 2006 | B2 |
7028948 | Pitt | Apr 2006 | B2 |
7048228 | Vassberg et al. | May 2006 | B2 |
7048234 | Recksiek et al. | May 2006 | B2 |
7048235 | McLean | May 2006 | B2 |
7051975 | Pohl et al. | May 2006 | B2 |
7051982 | Johnson | May 2006 | B1 |
7059563 | Huynh | Jun 2006 | B2 |
7121780 | Matich et al. | Oct 2006 | B2 |
7147241 | Beaujot et al. | Dec 2006 | B2 |
7159825 | Seve | Jan 2007 | B2 |
7177731 | Sandell et al. | Feb 2007 | B2 |
7188007 | Boorman | Mar 2007 | B2 |
7243881 | Sakurai et al. | Jul 2007 | B2 |
7258308 | Beyer et al. | Aug 2007 | B2 |
7264206 | Wheaton et al. | Sep 2007 | B2 |
7270305 | Rampton | Sep 2007 | B2 |
7300021 | Voogt | Nov 2007 | B2 |
7475854 | Lacy et al. | Jan 2009 | B2 |
20020046087 | Hey | Apr 2002 | A1 |
20030132860 | Feyereisen et al. | Jul 2003 | A1 |
20030197097 | Wakayama | Oct 2003 | A1 |
20040059474 | Boorman et al. | Mar 2004 | A1 |
20050011994 | Sakurai et al. | Jan 2005 | A1 |
20050017126 | McLean et al. | Jan 2005 | A1 |
20050040294 | Perez-Sanchez et al. | Feb 2005 | A1 |
20050045765 | Pitt | Mar 2005 | A1 |
20050061922 | Milliere | Mar 2005 | A1 |
20050109876 | Jones | May 2005 | A1 |
20050151028 | Pohl et al. | Jul 2005 | A1 |
20050171652 | Speer | Aug 2005 | A1 |
20050178903 | Boorman et al. | Aug 2005 | A1 |
20050192717 | Tafs et al. | Sep 2005 | A1 |
20050222721 | Chen et al. | Oct 2005 | A1 |
20050224662 | Lacy et al. | Oct 2005 | A1 |
20050228674 | Gunn et al. | Oct 2005 | A1 |
20050230565 | Kallinen | Oct 2005 | A1 |
20050231390 | Crane et al. | Oct 2005 | A1 |
20050242234 | Mahmulyin | Nov 2005 | A1 |
20050242243 | Seve | Nov 2005 | A1 |
20050274847 | Charron | Dec 2005 | A1 |
20060000952 | Rampton et al. | Jan 2006 | A1 |
20060038086 | Reckzeh | Feb 2006 | A1 |
20060049308 | Good et al. | Mar 2006 | A1 |
20060102803 | Wheaton et al. | May 2006 | A1 |
20060175468 | Huynh | Aug 2006 | A1 |
20060226297 | Perez-Sanchez | Oct 2006 | A1 |
20060245882 | Khan et al. | Nov 2006 | A1 |
20070034748 | Sakurai et al. | Feb 2007 | A1 |
20070114328 | Lacy et al. | May 2007 | A1 |
20070114329 | Lacy et al. | May 2007 | A1 |
20070176051 | Good et al. | Aug 2007 | A1 |
20070252040 | Kordel et al. | Nov 2007 | A1 |
20080283672 | Denzler et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
387833 | Jan 1924 | DE |
1129379 | May 1962 | DE |
0 103 038 | Mar 1984 | EP |
0205939 | Dec 1986 | EP |
0 215 211 | Mar 1987 | EP |
230061 | Jul 1987 | EP |
0 286 120 | Oct 1988 | EP |
0 483 504 | May 1992 | EP |
0 489 521 | Jun 1992 | EP |
0781704 | Feb 1997 | EP |
0 947 421 | Oct 1999 | EP |
1010616 | Jun 2000 | EP |
1338506 | Aug 2003 | EP |
1 462 361 | Sep 2004 | EP |
1 547 917 | Jun 2005 | EP |
705155 | Jun 1931 | FR |
984443 | Jul 1951 | FR |
56121 | Sep 1952 | FR |
57988 | Sep 1953 | FR |
58273 | Nov 1953 | FR |
1181991 | Feb 1970 | GB |
2144688 | Mar 1985 | GB |
WO-9105699 | May 1991 | WO |
Number | Date | Country | |
---|---|---|---|
20090146016 A1 | Jun 2009 | US |