The present application is a National Phase entry of PCT Application No. PCT/CN2019/105378, filed on Sep. 11, 2019, which claims priority to Chinese Patent Application No. 201910002223.4, titled “TRAIN SUSPENSION DEVICE AND SUSPENDED MONORAIL TRAIN”, filed on Jan. 2, 2019 with the China National Intellectual Property Administration, which are incorporated herein by reference in their entireties.
The present application relates to the technical field of rail vehicles, and in particular to a train suspension device. In addition, the present application also relates to a suspended monorail train.
A suspended monorail train is a special rail transit train, which is different from a conventional steel-wheeled rail transit train supporting a train body from below through steel rail. A bogie of the suspended monorail train is located above the train body, and the train body is suspended below the bogie. The suspended monorail train is suitable for an area where the geographical and climatic condition do not have the ability to build a light rail and a subway system, and may also be used as auxiliary branches for an urban rail transit line or a tourist-affected sightseeing line.
As shown is
Since the train body 03 is located below the bogie 01, and the train body 03 is suspended in the air, main equipment on the train body is arranged on a top of the train body, and a space of the top of the train body is limited. As shown in
For those skilled in the art, the technical problem to be solved by those skilled in the art is how to reduce the vibration and noise level of the train body at present.
The present application provides a train suspension device, which realizes the function of damping vibration and reducing noise through a damping unit, and the specific solution is as follows:
Optionally, a vertically through supporting hole is defined on the connection base, and the supporting hole limits the installation of the outer supporting member; the radial dimensions of the outer wall of the inner supporting member and the inner wall of the outer supporting member gradually decrease from top to bottom; the inner supporting member is fixed relative to the bolster seam.
Optionally, an annular supporting plate is arranged at a bottom of the supporting hole, and the supporting plate supports the outer supporting member from the bottom.
Optionally, an inner wall of the supporting hole is perpendicular to a horizontal plane; the inner wall of the supporting hole is provided with a supporting step, and the supporting step is configured for cooperating with and supporting an outer step protruding from an outer surface of the outer supporting member.
Optionally, a coupling cylinder is arranged on the bolster seam, and an internal thread is provided on an inner wall of the coupling cylinder, and the coupling cylinder is fixedly connected to the inner supporting member through a threaded connection.
Optionally, a cover plate is arranged on and covers a top of the inner supporting member, and a coupling bolt penetrates a middle of the cover plate, and a stud of the coupling bolt is inserted into the internal thread of the coupling cylinder.
Optionally, a top of the coupling cylinder is higher than an upper surface of the bolster seam, and a limit ring protrudes downwardly around a through hole in a center at a bottom of the inner supporting member, and the limit ring is configured to be inserted into the coupling cylinder;
Optionally, a distance between the upper surface of the bolster seam and a lower surface of the connection base is 5 mm to 10 mm; the coupling cylinder is fixed to the bolster seam by welding, and a bottom of an outer surface of the coupling cylinder is arranged with an annular convex edge, which supports a lower surface of the bolster seam.
Optionally, a limit platform protrudes downwardly from a middle of a bottom of the cover plate, and the limit platform is inserted into an inner cavity of the inner supporting member, and configured to contact an inner wall of the inner supporting member to limit.
Optionally, the intermediate buffer is in a shape of a cone, and the outer surface of the inner supporting member and the inner surface of the outer supporting member are tapered surfaces.
Optionally, the intermediate buffer is made of rubber, and the inner supporting member, the intermediate buffer and the outer supporting member are vulcanized into one body.
The intermediate buffer is in a shape of an annular step, and the outer surface of the inner supporting member and the inner surface of the outer supporting member are step surfaces which are pressed tightly with the intermediate buffer.
The present application also provides a suspended monorail train, including any one of the above train suspension devices.
The present application provides the train suspension device, the top of the hoisting rod is connected to the bogie, and the bottom is arranged on the connection base; the bolster seam and the connection base are relatively connected by the damping unit, and the damping unit includes the inner supporting member, the intermediate buffer member and the outer supporting member nested successively from inside to outside, the radial dimensions of the outer wall of the inner supporting member and the inner wall of the outer supporting member gradually decrease from one end to the other end in the vertical direction, one of the inner supporting member and the outer supporting member is connected to the connection base, and the other one of the inner supporting member and the outer supporting member is connected to the bolster seam, so that the inner supporting member and the outer supporting member have a tendency of approaching each other, and since surfaces approaching each other of the inner supporting member and the outer supporting member are tapered, the inner supporting member and the outer supporting member cannot be relatively separated; when getting closer to each other, the inner supporting member and the outer supporting member produce a compression action on the intermediate buffer member, and the intermediate buffer member is elastically deformable, and has a buffering function when the inner supporting member and the outer supporting member impact on each other; and the connection base is not directly fixedly connected to the bolster beam, having an insulation effect on vibration and noise from the bogie, thereby improving the riding comfort of the train body.
The present application also provides a suspended monorail train, which can realize the same technical effect.
For more clearly illustrating embodiments of the present application or the technical solutions in the conventional technology, drawings to be used in the description of the embodiments or the conventional technology will be briefly described hereinafter. Apparently, the drawings in the following description are only some embodiments of the present application. For those skilled in the art, other drawings may be obtained based on the provided drawings without any creative work.
In figures:
hoisting rod 1, connection base 2, supporting hole 21, supporting plate 22, supporting step 23, damping unit 3, inner supporting member 31, limit ring 311, lower contact surface 312, intermediate buffer member 32, outer supporting member 33, outer step 331, bolster seam 4, coupling cylinder 41, upper contact surface 411, cover plate 51, coupling bolt 52.
The core of the present application is to provide a train suspension device, which realizes damping vibration and reducing noise through a damping unit.
In order to enable those skilled in the art to better understand the technical solutions of the present application, the train suspension device and the suspended monorail train according to the present application will be further described in detail below with reference to the drawings and the specific embodiments.
The train suspension device provided according to the present application includes a hoisting rod 1 and a connection base 2, as shown in
A damping unit 3 is configured to connect the bolster seam 4 with the connection base 2, in order to realize a non-rigid connection between the bolster seam 4 and the connection base 2. As shown in 3A, it is a cross-sectional structure diagram of the connection between the bolster seam 4 and the connection base 2 through the damping unit 3. The damping unit 3 includes an inner supporting member 31, an intermediate buffer member 32 and an outer supporting member 33 nested successively from inside to outside, and the inner supporting member 31 and the outer supporting member 33 are made of hard materials and have sufficient rigidity, and are made of metal, such as steel materials; radial dimensions of an outer wall of the inner supporting member 31 and an inner wall of the outer supporting member 33 gradually decrease from one end to the other end in a vertical direction. The description is given in a direction which the damping unit and the connection base 2 are assembled with each other, the radial dimensions of the outer wall of the inner supporting member 31 and the inner wall of the outer supporting member 33 may be gradually decreased from top to bottom, or from bottom to top; there are two cases here, which will be described in detail in the following text; in this article, the inner wall refers to the inner supporting member 31 and the outer supporting member 33 separately, the inner wall is close to the center, and the outer wall is away from the center.
The intermediate buffer member 32 may be elastically deformed, and deformed after being squeezed, and restored to the original size after the external force is removed; the intermediate buffer member 32 is clamped between the inner supporting member 31 and the outer supporting member 33, which buffers the impact force between the inner supporting member 31 and the outer supporting member 33, thereby preventing the inner supporting member 31 and the outer supporting member 33 from directly contacting and causing an impact.
One of the inner supporting member 31 and the outer supporting member 33 is connected to the connection base 2, and the other one of the inner supporting member 31 and the outer supporting member 33 is connected to the bolster seam 4, and the bolster seam 4 is a structure connected to the top of the train body, as shown in
The elastically deformable intermediate buffer 32 is arranged between the inner supporting member 31 and the outer supporting member 33. When the inner supporting member 31 and the outer supporting member 33 are impacted and produce relative movement, the vertical and lateral forces may be buffered by the intermediate buffer 32, which prevents the inner supporting member 31 and the outer supporting member 33 from vibration and noise caused by the relative impact; since the intermediate buffer 32 may be elastically deformable, it has a great sound attenuation effect, and the noise transmitted from the hoisting rod 1 and the connection base 2 to the bolster seam 4 is greatly reduced. If only to reduce noise, the intermediate buffer 32 may also be made of a rigid sound-absorbing material.
On the basis of the above solution, the present application provides a specific arrangement form. A vertically through supporting hole 21 is defined on the connection base 2, and the supporting hole 21 is configured to limit the installation of the outer supporting member 33, the supporting hole 21 defines a position of the outer supporting member 33 and provides a support for the outer supporting member 33; the inner supporting member 31 is relatively fixed to the bolster seam 4. In this solution, the outer supporting member 33 is connected to the connection base 2, and the inner supporting member 31 is connected to the bolster seam 4, the radial dimensions of the outer wall of the inner supporting member 31 and the inner wall of the outer supporting member 33 gradually decrease from top to bottom; the inner supporting member 31 is relatively fixed to the bolster seam 4, as shown in
The present application also includes that, the radial dimensions of the outer wall of the inner supporting member 31 and the inner wall of the outer supporting member 33 gradually decrease from bottom to top, and the drawings are not provided in this article. It is conceivable that, at this time, the outer supporting member 33 is relatively connected to the bolster seam 4, and the outer supporting member 33 bears the downward gravity of the bolster seam 4, and the inner supporting member 31 is connected to the upper connection base 2. Since the radial dimension of the outer surface of the inner supporting member 31 gradually increases from top to bottom, the outer supporting member 33 can be prevented from falling. This connection form can achieve the same technical effect, therefore, both arrangement forms should be included in the protection scope of the present application.
Further, in the present application, an annular supporting plate 22 is arranged at a bottom of the supporting hole 21, and the supporting plate 22 supports the outer supporting member 33 from the bottom. As shown in
Preferably, an inner wall of the supporting hole 21 according to the present application is perpendicular to a horizontal plane, that is, the supporting hole 21 may be formed by bending steel pate to facilitate process and manufacture; the inner wall of the supporting hole 21 is provided with a supporting step 23, as shown in
A coupling cylinder 41 is arranged on the bolster seam 4, the coupling cylinder 41 may be fixed relative to the bolster seam 4, or may be movably connected, and the coupling cylinder 41 should be able to support the bolster seam 4; an internal thread is arranged on an inner wall of the coupling cylinder 41, and is fixedly connected to the inner supporting member 31 through a threaded connection.
A cover plate 51 is arranged on and covers a top of the inner supporting member 31, as shown in
Further, as shown in
In order to further improve the assembly effect, the an upper contact surface 411 at the top of the coupling cylinder 41 and the lower contact surface 312 at the bottom of the inner supporting member 31 are mutually matched finishing surfaces, which ensures that the upper contact surface 411 and the lower contact surface 312 are level, and the two surfaces are in full contact when they are completely contacted, avoids relative movement of the inner supporting member 31 and the coupling cylinder 41, and ensures the coupling bolt 52 is in a vertical state after assembly. If the upper contact surface 411 and the lower contact surface 312 are uneven and move with each other, bending stress may be generated on the coupling bolt 52, and the arrangement of the finishing surface may reduce the possibility of bending stress.
The coupling cylinder 41 protrudes from the upper surface of the bolster seam 4. Only a pair of relative small contact surfaces of the upper contact surface 411 and the lower contact surface 312 is arranged. If the top of the coupling cylinder 41 is flush with the upper surface of the bolster seam 4, a lower surface of the connection base 2 cannot contact with the upper surface of the bolster seam 4. In order to avoid bending stress of the coupling bolt 52, a larger surface needs to be processed. Therefore, the present application adopts the configuration in which the coupling cylinder 41 protrudes upward, which may also reduce the processing complexity.
Preferably, in the present application, a distance between the upper surface of the bolster seam 4 and the lower surface of the connection base 2 is 5 mm to 10 mm, including an endpoint value, that is, the coupling cylinder 41 protrudes upward from the upper surface of the bolster seam 4 by substantially 5 mm to 10 mm; as shown in
Preferably, a limit platform protrudes downwardly from a middle of a bottom of the cover plate 51 according to the present application, and the limit platform is inserted into an inner cavity of the inner supporting member 31, and configured to contact an inner wall of the inner supporting member 31 for being restricted, which prevents the cover plate 51 from moving laterally, and avoids shearing force on the coupling bolt 52.
On the basis of any one of the above technical solutions and their mutual combinations, the intermediate buffer 32 according to the present application is in a shape of a cone, and the outer surface of the inner supporting member 31 and the inner surface of the outer supporting member 33 are tapered surfaces. Referring to
Preferably, the intermediate buffer 32 according to the present application is made of rubber, and the inner supporting member 31, the intermediate buffer 32 and the outer supporting member 33 are vulcanized into one body, and the entire damping unit 3 is a whole.
On the basis of any one of the above technical solutions and their mutual combinations, the present application provides another structure, as shown in
The present application also provides a suspended monorail train, including the train suspension device according to any one of the above suspended monorail trains, and the suspended monorail train can achieve the same technical effect.
The above illustration of the disclosed embodiments can enable those skilled in the art to implement or use the present application. Various modifications to the embodiments are apparent to the person skilled in the art, and the general principle herein can be implemented in other embodiments without departing from the spirit or scope of the present application. Therefore, the present application is not limited to the embodiments described herein, but should be in accordance with the broadest scope consistent with the principle and novel features disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
201910002223.4 | Jan 2019 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2019/105378 | 9/11/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/140475 | 7/9/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20140306387 | Kreuzweger | Oct 2014 | A1 |
20170001651 | Distler et al. | Jan 2017 | A1 |
20170050648 | Quinn | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
103523038 | Jan 2014 | CN |
103764475 | Apr 2014 | CN |
104913001 | Sep 2015 | CN |
205905987 | Jan 2017 | CN |
106364512 | Feb 2017 | CN |
206017526 | Mar 2017 | CN |
108162987 | Jun 2018 | CN |
108216287 | Jun 2018 | CN |
207617731 | Jul 2018 | CN |
109017854 | Dec 2018 | CN |
109017856 | Dec 2018 | CN |
109532912 | Mar 2019 | CN |
112016007394 | Jul 2019 | DE |
2009068514 | Apr 2009 | JP |
2201878 | Apr 2003 | RU |
2010010810 | Jan 2010 | WO |
Entry |
---|
International Search Report for PCT/CN2019/105378 mailed Nov. 28, 2019, ISA/CN. |
Number | Date | Country | |
---|---|---|---|
20210387656 A1 | Dec 2021 | US |