The present invention relates to neurostimulation treatment systems and associated devices, as well as methods and devices for training clinicians, instructors, or other users of such treatment systems.
Treatments with implantable neurostimulation systems have become increasingly common in recent years. While such systems have shown promise in treating a number of conditions, effectiveness of treatment may vary considerably between patients. A number of factors may lead to the very different outcomes that patients experience, and viability of treatment can be difficult to determine before implantation. For example, stimulation systems often make use of an array of electrodes to treat one or more target nerve structures. The electrodes are often mounted together on a multi-electrode lead, and the lead implanted in tissue of the patient at a position that is intended to result in electrical coupling of the electrode to the target nerve structure, typically with at least a portion of the coupling being provided via intermediate tissues. Other approaches may also be employed, for example, with one or more electrodes attached to the skin overlying the target nerve structures, implanted in cuffs around a target nerve, or the like. Regardless, the physician will typically seek to establish an appropriate treatment protocol by varying the electrical stimulation that is applied to the electrodes.
Neurostimulation systems are by their very nature complex and may provide reduced to no benefit to patients if adequate training is not provided to a clinician who is tasked with programming the neurostimulation systems (or to those who are instructing the clinician on how to program the neurostimulation systems). Besides simply reading manuals or viewing videos, adequate training requires practical “hands-on” training. However, training using actual pulse generators may not be feasible, at least in part due to the costs associated with these devices. As such, it would be particularly advantageous to provide systems and methods that can simulate pulse generators. Such devices may be used in place of expensive pulse generators. The resulting low-cost training system may be sufficiently available such that a larger number of clinicians or instructors may be able to have access to practical training for longer periods of time.
The present invention generally relates to neurostimulation treatment systems and associated devices and methods, and in particular to systems and methods for simulating tasks related to neurostimulation procedures. The present invention has particular application to sacral nerve stimulation treatment systems configured to treat bladder and bowel related dysfunctions. It will be appreciated however that the present invention may also be utilized for the treatment of pain or other indications, such as movement or affective disorders, as will be appreciated by one of skill in the art.
In some embodiments, a trainer device may be coupled (wirelessly or via a wired connection) to a neurostimulator programmer (NP). The NP may be a device configured to program or adjust parameters of one or more neurostimulators (for example, an IPG or an EPG). For example the NP may be a clinician programmer. The trainer device may be a device that is configured to simulate the one or more neurostimulators. In some embodiments, the trainer device may transmit simulated neurostimulator information to the NP, wherein the simulated neurostimulator information comprises one or more stimulation parameters or information associated with one or more leads. In some embodiments, the trainer device may transmit a simulated first error information to the NP, wherein the first error information comprises an indication of a first error selected from a plurality of errors. In some embodiments, the trainer device may receive a response-information from the NP corresponding to a user input entered by a user to resolve the first error. In some embodiments, the trainer device may register within a local memory of the trainer device that the first error has been resolved. In some embodiments, the trainer device may have one or more retention pins configured to be secured to one or more open ports of the NP.
In some embodiments, the simulated neurostimulator information may include battery information of a simulated neurostimulator. In some embodiments the simulated neurostimulator information may include simulated current information related to a simulated stimulation program. That is, the simulated current information may include current information corresponding to a stimulation program that is currently ongoing. For example, the simulated current information may include values corresponding to one or more current stimulation parameters; an indication of whether stimulation is currently ON or OFF in the simulated stimulation program; an identification of one or more electrodes that are currently stimulating in the simulated stimulation program; an identification of one or more leads that are currently stimulating in the simulated stimulation program; an identification of one or more electrodes that are configured to be enabled in the simulated stimulation program; an identification of one or more leads that are configured to be enabled in the simulated stimulation program; and/or impedance information indicating a measured impedance. In some embodiments, the simulated neurostimulator information may include treatment data about a simulated treatment history of a simulated patient.
In some embodiments, the trainer device may access a data store of the trainer device, wherein the data store comprises a plurality of errors. The trainer device may select the first error from the plurality of errors. The plurality of errors may be maintained in a predetermined order. The first error may be selected based on this predetermined order. Alternatively, the first error may be selected at random from the plurality of errors. In some embodiments, the plurality of errors may include: a low-battery condition indicating that a battery of the pulse generator is approaching a critically low level; a low-battery condition indicating that a battery of the NP is approaching a critically low level; a disconnected- or faulty-lead condition indicating that a lead may be disconnected or otherwise faulty; an excessive-temperature condition indicating that the simulated neurostimulator is above a respective threshold temperature; and/or an excessive-temperature condition indicating that the NP is above a respective threshold temperature.
In some embodiments, the trainer device may transmit a simulated second error information to the NP. The second error information may include an indication of a second error selected from the plurality of errors. The plurality of errors may be maintained in a predetermined order. The second error may be next in sequence based on the predetermined order from the first error, or may be selected at random.
In some embodiments, the trainer device (or the NP) may receive a mode-selection input for cycling between or among two or more pulse-generator modes, wherein the pulse-generator modes comprise an IPG mode and an EPG mode. The trainer device (or the NP) may select a respective pulse-generator mode associated with the received mode-selection input.
In some embodiments, the trainer device may receive a user input requesting an error simulation. In response to receiving the user input, the trainer device may transmit an instruction to the NP to display a simulation of the first error. In some embodiments, the NP may directly receive the user input, in which case the NP may display the error simulation without further instruction from the trainer device. In some embodiments, the trainer device may turn on an error indicator associated with the trainer device that indicates that an error is being simulated. The trainer device may evaluate a response-information corresponding to one or more user inputs to determine if the corresponding one or more user inputs resolve the first error. In response to determining that the corresponding one or more user inputs resolve the first error, the training device may turn off the error indicator. In some embodiments, the evaluation may be performed by the NP, in which case the NP may send an error-resolution information to the trainer device indicating that the first error has been resolved (if the NP determines that the one or more inputs resolve the error).
In some embodiments, one or more indicators on an interface of the trainer device may be turned on or off. The indicators may include: a stimulation indicator that indicates whether or not the NP has successfully sent a command to the trainer device to turn on patient stimulation; one or more pulse-generator mode indicators that indicate whether the simulation is simulating an IPG or an EPG; or one or more error indicators that indicate whether an error is being simulated.
In some embodiments, the trainer device may include circuitry that includes a first circuitry for simulating the one or more neurostimulators, and a second circuitry for simulating placement of a lead. The second circuitry may include a fixed load that may provide a known resistance. The first circuitry and the second circuitry may be housed on separate circuit boards that are not electrically coupled to each other.
In some embodiments, the trainer device may include a foramen needle stimulation cable and a ground electrode cable, wherein the foramen needle stimulation cable is configured to be connected to a first port of the NP, and wherein the ground electrode cable is configured to be connected to a second port of the NP. The trainer device may receive, at the second circuitry, one or more electrical pulses from the NP, wherein the one or more electrical pulses form a completed circuit comprising the foramen needle stimulation cable, the ground electrode cable, and the fixed load of the second circuitry. The trainer device (or the NP) may measure an impedance of the completed circuit, wherein the impedance is associated with at least the fixed load. In embodiments where the trainer device measures the impedance, the trainer device may transmit, to the NP, information corresponding to the measured impedance.
In some embodiments, the trainer device may include a lead stimulation cable and a ground electrode cable, wherein the lead stimulation cable is configured to be connected to a first port of the NP, and wherein the ground electrode cable is configured to be connected to a second port of the NP. The trainer device may receive, at the second circuitry, one or more electrical pulses from the NP, wherein the one or more electrical pulses form a completed circuit comprising the lead stimulation cable, the ground electrode cable, and the fixed load of the second circuitry. The trainer device (or the NP) may measure an impedance of the completed circuit, wherein the impedance is associated with at least the fixed load. In embodiments where the trainer device measures the impedance, the trainer device may transmit, to the NP, information corresponding to the measured impedance.
In some embodiments, a connection may be established between a trainer device and the NP. Circuitry of the trainer device may transmit information identifying a plurality of potential neurostimulators. Circuitry of the trainer device may receive, from the NP, information corresponding to a user selection input by a user. The user selection input may specify a particular one of the plurality of potential neurostimulators. Circuitry of the trainer device may select the particular one of the plurality of neurostimulators for simulation.
Further areas of applicability of the present disclosure will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating various embodiments, are intended for purposes of illustration only and are not intended to necessarily limit the scope of the disclosure.
The present invention relates to neurostimulation treatment systems and associated devices, as well as methods of treatment, implantation/placement and configuration of such treatment systems. In particular, the invention relates to sacral nerve stimulation treatment systems configured to treat overactive bladder (“OAB”) and relieve symptoms of bladder related dysfunction. It will be appreciated however that the present invention may also be utilized for the treatment of pain or other indications, such as movement or affective disorders, as will be appreciated by one of skill in the art.
I. Neurostimulation Indications
Neurostimulation treatment systems, such as any of those described herein, can be used to treat a variety of ailments and associated symptoms, such as acute pain disorders, movement disorders, affective disorders, as well as bladder related dysfunction. Examples of pain disorders that may be treated by neurostimulation include failed back surgery syndrome, reflex sympathetic dystrophy or complex regional pain syndrome, causalgia, arachnoiditis, and peripheral neuropathy. Movement orders include muscle paralysis, tremor, dystonia and Parkinson's disease. Affective disorders include depressions, obsessive-compulsive disorder, cluster headache, Tourette syndrome and certain types of chronic pain. Bladder related dysfunctions include but are not limited to OAB, urge incontinence, urgency-frequency, and urinary retention. OAB can include urge incontinence and urgency-frequency alone or in combination. Urge incontinence is the involuntary loss or urine associated with a sudden, strong desire to void (urgency). Urgency-frequency is the frequent, often uncontrollable urges to urinate (urgency) that often result in voiding in very small amounts (frequency). Urinary retention is the inability to empty the bladder. Neurostimulation treatments can be configured to address a particular condition by effecting neurostimulation of targeted nerve tissues relating to the sensory and/or motor control associated with that condition or associated symptom.
In one aspect, the methods and systems described herein are particularly suited for treatment of urinary and fecal dysfunctions. These conditions have been historically under-recognized and significantly underserved by the medical community. OAB is one of the most common urinary dysfunctions. It is a complex condition characterized by the presence of bothersome urinary symptoms, including urgency, frequency, nocturia and urge incontinence. It is estimated that about 33 million Americans suffer from OAB. Of the adult population, about 30% of all men and 40% of all women live with OAB symptoms.
OAB symptoms can have a significant negative impact on the psychosocial functioning and the quality of life of patients. People with OAB often restrict activities and/or develop coping strategies. Furthermore, OAB imposes a significant financial burden on individuals, their families, and healthcare organizations. The prevalence of co-morbid conditions is also significantly higher for patients with OAB than in the general population. Co-morbidities may include falls and fractures, urinary tract infections, skin infections, vulvovaginitis, cardiovascular, and central nervous system pathologies. Chronic constipation, fecal incontinence, and overlapping chronic constipation occur more frequently in patients with OAB.
Conventional treatments of OAB generally include lifestyle modifications as a first course of action. Lifestyle modifications include eliminating bladder irritants (such as caffeine) from the diet, managing fluid intake, reducing weight, stopping smoking, and managing bowel regularity. Behavioral modifications include changing voiding habits (such as bladder training and delayed voiding), training pelvic floor muscles to improve strength and control of urethral sphincter, biofeedback and techniques for urge suppression. Medications are considered a second-line treatment for OAB. These include anti-cholinergic medications (oral, transdermal patch, and gel) and oral beta-3 adrenergic agonists. However, anti-cholinergics are frequently associated with bothersome, systemic side effects including dry mouth, constipation, urinary retention, blurred vision, somnolence, and confusion. Studies have found that more than 50% of patients stop using anti-cholinergic medications within 90 days due to a lack of benefit, adverse events, or cost.
When these approaches are unsuccessful, third-line treatment options suggested by the American Urological Association include intradetrusor (bladder smooth muscle) injections of Botulinum Toxin (BoNT-A), Percutaneous Tibial Nerve Stimulation (PTNS) and Sacral Nerve Stimulation (SNM). BoNT-A (Botox®) is administered via a series of intradetrusor injections under cystoscopic guidance, but repeat injections of Botox are generally required every 4 to 12 months to maintain effect and Botox may undesirably result in urinary retention. A number or randomized controlled studies have shown some efficacy of BoNT-A in OAB patients, but long-term safety and effectiveness of BoNT-A for OAB is largely unknown.
Alternative treatment methods, typically considered when the above approaches prove ineffective, is neurostimulation of nerves relating to the urinary system. Such neurostimulation methods include PTNS and SNM. PTNS therapy consists of weekly, 30-minute sessions over a period of 12 weeks, each session using electrical stimulation that is delivered from a hand-held stimulator to the sacral plexus via the tibial nerve. For patients who respond well and continue treatment, ongoing sessions, typically every 3-4 weeks, are needed to maintain symptom reduction. There is potential for declining efficacy if patients fail to adhere to the treatment schedule. Efficacy of PTNS has been demonstrated in a few randomized-controlled studies, however, long-term safety and effectiveness of PTNS is relatively unknown at this time.
II. Sacral Neuromodulation
SNM is an established therapy that provides a safe, effective, reversible, and long-lasting treatment option for the management of urge incontinence, urgency-frequency, and non-obstructive urinary retention. SNM therapy involves the use of mild electrical pulses to stimulate the sacral nerves located in the lower back. Electrodes are placed next to a sacral nerve, usually at the S3 level, by inserting the electrode leads into the corresponding foramen of the sacrum. The electrodes are inserted subcutaneously and are subsequently attached to an implantable pulse generator (IPG). The safety and effectiveness of SNM for the treatment of OAB, including durability at five years for both urge incontinence and urgency-frequency patients, is supported by multiple studies and is well-documented. SNM has also been approved to treat chronic fecal incontinence in patients who have failed or are not candidates for more conservative treatments.
A. Implantation of Sacral Neuromodulation System
Currently, SNM qualification has a trial phase, and is followed if successful by a permanent implant. The trial phase is a test stimulation period where the patient is allowed to evaluate whether the therapy is effective. Typically, there are two techniques that are utilized to perform the test stimulation. The first is an office-based procedure termed percutaneous nerve evaluation and the other is a staged trial.
In percutaneous nerve evaluation, a foramen needle is typically used first to identify the optimal stimulation location, usually at the S3 level, and to evaluate the integrity of the sacral nerves. Motor and sensory responses are used to verify correct needle placement, as described in Table 1 below. A temporary stimulation lead (a unipolar electrode) is then placed near the sacral nerve under local anesthesia. This procedure can be performed in an office setting without fluoroscopy. The temporary lead is then connected to an external pulse generator (EPG) taped onto the skin of the patient during the trial phase. The stimulation level can be adjusted to provide an optimal comfort level for the particular patient. The patient will monitor his or her voiding for 3 to 7 days to see if there is any symptom improvement. The advantage of percutaneous nerve evaluation is that it is an incision free procedure that can be performed in the physician's office using local anesthesia. The disadvantage is that the temporary lead is not securely anchored in place and has the propensity to migrate away from the nerve with physical activity and thereby cause failure of the therapy. If a patient fails this trial test, the physician may still recommend the staged trial as described below. If the percutaneous nerve evaluation trial is positive, the temporary trial lead is removed and a permanent quadri-polar tined lead is implanted along with an IPG under general anesthesia.
A staged trial involves the implantation of the permanent quadri-polar tined stimulation lead into the patient from the start. It also requires the use of a foramen needle to identify the nerve and optimal stimulation location. The lead is implanted near the S3 sacral nerve and is connected to an EPG via a lead extension. This procedure is performed under fluoroscopic guidance in an operating room and under local or general anesthesia. The EPG is adjusted to provide an optimal comfort level for the patient and the patient monitors his or her voiding for up to two weeks. If the patient obtains meaningful symptom improvement, he or she is considered a suitable candidate for permanent implantation of the IPG under general anesthesia, typically in the upper buttock area, as shown in
In regard to measuring outcomes for SNM treatment of voiding dysfunction, the voiding dysfunction indications (for example, urge incontinence, urgency-frequency, and non-obstructive urinary retention) are evaluated by unique primary voiding diary variables. The therapy outcomes are measured using these same variables. SNM therapy is considered successful if a minimum of 50% improvement occurs in any of primary voiding diary variables compared with the baseline. For urge incontinence patients, these voiding diary variables may include: number of leaking episodes per day, number of heavy leaking episodes per day, and number of pads used per day. For patients with urgency-frequency, primary voiding diary variables may include: number of voids per day, volume voided per void and degree of urgency experienced before each void. For patients with retention, primary voiding diary variables may include: catheterized volume per catheterization and number of catheterizations per day.
The mechanism of action of SNM is multifactorial and impacts the neuro-axis at several different levels. In patients with OAB, it is believed that pudendal afferents can activate the inhibitory reflexes that promote bladder storage by inhibiting the afferent limb of an abnormal voiding reflex. This blocks input to the pontine micturition center, thereby restricting involuntary detrusor contractions without interfering with normal voiding patterns. For patients with urinary retention, SNM is believed to activate the pudendal nerve afferents originating from the pelvic organs into the spinal cord. At the level of the spinal cord, pudendal afferents may turn on voiding reflexes by suppressing exaggerated guarding reflexes, thus relieving symptoms of patients with urinary retention so normal voiding can be facilitated. In patients with fecal incontinence, it is hypothesized that SNM stimulates pudendal afferent somatic fibers that inhibit colonic propulsive activity and activates the internal anal sphincter, which in turn improves the symptoms of fecal incontinence patients. The present invention relates to a system adapted to deliver neurostimulation to targeted nerve tissues in a manner that disrupt, inhibit, or prevent neural activity in the targeted nerve tissues so as to provide therapeutic effect in treatment of OAB or bladder related dysfunction. In one aspect, the system is adapted to provide therapeutic effect by neurostimulation without inducing motor control of the muscles associated with OAB or bladder related dysfunction by the delivered neurostimulation. In another aspect, the system is adapted to provide such therapeutic effect by delivery of sub-threshold neurostimulation below a threshold that induces paresthesia and/or neuromuscular response or to allow adjustment of neurostimulation to delivery therapy at sub-threshold levels.
B. Positioning Neurostimulation Leads with EMG
Placement of the neurostimulation lead may require localization of the targeted nerve and subsequent positioning of the neurostimulation lead at the target location. Various ancillary components are used for localization of the target nerve and subsequent implantation of the lead and IPG. Such components may include a foramen needle and a stylet, a directional guide, dilator and an introducer sheath, straight or curved tip stylet (inserted in tined leads), tunneling tools (a bendable tunneling rod with sharp tip on one end and a handle on the other with a transparent tubing over the tunneling rod) and often an over-the-shelf torque wrench. The foramen needle and stylet may be used for locating the correct sacral foramen for implant lead and subsequent acute stimulation testing. The physician may locate the targeted nerve by inserting a foramen needle and energizing a portion of needle until a neuromuscular response is observed that is indicative of neurostimulation in the target area (see Table 1 above). After the target nerve is successfully located, the direction guide, introducer and dilator may be used to prepare a path along which the lead can be implanted. The directional guide is a metal rod that holds the position in the sacral foramen determined with the foramen needle for subsequent placement of the introducer sheath and dilator. The introducer sheath and dilator is a tool that increases the diameter of the hole through the foramen to allow introduction of the permanent lead. The lead stylet is a stiff wire that is inserted into the lead to increase its stiffness during lead placement and may be configured with a straight or curved tip. The torque wrench is a small wrench used to tighten the set screw that locks the lead into the IPG. The tunneling tool is a stiff, sharp device that creates a subcutaneous tunnel, allowing the lead to be placed along a path under the skin. While such approaches have sufficed for many conventional treatments, such approaches often lack resolution and may result in sub-optimal lead placement, which may unnecessarily complicate subsequent programming and result in unfavorable patient outcomes. Thus, an approach that provides more accurate and robust neural localization while improving ease of use by the physician and the patient.
Neurostimulation relies on consistently delivering therapeutic stimulation from a pulse generator, via one or more neurostimulation electrodes, to particular nerves or targeted regions. The neurostimulation electrodes are provided on a distal end of an implantable lead that can be advanced through a tunnel formed in patient tissue. Implantable neurostimulation systems provide patients with great freedom and mobility, but it may be easier to adjust the neurostimulation electrodes of such systems before they are surgically implanted. It is desirable for the physician to confirm that the patient has desired motor and/or sensory responses before implanting an IPG. For at least some treatments (including treatments of at least some forms of urinary and/or fecal dysfunction), demonstrating appropriate motor responses may be highly beneficial for accurate and objective lead placement while the sensory response may not be required or not available (for example, patient is under general anesthesia).
Placement and calibration of the neurostimulation electrodes and implantable leads sufficiently close to specific nerves can be beneficial for the efficacy of treatment. Accordingly, aspects and embodiments of the present disclosure are directed to aiding and refining the accuracy and precision of neurostimulation electrode placement. Further, aspects and embodiments of the present disclosure are directed to aiding and refining protocols for setting therapeutic treatment signal parameters for a stimulation program implemented through implanted neurostimulation electrodes.
Prior to implantation of the permanent device, patients may undergo an initial testing phase to estimate potential response to treatment. As discussed above, percutaneous nerve evaluation may be done under local anesthesia, using a test needle to identify the appropriate sacral nerve(s) according to a subjective sensory response by the patient. Other testing procedures can involve a two-stage surgical procedure, where a quadri-polar tined lead is implanted for a testing phase to determine if patients show a sufficient reduction in symptom frequency, and if appropriate, proceeding to the permanent surgical implantation of a neuromodulation device. For testing phases and permanent implantation, determining the location of lead placement can be dependent on subjective qualitative analysis by either or both of a patient or a physician.
In exemplary embodiments, determination of whether or not an implantable lead and neurostimulation electrode is located in a desired or correct location can be accomplished through use of electromyography (“EMG”), also known as surface electromyography. EMG, is a technique that uses an EMG system or module to evaluate and record electrical activity produced by muscles, producing a record called an electromyogram. EMG detects the electrical potential generated by muscle cells when those cells are electrically or neurologically activated. The signals can be analyzed to detect activation level or recruitment order. EMG can be performed through the skin surface of a patient, intramuscularly or through electrodes disposed within a patient near target muscles, or using a combination of external and internal structures. When a muscle or nerve is stimulated by an electrode, EMG can be used to determine if the related muscle is activated, (i.e. whether the muscle fully contracts, partially contracts, or does not contract) in response to the stimulus. Accordingly, the degree of activation of a muscle can indicate whether an implantable lead or neurostimulation electrode is located in the desired or correct location on a patient. Further, the degree of activation of a muscle can indicate whether a neurostimulation electrode is providing a stimulus of sufficient strength, amplitude, frequency, or duration to affect a treatment regimen on a patient. Thus, use of EMG provides an objective and quantitative means by which to standardize placement of implantable leads and neurostimulation electrodes, reducing the subjective assessment of patient sensory responses.
In some approaches, positional titration procedures may optionally be based in part on a paresthesia or pain-based subjective response from a patient. In contrast, EMG triggers a measureable and discrete muscular reaction. As the efficacy of treatment often relies on precise placement of the neurostimulation electrodes at target tissue locations and the consistent, repeatable delivery of neurostimulation therapy, using an objective EMG measurement can substantially improve the utility and success of SNM treatment. The measurable muscular reaction can be a partial or a complete muscular contraction, including a response below the triggering of an observable motor response, such as those shown in Table 1, depending on the stimulation of the target muscle. In addition, by utilizing a trial system that allows the neurostimulation lead to remain implanted for use in the permanently implanted system, the efficacy and outcome of the permanently implanted system is more consistent with the results of the trial period, which moreover leads to improved patient outcomes.
C. Example Embodiments of Neurostimulation Systems
In one aspect, the clinician programmer 60 is used by a physician to adjust the settings of the EPG and/or IPG while the lead is implanted within the patient. The clinician programmer can be a tablet computer used by the clinician to program the IPG, or to control the EPG during the trial period. The clinician programmer can also include capability to record stimulation-induced electromyograms to facilitate lead placement and programming. The patient remote 70 can allow the patient to turn the stimulation on or off, or to vary stimulation from the IPG while implanted, or from the EPG during the trial phase.
In another aspect, the clinician programmer 60 has a control unit which can include a microprocessor and specialized computer-code instructions for implementing methods and systems for use by a physician in deploying the treatment system and setting up treatment parameters. The clinician programmer generally includes a user interface which can be a graphical user interface, an EMG module, electrical contacts such as an EMG input that can couple to an EMG output stimulation cable, an EMG stimulation signal generator, and a stimulation power source. The stimulation cable can further be configured to couple to any or all of an access device (for example, a foramen needle), a treatment lead of the system, or the like. The EMG input may be configured to be coupled with one or more sensory patch electrode(s) for attachment to the skin of the patient adjacent a muscle (for example, a muscle enervated by a target nerve). Other connectors of the clinician programmer may be configured for coupling with an electrical ground or ground patch, an electrical pulse generator (for example, an EPG or an IPG), or the like. As noted above, the clinician programmer can include a module with hardware and computer-code to execute EMG analysis, where the module can be a component of the control unit microprocessor, a pre-processing unit coupled to or in-line with the stimulation and/or sensory cables, or the like.
In some aspects, the clinician programmer is configured to operate in combination with an EPG when placing leads in a patient body. The clinician programmer can be electronically coupled to the EPG during test simulation through a specialized cable set. The test simulation cable set can connect the clinician programmer device to the EPG and allow the clinician programmer to configure, modify, or otherwise program the electrodes on the leads connected to the EPG.
In other aspects, the clinician programmer 60 allows the clinician to read the impedance of each electrode contact whenever the lead is connected to an EPG, an IPG or a clinician programmer 60 to ensure reliable connection is made and the lead is intact. This may be used as an initial step in both positioning the lead and in programming the leads to ensure the electrodes are properly functioning. The clinician programmer 60 is also able to save and display previous (for example, up to the last four) programs that were used by a patient to help facilitate re-programming. In some embodiments, the clinician programmer 60 further includes a USB port for saving reports to a USB drive and a charging port. The clinician programmer 60 is configured to operate in combination with an EPG when placing leads in a patient body as well with the IPG during programming. The clinician programmer 60 can be electronically coupled to the EPG during test simulation through a specialized cable set or through wireless communication, thereby allowing the clinician programmer 60 to configure, modify, or otherwise program the electrodes on the leads connected to the EPG. The clinician programmer 60 may also include physical on/off buttons to turn the clinician programmer 60 on and off and/or to turn stimulation on and off.
The electrical pulses generated by the EPG and IPG are delivered to one or more targeted nerves via one or more neurostimulation electrodes at or near a distal end of each of one or more leads. The leads can have a variety of shapes, can be a variety of sizes, and can be made from a variety of materials, which size, shape, and materials can be tailored to the specific treatment application. While in this embodiment, the lead is of a suitable size and length to extend from the IPG and through one of the foramen of the sacrum to a targeted sacral nerve, in various other applications, the leads may be, for example, implanted in a peripheral portion of the patient's body, such as in the arms or legs, and can be configured to deliver electrical pulses to the peripheral nerve such as may be used to relieve chronic pain. It is appreciated that the leads and/or the stimulation programs may vary according to the nerves being targeted.
Properties of the electrical pulses can be controlled via a controller of the implanted pulse generator. In some embodiments, these properties can include, for example, the frequency, strength, pattern, duration, or other aspects of the electrical pulses. These properties can include, for example, a voltage, a current, or the like. This control of the electrical pulses can include the creation of one or more electrical pulse programs, plans, or patterns, and in some embodiments, this can include the selection of one or more pre-existing electrical pulse programs, plans, or patterns. In the embodiment depicted in
In one aspect, the EPG unit is wirelessly controlled by a patient remote and/or the clinician programmer in a similar or identical manner as the IPG of a permanently implanted system. The physician or patient may alter treatment provided by the EPG through use of such portable remotes or programmers and the treatments delivered are recorded on a memory of the programmer for use in determining a treatment suitable for use in a permanently implanted system. The clinician programmer can be used in lead placement, programming and/or stimulation control in each of the trial and permanent nerve stimulation systems. In addition, each nerve stimulation system allows the patient to control stimulation or monitor battery status with the patient remote. This configuration is advantageous as it allows for an almost seamless transition between the trial system and the permanent system. From the patient's viewpoint, the systems will operate in the same manner and be controlled in the same manner, such that the patient's subjective experience in using the trial system more closely matches what would be experienced in using the permanently implanted system. Thus, this configuration reduces any uncertainties the patient may have as to how the system will operate and be controlled such that the patient will be more likely to convert a trial system to a permanent system.
In one aspect, the IPG is rechargeable wirelessly through conductive coupling by use of a charging device 50 (CD), which is a portable device powered by a rechargeable battery to allow patient mobility while charging. The CD is used for transcutaneous charging of the IPG through RF induction. The CD can either be either patched to the patient's skin using an adhesive or can be held in place using a belt 53 or by an adhesive patch 52, such as shown in the schematic of
The system may further include a patient remote 70 and clinician programmer 60, each configured to wirelessly communicate with the implanted IPG, or with the EPG during a trial, as shown in the schematic of the nerve stimulation system in
One or more of the pulse generators can include a processor and/or memory adapted to provide instructions to and receive information from the other components of the implantable neurostimulation system. The processor can include a microprocessor, such as a commercially available microprocessor from Intel® or Advanced Micro Devices, Inc.®, or the like. An IPG may include an energy storage feature, such as one or more capacitors, and typically includes a wireless charging unit.
One or more properties of the electrical pulses can be controlled via a controller of the IPG or EPG. In some embodiments, these properties can include, for example, the frequency, strength, pattern, duration, or other aspects of the timing and magnitude of the electrical pulses. These properties can further include, for example, a voltage, a current, or the like. This control of the electrical pulses can include the creation of one or more electrical pulse programs, plans, or patterns, and in some embodiments, this can include the selection of one or more pre-existing electrical pulse programs, plans, or patterns. In one aspect, the IPG 10 includes a controller having one or more pulse programs, plans, or patterns that may be created and/or pre-programmed. In some embodiments, the IPG can be programmed to vary stimulation parameters including pulse amplitude in a range from 0 mA to 10 mA, pulse width in a range from 50 μs to 500 μs, pulse frequency in a range from 5 Hz to 250 Hz, stimulation modes (for example, continuous or cycling), and electrode configuration (for example, anode, cathode, or off), to achieve the optimal therapeutic outcome specific to the patient. In particular, this allows for an optimal setting to be determined for each patient even though each parameter may vary from person to person.
In some embodiments, the IPG/EPG is configured with a ramping feature, such as shown in the example of
In order to confirm correct lead placement, it is desirable for the physician to confirm that the patient has both adequate motor and sensory responses before transitioning the patient into the staged trial phase or implanting the permanent IPG. However, sensory response is a subjective evaluation and may not always be available, such as when the patient is under general anesthesia. Experiments have shown that demonstrating appropriate motor responses is advantageous for accurate placement, even if sensory responses are available. As discussed above, EMG is a tool which records electrical activity of skeletal muscles. This sensing feature provides an objective criterion for the clinician to determine if the sacral nerve stimulation results in adequate motor response rather than relying solely on subjective sensory criteria. EMG can be used not only to verify optimal lead position during lead placement, but also to provide a standardized and more accurate approach to determine electrode thresholds, which in turn provides quantitative information supporting electrode selection for programming. Using EMG to verify activation of motor responses can further improve the lead placement performance of less experienced operators and allow such physicians to perform lead placement with confidence and greater accuracy.
In one aspect, the system is configured to have EMG sensing capability during re-programming, which can be particularly valuable. Stimulation levels during re-programming are typically low to avoid patient discomfort which often results in difficult generation of motor responses. Involuntary muscle movement while the patient is awake may also cause noise that is difficult for the physician to differentiate. In contrast to conventional approaches, EMG allows the clinician to detect motor responses at very low stimulation levels (for example, sub-threshold), and help them distinguish a motor response originated by sacral nerve stimulation from involuntary muscle movement.
Referring to
III. Trainer for a Neurostimulator Programmer (NP)
In some embodiments, a neurostimulator programmer (NP) may be provided for programming a neurostimulator. The NP may be, for example, the clinician programmer 60, which may be used by a clinician or another suitable operator to program or adjust parameters of one or more neurostimulators. In some embodiments, the programmer may be a patient programmer. The NP may be used to communicate wirelessly with and control either an EPG or an IPG. Alternatively or additionally, the programmer may communicate over a wired connection with the EPG or IPG. Programming a neurostimulator and ensuring proper placement of leads is a complex task that may require extensive hands-on training on the part of a clinician or an instructor (such as an employee of the manufacturer, who may be commissioned to train the clinician). Simply reading a manual for viewing training videos may not provide adequate training. For example, programming a neurostimulator in the real world may involve dealing in real-time with a series of faults or errors that may occur during implantation or programming. As such, a trainer device that may realistically simulate tasks related to the programming of an EPG or IPG is provided for training a user, who may be, for example, a clinician or an instructor. The trainer device may also simulate tasks related to the implantation of leads. For example, the trainer device may simulate one or more checks that may need to be performed to ensure that proper lead placement has occurred. The trainer device may offer an intuitive, easy-to-use means of training users, providing a stimulation that provides conditions very close to what the user would expect in real-world situations. Furthermore, the trainer device may offer an affordable means of training. Neurostimulator devices such as EPGs and IPGs are by their nature expensive. As such, training users directly with these devices (for example, by connecting the NP to an EPG) is essentially infeasible in many cases, particularly when there are a large number of users to be trained. The trainer device may be manufactured relatively cheaply with simpler components, and may thus offer a cheaper alternative to using expensive EPGs and IPGs for training purposes. The resulting low-cost training system may be sufficiently available such that a larger number of clinicians or instructors may be able to have access to practical training for longer periods of time. Although the disclosure focuses on training clinicians and instructors of clinicians, the disclosure contemplates training devices such as the ones disclosed herein for training patients. For example, the NP may be a patient remote 70.
In some embodiments, the trainer device 900 may be configured to be docked onto a NP.
In some embodiments, the trainer device 900 may be used to provide a simulation of a neurostimulator programming session. In some embodiments, the user may engage with the simulation via an interface surface of the trainer device 900 and/or a display. The display may be, for example, a display associated with the NP or a display of the trainer device 900 (for example, one that is coupled to the trainer device 900). The display may present a variety of information that may be available to a clinician while programming or monitoring an IPG or EPG in a real-world situation. For example, the display may present a simulated current battery information of a simulated IPG or EPG (for example, voltage, capacity, etc.), status information related to a simulated stimulation program (for example, whether stimulation is on or off, stimulation parameters, an identification of the electrodes and/or leads that are currently stimulating as part of the simulation, an identification of the electrodes and/or leads configured to be enabled in the simulated stimulation program), or impedance information (for example, a simulated impedance provided by tissue around a lead in a real-world situation). The display may also provide information to the user that may require a user action. For example, the display may present one or more simulated faults or errors that may need to be solved by an appropriate action by the user.
In some embodiments, the trainer device 900 may be coupled to a NP. In some embodiments, the NP may be wirelessly coupled (for example, using a wireless network, Bluetooth, near field communication, far field communication) directly or indirectly to the NP. In some embodiments, the user may be able to initiate communication between the trainer device 900 and the NP. For example, the user may be able to “discover” the trainer device 900 on the NP when it is in range (for example, the user may receive a prompt on a display of the NP that the trainer device 900 is in range) and turned on, and may be able to initiate a connection to the trainer device 900 using the NP. As another example, the user may be able to actuate a switch on the trainer device 900, which may cause the trainer device 900 to automatically couple to the NP if it is in range, or send a connection prompt to the NP which may be accepted by the user. The trainer device and the NP may negotiate and establish a connection by any suitable protocols. In other embodiments, the NP may be coupled to the NP via a wired connection.
In some embodiments, the trainer device 900 may transmit simulated neurostimulator information to the NP as part of a simulation of a particular neurostimulator. In some embodiments, the simulated neurostimulator information may include battery information of the simulated neurostimulator. In some embodiments, the simulated neurostimulator information may include one or more stimulation parameters. In some embodiments, the simulated neurostimulator information may include information associated with one or more leads. In some embodiments the simulated neurostimulator information may include simulated current information related to a simulated stimulation program. That is, the simulated current information may include current information corresponding to a stimulation program that is currently ongoing. For example, the simulated current information may include values corresponding to one or more current stimulation parameters; an indication of whether stimulation is currently ON or OFF in the simulated stimulation program; an identification of one or more electrodes that are currently stimulating in the simulated stimulation program; an identification of one or more leads that are currently stimulating in the simulated stimulation program; an identification of one or more electrodes that are configured to be enabled in the simulated stimulation program; an identification of one or more leads that are configured to be enabled in the simulated stimulation program; and/or impedance information indicating a measured impedance. In some embodiments, the simulated neurostimulator information may include treatment data about a simulated treatment history of a simulated patient.
In some embodiments, the trainer device 900 may be configured to simulate a plurality of neurostimulators (for example, neurostimulators of different models and/or manufacturers). In some embodiments, a user of the trainer device 900 may be able to select a particular one of the plurality of neurostimulators to train for that particular neurostimulator. In some embodiments, the selection may be made prior to initiation of a connection between the trainer device 900 and the NP. For example, when the trainer device 900 is in range and turned on, the trainer device 900 may transmit to the NP information identifying a plurality of potential neurostimulators that may be simulated. The user may be presented (for example, on a display of the NP) with a prompt that lists the plurality of potential neurostimulators that may be simulated by the trainer device 900. In this example, the user may submit a selection input at the NP, selecting a particular one of the plurality of potential neurostimulators for training. The NP may then initiate a protocol for connecting to the trainer device 900. The protocol may include a transmission of information corresponding to the user selection to the trainer device 900. In response, the trainer device 900 may negotiate and establish a connection with the NP. From that point on and until instructed otherwise, the trainer device 900 may simulate the particular one of the plurality of potential neurostimulators. In some embodiments, the selection may be made after the connection between the trainer device and the NP is established. For example, the trainer device 900 may transmit to the NP information identifying a plurality of potential neurostimulators that may be simulated after the connection is established. The user may be presented with an initialization prompt that may list the plurality of potential neurostimulators that can be simulated. The initialization prompt may further request that the user select a particular one of the plurality of potential neurostimulators. In this example, the user may submit a selection input at the NP, selecting a particular one of the plurality of potential neurostimulators for training. The NP may transmit information corresponding to the user selection to the trainer device 900. In response, the trainer device 900 may, from that point on and until instructed otherwise, simulate the particular one of the plurality of potential neurostimulators. In particular embodiments, the plurality of potential neurostimulators may be updated at any time via a software update or patch of the trainer device 900. This may be advantageous, for example, because the trainer device 900 may be kept up-to-date and relevant as new models of neurostimulators are developed. In particular embodiments, the plurality of potential neurostimulators may include a plurality of IPGs and/or a plurality of EPGs. In particular embodiments, an interface surface the trainer device 900 may include one or more physical switches or buttons for selecting particular neurostimulators to simulate. For example, an interface surface of the trainer device 900 may include a first button that is dedicated to a first neurostimulator model and the second button that is dedicated to a second neurostimulator model. As another example interface surface of the trainer device 900 may include one or more cycling buttons for cycling through a sequence of different neurostimulator models that may be selected.
In some embodiments, the trainer device 900 may transmit a simulated first error information to the NP. The first error information may include an indication of a first error selected from a plurality of errors. In some embodiments, the plurality of errors may be stored within a data store of the trainer device 900. In some embodiments, the trainer device 900 may access this data store, select the first error, and transmit information about the first error to the NP. In some embodiments, the plurality of errors may be maintained (for example, within the data store of the trainer device 900) in a predetermined order. In these embodiments, the first error may be selected based on the predetermined order. Alternatively, the first error may be selected randomly or pseudo-randomly from the plurality of errors.
In some embodiments, the plurality of errors may include, for example: a low-battery condition indicating that a battery of the pulse generator is approaching a critically low level; a low-battery condition indicating that a battery of the NP is approaching a critically low level; a disconnected- or faulty-lead condition indicating that a lead may be disconnected or otherwise faulty; an excessive-temperature condition indicating that the simulated neurostimulator is above a respective threshold temperature; and/or an excessive-temperature condition indicating that the NP is above a respective threshold temperature.
In some embodiments, the trainer device 900 may transmit an instruction to the NP to display a simulation of an error (for example, the first error). In some embodiments, in response to receiving this instruction, the NP may cause an associated display to, for example, display an indication associated with the error. For example, it may display a message or warning corresponding to the error. Such a message or warning may be identical to or similar to a message or warning that may be displayed in response to a real (that is, non-simulated) error. In some embodiments, the trainer device 900 may also turn on an error indicator (for example, the error element 912) to indicate that an error is being simulated.
In some embodiments, the trainer device 900 may receive a response-information from the NP corresponding to one or more user inputs entered by a user to resolve the first error. In some embodiments, the NP may be configured to receive one or more response-inputs (for example, a user input) from a user in response to the simulation of a particular error. In some embodiments, the response-inputs may associated with a course of action intended to address the particular error. For example, in response to an error indicating an excessive-temperature condition of the IPG, the user may enter a response-input corresponding to reducing a simulated stimulation output or to turning off the IPG. In other embodiments, the response-inputs may simply indicate a confirmation from the user that the error has been acknowledged. For example, a user may enter a confirmation input in response to having received an error indicating a low-battery condition for a simulated IPG. In some embodiments, the response-inputs may be entered at the trainer device 900, for example, at one or more switch elements of the trainer device 900.
In some embodiments, the trainer device 900 may evaluate the response-inputs. That is, the trainer device 900 may evaluate whether the response-inputs from the user adequately address the error being simulated. In doing so, the trainer device 900 may access a memory (for example, a local memory) that may include information about response-inputs that may be appropriate to address each error. In these embodiments, if the trainer device 900 determines that a response-input adequately addresses the error being simulated, the trainer device 900 may register within a local memory of the trainer device 900 that the error has been resolved. If an error element 912 had been turned on due to the error, the trainer device 900 may turn off the error element 912.
In some embodiments, the evaluation of the response-inputs may occur on the NP. That is, the NP may evaluate whether the response-inputs from the user adequately address the error being simulated. In doing so, the NP may access a memory (for example, a local memory) that may include information about response-inputs that may be appropriate to address each error. In these embodiments, if the NP determines that a response-input adequately addresses the error being simulated, the NP may transmit error-resolution information to the trainer device 900, indicating that the first error has been resolved. In response to receiving the error-resolution information, the trainer device 900 may register within a local memory of the trainer device 900 that the error has been resolved. If an error element 912 had been turned on due to the error, the trainer device 900 may turn off the error element 912. In some embodiments, the evaluation may occur partly on the trainer device 900 and partly on the NP.
In some embodiments, the trainer device 900 may transmit a simulated second error information to the NP. The second error information may include an indication of a second error selected from the plurality of errors. In some embodiments, in cases where the plurality of errors is maintained in a predetermined order, the second error may be next in sequence from the first error based on the predetermined order. In some embodiments, the second error may be selected only when it is determined that the first error has been resolved. In other embodiments, the second error may be transmitted only when it is determined that the first error has been resolved, but may be selected before the first error has been resolved.
In some embodiments, the trainer device 900 may receive a mode-selection input for cycling between or among two or more pulse-generator modes. The pulse-generator modes may include an IPG mode and an EPG mode. In response, the trainer device 900 may select a respective pulse-generator mode associated with the received mode selection input. For example, referencing
In some embodiments, the trainer device 900 may be used to simulate a variety of programming situations other than errors. For example, the trainer device 900 may be used to simulate more ordinary tasks such as the programming of patient stimulation patterns, the programming of modes, the task of switching between modes. the adjusting of parameters, or any other suitable task. Essentially, the trainer device 900 may be used to simulate any tasks that an IPG or EPG may perform.
In some embodiments, the trainer device 900 may be used to provide a lead placement simulation, which may be a simulation of the checks involved in ensuring proper placement of a lead. One of these checks may include measuring and impedance, which may confirm that a lead has been implanted within tissue, or within a particular type of tissue associated with a signature impedance. For example, a clinician implanting a lead may check to confirm that the lead has been implanted in an area that provides an appropriate impedance value (for example, an impedance value that is within a threshold range of a specified impedance value associated with a target tissue). Alternatively or additionally, an impedance measurement may be used to indicate that a reliable connection has been made between a lead and an IPG or an EPG and/or that the lead is intact. This may be used as an initial step in positioning the lead and/or in programming the leads to ensure the electrodes are properly functioning. In some embodiments, the specified impedance value may be around 500 ohms.
In some embodiments, the lead placement simulation may be provided when the trainer device 900 is operating in a different mode, termed herein as “Lead Placement Mode.” In some embodiments, for example referencing
In some embodiments, the lead placement simulation may include, for example, two phases: (1) the foramen needle insertion phase and (2) the lead insertion phase. The foramen needle insertion phase may simulate the task of inserting a foramen needle into a tissue near a target nerve. In a real medical procedure, the insertion of the foramen needle may be done, for example, to identify the optimal stimulation location, as described elsewhere herein. In some embodiments, referencing
The impedance measurement may be based on, for example, measuring the voltage differential or the current in the circuit (for example, using Ohm's law, V=IR). As an example, the impedance of the load 1125 may be around 499 ohms. The measured impedance may be around 499 ohms, or alternatively may be higher based on the presence of one or more other fixed loads. For example, the circuit may have a 100-ohm resistor in series with the foramen needle connection and a 100-ohm resistor in series with the ground electrode connection, which may result in a measured impedance of 699 ohms. The measured impedance may be displayed on a display, for example a display associated with the NP 1010 or a display associated with the trainer device 900. The user of the trainer device 900 may be able to view the measured impedance on the display and determine that the simulated foramen needle has been placed in a simulated location that provides the correct impedance.
In the lead insertion phase of the lead placement simulation, the trainer device 900 may simulate the implantation of one or more leads of an IPG or EPG. As an example,
In some embodiments, the circuit for the lead insertion phase may include one or more other fixed loads. For example, the circuit may include a 100-ohm resistor in series with the ground electrode connection. In this example, a load 1125 that has an impedance of 499 ohms may yield measured impedance of 599 ohms. The measured impedance may be displayed, for example, on a display associated with the NP. The user of the trainer device 900 may be able to view the measured impedance on the display and determine that the simulated lead has been placed in a simulated location that provides the correct impedance.
In some embodiments, Lead Placement Mode may be initiated when the user manually activates the mode. For example, the user may activate this mode by actuating an appropriate button on the clinician programmer or the trainer device 900. In some embodiments, this mode may be automatically activated by the trainer device 900 when the user simply plugs in the cables associated with the lead placement mode.
In the foregoing specification, the invention is described with reference to specific embodiments thereof, but those skilled in the art will recognize that the invention is not limited thereto. Various features and aspects of the above-described invention can be used individually or jointly. Further, the invention can be utilized in any number of environments and applications beyond those described herein without departing from the broader spirit and scope of the specification. The specification and drawings are, accordingly, to be regarded as illustrative rather than restrictive. It will be recognized that the terms “comprising,” “including,” and “having,” as used herein, are specifically intended to be read as open-ended terms of art.
The present application claims the benefit of priority of U.S. Provisional Application No. 62/852,875 filed on May 24, 2019; and entitled “TRAINER FOR A NEUROSTIMULATOR PROGRAMMER AND ASSOCIATED METHODS OF USE WITH A NEUROSTIMULATION SYSTEM,” the entirety of which is hereby incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
53928 | Sheffield et al. | Apr 1866 | A |
3057356 | Greatbatch | Oct 1962 | A |
3348548 | Chardack | Oct 1967 | A |
3646940 | Timm et al. | Mar 1972 | A |
3824129 | Fagan, Jr. | Jul 1974 | A |
3825015 | Berkovits | Jul 1974 | A |
3888260 | Fischell | Jun 1975 | A |
3902501 | Citron et al. | Sep 1975 | A |
3939843 | Smyth | Feb 1976 | A |
3942535 | Schulman | Mar 1976 | A |
3970912 | Hoffman | Jul 1976 | A |
3995623 | Blake et al. | Dec 1976 | A |
4019518 | Maurer et al. | Apr 1977 | A |
4044774 | Corbin et al. | Aug 1977 | A |
4082097 | Mann et al. | Apr 1978 | A |
4141365 | Fischell et al. | Feb 1979 | A |
4166469 | Littleford | Sep 1979 | A |
4210383 | Davis | Jul 1980 | A |
4269198 | Stokes | May 1981 | A |
4285347 | Hess | Aug 1981 | A |
4340062 | Thompson et al. | Jul 1982 | A |
4379462 | Borkan et al. | Apr 1983 | A |
4407303 | Akerstrom | Oct 1983 | A |
4437475 | White | Mar 1984 | A |
4468723 | Hughes | Aug 1984 | A |
4512351 | Pohndorf | Apr 1985 | A |
4550731 | Batina et al. | Nov 1985 | A |
4558702 | Barreras et al. | Dec 1985 | A |
4654880 | Sontag | Mar 1987 | A |
4662382 | Sluetz et al. | May 1987 | A |
4673867 | Davis | Jun 1987 | A |
4719919 | Marchosky et al. | Jan 1988 | A |
4721118 | Harris | Jan 1988 | A |
4722353 | Sluetz | Feb 1988 | A |
4744371 | Harris | May 1988 | A |
4800898 | Hess et al. | Jan 1989 | A |
4848352 | Pohndorf et al. | Jul 1989 | A |
4860446 | Lessar et al. | Aug 1989 | A |
4957118 | Erlebacher | Sep 1990 | A |
4989617 | Memberg et al. | Feb 1991 | A |
5012176 | Laforge | Apr 1991 | A |
5052407 | Hauser et al. | Oct 1991 | A |
5143089 | Alt | Sep 1992 | A |
5193539 | Schulman et al. | Mar 1993 | A |
5197466 | Marchosky et al. | Mar 1993 | A |
5204611 | Nor et al. | Apr 1993 | A |
5255691 | Otten | Oct 1993 | A |
5257634 | Kroll | Nov 1993 | A |
5342408 | deCoriolis et al. | Aug 1994 | A |
5439485 | Mar et al. | Aug 1995 | A |
5476499 | Hirschberg | Dec 1995 | A |
5484445 | Knuth | Jan 1996 | A |
5571148 | Loeb et al. | Nov 1996 | A |
5592070 | Mino | Jan 1997 | A |
5637981 | Nagai et al. | Jun 1997 | A |
5676162 | Larson, Jr. et al. | Oct 1997 | A |
5690693 | Wang et al. | Nov 1997 | A |
5702428 | Tippey et al. | Dec 1997 | A |
5702431 | Wang et al. | Dec 1997 | A |
5712795 | Layman et al. | Jan 1998 | A |
5713939 | Nedungadi et al. | Feb 1998 | A |
5733313 | Barreras, Sr. et al. | Mar 1998 | A |
5735887 | Barreras, Sr. et al. | Apr 1998 | A |
5741316 | Chen et al. | Apr 1998 | A |
5871532 | Schroeppel | Feb 1999 | A |
5876423 | Braun | Mar 1999 | A |
5877472 | Campbell et al. | Mar 1999 | A |
5902331 | Bonner et al. | May 1999 | A |
5948006 | Mann | Sep 1999 | A |
5949632 | Barreras, Sr. et al. | Sep 1999 | A |
5957965 | Moumane et al. | Sep 1999 | A |
5974344 | Shoemaker, II et al. | Oct 1999 | A |
5991665 | Wang et al. | Nov 1999 | A |
6014588 | Fitz | Jan 2000 | A |
6027456 | Feler et al. | Feb 2000 | A |
6035237 | Schulman et al. | Mar 2000 | A |
6052624 | Mann | Apr 2000 | A |
6055456 | Gerber | Apr 2000 | A |
6057513 | Ushikoshi et al. | May 2000 | A |
6067474 | Schulman et al. | May 2000 | A |
6075339 | Reipur et al. | Jun 2000 | A |
6076017 | Taylor et al. | Jun 2000 | A |
6081097 | Seri et al. | Jun 2000 | A |
6083247 | Rutten et al. | Jul 2000 | A |
6104957 | Alo et al. | Aug 2000 | A |
6104960 | Duysens et al. | Aug 2000 | A |
6138681 | Chen et al. | Oct 2000 | A |
6157861 | Faltys et al. | Dec 2000 | A |
6164284 | Schulman et al. | Dec 2000 | A |
6165180 | Cigaina et al. | Dec 2000 | A |
6166518 | Echarri et al. | Dec 2000 | A |
6169387 | Kaib | Jan 2001 | B1 |
6172556 | Prentice | Jan 2001 | B1 |
6178353 | Griffith et al. | Jan 2001 | B1 |
6181105 | Cutolo et al. | Jan 2001 | B1 |
6181961 | Prass | Jan 2001 | B1 |
6185452 | Schulman et al. | Feb 2001 | B1 |
6191365 | Avellanet | Feb 2001 | B1 |
6208894 | Schulman et al. | Mar 2001 | B1 |
6208895 | Sullivan et al. | Mar 2001 | B1 |
6212430 | Kung | Apr 2001 | B1 |
6212431 | Hahn et al. | Apr 2001 | B1 |
6221513 | Lasater | Apr 2001 | B1 |
6227204 | Baumann et al. | May 2001 | B1 |
6243608 | Pauly et al. | Jun 2001 | B1 |
6246911 | Seligman | Jun 2001 | B1 |
6249703 | Stanton et al. | Jun 2001 | B1 |
6265789 | Honda et al. | Jul 2001 | B1 |
6275737 | Mann | Aug 2001 | B1 |
6278258 | Echarri et al. | Aug 2001 | B1 |
6305381 | Weijand et al. | Oct 2001 | B1 |
6306100 | Prass | Oct 2001 | B1 |
6313779 | Leung et al. | Nov 2001 | B1 |
6314325 | Fitz | Nov 2001 | B1 |
6315721 | Schulman et al. | Nov 2001 | B2 |
6316909 | Honda et al. | Nov 2001 | B1 |
6321118 | Hahn | Nov 2001 | B1 |
6324432 | Rigaux et al. | Nov 2001 | B1 |
6327504 | Dolgin et al. | Dec 2001 | B1 |
6354991 | Gross et al. | Mar 2002 | B1 |
6360750 | Gerber et al. | Mar 2002 | B1 |
6381496 | Meadows et al. | Apr 2002 | B1 |
6393325 | Mann et al. | May 2002 | B1 |
6427086 | Fischell et al. | Jul 2002 | B1 |
6438423 | Rezai et al. | Aug 2002 | B1 |
6442434 | Zarinetchi et al. | Aug 2002 | B1 |
6453198 | Torgerson et al. | Sep 2002 | B1 |
6466817 | Kaula et al. | Oct 2002 | B1 |
6473652 | Sarwal et al. | Oct 2002 | B1 |
6500141 | Irion et al. | Dec 2002 | B1 |
6505075 | Weiner | Jan 2003 | B1 |
6505077 | Kast et al. | Jan 2003 | B1 |
6510347 | Borkan | Jan 2003 | B2 |
6516227 | Meadows et al. | Feb 2003 | B1 |
6517227 | Stidham et al. | Feb 2003 | B2 |
6521350 | Fey et al. | Feb 2003 | B2 |
6542846 | Miller et al. | Apr 2003 | B1 |
6553263 | Meadows et al. | Apr 2003 | B1 |
6564807 | Schulman et al. | May 2003 | B1 |
6584355 | Stessman | Jun 2003 | B2 |
6587728 | Fang et al. | Jul 2003 | B2 |
6600954 | Cohen et al. | Jul 2003 | B2 |
6609031 | Law et al. | Aug 2003 | B1 |
6609032 | Woods et al. | Aug 2003 | B1 |
6609945 | Jimenez et al. | Aug 2003 | B2 |
6625494 | Fang et al. | Sep 2003 | B2 |
6652449 | Gross et al. | Nov 2003 | B1 |
6654634 | Prass | Nov 2003 | B1 |
6662051 | Eraker et al. | Dec 2003 | B1 |
6662053 | Borkan | Dec 2003 | B2 |
6664763 | Echarri et al. | Dec 2003 | B2 |
6678563 | Fang et al. | Jan 2004 | B2 |
6685638 | Taylor et al. | Feb 2004 | B1 |
6701189 | Fang et al. | Mar 2004 | B2 |
6721603 | Zabara et al. | Apr 2004 | B2 |
6735474 | Loeb et al. | May 2004 | B1 |
6745077 | Griffith et al. | Jun 2004 | B1 |
6809701 | Amundson et al. | Oct 2004 | B2 |
6836684 | Rijkhoff et al. | Dec 2004 | B1 |
6836685 | Fitz | Dec 2004 | B1 |
6847849 | Mamo et al. | Jan 2005 | B2 |
6864755 | Moore | Mar 2005 | B2 |
6871099 | Whitehurst et al. | Mar 2005 | B1 |
6892098 | Ayal et al. | May 2005 | B2 |
6895280 | Meadows et al. | May 2005 | B2 |
6896651 | Gross et al. | May 2005 | B2 |
6901287 | Davis et al. | May 2005 | B2 |
6907293 | Grill et al. | Jun 2005 | B2 |
6923814 | Hildebrand et al. | Aug 2005 | B1 |
6941171 | Mann et al. | Sep 2005 | B2 |
6959215 | Gliner et al. | Oct 2005 | B2 |
6971393 | Mamo et al. | Dec 2005 | B1 |
6986453 | Jiang et al. | Jan 2006 | B2 |
6989200 | Byers et al. | Jan 2006 | B2 |
6990376 | Tanagho et al. | Jan 2006 | B2 |
6999819 | Swoyer et al. | Feb 2006 | B2 |
7010351 | Firlik et al. | Mar 2006 | B2 |
7024247 | Gliner et al. | Apr 2006 | B2 |
7043304 | Griffith et al. | May 2006 | B1 |
7047078 | Boggs, II et al. | May 2006 | B2 |
7051419 | Schrom et al. | May 2006 | B2 |
7054689 | Whitehurst et al. | May 2006 | B1 |
7069081 | Biggs et al. | Jun 2006 | B2 |
7114502 | Schulman et al. | Oct 2006 | B2 |
7127298 | He et al. | Oct 2006 | B1 |
7131996 | Wasserman et al. | Nov 2006 | B2 |
7142925 | Bhadra et al. | Nov 2006 | B1 |
7146217 | Firlik et al. | Dec 2006 | B2 |
7146219 | Sieracki et al. | Dec 2006 | B2 |
7151914 | Brewer | Dec 2006 | B2 |
7167743 | Heruth et al. | Jan 2007 | B2 |
7167749 | Biggs et al. | Jan 2007 | B2 |
7167756 | Torgerson et al. | Jan 2007 | B1 |
7177677 | Kaula et al. | Feb 2007 | B2 |
7177690 | Woods et al. | Feb 2007 | B2 |
7177698 | Klosterman et al. | Feb 2007 | B2 |
7181286 | Sieracki et al. | Feb 2007 | B2 |
7184836 | Meadows et al. | Feb 2007 | B1 |
7187978 | Malek et al. | Mar 2007 | B2 |
7191005 | Stessman | Mar 2007 | B2 |
7212110 | Martin et al. | May 2007 | B1 |
7214197 | Prass | May 2007 | B2 |
7216001 | Hacker et al. | May 2007 | B2 |
7225028 | Della Santina et al. | May 2007 | B2 |
7225032 | Schmeling et al. | May 2007 | B2 |
7231254 | DiLorenzo | Jun 2007 | B2 |
7234853 | Givoletti | Jun 2007 | B2 |
7236831 | Firlik et al. | Jun 2007 | B2 |
7239918 | Strother et al. | Jul 2007 | B2 |
7245972 | Davis | Jul 2007 | B2 |
7283867 | Strother et al. | Oct 2007 | B2 |
7286880 | Olson et al. | Oct 2007 | B2 |
7295878 | Meadows et al. | Nov 2007 | B1 |
7299096 | Balzer et al. | Nov 2007 | B2 |
7305268 | Gliner et al. | Dec 2007 | B2 |
7317948 | King et al. | Jan 2008 | B1 |
7324852 | Barolat et al. | Jan 2008 | B2 |
7324853 | Ayal et al. | Jan 2008 | B2 |
7326181 | Katims | Feb 2008 | B2 |
7328068 | Spinelli et al. | Feb 2008 | B2 |
7330764 | Swoyer et al. | Feb 2008 | B2 |
7331499 | Jiang et al. | Feb 2008 | B2 |
7337006 | Kim et al. | Feb 2008 | B2 |
7359751 | Erickson et al. | Apr 2008 | B1 |
7369894 | Gerber | May 2008 | B2 |
7386348 | North et al. | Jun 2008 | B2 |
7387603 | Gross et al. | Jun 2008 | B2 |
7395113 | Heruth et al. | Jul 2008 | B2 |
7396265 | Darley et al. | Jul 2008 | B2 |
7406351 | Wesselink | Jul 2008 | B2 |
7415308 | Gerber et al. | Aug 2008 | B2 |
7444181 | Shi et al. | Oct 2008 | B2 |
7444184 | Boveja et al. | Oct 2008 | B2 |
7447546 | Kim et al. | Nov 2008 | B2 |
7450991 | Smith et al. | Nov 2008 | B2 |
7450993 | Kim et al. | Nov 2008 | B2 |
7460911 | Cosendai et al. | Dec 2008 | B2 |
7463928 | Lee et al. | Dec 2008 | B2 |
7470236 | Kelleher et al. | Dec 2008 | B1 |
7483747 | Gliner et al. | Jan 2009 | B2 |
7483752 | Von Arx et al. | Jan 2009 | B2 |
7486048 | Tsukamoto et al. | Feb 2009 | B2 |
7496404 | Meadows et al. | Feb 2009 | B2 |
7502651 | Kim et al. | Mar 2009 | B2 |
7513257 | Schulman et al. | Apr 2009 | B2 |
7515965 | Gerber et al. | Apr 2009 | B2 |
7515967 | Phillips et al. | Apr 2009 | B2 |
7522953 | Kaula et al. | Apr 2009 | B2 |
7532936 | Erickson et al. | May 2009 | B2 |
7539538 | Parramon et al. | May 2009 | B2 |
7551958 | Libbus et al. | Jun 2009 | B2 |
7551960 | Forsberg et al. | Jun 2009 | B2 |
7555346 | Woods et al. | Jun 2009 | B1 |
7555347 | Loeb | Jun 2009 | B2 |
7565199 | Sheffield et al. | Jul 2009 | B2 |
7565203 | Greenberg et al. | Jul 2009 | B2 |
7571000 | Boggs, II et al. | Aug 2009 | B2 |
7577481 | Firlik et al. | Aug 2009 | B2 |
7578819 | Bleich et al. | Aug 2009 | B2 |
7580752 | Gerber et al. | Aug 2009 | B2 |
7580753 | Kim et al. | Aug 2009 | B2 |
7582053 | Gross et al. | Sep 2009 | B2 |
7582058 | Miles et al. | Sep 2009 | B1 |
7613516 | Cohen et al. | Nov 2009 | B2 |
7617002 | Goetz | Nov 2009 | B2 |
7620456 | Gliner et al. | Nov 2009 | B2 |
7623925 | Grill et al. | Nov 2009 | B2 |
7636602 | Baru Fassio et al. | Dec 2009 | B2 |
7640059 | Forsberg et al. | Dec 2009 | B2 |
7643880 | Tanagho et al. | Jan 2010 | B2 |
7647117 | Bauhahn | Jan 2010 | B2 |
7650192 | Wahlstrand | Jan 2010 | B2 |
7664544 | Miles et al. | Feb 2010 | B2 |
7672730 | Firlik et al. | Mar 2010 | B2 |
7706889 | Gerber et al. | Apr 2010 | B2 |
7720547 | Denker et al. | May 2010 | B2 |
7720548 | King | May 2010 | B2 |
7725191 | Greenberg et al. | May 2010 | B2 |
7734355 | Cohen et al. | Jun 2010 | B2 |
7738963 | Hickman et al. | Jun 2010 | B2 |
7738965 | Phillips et al. | Jun 2010 | B2 |
7747330 | Nolan et al. | Jun 2010 | B2 |
7756584 | Sheffield et al. | Jul 2010 | B2 |
7771838 | He et al. | Aug 2010 | B1 |
7774069 | Olson et al. | Aug 2010 | B2 |
7801601 | Maschino et al. | Sep 2010 | B2 |
7801619 | Gerber et al. | Sep 2010 | B2 |
7805196 | Miesel et al. | Sep 2010 | B2 |
7813803 | Heruth et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7819909 | Goetz et al. | Oct 2010 | B2 |
7826901 | Lee et al. | Nov 2010 | B2 |
7831305 | Gliner | Nov 2010 | B2 |
7848818 | Barolat et al. | Dec 2010 | B2 |
7853322 | Bourget et al. | Dec 2010 | B2 |
7878207 | Goetz et al. | Feb 2011 | B2 |
7890176 | Jaax et al. | Feb 2011 | B2 |
7904167 | Klosterman et al. | Mar 2011 | B2 |
7912555 | Swoyer et al. | Mar 2011 | B2 |
7925357 | Phillips et al. | Apr 2011 | B2 |
7932696 | Peterson | Apr 2011 | B2 |
7933656 | Sieracki et al. | Apr 2011 | B2 |
7935051 | Miles et al. | May 2011 | B2 |
7937158 | Erickson et al. | May 2011 | B2 |
7945330 | Gliner et al. | May 2011 | B2 |
7952349 | Huang et al. | May 2011 | B2 |
7957797 | Bourget et al. | Jun 2011 | B2 |
7957809 | Bourget et al. | Jun 2011 | B2 |
7957818 | Swoyer | Jun 2011 | B2 |
7962218 | Balzer et al. | Jun 2011 | B2 |
7966073 | Pless et al. | Jun 2011 | B2 |
7979119 | Kothandaraman et al. | Jul 2011 | B2 |
7979126 | Payne et al. | Jul 2011 | B2 |
7981144 | Geist et al. | Jul 2011 | B2 |
7988507 | Darley et al. | Aug 2011 | B2 |
8000782 | Gharib et al. | Aug 2011 | B2 |
8000800 | Takeda et al. | Aug 2011 | B2 |
8000805 | Swoyer et al. | Aug 2011 | B2 |
8005535 | Gharib et al. | Aug 2011 | B2 |
8005549 | Boser et al. | Aug 2011 | B2 |
8005550 | Boser et al. | Aug 2011 | B2 |
8019423 | Possover | Sep 2011 | B2 |
8019425 | Firlik et al. | Sep 2011 | B2 |
8024047 | Olson et al. | Sep 2011 | B2 |
8027716 | Gharib et al. | Sep 2011 | B2 |
8036756 | Swoyer et al. | Oct 2011 | B2 |
8044635 | Peterson | Oct 2011 | B2 |
8050753 | Libbus et al. | Nov 2011 | B2 |
8050767 | Sheffield et al. | Nov 2011 | B2 |
8050768 | Firlik et al. | Nov 2011 | B2 |
8050769 | Gharib et al. | Nov 2011 | B2 |
8055337 | Moffitt et al. | Nov 2011 | B2 |
8055349 | Gharib et al. | Nov 2011 | B2 |
8065012 | Firlik et al. | Nov 2011 | B2 |
8068912 | Kaula et al. | Nov 2011 | B2 |
8073546 | Sheffield et al. | Dec 2011 | B2 |
8082039 | Kim et al. | Dec 2011 | B2 |
8083663 | Gross et al. | Dec 2011 | B2 |
8103360 | Foster | Jan 2012 | B2 |
8108049 | King | Jan 2012 | B2 |
8112155 | Einav et al. | Feb 2012 | B2 |
8116862 | Stevenson et al. | Feb 2012 | B2 |
8121701 | Woods et al. | Feb 2012 | B2 |
8121702 | King | Feb 2012 | B2 |
8129942 | Park et al. | Mar 2012 | B2 |
8131358 | Moffitt et al. | Mar 2012 | B2 |
8140168 | Olson et al. | Mar 2012 | B2 |
8145324 | Stevenson et al. | Mar 2012 | B1 |
8147421 | Farquhar et al. | Apr 2012 | B2 |
8150530 | Wesselink | Apr 2012 | B2 |
8155753 | Wesselink | Apr 2012 | B2 |
8175717 | Haller et al. | May 2012 | B2 |
8180451 | Hickman et al. | May 2012 | B2 |
8180452 | Shaquer | May 2012 | B2 |
8180461 | Mamo et al. | May 2012 | B2 |
8182423 | Miles et al. | May 2012 | B2 |
8190262 | Gerber et al. | May 2012 | B2 |
8195300 | Gliner et al. | Jun 2012 | B2 |
8214042 | Ozawa et al. | Jul 2012 | B2 |
8214048 | Whitehurst et al. | Jul 2012 | B1 |
8214051 | Sieracki et al. | Jul 2012 | B2 |
8219196 | Torgerson | Jul 2012 | B2 |
8219202 | Giftakis et al. | Jul 2012 | B2 |
8224452 | Pless et al. | Jul 2012 | B2 |
8224460 | Schleicher et al. | Jul 2012 | B2 |
8229565 | Kim et al. | Jul 2012 | B2 |
8233990 | Goetz | Jul 2012 | B2 |
8255057 | Fang et al. | Aug 2012 | B2 |
8311636 | Gerber et al. | Nov 2012 | B2 |
8314594 | Scott et al. | Nov 2012 | B2 |
8326433 | Blum et al. | Dec 2012 | B2 |
8332040 | Winstrom | Dec 2012 | B1 |
8337410 | Kelleher et al. | Dec 2012 | B2 |
8340786 | Gross et al. | Dec 2012 | B2 |
8362742 | Kallmyer | Jan 2013 | B2 |
8369943 | Shuros et al. | Feb 2013 | B2 |
8380314 | Panken et al. | Feb 2013 | B2 |
8382059 | Le Gette et al. | Feb 2013 | B2 |
8386048 | McClure et al. | Feb 2013 | B2 |
8391972 | Libbus et al. | Mar 2013 | B2 |
8396555 | Boggs, II et al. | Mar 2013 | B2 |
8412335 | Gliner et al. | Apr 2013 | B2 |
8417346 | Giftakis et al. | Apr 2013 | B2 |
8423145 | Pless et al. | Apr 2013 | B2 |
8423146 | Giftakis et al. | Apr 2013 | B2 |
8430805 | Burnett et al. | Apr 2013 | B2 |
8433414 | Gliner et al. | Apr 2013 | B2 |
8435166 | Burnett et al. | May 2013 | B2 |
8447402 | Jiang et al. | May 2013 | B1 |
8447408 | North et al. | May 2013 | B2 |
8452409 | Bachinski et al. | May 2013 | B2 |
8457756 | Rahman | Jun 2013 | B2 |
8457758 | Olson et al. | Jun 2013 | B2 |
8467875 | Bennett et al. | Jun 2013 | B2 |
8480437 | Dilmaghanian et al. | Jul 2013 | B2 |
8483839 | Wesselink | Jul 2013 | B2 |
8494625 | Hargrove | Jul 2013 | B2 |
8509919 | Yoo et al. | Aug 2013 | B2 |
8515545 | Trier | Aug 2013 | B2 |
8538530 | Orinski | Sep 2013 | B1 |
8543223 | Sage et al. | Sep 2013 | B2 |
8544322 | Minami et al. | Oct 2013 | B2 |
8549015 | Barolat | Oct 2013 | B2 |
8554322 | Olson et al. | Oct 2013 | B2 |
8555894 | Schulman et al. | Oct 2013 | B2 |
8562539 | Marino | Oct 2013 | B2 |
8571677 | Torgerson et al. | Oct 2013 | B2 |
8577474 | Rahman et al. | Nov 2013 | B2 |
8588917 | Whitehurst et al. | Nov 2013 | B2 |
8588927 | Roy et al. | Nov 2013 | B2 |
8612002 | Faltys et al. | Dec 2013 | B2 |
8620436 | Parramon et al. | Dec 2013 | B2 |
8626314 | Swoyer et al. | Jan 2014 | B2 |
8634904 | Kaula et al. | Jan 2014 | B2 |
8634932 | Ye et al. | Jan 2014 | B1 |
8644931 | Stadler et al. | Feb 2014 | B2 |
8644933 | Ozawa et al. | Feb 2014 | B2 |
8644940 | Forsell | Feb 2014 | B2 |
8655451 | Klosterman et al. | Feb 2014 | B2 |
8655455 | Mann et al. | Feb 2014 | B2 |
8672840 | Miles et al. | Mar 2014 | B2 |
8694115 | Goetz et al. | Apr 2014 | B2 |
8700175 | Fell | Apr 2014 | B2 |
8700177 | Strother et al. | Apr 2014 | B2 |
8706239 | Bharmi et al. | Apr 2014 | B2 |
8706254 | Vamos et al. | Apr 2014 | B2 |
8712546 | Kim et al. | Apr 2014 | B2 |
8725262 | Olson et al. | May 2014 | B2 |
8725269 | Nolan et al. | May 2014 | B2 |
8731656 | Bourget et al. | May 2014 | B2 |
8738138 | Funderburk et al. | May 2014 | B2 |
8738141 | Smith et al. | May 2014 | B2 |
8738148 | Olson et al. | May 2014 | B2 |
8740783 | Gharib et al. | Jun 2014 | B2 |
8744585 | Gerber et al. | Jun 2014 | B2 |
8750985 | Parramon et al. | Jun 2014 | B2 |
8751008 | Carlton et al. | Jun 2014 | B2 |
8761897 | Kaula et al. | Jun 2014 | B2 |
8768450 | Gharib et al. | Jul 2014 | B2 |
8768452 | Gerber | Jul 2014 | B2 |
8774912 | Gerber | Jul 2014 | B2 |
8805518 | King et al. | Aug 2014 | B2 |
8812116 | Kaula et al. | Aug 2014 | B2 |
8825163 | Grill et al. | Sep 2014 | B2 |
8825175 | King | Sep 2014 | B2 |
8831731 | Blum et al. | Sep 2014 | B2 |
8831737 | Wesselink | Sep 2014 | B2 |
8849632 | Sparks et al. | Sep 2014 | B2 |
8855767 | Faltys et al. | Oct 2014 | B2 |
8855773 | Kokones et al. | Oct 2014 | B2 |
8868199 | Kaula et al. | Oct 2014 | B2 |
8892217 | Camps et al. | Nov 2014 | B2 |
8903486 | Bourget et al. | Dec 2014 | B2 |
8918174 | Woods et al. | Dec 2014 | B2 |
8918184 | Torgerson et al. | Dec 2014 | B1 |
8954148 | Labbe et al. | Feb 2015 | B2 |
8989861 | Su et al. | Mar 2015 | B2 |
9031658 | Chiao et al. | May 2015 | B2 |
9044592 | Imran et al. | Jun 2015 | B2 |
9050473 | Woods et al. | Jun 2015 | B2 |
9089712 | Joshi et al. | Jul 2015 | B2 |
9108063 | Olson et al. | Aug 2015 | B2 |
9144680 | Kaula et al. | Sep 2015 | B2 |
9149635 | Denison et al. | Oct 2015 | B2 |
9155885 | Wei et al. | Oct 2015 | B2 |
9166321 | Smith et al. | Oct 2015 | B2 |
9168374 | Su | Oct 2015 | B2 |
9192763 | Gerber et al. | Nov 2015 | B2 |
9197173 | Denison et al. | Nov 2015 | B2 |
9199075 | Westlund | Dec 2015 | B1 |
9205255 | Strother et al. | Dec 2015 | B2 |
9209634 | Cottrill et al. | Dec 2015 | B2 |
9216294 | Bennett et al. | Dec 2015 | B2 |
9227055 | Wahlstrand et al. | Jan 2016 | B2 |
9227076 | Sharma et al. | Jan 2016 | B2 |
9238135 | Goetz et al. | Jan 2016 | B2 |
9240630 | Joshi | Jan 2016 | B2 |
9242090 | Atalar et al. | Jan 2016 | B2 |
9244898 | Vamos et al. | Jan 2016 | B2 |
9248292 | Trier et al. | Feb 2016 | B2 |
9259578 | Torgerson | Feb 2016 | B2 |
9259582 | Joshi et al. | Feb 2016 | B2 |
9265958 | Joshi et al. | Feb 2016 | B2 |
9270134 | Gaddam et al. | Feb 2016 | B2 |
9272140 | Gerber | Mar 2016 | B2 |
9283394 | Whitehurst et al. | Mar 2016 | B2 |
9295851 | Gordon et al. | Mar 2016 | B2 |
9308022 | Chitre et al. | Apr 2016 | B2 |
9308382 | Strother et al. | Apr 2016 | B2 |
9314616 | Wells et al. | Apr 2016 | B2 |
9320899 | Parramon et al. | Apr 2016 | B2 |
9333339 | Weiner | May 2016 | B2 |
9352148 | Stevenson et al. | May 2016 | B2 |
9352150 | Stevenson et al. | May 2016 | B2 |
9358039 | Kimmel et al. | Jun 2016 | B2 |
9364658 | Wechter | Jun 2016 | B2 |
9375574 | Kaula et al. | Jun 2016 | B2 |
9393423 | Parramon et al. | Jul 2016 | B2 |
9399137 | Parker et al. | Jul 2016 | B2 |
9409020 | Parker | Aug 2016 | B2 |
9415211 | Bradley et al. | Aug 2016 | B2 |
9427571 | Sage et al. | Aug 2016 | B2 |
9427573 | Gindele et al. | Aug 2016 | B2 |
9427574 | Lee et al. | Aug 2016 | B2 |
9433783 | Wei et al. | Sep 2016 | B2 |
9436481 | Drew | Sep 2016 | B2 |
9446245 | Grill et al. | Sep 2016 | B2 |
9463324 | Olson et al. | Oct 2016 | B2 |
9468755 | Westlund et al. | Oct 2016 | B2 |
9471753 | Kaula et al. | Oct 2016 | B2 |
9480846 | Strother et al. | Nov 2016 | B2 |
9492672 | Vamos et al. | Nov 2016 | B2 |
9492675 | Torgerson et al. | Nov 2016 | B2 |
9492678 | Chow | Nov 2016 | B2 |
9498628 | Kaemmerer et al. | Nov 2016 | B2 |
9502754 | Zhao et al. | Nov 2016 | B2 |
9504830 | Kaula et al. | Nov 2016 | B2 |
9522282 | Chow et al. | Dec 2016 | B2 |
9533155 | Jiang et al. | Jan 2017 | B2 |
9555246 | Jiang et al. | Jan 2017 | B2 |
9561372 | Jiang et al. | Feb 2017 | B2 |
9592389 | Moffitt | Mar 2017 | B2 |
9610449 | Kaula et al. | Apr 2017 | B2 |
9615744 | Denison et al. | Apr 2017 | B2 |
9623257 | Olson et al. | Apr 2017 | B2 |
9636497 | Bradley et al. | May 2017 | B2 |
9643004 | Gerber | May 2017 | B2 |
9653935 | Cong et al. | May 2017 | B2 |
9656074 | Simon et al. | May 2017 | B2 |
9656076 | Trier et al. | May 2017 | B2 |
9656089 | Yip et al. | May 2017 | B2 |
9675809 | Chow | Jun 2017 | B2 |
9687649 | Thacker | Jun 2017 | B2 |
9707405 | Shishilla et al. | Jul 2017 | B2 |
9713706 | Gerber | Jul 2017 | B2 |
9717900 | Swoyer et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9731116 | Chen | Aug 2017 | B2 |
9737704 | Wahlstrand et al. | Aug 2017 | B2 |
9744347 | Chen et al. | Aug 2017 | B2 |
9750930 | Chen | Sep 2017 | B2 |
9757555 | Novotny et al. | Sep 2017 | B2 |
9764147 | Torgerson | Sep 2017 | B2 |
9767255 | Kaula et al. | Sep 2017 | B2 |
9776002 | Parker et al. | Oct 2017 | B2 |
9776006 | Parker et al. | Oct 2017 | B2 |
9776007 | Kaula et al. | Oct 2017 | B2 |
9782596 | Vamos et al. | Oct 2017 | B2 |
9802051 | Mathur et al. | Oct 2017 | B2 |
9814884 | Parker et al. | Nov 2017 | B2 |
9821112 | Olson et al. | Nov 2017 | B2 |
9827415 | Stevenson et al. | Nov 2017 | B2 |
9827424 | Kaula et al. | Nov 2017 | B2 |
9833614 | Gliner | Dec 2017 | B1 |
9849278 | Spinelli et al. | Dec 2017 | B2 |
9855423 | Jiang et al. | Jan 2018 | B2 |
9855438 | Parramon et al. | Jan 2018 | B2 |
9872988 | Kaula et al. | Jan 2018 | B2 |
9878165 | Wilder et al. | Jan 2018 | B2 |
9878168 | Shishilla et al. | Jan 2018 | B2 |
9882420 | Cong et al. | Jan 2018 | B2 |
9884198 | Parker | Feb 2018 | B2 |
9889292 | Gindele et al. | Feb 2018 | B2 |
9889293 | Siegel et al. | Feb 2018 | B2 |
9889306 | Stevenson et al. | Feb 2018 | B2 |
9895532 | Kaula et al. | Feb 2018 | B2 |
9895546 | Jiang et al. | Feb 2018 | B2 |
9899778 | Hanson et al. | Feb 2018 | B2 |
9901284 | Olsen et al. | Feb 2018 | B2 |
9901740 | Drees et al. | Feb 2018 | B2 |
9907476 | Bonde et al. | Mar 2018 | B2 |
9907955 | Bakker et al. | Mar 2018 | B2 |
9907957 | Woods et al. | Mar 2018 | B2 |
9924904 | Cong et al. | Mar 2018 | B2 |
9925381 | Nassif | Mar 2018 | B2 |
9931513 | Kelsch et al. | Apr 2018 | B2 |
9931514 | Frysz et al. | Apr 2018 | B2 |
9950171 | Johanek et al. | Apr 2018 | B2 |
9974108 | Polefko | May 2018 | B2 |
9974949 | Thompson et al. | May 2018 | B2 |
9981121 | Seifert et al. | May 2018 | B2 |
9981137 | Eiger | May 2018 | B2 |
9987493 | Torgerson et al. | Jun 2018 | B2 |
9993650 | Seitz et al. | Jun 2018 | B2 |
9999765 | Stevenson | Jun 2018 | B2 |
10004910 | Gadagkar et al. | Jun 2018 | B2 |
10016596 | Stevenson et al. | Jul 2018 | B2 |
10027157 | Labbe et al. | Jul 2018 | B2 |
10045764 | Scott et al. | Aug 2018 | B2 |
10046164 | Gerber | Aug 2018 | B2 |
10047782 | Sage et al. | Aug 2018 | B2 |
10052490 | Kaula et al. | Aug 2018 | B2 |
10065044 | Sharma et al. | Sep 2018 | B2 |
10071247 | Childs | Sep 2018 | B2 |
10076661 | Wei et al. | Sep 2018 | B2 |
10076667 | Kaula et al. | Sep 2018 | B2 |
10083261 | Kaula et al. | Sep 2018 | B2 |
10086191 | Bonde et al. | Oct 2018 | B2 |
10086203 | Kaemmerer | Oct 2018 | B2 |
10092747 | Sharma et al. | Oct 2018 | B2 |
10092749 | Stevenson et al. | Oct 2018 | B2 |
10092762 | Jiang et al. | Oct 2018 | B2 |
10095837 | Corey et al. | Oct 2018 | B2 |
10099051 | Stevenson et al. | Oct 2018 | B2 |
10103559 | Cottrill et al. | Oct 2018 | B2 |
10105542 | Jiang et al. | Oct 2018 | B2 |
10109844 | Dai et al. | Oct 2018 | B2 |
10118037 | Kaula et al. | Nov 2018 | B2 |
10124164 | Stevenson et al. | Nov 2018 | B2 |
10124171 | Kaula et al. | Nov 2018 | B2 |
10124179 | Norton et al. | Nov 2018 | B2 |
10141545 | Kraft et al. | Nov 2018 | B2 |
10173062 | Parker | Jan 2019 | B2 |
10179241 | Walker et al. | Jan 2019 | B2 |
10179244 | LeBaron et al. | Jan 2019 | B2 |
10183162 | Johnson et al. | Jan 2019 | B2 |
10188857 | North et al. | Jan 2019 | B2 |
10195419 | Shiroff et al. | Feb 2019 | B2 |
10206710 | Kern et al. | Feb 2019 | B2 |
10213229 | Chitre et al. | Feb 2019 | B2 |
10220210 | Walker et al. | Mar 2019 | B2 |
10226617 | Finley et al. | Mar 2019 | B2 |
10226636 | Gaddam et al. | Mar 2019 | B2 |
10236709 | Decker et al. | Mar 2019 | B2 |
10238863 | Gross et al. | Mar 2019 | B2 |
10238877 | Kaula et al. | Mar 2019 | B2 |
10244956 | Kane | Apr 2019 | B2 |
10245434 | Kaula et al. | Apr 2019 | B2 |
10258800 | Perryman et al. | Apr 2019 | B2 |
10265532 | Carcieri et al. | Apr 2019 | B2 |
10277055 | Peterson et al. | Apr 2019 | B2 |
10293168 | Bennett et al. | May 2019 | B2 |
10328253 | Wells | Jun 2019 | B2 |
10363419 | Simon et al. | Jul 2019 | B2 |
10369275 | Olson et al. | Aug 2019 | B2 |
10369370 | Shishilla et al. | Aug 2019 | B2 |
10376701 | Kaula et al. | Aug 2019 | B2 |
10384067 | Jiang et al. | Aug 2019 | B2 |
10406369 | Jiang et al. | Sep 2019 | B2 |
10448889 | Gerber et al. | Oct 2019 | B2 |
10456574 | Chen et al. | Oct 2019 | B2 |
10471262 | Perryman et al. | Nov 2019 | B2 |
10485970 | Gerber et al. | Nov 2019 | B2 |
10493282 | Caparso et al. | Dec 2019 | B2 |
10493287 | Yoder et al. | Dec 2019 | B2 |
10561835 | Gerber | Feb 2020 | B2 |
10589103 | Mathur et al. | Mar 2020 | B2 |
10729903 | Jiang et al. | Aug 2020 | B2 |
20020002390 | Fischell et al. | Jan 2002 | A1 |
20020010498 | Rigaux et al. | Jan 2002 | A1 |
20020010499 | Rigaux et al. | Jan 2002 | A1 |
20020040185 | Atalar et al. | Apr 2002 | A1 |
20020051550 | Leysieffer | May 2002 | A1 |
20020051551 | Leysieffer et al. | May 2002 | A1 |
20020055761 | Mann et al. | May 2002 | A1 |
20020068960 | Saberski et al. | Jun 2002 | A1 |
20020077572 | Fang et al. | Jun 2002 | A1 |
20020116042 | Boling | Aug 2002 | A1 |
20020140399 | Echarri et al. | Oct 2002 | A1 |
20020156513 | Borkan | Oct 2002 | A1 |
20020169485 | Pless et al. | Nov 2002 | A1 |
20020177884 | Ahn et al. | Nov 2002 | A1 |
20030028072 | Fischell et al. | Feb 2003 | A1 |
20030078633 | Firlik et al. | Apr 2003 | A1 |
20030114899 | Woods et al. | Jun 2003 | A1 |
20030120323 | Meadows et al. | Jun 2003 | A1 |
20030195586 | Rigaux et al. | Oct 2003 | A1 |
20030195587 | Rigaux et al. | Oct 2003 | A1 |
20030212440 | Boveja | Nov 2003 | A1 |
20040098068 | Carbunaru et al. | May 2004 | A1 |
20040106963 | Tsukamoto et al. | Jun 2004 | A1 |
20040158298 | Gliner et al. | Aug 2004 | A1 |
20040210290 | Omar-Pasha | Oct 2004 | A1 |
20040250820 | Forsell | Dec 2004 | A1 |
20040260357 | Vaughan et al. | Dec 2004 | A1 |
20040260358 | Vaughan et al. | Dec 2004 | A1 |
20040267137 | Peszynski et al. | Dec 2004 | A1 |
20050004619 | Wahlstrand et al. | Jan 2005 | A1 |
20050004621 | Boveja et al. | Jan 2005 | A1 |
20050021108 | Klosterman et al. | Jan 2005 | A1 |
20050049648 | Cohen et al. | Mar 2005 | A1 |
20050075693 | Toy et al. | Apr 2005 | A1 |
20050075694 | Schmeling et al. | Apr 2005 | A1 |
20050075696 | Forsberg et al. | Apr 2005 | A1 |
20050075697 | Olson et al. | Apr 2005 | A1 |
20050075698 | Phillips et al. | Apr 2005 | A1 |
20050075699 | Olson et al. | Apr 2005 | A1 |
20050075700 | Schommer et al. | Apr 2005 | A1 |
20050085743 | Hacker et al. | Apr 2005 | A1 |
20050104577 | Matei et al. | May 2005 | A1 |
20050119713 | Whitehurst et al. | Jun 2005 | A1 |
20050182454 | Gharib et al. | Aug 2005 | A1 |
20050187590 | Boveja et al. | Aug 2005 | A1 |
20050240238 | Mamo et al. | Oct 2005 | A1 |
20050267546 | Parramon et al. | Dec 2005 | A1 |
20060009816 | Fang et al. | Jan 2006 | A1 |
20060016452 | Goetz et al. | Jan 2006 | A1 |
20060041283 | Gelfand et al. | Feb 2006 | A1 |
20060050539 | Yang et al. | Mar 2006 | A1 |
20060142822 | Tulgar | Jun 2006 | A1 |
20060149345 | Boggs, II et al. | Jul 2006 | A1 |
20060200205 | Haller | Sep 2006 | A1 |
20060206166 | Weiner | Sep 2006 | A1 |
20070025675 | Kramer | Feb 2007 | A1 |
20070032834 | Gliner et al. | Feb 2007 | A1 |
20070032836 | Thrope et al. | Feb 2007 | A1 |
20070049988 | Carbunaru et al. | Mar 2007 | A1 |
20070054804 | Suty-Heinze | Mar 2007 | A1 |
20070055318 | Forsberg et al. | Mar 2007 | A1 |
20070060980 | Strother et al. | Mar 2007 | A1 |
20070073357 | Rooney et al. | Mar 2007 | A1 |
20070100388 | Gerber | May 2007 | A1 |
20070208227 | Smith et al. | Sep 2007 | A1 |
20070239224 | Bennett et al. | Oct 2007 | A1 |
20070245316 | Bates et al. | Oct 2007 | A1 |
20070245318 | Goetz et al. | Oct 2007 | A1 |
20070265675 | Lund et al. | Nov 2007 | A1 |
20070270921 | Strother et al. | Nov 2007 | A1 |
20070276441 | Goetz | Nov 2007 | A1 |
20070293914 | Woods et al. | Dec 2007 | A1 |
20080027514 | DeMulling et al. | Jan 2008 | A1 |
20080065178 | Kelleher et al. | Mar 2008 | A1 |
20080065182 | Strother et al. | Mar 2008 | A1 |
20080071191 | Kelleher et al. | Mar 2008 | A1 |
20080077192 | Harry et al. | Mar 2008 | A1 |
20080081958 | Denison et al. | Apr 2008 | A1 |
20080132961 | Jaax et al. | Jun 2008 | A1 |
20080132969 | Bennett et al. | Jun 2008 | A1 |
20080154335 | Thrope et al. | Jun 2008 | A1 |
20080161874 | Bennett et al. | Jul 2008 | A1 |
20080167694 | Bolea et al. | Jul 2008 | A1 |
20080172109 | Rahman et al. | Jul 2008 | A1 |
20080177348 | Bolea et al. | Jul 2008 | A1 |
20080177365 | Bolea et al. | Jul 2008 | A1 |
20080183236 | Gerber | Jul 2008 | A1 |
20080215112 | Firlik et al. | Sep 2008 | A1 |
20080269740 | Bonde et al. | Oct 2008 | A1 |
20080278974 | Wu | Nov 2008 | A1 |
20080306325 | Burnett et al. | Dec 2008 | A1 |
20090018617 | Skelton et al. | Jan 2009 | A1 |
20090036946 | Cohen et al. | Feb 2009 | A1 |
20090036951 | Heruth et al. | Feb 2009 | A1 |
20090048531 | McGinnis et al. | Feb 2009 | A1 |
20090054804 | Gharib et al. | Feb 2009 | A1 |
20090076565 | Surwit | Mar 2009 | A1 |
20090088816 | Harel et al. | Apr 2009 | A1 |
20090105785 | Wei et al. | Apr 2009 | A1 |
20090112291 | Wahlstrand et al. | Apr 2009 | A1 |
20090118788 | Firlik et al. | May 2009 | A1 |
20090157141 | Chiao et al. | Jun 2009 | A1 |
20090171381 | Schmitz et al. | Jul 2009 | A1 |
20090204176 | Miles et al. | Aug 2009 | A1 |
20090227829 | Burnett et al. | Sep 2009 | A1 |
20090234302 | Hoendervoogt et al. | Sep 2009 | A1 |
20090259273 | Figueiredo et al. | Oct 2009 | A1 |
20090281596 | King et al. | Nov 2009 | A1 |
20090287272 | Kokones et al. | Nov 2009 | A1 |
20090287273 | Carlton et al. | Nov 2009 | A1 |
20090306746 | Blischak | Dec 2009 | A1 |
20100023084 | Gunderson | Jan 2010 | A1 |
20100036445 | Sakai et al. | Feb 2010 | A1 |
20100076254 | Jimenez et al. | Mar 2010 | A1 |
20100076534 | Mock | Mar 2010 | A1 |
20100100158 | Thrope et al. | Apr 2010 | A1 |
20100114259 | Herregraven et al. | May 2010 | A1 |
20100131030 | Firlik et al. | May 2010 | A1 |
20100145427 | Gliner et al. | Jun 2010 | A1 |
20100152808 | Boggs, II | Jun 2010 | A1 |
20100152809 | Boggs, II | Jun 2010 | A1 |
20100160712 | Burnett et al. | Jun 2010 | A1 |
20100168820 | Maniak et al. | Jul 2010 | A1 |
20100204538 | Burnett et al. | Aug 2010 | A1 |
20100222629 | Burnett et al. | Sep 2010 | A1 |
20100222847 | Goetz | Sep 2010 | A1 |
20100317989 | Gharib et al. | Dec 2010 | A1 |
20100318159 | Aghassian et al. | Dec 2010 | A1 |
20110004264 | Siejko et al. | Jan 2011 | A1 |
20110054562 | Gliner | Mar 2011 | A1 |
20110071593 | Parker et al. | Mar 2011 | A1 |
20110125214 | Goetz et al. | May 2011 | A1 |
20110137378 | Klosterman et al. | Jun 2011 | A1 |
20110144468 | Boggs et al. | Jun 2011 | A1 |
20110152959 | Sherwood et al. | Jun 2011 | A1 |
20110152987 | Wahlgren et al. | Jun 2011 | A1 |
20110208263 | Balzer et al. | Aug 2011 | A1 |
20110238136 | Bourget et al. | Sep 2011 | A1 |
20110251662 | Griswold et al. | Oct 2011 | A1 |
20110257701 | Strother et al. | Oct 2011 | A1 |
20110278948 | Forsell | Nov 2011 | A1 |
20110282416 | Hamann et al. | Nov 2011 | A1 |
20110301662 | Bar-Yoseph et al. | Dec 2011 | A1 |
20110301667 | Olson et al. | Dec 2011 | A1 |
20110313268 | Kokones et al. | Dec 2011 | A1 |
20120016447 | Zhu et al. | Jan 2012 | A1 |
20120022611 | Firlik et al. | Jan 2012 | A1 |
20120029382 | Kelleher et al. | Feb 2012 | A1 |
20120041512 | Weiner | Feb 2012 | A1 |
20120046712 | Woods et al. | Feb 2012 | A1 |
20120071950 | Archer | Mar 2012 | A1 |
20120095529 | Parramon et al. | Apr 2012 | A1 |
20120101537 | Peterson et al. | Apr 2012 | A1 |
20120109258 | Cinbis et al. | May 2012 | A1 |
20120116741 | Choi et al. | May 2012 | A1 |
20120119698 | Karalis et al. | May 2012 | A1 |
20120130448 | Woods et al. | May 2012 | A1 |
20120136413 | Bonde et al. | May 2012 | A1 |
20120165899 | Gliner | Jun 2012 | A1 |
20120197338 | Su et al. | Aug 2012 | A1 |
20120197370 | Kim et al. | Aug 2012 | A1 |
20120215285 | Tahmasian et al. | Aug 2012 | A1 |
20120238893 | Farquhar et al. | Sep 2012 | A1 |
20120253422 | Thacker et al. | Oct 2012 | A1 |
20120253442 | Gliner et al. | Oct 2012 | A1 |
20120259381 | Smith et al. | Oct 2012 | A1 |
20120262108 | Olson et al. | Oct 2012 | A1 |
20120265267 | Blum et al. | Oct 2012 | A1 |
20120271376 | Kokones et al. | Oct 2012 | A1 |
20120271382 | Arcot-Krishnamurthy et al. | Oct 2012 | A1 |
20120274270 | Dinsmoor et al. | Nov 2012 | A1 |
20120276854 | Joshi et al. | Nov 2012 | A1 |
20120276856 | Joshi et al. | Nov 2012 | A1 |
20120277621 | Gerber et al. | Nov 2012 | A1 |
20120277828 | O'Connor et al. | Nov 2012 | A1 |
20120277839 | Kramer et al. | Nov 2012 | A1 |
20120290055 | Boggs, II | Nov 2012 | A1 |
20120296395 | Hamann et al. | Nov 2012 | A1 |
20120310299 | Kaula et al. | Dec 2012 | A1 |
20120316630 | Firlik et al. | Dec 2012 | A1 |
20130004925 | Labbe et al. | Jan 2013 | A1 |
20130006325 | Woods et al. | Jan 2013 | A1 |
20130006330 | Wilder et al. | Jan 2013 | A1 |
20130006331 | Weisgarber et al. | Jan 2013 | A1 |
20130023958 | Fell | Jan 2013 | A1 |
20130041430 | Wang et al. | Feb 2013 | A1 |
20130072998 | Su et al. | Mar 2013 | A1 |
20130079840 | Su et al. | Mar 2013 | A1 |
20130096641 | Strother et al. | Apr 2013 | A1 |
20130096651 | Ozawa et al. | Apr 2013 | A1 |
20130123568 | Hamilton et al. | May 2013 | A1 |
20130131755 | Panken et al. | May 2013 | A1 |
20130148768 | Kim | Jun 2013 | A1 |
20130150925 | Vamos et al. | Jun 2013 | A1 |
20130165814 | Kaula et al. | Jun 2013 | A1 |
20130165991 | Kim et al. | Jun 2013 | A1 |
20130172956 | Goddard et al. | Jul 2013 | A1 |
20130178758 | Kelleher et al. | Jul 2013 | A1 |
20130184773 | Libbus et al. | Jul 2013 | A1 |
20130197608 | Eiger | Aug 2013 | A1 |
20130207863 | Joshi | Aug 2013 | A1 |
20130211479 | Olson et al. | Aug 2013 | A1 |
20130226261 | Sparks et al. | Aug 2013 | A1 |
20130245719 | Zhu et al. | Sep 2013 | A1 |
20130245722 | Ternes et al. | Sep 2013 | A1 |
20130261684 | Howard | Oct 2013 | A1 |
20130261692 | Cardinal et al. | Oct 2013 | A1 |
20130283030 | Drew | Oct 2013 | A1 |
20130289659 | Nelson et al. | Oct 2013 | A1 |
20130289664 | Johanek | Oct 2013 | A1 |
20130289665 | Marnfeldt et al. | Oct 2013 | A1 |
20130303828 | Hargrove | Nov 2013 | A1 |
20130303942 | Damaser et al. | Nov 2013 | A1 |
20130310891 | Enrooth et al. | Nov 2013 | A1 |
20130310893 | Yoo et al. | Nov 2013 | A1 |
20130310894 | Trier | Nov 2013 | A1 |
20130325097 | Loest | Dec 2013 | A1 |
20130331909 | Gerber | Dec 2013 | A1 |
20130345777 | Feldman et al. | Dec 2013 | A1 |
20140062900 | Kaula et al. | Mar 2014 | A1 |
20140063003 | Kaula et al. | Mar 2014 | A1 |
20140063017 | Kaula et al. | Mar 2014 | A1 |
20140067006 | Kaula et al. | Mar 2014 | A1 |
20140067014 | Kaula et al. | Mar 2014 | A1 |
20140067016 | Kaula et al. | Mar 2014 | A1 |
20140067354 | Kaula et al. | Mar 2014 | A1 |
20140114385 | Nijhuis et al. | Apr 2014 | A1 |
20140142549 | Su et al. | May 2014 | A1 |
20140148870 | Burnett | May 2014 | A1 |
20140163579 | Tischendorf et al. | Jun 2014 | A1 |
20140163580 | Tischendorf et al. | Jun 2014 | A1 |
20140163644 | Scott et al. | Jun 2014 | A1 |
20140180361 | Burdick et al. | Jun 2014 | A1 |
20140180363 | Zhu et al. | Jun 2014 | A1 |
20140194771 | Parker et al. | Jul 2014 | A1 |
20140194772 | Single et al. | Jul 2014 | A1 |
20140194942 | Sathaye et al. | Jul 2014 | A1 |
20140194948 | Strother et al. | Jul 2014 | A1 |
20140222112 | Fell | Aug 2014 | A1 |
20140235950 | Miles et al. | Aug 2014 | A1 |
20140236257 | Parker et al. | Aug 2014 | A1 |
20140237806 | Smith et al. | Aug 2014 | A1 |
20140243931 | Parker et al. | Aug 2014 | A1 |
20140249446 | Gharib et al. | Sep 2014 | A1 |
20140249599 | Kaula et al. | Sep 2014 | A1 |
20140257121 | Feldman et al. | Sep 2014 | A1 |
20140277251 | Gerber et al. | Sep 2014 | A1 |
20140277268 | Lee | Sep 2014 | A1 |
20140277270 | Parramon et al. | Sep 2014 | A1 |
20140288374 | Miles et al. | Sep 2014 | A1 |
20140288375 | Miles et al. | Sep 2014 | A1 |
20140288389 | Gharib et al. | Sep 2014 | A1 |
20140296737 | Parker et al. | Oct 2014 | A1 |
20140304773 | Woods et al. | Oct 2014 | A1 |
20140324144 | Ye et al. | Oct 2014 | A1 |
20140343628 | Kaula et al. | Nov 2014 | A1 |
20140343629 | Kaula et al. | Nov 2014 | A1 |
20140344733 | Kaula et al. | Nov 2014 | A1 |
20140344740 | Kaula et al. | Nov 2014 | A1 |
20140350636 | King et al. | Nov 2014 | A1 |
20140379060 | Hershey | Dec 2014 | A1 |
20150028798 | Dearden et al. | Jan 2015 | A1 |
20150065047 | Wu et al. | Mar 2015 | A1 |
20150066108 | Shi et al. | Mar 2015 | A1 |
20150088227 | Shishilla et al. | Mar 2015 | A1 |
20150094790 | Shishilla et al. | Apr 2015 | A1 |
20150100106 | Shishilla et al. | Apr 2015 | A1 |
20150123608 | Dearden et al. | May 2015 | A1 |
20150134027 | Kaula et al. | May 2015 | A1 |
20150214604 | Zhao et al. | Jul 2015 | A1 |
20150231402 | Aghassian | Aug 2015 | A1 |
20150360030 | Cartledge et al. | Dec 2015 | A1 |
20160045724 | Lee et al. | Feb 2016 | A1 |
20160045745 | Mathur et al. | Feb 2016 | A1 |
20160045746 | Jiang et al. | Feb 2016 | A1 |
20160045747 | Jiang et al. | Feb 2016 | A1 |
20160045750 | Drees et al. | Feb 2016 | A1 |
20160045751 | Jiang et al. | Feb 2016 | A1 |
20160114167 | Jiang et al. | Apr 2016 | A1 |
20160121123 | Jiang et al. | May 2016 | A1 |
20160199659 | Jiang et al. | Jul 2016 | A1 |
20160250462 | Kroll et al. | Sep 2016 | A1 |
20170007836 | Nassif | Jan 2017 | A1 |
20170128728 | Nassif | May 2017 | A1 |
20170189679 | Jiang et al. | Jul 2017 | A1 |
20170197079 | Illegems et al. | Jul 2017 | A1 |
20170209703 | Jiang et al. | Jul 2017 | A1 |
20170340878 | Wahlstrand et al. | Nov 2017 | A1 |
20180000344 | Melodia | Jan 2018 | A1 |
20180021587 | Strother et al. | Jan 2018 | A1 |
20180036477 | Olson et al. | Feb 2018 | A1 |
20180117344 | Mathur et al. | May 2018 | A1 |
20180133491 | Jiang et al. | May 2018 | A1 |
20180243572 | Jiang et al. | Aug 2018 | A1 |
20180333581 | Nassif | Nov 2018 | A1 |
20190009098 | Jiang et al. | Jan 2019 | A1 |
20190269918 | Parker | Sep 2019 | A1 |
20190321645 | Jiang et al. | Oct 2019 | A1 |
20190351244 | Shishilla et al. | Nov 2019 | A1 |
20190358395 | Olson et al. | Nov 2019 | A1 |
20200078594 | Jiang et al. | Mar 2020 | A1 |
Number | Date | Country |
---|---|---|
520440 | Sep 2011 | AT |
4664800 | Nov 2000 | AU |
5123800 | Nov 2000 | AU |
2371378 | Nov 2000 | CA |
2554676 | Sep 2005 | CA |
2957967 | Nov 2018 | CA |
1745857 | Mar 2006 | CN |
101495174 | Jul 2009 | CN |
101626804 | Jan 2010 | CN |
101721200 | Jun 2010 | CN |
102164631 | Aug 2011 | CN |
102176945 | Sep 2011 | CN |
102202729 | Sep 2011 | CN |
102215909 | Oct 2011 | CN |
103002947 | Mar 2013 | CN |
103079633 | May 2013 | CN |
102307618 | Mar 2014 | CN |
103796715 | May 2014 | CN |
106999709 | Aug 2017 | CN |
107073257 | Aug 2017 | CN |
107078258 | Aug 2017 | CN |
107148294 | Sep 2017 | CN |
107427675 | Dec 2017 | CN |
107073258 | Feb 2020 | CN |
3146182 | Jun 1983 | DE |
102010006837 | Aug 2011 | DE |
0656218 | Jun 1995 | EP |
1205004 | May 2002 | EP |
1680182 | Jul 2006 | EP |
1904153 | Apr 2008 | EP |
2243509 | Oct 2010 | EP |
1680182 | May 2013 | EP |
1904153 | Apr 2015 | EP |
3180071 | Jun 2017 | EP |
3180072 | Jun 2017 | EP |
3180073 | Jun 2017 | EP |
3180075 | Jun 2017 | EP |
3319683 | May 2018 | EP |
3180072 | Nov 2018 | EP |
3242712 | Apr 2019 | EP |
2395128 | Feb 2013 | ES |
1470432 | Apr 1977 | GB |
1098715 | Mar 2012 | HK |
048370 | Jan 1992 | JP |
2003047179 | Feb 2003 | JP |
2005261662 | Sep 2005 | JP |
2007505698 | Mar 2007 | JP |
2007268293 | Oct 2007 | JP |
4125357 | Jul 2008 | JP |
2008525089 | Jul 2008 | JP |
2011529718 | Dec 2011 | JP |
2013500081 | Jan 2013 | JP |
2013525017 | Jun 2013 | JP |
2013541381 | Nov 2013 | JP |
2013542836 | Nov 2013 | JP |
2014033733 | Feb 2014 | JP |
2014514043 | Jun 2014 | JP |
2017523867 | Aug 2017 | JP |
2017523868 | Aug 2017 | JP |
2017523869 | Aug 2017 | JP |
2017529898 | Oct 2017 | JP |
2018501024 | Jan 2018 | JP |
6602371 | Nov 2019 | JP |
20050119348 | Dec 2005 | KR |
9639932 | Dec 1996 | WO |
9820933 | May 1998 | WO |
9918879 | Apr 1999 | WO |
9934870 | Jul 1999 | WO |
9942173 | Aug 1999 | WO |
0002623 | Jan 2000 | WO |
0019939 | Apr 2000 | WO |
0019940 | Apr 2000 | WO |
0056677 | Sep 2000 | WO |
0001320 | Nov 2000 | WO |
0065682 | Nov 2000 | WO |
0066221 | Nov 2000 | WO |
0069012 | Nov 2000 | WO |
0078389 | Dec 2000 | WO |
0183029 | Nov 2001 | WO |
0193759 | Dec 2001 | WO |
0203408 | Jan 2002 | WO |
0209808 | Feb 2002 | WO |
0137728 | Aug 2002 | WO |
02072194 | Sep 2002 | WO |
02072194 | Mar 2003 | WO |
02078592 | Mar 2003 | WO |
03026739 | Apr 2003 | WO |
03043690 | May 2003 | WO |
03005887 | Aug 2003 | WO |
03035163 | Sep 2003 | WO |
03066162 | Mar 2004 | WO |
2004021876 | Mar 2004 | WO |
2004036765 | Apr 2004 | WO |
03026482 | May 2004 | WO |
2004047914 | Jun 2004 | WO |
2004052448 | Jun 2004 | WO |
2004052449 | Jun 2004 | WO |
2004058347 | Jul 2004 | WO |
2004064634 | Aug 2004 | WO |
2004066820 | Aug 2004 | WO |
2004087256 | Oct 2004 | WO |
03037170 | Dec 2004 | WO |
2004103465 | Dec 2004 | WO |
2005000394 | Jan 2005 | WO |
2005002664 | Mar 2005 | WO |
2005002665 | Jun 2005 | WO |
2005032332 | Aug 2005 | WO |
2005079295 | Sep 2005 | WO |
2005081740 | Sep 2005 | WO |
2005105203 | Nov 2005 | WO |
2005123185 | Dec 2005 | WO |
2006012423 | Feb 2006 | WO |
2006019764 | Feb 2006 | WO |
2005081740 | Mar 2006 | WO |
2006029257 | Mar 2006 | WO |
2006091611 | Aug 2006 | WO |
2006084194 | Oct 2006 | WO |
2006116256 | Nov 2006 | WO |
2006119015 | Nov 2006 | WO |
2006119046 | Nov 2006 | WO |
2006127366 | Nov 2006 | WO |
2005087307 | May 2007 | WO |
2007064924 | Jun 2007 | WO |
2007064936 | Jun 2007 | WO |
2007108863 | Sep 2007 | WO |
2007089394 | Nov 2007 | WO |
2007136694 | Nov 2007 | WO |
2008021524 | Feb 2008 | WO |
2008039242 | Apr 2008 | WO |
2008049199 | May 2008 | WO |
2008042902 | Aug 2008 | WO |
2008106138 | Sep 2008 | WO |
2009021080 | Feb 2009 | WO |
2009042379 | Apr 2009 | WO |
2009051539 | Apr 2009 | WO |
2009051965 | Apr 2009 | WO |
2009042172 | Jul 2009 | WO |
2009091267 | Jul 2009 | WO |
2009134478 | Nov 2009 | WO |
2009137119 | Nov 2009 | WO |
2009137683 | Nov 2009 | WO |
2009139907 | Nov 2009 | WO |
2009139909 | Nov 2009 | WO |
2009139910 | Nov 2009 | WO |
2010014055 | Feb 2010 | WO |
2010014260 | Feb 2010 | WO |
2009139917 | Mar 2010 | WO |
2010042056 | Apr 2010 | WO |
2010042057 | Apr 2010 | WO |
2010065143 | Jun 2010 | WO |
2010111321 | Sep 2010 | WO |
2011011748 | Jan 2011 | WO |
2011053607 | May 2011 | WO |
2011053661 | May 2011 | WO |
2011059565 | May 2011 | WO |
2011100162 | Aug 2011 | WO |
2011139779 | Nov 2011 | WO |
2011153024 | Dec 2011 | WO |
2012054183 | Apr 2012 | WO |
2011156286 | May 2012 | WO |
2011156287 | Jun 2012 | WO |
2012075265 | Jun 2012 | WO |
2012075281 | Jun 2012 | WO |
2012075299 | Jun 2012 | WO |
2012075497 | Jun 2012 | WO |
2012135733 | Oct 2012 | WO |
2012155183 | Nov 2012 | WO |
2012155184 | Nov 2012 | WO |
2012155185 | Nov 2012 | WO |
2012155186 | Nov 2012 | WO |
2012155187 | Nov 2012 | WO |
2012155188 | Nov 2012 | WO |
2012155189 | Nov 2012 | WO |
2012155190 | Nov 2012 | WO |
2012158766 | Nov 2012 | WO |
2013028428 | Feb 2013 | WO |
2013036630 | Mar 2013 | WO |
2013141884 | Sep 2013 | WO |
2013141996 | Sep 2013 | WO |
2013155117 | Oct 2013 | WO |
2013162709 | Oct 2013 | WO |
2013165395 | Nov 2013 | WO |
2014035733 | Mar 2014 | WO |
2012003451 | Apr 2014 | WO |
2014087337 | Jun 2014 | WO |
2014089390 | Jun 2014 | WO |
2014089392 | Jun 2014 | WO |
2014089400 | Jun 2014 | WO |
2014089405 | Jun 2014 | WO |
2014089485 | Jun 2014 | WO |
2013162708 | Jul 2014 | WO |
2014151160 | Sep 2014 | WO |
2014161000 | Oct 2014 | WO |
2014172381 | Oct 2014 | WO |
2016025909 | Feb 2016 | WO |
2016025912 | Feb 2016 | WO |
2016025913 | Feb 2016 | WO |
2016025915 | Feb 2016 | WO |
2016112398 | Jul 2016 | WO |
2017011305 | Jan 2017 | WO |
Entry |
---|
US 9,601,939 B2, 03/2017, Cong et al. (withdrawn) |
Bu-802a: How Does Rising Internal Resistance Affect Performance? Understanding the Importance of Low Conductivity, Battery University, Available Online at: https://batteryuniversity.com/learn/article/rising_internal_resistance, Accessed from Internet on May 15, 2020, 10 pages. |
DOE Handbook: Primer on Lead-Acid Storage Batteries, United States Department of Energy, Available Online at: htt12s://www.stan dards.doe.gov/standards- documents/ I 000/1084-bhdbk-1995/@@images/file, Sep. 1995, 54 pages. |
Medical Electrical Equipment—Part 1: General Requirements for Safety, British Standard, BS EN 60601-1:1990-BS5724-1:1989, Mar. 1979, 200 pages. |
Summary of Safety and Effectiveness, Medtronic InterStim System for Urinary Control, Apr. 15, 1999, pp. 1-18. |
The Advanced Bionics Precision™ Spinal Cord Stimulator System, Advanced Bionics Corporation, Apr. 27, 2004, pp. 1-18. |
UL Standard for Safety for Medical and Dental Equipment, Underwriters Laboratories 544, 4th edition, Dec. 30, 1998, 128 pages. |
Barnhart et al., “A Fixed-Rate Rechargeable Cardiac Pacemaker”, Applied Physics Laboratory Technical Digest, Jan.-Feb. 1970, pp. 2-9. |
Benditt et al., “A Combined Atrial/Ventricular Lead for Permanent Dual-Chamber Cardiac Pacing Applications”, Chest, vol. 83, No. 6, Jun. 1983, pp. 929-931. |
Boiocchi et al., “Self-Calibration in High Speed Current Steering CMOS D/A Converters”, Advanced A-D and D-A Conversion Techniques and their Applications, Second International Conference on Cambridge, Jul. 1994, pp. 148-152. |
Bosch et al., “Sacral (S3) Segmental Nerve Stimulation as a Treatment for Urge Incontinence in Patients with Detrusor Instability: Results of Chronic Electrical Stimulation Using an Implantable Neural Prosthesis”, The Journal of Urology, vol. 154, No. 2, Aug. 1995, pp. 504-507. |
Boyce et al., “Research Related to the Development of an Artificial Electrical Stimulator for the Paralyzed Human Bladder: A Review”, The Journal of Urology, vol. 91, No. 1, Jan. 1964, pp. 41-51. |
Bradley et al., “Further Experience with the Radio Transmitter Receiver Unit for the Neurogenic Bladder”, Journal of Neurosurgery, vol. 20, No. 11, Nov. 1963, pp. 953-960. |
Broggi et al., “Electrical Stimulation of the Gasserian Ganglion for Facial Pain: Preliminary Results”, Acta Neurochirurgica, vol. 39, 1987, pp. 144-146. |
Buhlmann et al., “Modeling of a Segmented Electrode for Desynchronizing Deep Brain Stimulation”, Frontiers in Neuroengineering, vol. 4, No. 15, Dec. 8, 2011, 8 pages. |
Cameron et al., “Effects of Posture on Stimulation Parameters in Spinal Cord Stimulation”, Neuromodulation, vol. 1, No. 4, Oct. 1998, pp. 177-183. |
Connelly et al., “Atrial Pacing Leads Following Open Heart Surgery: Active or Passive Fixation?”, Pacing and Clinical Electrophysiology, vol. 20, No. 10, Oct. 1997, pp. 2429-2433. |
Fischell , “The Development of Implantable Medical Devices at the Applied Physics Laboratory”, Johns Hopkins Applied Physics Laboratory Technical Digest, vol. 13 No. 1, 1992, pp. 233-243. |
Gaunt et al., “Control of Urinary Bladder Function with Devices: Successes and Failures”, Progress in Brain Research, vol. 152, 2006, pp. 1-24. |
Ghovanloo et al., “A Small Size Large Voltage Compliance Programmable Current Source for Biomedical Implantable Microstimulators”, Proceedings of the 25th Annual International Conference of the Institute of Electrical and Electronics Engineers, Engineering in Medicine and Biology Society, Sep. 17-21, 2003, pp. 1979-1982. |
Gudnason , “A Low-Power ASK Demodulator for Inductively Coupled Implantable Electronics”, Solid-State Circuits Conference, 2000, Esscirc 00, Proceedings of the 26rd European, Institute of Electrical and Electronics Engineers, Sep. 19, 2000, pp. 385-388. |
Hansen et al., “Urethral Sphincter Emg as Event Detector for Neurogenic Detrusor Overactivity”, IEEE Transactions on Biomedical Engineering, vol. 54, No. 7, Jul. 31, 2007, pp. 1212-1219. |
Helland , “Technical Improvements to be Achieved by the Year 2000: Leads and Connector Technology”, Rate Adaptive Cardiac Pacing, Springer Verlag, 1993, pp. 279-292. |
Hidefjall , “The Pace of Innovation—Patterns of Innovation in the Cardiac Pacemaker Industry”, Linkoping University Press, 1997, 398 pages. |
Ishihara et al., “A Comparative Study of Endocardial Pacemaker Leads”, Cardiovascular Surgery, Nagoya Ekisaikai Hospital, 1st Dept. of Surgery, Nagoya University School of Medicine, 1981, pp. 132-135. |
Jonas et al., “Studies on the Feasibility of Urinary Bladder Evacuation by Direct Spinal Cord Stimulation. I. Parameters of Most Effective Stimulation”, Investigative Urology, vol. 13, No. 2, 1975, pp. 142-150. |
Kakuta et al., “In Vivo Long Term Evaluation of Transcutaneous Energy Transmission for Totally Implantable Artificial Heart”, American Society for Artificial Internal Organs Journal, Mar.-Apr. 2000, pp. 1-2. |
Lazorthes et al., “Chronic Stimulation of the Gasserian Ganglion for Treatment of Atypical Facial Neuralgia”, Pacing and Clinical Electrophysiology, vol. 10, Jan.-Feb. 1987, pp. 257-265. |
Lewis et al., “Early Clinical Experience with the Rechargeable Cardiac Pacemaker”, The Annals of Thoracic Surgery, vol. 18, No. 5, Nov. 1974, pp. 490-493. |
Liu et al., “A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device”, Institute of Electrical and Electronics Engineers Journal of Solid-State Circuits, vol. 35, No. 10, Oct. 2000, 4 pages. |
Love et al., “Experimental Testing of a Permanent Rechargeable Cardiac Pacemaker”, The Annals of Thoracic Surgery, vol. 17, No. 2, Feb. 1, 1974, pp. 152-156. |
Love , “Pacemaker Troubleshooting and Follow-up”, Clinical Cardiac Pacing, Defibrillation, and Resynchronization Therapy, Chapter 24, 2007, pp. 1005-1062. |
Madigan et al., “Difficulty of Extraction of Chronically Implanted Tined Ventricular Endocardial Leads”, Journal of the American College of Cardiology, vol. 3, No. 3, Mar. 1984, pp. 724-731. |
McLennan , “The Role of Electrodiagnostic Techniques in the Reprogramming of Patients with a Delayed Suboptimal Response to Sacral Nerve Stimulation”, International Urogynecology Journal, vol. 14, No. 2, Jun. 2003, pp. 98-103. |
Meglio , “Percutaneously Implantable Chronic Electrode for Radiofrequency Stimulation of the Gasserian Ganglion. A Perspective in the Management of Trigeminal Pain”, Acta Neurochirurgica, vol. 33, 1984, pp. 521-525. |
Meyerson , “Alleviation of Atypical Trigeminal Pain by Stimulation of the Gasserian Ganglion via an Implanted Electrode”, Acta Neurochirurgica Supplementum , vol. 30, 1980, pp. 303-309. |
Mingming , “Development of an Implantable Epidural Spinal Cord Stimulator With Emg Biofeedback”, China Master's Theses Full-text Database: Engineering Technology, vol. 2, No. 6, May 23, 2013, 64 pages. |
Mitamura et al., “Development of Transcutaneous Energy Transmission System”, Available Online at https://www.researchgate.net/publication/312810915 Ch.28, Jan. 1988, pp. 265-270. |
Nag et al., “Flexible Charge Balanced Stimulator With 5.6 fC Accuracy for 140 nC Injections”, Institute of Electrical and Electronics Engineers Transactions on Biomedical Circuits and Systems, vol. 7, No. 3, Jun. 2013, pp. 266-275. |
Nakamura et al., “Biocompatibility and Practicality Evaluations of Transcutaneous Energy Transmission Unit for the Totally Implantable Artificial Heart System”, Journal of Artificial Organs, vol. 27, No. 2, 1998, pp. 347-351. |
Nashold et al., “Electromicturition in Paraplegia. Implantation of a Spinal Neuroprosthesis”, Archives of Surgery., vol. 104, Feb. 1972, pp. 195-202. |
Noblett , “Neuromodulation and the Role of Electrodiagnostic Techniques”, International Urogynecology Journal, vol. 21, No. 2, Dec. 2010, 13 pages. |
Painter et al., “Implantation of an Endocardial Tined Lead to Prevent Early Dislodgement”, The Journal of Thoracic and Cardiovascular Surgery, vol. 77, No. 2, Feb. 1979, pp. 249-251. |
Paralikar et al., “A Fully Implantable and Rechargeable Neurostimulation System for Animal Research”, 7th Annual International Institute of Electrical and Electronics Engineers Engineering in Medicine and Biology Society, Conference of Neural Engineering, Apr. 22-24, 2015, pp. 418-421. |
Perez , “Lead-Acid Battery State of Charge vs. Voltage”, Available Online at http://www.rencobattery.com/resources/SOC vs-Voltage.pdf, Aug.-Sep. 1993, 5 pages. |
Schaldach et al., “A Long-Lived, Reliable, Rechargeable Cardiac Pacemaker”, Engineering in Medicine, vol. 1: Advances in Pacemaker Technology, 1975, 34 pages. |
Scheuer-Leeser et al., “Polyurethane Leads: Facts and Controversy”, PACE, vol. 6, Mar.-Apr. 1983, pp. 454-458. |
Sivaprakasam et al., “A Variable Range Bi-Phasic Current Stimulus Driver Circuitry for an Implantable Retinal Prosthetic Device”, Institute of Electrical and Electronics Engineers Journal of Solid-State Circuits, Institute of Electrical and Electronics Engineers Service Center, Piscataway, vol. 40, No. 3, Mar. 1, 2005, pp. 763-771. |
Smith , “Changing Standards for Medical Equipment”, UL 544 and UL 187 vs. UL 2601 (“Smith”), 2002, 8 pages. |
Tanagho et al., “Bladder Pacemaker: Scientific Basis and Clinical Future”, Urology, vol. 20, No. 6, Dec. 1982, pp. 614-619. |
Tanagho , “Neuromodulation and Neurostimulation: Overview and Future Potential”, Translational Androl Urol, vol. 1, No. 1, 2012, pp. 44-49. |
Torres et al., “Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype”, IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, No. 9, Dec. 22, 2008, pp. 1938-1948. |
Van Paemel , “High-Efficiency Transmission for Medical Implants”, Institute of Electrical and Electronics Engineers Solid-State Circuits Magazine, vol. 3, No. 1, Jan. 1, 2011, pp. 47-59. |
Von Arx et al., “A Wireless Single-Chip Telemetry-Powered Neural Stimulation System”, Institute of Electrical and Electronics Engineers International Solid-State Circuits Conference, ISSCC99, Session 12, Paper TP 12.6, Feb. 16, 1999, pp. 215-216. |
Wang et al., “A 140-dB CMRR Low-Noise Instrumentation Amplifier for Neural Signal Sensing”, Asia-Pacific Conference on Circuits and Systems, Institute of Electrical and Electronics Engineers Asia Pacific Conference, Dec. 1, 2006, pp. 696-699. |
Young , “Electrical Stimulation of the Trigeminal Nerve Root for the Treatment of Chronic Facial Pain”, Journal of Neurosurgery, vol. 83, No. 1, Jul. 1995, pp. 72-78. |
U.S. Appl. No. 14/827,067, filed Aug. 14, 2015. |
U.S. Appl. No. 14/827,074, filed Aug. 14, 2015. |
U.S. Appl. No. 14/827,081, filed Aug. 14, 2015. |
U.S. Appl. No. 14/827,095, filed Aug. 14, 2015. |
U.S. Appl. No. 14/827,108, filed Aug. 14, 2015. |
U.S. Appl. No. 14/991,649, filed Jan. 8, 2016. |
U.S. Appl. No. 14/991,752, filed Jan. 8, 2016. |
U.S. Appl. No. 14/991,784, filed Jan. 8, 2016. |
U.S. Appl. No. 62/038,122, filed Aug. 15, 2014. |
U.S. Appl. No. 62/038,131, filed Aug. 15, 2014. |
U.S. Appl. No. 62/041,611, filed Aug. 25, 2014. |
U.S. Appl. No. 62/101,666, filed Jan. 9, 2015. |
U.S. Appl. No. 62/101,782, filed Jan. 9, 2015. |
U.S. Appl. No. 62/101,884, filed Jan. 9, 2015. |
U.S. Appl. No. 62/101,888, filed Jan. 9, 2015. |
U.S. Appl. No. 62/101,897, filed Jan. 9, 2015. |
U.S. Appl. No. 62/101,899, filed Jan. 9, 2015. |
U.S. Appl. No. 62/110,274, filed Jan. 30, 2015. |
U.S. Appl. No. 62/191,134, filed Jul. 10, 2015. |
Number | Date | Country | |
---|---|---|---|
20200372996 A1 | Nov 2020 | US |
Number | Date | Country | |
---|---|---|---|
62852875 | May 2019 | US |