The present invention relates to a training device having a joint function and a modulator training apparatus system with the training device, and more particularly, to a training device suitable for training various complex operations for various body parts including arms, legs, a head, and a trunk for exercise of martial arts and a modular training apparatus system which has the training device to obtain various training operations and training effects and is easily disassembled and assembled.
When practicing martial arts such as boxing, taekwondo, hapkido, and judo, trainees train through competition with one another or train with equipment such as sandbags designed for individual training.
Generally, the sandbag is installed on a ceiling of a room, and the sandbag is designed to be used while standing on a floor like the sandbag disclosed in Korean Patent Unexamined Publication No. 2006-0040442.
When using the sandbag in the related art, since the sandbag has only a portion corresponding to a trunk of a person, the sandbag is suitable for the trainee to train only an operation of hitting the trunk with a hand or the leg or pushing the trunk with a shoulder. That is, the sandbag in the related art is not suitable for training complex operations such as hitting, grasping and pulling, bending, pushing a part corresponding to the arm or leg of the person.
Korean Patent Unexamined Publication No. 2011-0028690 discloses a judo training device. The judo training device mimics a structure and a motion of the arm or leg of the person using wires, rollers, electromagnets, and complex link assemblies to provide a function to train a judo technique. However, cost of installation increases because there are too many components that constitute the judo training device. In addition, using a judo training device having such a structure, it is possible to train only the operation of hitting or pulling the arm or leg but it is difficult to train a variety of complex motions such as the motion of bending or pushing the arm or leg.
(Patent Document 1) Korean Patent Unexamined Publication No. 2006-0040442 (May 10, 2006)
(Patent Document 2) Korean Patent Unexamined Publication No. 2011-0028690 (Mar. 22, 2011)
The present invention has been made in an effort to provide a training device having a joint function capable of effectively exercising various complex motions on various body parts such as an arm, a leg, a trunk, and a head in order to practice martial arts. The present invention has also been made in an effort to provide a modular training apparatus system which has a training device having a joint function capable of training various motions and is easily disassembled and assembled.
An exemplary embodiment of the present invention provides a training device including: a shaft; a joint having a diameter larger than that of one end portion of the shaft and disposed at one end portion of the shaft; a joint support contacting the joint and elastically supporting the joint; and a shaft support elastically supporting an outer side of the shaft at the one end portion of the shaft.
The joint may have a cross section having a circular, oval, or a polygonal shape and a 3D shape including an outer surface which is convex or concave and the joint support may have a joint contact portion having a concave or convex shape corresponding to a part of the outer surface of the joint and having elasticity.
The shaft support may include a first contact portion elastically supporting the outer side of the one end portion of the shaft and a second contact portion disposed spaced apart from the first contact portion toward an opposite side to the one end portion to elastically support the outer side of the shaft.
When the shaft and the joint are pulled in a direction away from the joint support, the first contact portion may be widened and the joint may thus move between the first contact portion and the second contact portion, and the shaft may be supported by the second contact portion.
The training device may further include a case supporting the first and second contact portions and surrounding the one end portion of the shaft.
Each of the first and second contact portions may include a mounting portion supported by the case and an elastic portion which extends toward the outer side of the shaft from the mounting portion to elastically support the outer side of the shaft.
The elastic portions of the first and second contact portions may face each other and extend toward the outer side of the shaft from the mounting portion.
The mounting portion of the first contact portion may be disposed at a location corresponding to the one end portion of the shaft in the case, the elastic portion of the first contact portion may extend in a direction opposite to the one end portion of the shaft, the mounting portion of the second contact portion may be disposed at a location spaced apart from the mounting portion of the first contact portion in a direction toward the other end portion of the shaft in the case, and the elastic portion of the second contact portion may extend toward the one end portion of the shaft by crossing the elastic portion of the first contact portion.
The case may include a front case accommodating the first and second contact portions and a rear case accommodating the joint support.
Each of the first and second contact portions may include a shaft slider slidably installed in the case to be movable toward the outer side of the shaft and a shaft elastic support elastically supporting the shaft slider with respect to the case.
Each of the first and second contact portions may further include an elastic portion coupled to an end of the shaft slider to elastically contact the outer side of the shaft.
The joint may have a cross section having a circular, oval, or a polygonal shape and a 3D shape including an outer surface which is convex or concave and the joint support may have a joint slider slidably installed in the case in contact with the joint and a joint elastic support elastically supporting the joint slider with respect to the case.
At least a part of a portion which extends from the one end portion toward the other end portion of the shaft may be bent or curved and the case may be bent or curved along a portion which is bent or curved along the one end portion of the shaft.
Yet another exemplary embodiment of the present invention provides a modular training apparatus system including: a shaft; at least one training device including a joint having a diameter larger than that of one end portion of the shaft and disposed at one end portion of the shaft, a joint support contacting the joint and elastically supporting the joint, and a shaft support elastically supporting an outer side of the shaft at the one end portion of the shaft; and a main body to which the training device is coupled.
The main body of the modular training apparatus system may include a set of multiple small main body units coupled by connecting one or more training devices.
The modular training apparatus system may be constituted by a main body and a plurality of projected objects having a predetermined shape, which is coupled with the main body by connecting one or more training devices. The main body may include a plurality of bodies, and a body connection training device elastically connecting the bodies, the body connection training device may include a body shaft, a body joint disposed an end of the body shaft, a body joint support elastically supporting the body joint, and a body shaft support elastically supporting the outer side of the body shaft, and each of the bodies may include a plurality of mounting locations at which the body joint support and the body shaft support are installed so that the body shaft and the body joint are mounted and the bodies are connected by selecting one of the plurality of mounting locations to assemble the main bodies in various shapes.
A plurality of assemblies of the shaft and the joint in the training device may be manufactured so as to correspond to various body parts of a human body and the main body may include a plurality of training device mounting locations at which the joint support and the shaft support are installed so that the shaft and the joint of the training device are mounted, and the assembly of the shaft and the joint may be mounted on the main body by selecting one of the plurality of training device mounting locations to variously change a coupling location of the assembly of the shaft and the joint to the main body.
The modular training apparatus system may further include a base supporting the main body; and a base connection training device installed between the main body and the base to elastically connect the main body to the base.
The modular training apparatus system may further include a head coupled to an upper side of the main body; and a head connection training device installed between the main body and the head to elastically connect the head to the main body.
Moreover, the modular training apparatus system may be manufactured into a body-shaped training apparatus system by embedding the training device having a joint function in unit sandbag units including the main body, the arm, the leg, the foot, the hand, the skull, and the like corresponding to the trunk and assembling the unit sandbag units and the training device.
According to exemplary embodiments of the present invention, in a training device, since a shaft having a joint is elastically supported by a joint support and a shaft support and the shaft and the joint can move with multiple degrees of freedoms, various complex motions can be effectively trained by using the training device.
According to exemplary embodiments of the present invention, by a modular training apparatus system, the training apparatus system can be easily disassembled and assembled by an operation of pulling or pushing the shaft and the joint of the training device.
Hereinafter, configurations and operations of a training device and a modular training apparatus system with the training device according to exemplary embodiments will be described in detail through exemplary embodiments of the accompanying drawings.
The training device according to the exemplary embodiment illustrated in
The training device having the configuration may be used while being attached to a training product such as a sandbag or attached to a wall of a training room. Referring to
The shaft 10 may be made of a solid body having hard rigidity using a metallic or plastic material or may have a circular cross section as illustrated in
The shaft 10 elongates from one end portion 11 to the other end portion 12 and the joint 20 is disposed at one end portion 11 of the shaft 10. The joint 20 has a diameter larger than the diameter of one end portion 11 of the shaft 10. The joint 20 is also manufactured so that the cross section has a circular, the oval, or polygonal shape and has the hard rigidity by using the metallic or plastic material.
One end portion 11 of the shaft 10 is provided with a groove for receiving a coupling projection 21 of the joint 20. A set screw 11b is screwed to a fastening hole 21a of the coupling projection 21 of the joint 20 through a coupling hole 11a of one end portion 11 of the shaft 10, and as a result, the joint 20 is coupled to one end portion 11 of the shaft 10.
Although it is illustrated in the illustrated exemplary embodiment that the joint 20 and the shaft 10 are separately manufactured and thereafter, assembled, the exemplary embodiment is not limited by a connection structure of the joint 20 and the shaft 10. Therefore, for example, the joint 20 and the shaft 10 may be integrally molded by an injection method or the joint 20 and the shaft 10 may be integrally manufactured by cutting processing.
An impact absorbing part 50 is coupled to the outer side of the shaft 10. The shock absorbing part 50 has an inner cylindrical hollow 51 so as to surround the outer side of the shaft 10. In addition, an outer shape of the shock absorbing part 50 may have various shapes such as a column, a sphere, a polyhedron, or an ellipsoid.
A first part 60 is coupled to the other end portion 12 of the shaft 10. A groove 12d accommodating a coupling projection 61 of the first part 60 is provided even at the other end portion 12 of the shaft 10. A set screw 12b is screwed to a fastening hole 61a of the coupling projection 61 of the first part 60 through a coupling hole 12a of the other end portion 12 of the shaft 10, and as a result, the first part 60 is coupled to the other end portion 12 of the shaft 10.
The first part 60 may be made of a material having elasticity or a material having the hard rigidity using metal or a synthetic resin. The outer shape of the first part 60 may include any one of spherical, polyhedral, and ellipsoidal shapes, or may have a three-dimensional shape including a combination of these various shapes.
The joint 20 has a spherical shape. The cross-sectional shape of the joint 20 is not necessarily limited to a circle, and the cross-sectional shape of the joint 20 may be the circle, the ellipse, or the polygon.
In the illustrated exemplary embodiment, the joint support 30 has a concave shape corresponding to a part of an outer surface of the joint 20 when the outer surface of the joint 20 is convex, and has a joint contact portion 31 having elasticity.
Further, in contrast, when the outer surface of the joint 20 is concave, the joint support 30 may have a convex shape corresponding to a part of the outer surface of the joint 20.
The joint support 30 may be manufactured to have the elasticity by a metal plate or a highly elastic plastic or rubber material. The joint support 30 has a joint contact portion 31 that contacts the joint 20 and a rear mounting portion 32 that supports the joint contact portion 31 and is coupled to a rear case 80.
One end portion 11 of the shaft 10 and the joint 20 are accommodated in the cases 70 and 80. The cases 70 and 80 include a front case 70 surrounding one end portion 11 of the shaft 10 and accommodating the shaft support 40 and the rear case 80 supporting the joint support 30 supporting the joint 20. The cases 70 and 80 may be made of, for example, the plastic material or metallic material so as to have the hard rigidity.
The front case 70 has the hollow shape in which the inside is empty and has an opening 71 which opens toward the front. A threaded surface 71d is formed on the outer side of a rear portion of the front case 70.
The rear case 80 has a threaded surface 81d which is opened frontward and may be coupled to the front case 70. The rear case 80 also has a base 85 at the rear. By mounting the base 85 to the sandbag or the wall, the training device according to the exemplary embodiment may be stably installed on the sandbag or the wall.
The cases 70 and 80 surrounding the one end portion 11 of the shaft 10 and the joint 20 as illustrated in
The rear case 80 has a plurality of through holes 81a on a circumferential surface thereof. A plurality of fastening screws 81b is coupled to fastening holes 30a of the rear mounting portion 32 of the joint support 30 through the through holes 81a so that the joint support 30 is stably supported on the rear case 80.
A plurality of the joint supports 30 may be disposed in a circumferential direction of the joint 20. Although it is illustrated in
The shaft support 40 includes a first contact portion 42 for elastically supporting an outer edge of one end portion 11 of the shaft 10 and a second contact portion 41 disposed spaced apart from the first contact portion 42 toward the other end portion 12 opposite to one end portion 11 of the shaft 10 to elastically support the outer side of the shaft 10.
As illustrated in
Since the first contact portion 42 and the second contact portion 41 are mounted on the front case 70, the front case 70 serves to support the first contact portion 42 and the second contact portion 41 and surround and protect one end portion 11 of the shaft 10.
The first contact portion 42 and the second contact portion 41 may be manufactured to have the same shape. Each of the first contact portion 42 and the second contact portion 41 includes mounting portions 41b and 42b supported by the front case 70 and elastic portions 41a and 42a which extend toward the outer side of the shaft 10 from the mounting portions 41b and 42b to elastically support the outer side of the shaft 10.
Portions of the elastic portions 41a and 42a which contact the shaft 10 may have a bent or curved shape. The mounting portions 41b and 42b have fastening holes 41c and 42c, respectively and the front case 70 has through holes 71a corresponding to the fastening holes 41c and 42c. Therefore, a plurality of fastening screws 71b is coupled to the fastening holes 41c and 42c of the mounting portions 41b and 42b through the through holes 71a so that the first contact portion 42 and the second contact portion 41 of the shaft support 40 are stably supported on the front case 70.
Referring to
The elastic portion 42a of the first contact portion 42 may support one end portion 11 of the shaft 10 and the end of the elastic portion 42a may contact the joint 20 and support the joint 20.
Hereinafter, an operation of the training device according to the exemplary embodiment will be described with reference to
Referring to
While the shaft 10 rotates around the joint 20 in the vertical rotational direction R1, the first and second contact portions 42 and 41 are elastically transformed so that a gap between the first contact portion 42 and the second contact portion 41 on an upper side in
Due to the configuration and operation of the training device described above, a trainee may effectively train a motion similar to breaking the arm of the person by using the training device.
Referring to
The joint 20 connected to the shaft 10 presses the joint contact portion 31 and the rear mounting portion 32 of the joint support 30 when the shaft 10 is pressed toward the joint support 30. The joint contact portion 31 of the joint support 30 stably supports the joint 20 while the rear mounting portion 32 is elastically transformed and the first contact portion 42 and the second contact portion 41 stably support the shaft 10.
Accordingly, due to the configuration and operation of the training device described above, the trainee may effectively train a motion similar to pushing the arm of the person toward a shoulder by using the training device.
Referring to
When the entirety of the shaft 10 is pressed upward in the direction Du parallel to the central axis C of the shaft 10, the first contact portion 42 and the second contact portion 41, and a portion of the joint support 30 gripping (contacting) the shaft 10 are elastically transformed. That is, in
The joint support 30 supporting the joint 20 is also elastically transformed in accordance with the motions of the shaft 10 and the joint 20 so that the contact between the joint 20 and the joint contact portion 31 may be stably maintained.
Accordingly, due to the configuration and operation of the training device described above, the trainee may effectively train a motion similar to pushing or pulling the arm of the person by pressing the arm of the person in vertical and horizontal directions of the body by gripping the arm of the person with two hands by using the training device.
Referring to
When the shaft 10 placed at an assembly position A expressed by a dotted line in
The joint 20 which moves to the separation space B may be supported by the elastic portion 41a of the second contact portion 41 so as not to be separated to the outer side of the case. That is, in the separation space B, the joint 20 is supported between the first contact portion 42 and the second contact portion 41.
When the shaft 10 and the joint 20 are to be completely separated from the cases 70 and 80 of the training device, the shaft 10 is strongly pulled in the direction further away from the joint support 30 along the central axis C again.
Conversely, when the shaft 10 of the training device completely separated from the case is assembled to the case again, the joint 20 of the shaft 10 is strongly inserted between the elastic portions 41a of the second contact portion 41 to move the joint 20 to the separation space B and thereafter, the joint 20 of the shaft 10 is strongly inserted again into the elastic portion 42a of the first contact portion 42 to move the joint 20 to the assembly position A.
Accordingly, due to the configuration and operation of the training device described above, a trainee may effectively train a motion of applying force enough to extract the arm of the person from the shoulder by using the training device.
Further, the operation of disassembling or assembling the training device may be simplified by a simple operation of pulling the shaft 10 or strongly inserting the shaft 10 into the shaft support 40. With such a configuration of the training device, it is possible to realize a modular sandbag which is easy to disassemble and assemble and has excellent expandability by using the training device according to the exemplary embodiment.
The training apparatus system with a training device according to the exemplary embodiment illustrated in
Although not illustrated in
In other words, each of the first training device 100 and the second training device 150 may include a shaft, a joint coupled to one end portion of the shaft, a joint support elastically supporting the joint, and a shaft support elastically supporting the outer side of the shaft at one end portion of the shaft and the first parts 60 are disposed at the other end portions of the first and second training devices 100 and 150.
A head 120 corresponding to the head of the person is installed on the upper side of a main body 130 and a head connection training device 120d adopting the same configuration as the training device according to the exemplary embodiment illustrated in
The main body 130 may be elastically supported by a base 140 installed on a floor. A base connection training device 130d employing the configuration of the training device according to the exemplary embodiment illustrated in
According to the modular sandbag having the configuration, the main body 130 may be easily assembled to the base 140 or the main body 130 may be easily separated from the base 140. Further, the first training device 100, the second training device 150, the head 120, and the like may be easily assembled to or separated from the main body 130.
The main body 130 may be elastically supported on the base 140 and move elastically around a vertical axis S and the head 120 may be elastically supported on the main body 130 and move elastically around the vertical axis S.
Since the first training device 100 and the second training device 150 are elastically supported on the main body 130, the first training device 100 and the second training device 150 may move elastically with respect to the main body 130.
The movement of each training device based on the first training device 100 illustrated in
According to the modular sandbag having the configuration, the first training device 100, the second training device 150, and the head 120 may perform rotational movement in three directions, respectively with respect to the main body 130 and perform linear movement in three directions. Similarly, the main body 130 may move with respect to the base 140 with six degrees of freedom. Therefore, the trainee may perform effective training by assuming a situation maximally similar to practical training using the sandbag provided with the training device.
The modular training apparatus system according to the exemplary embodiment illustrated in
The case of the training device 200 has a base 285 which is curved to correspond to a curved outer surface of the main body 290 of the sandbag at the rear. A band 287 is wound around the main body 290 and the base 285 in a state where the base 285 is in contact with the outer side of the main body 290 when the training device 200 is coupled to the main body 290. Thus, the training device 200 can be easily and stably installed on the main body 290 of the sandbag.
The base 285 of the training device 200 is coupled to the main body 290 using the band 287 in the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
Although not illustrated in
A head 370 corresponding to the head of the person is installed on the upper side of the main body 340 and a head connection training device adopting the configuration of the training device according to the exemplary embodiment illustrated in
The main body 340 may be elastically supported by a base 390. A base connection training device employing the configuration of the training device according to the exemplary embodiment illustrated in
A lower portion of the base 390 is connected to a fixing portion 380 installed on the floor. Between the base 390 and the fixing portion 380, third and fourth training devices 350 and 360 having the same configuration as the training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The joint support 430 elastically supporting the joint 420 has a joint contact portion 431 that contacts the joint 420 and a rear mounting portion 432 that supports the joint contact portion 431 and is coupled to cases 470 and 480.
One end portion 411 of the shaft 410 and the joint 420 are accommodated in the cases 470 and 480. The cases 470 and 480 include a front case 470 surrounding one end portion 411 of the shaft 410 and a rear case 480 accommodating the joint support 430 supporting the joint 420.
The shaft support 440 includes a first contact portion 442 for elastically supporting the outer side of one end portion 411 of the shaft 410 and a second contact portion 441 disposed spaced apart from the first contact portion 442 toward an opposite side to one end portion 411 of the shaft 410 to elastically support the outer side of the shaft 410.
The first contact portion 442 and the second contact portion 441 include mounting portions 441b and 442b coupled to the front case 470 by fastening screws 471b and elastic portions 441a and 442a which extend toward the outer side of the shaft 410 from the mounting portions 441b and 442b to elastically support the outer side of the shaft 410, respectively.
The mounting portion 442b of the first contact portion 442 is disposed at a position corresponding to one end portion 411 of the shaft 410 in the front case 470 and the mounting portion 441b of the second contact portion 441 is disposed at a position spaced apart from the mounting portion 442b of the first contact portion 442 to the other end portion of the shaft 410 in the front case 470.
The elastic portion 442a of the first contact portion 442 extends toward the opposite side of the one end portion 411 of the shaft 410, that is, toward the other end portion. The elastic portion 441a of the second contact portion 441 extends from the mounting portion 441b of the second contact portion 441 toward the one end portion 411 of the shaft 410. Therefore, the elastic portion 441a of the second contact portion 441 and the elastic portion 442a of the first contact portion 442 may contact the shaft portion 410 by extending in directions crossing each other.
The elastic portion 441a of the second contact portion 441 may support one end portion 411 of the shaft 410 and the end of the elastic portion 441a may support the joint 420.
Since the elastic portions 441a and 442a of the first and second contact portions 442 and 441 extend in the directions crossing each other to elastically support one end portion 411 of the shaft 410 according to the training device having the configuration, the shaft 410 may be more stably supported by the shaft support 440.
The training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The joint support 530 elastically supporting the joint 520 includes a joint slider 531, which is in contact with the joint 520 and is slidably mounted on a groove 581 of a rear case 580, and a joint elastic support 532 disposed at the groove 581 of the rear case 580 so as to elastically support the joint slider 531.
The shaft support 540 includes a first contact portion 541 for elastically supporting the outer side of one end portion 511 of the shaft 510 and a second contact portion 542 disposed spaced apart from the first contact portion 541 toward an opposite side to one end portion 511 of the shaft 510 to elastically support the outer side of the shaft 510.
The first contact portion 541 and the second contact portion 542 has shaft sliders 541a and 542a slidably installed on the groove 571 of the front case 570 so as to be movable toward the outer side of the shaft 510 and shaft elastic support portions 541b and 542b which are disposed in the groove 571 so as to elastically support the shaft sliders 541a and 542a with respect to the front case 570, respectively. The shaft sliders 541a and 542a may be manufactured into a rod or a cylinder which is hard or has slight elasticity, such as metal, plastic, rubber, a synthetic resin, or the like.
The shaft elastic supports 541b and 542b and the joint elastic support 532 of the training device according to the exemplary embodiment illustrated in
According to the training device having the configuration, the shaft 510 may move with various degrees of freedom as in the training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The joint support 630 elastically supporting the joint 620 includes a joint slider 631, which is in contact with the joint 620 and is slidably mounted on a groove 681 of a rear case 680, and a joint elastic support 632 disposed at the groove 681 of the rear case 680 so as to elastically support the joint slider 631.
The shaft support 640 includes a first contact portion 641 for elastically supporting the outer side of one end portion 611 of the shaft 610 and a second contact portion 642 disposed spaced apart from the first contact portion 641 toward an opposite side to one end portion 611 of the shaft 610 to elastically support the outer side of the shaft 610.
The first contact portion 641 and the second contact portion 642 have shaft sliders 641b and 642b slidably installed on the groove 671 of the front case 670 so as to be movable toward the outer side of the shaft 610, shaft elastic supports 641c and 642c which are disposed in the groove 671 so as to elastically support the shaft sliders 641b and 642b with respect to the front case 670, and elastic portions 641a and 642a coupled to the end portions of the shaft sliders 641b and 642b, respectively to elastically contact the outer side of the shaft 610.
According to the training device having the configuration, like the training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The training device according to the exemplary embodiment illustrated in
The joint support 730 elastically supporting the joint 720 is installed in a rear case 780 which is in contact with the joint 720 and is coupled to the rear of a case 770. The rear case 780 is coupled to the sandbag or a wall body 790 of the wall.
The shaft support 740 includes a first contact portion 742 elastically supporting the outer side of one end portion 711 of the shaft 710 and a second contact portion 741 disposed to be spaced apart from the first contact portion 742 toward an opposite side to one end portion 711 of the shaft 710 to elastically support the outer side of the shaft 710.
One end portion 711 of the shaft 710 and the joint 720 are accommodated in the cases 770. One end portion 711 of the shaft 710 accommodated in the case 770 has a curved portion that is curved in part. The case 770 also has a curved portion which is curved along the curved portion of one end portion 711 of the shaft 710.
According to the training device having the configuration, since one end portion 711 of the shaft 710 is curved and the case 770 accommodating one end portion 711 of the shaft 710 is also curved, an overall configuration of the training device may maintain a shape similar to an actual shoulder of the person. As a result, the trainee may effectively perform a training close to an actual match by using the training device.
According to the training device having the joint support 830 having the configuration, since the joint slider 831a is pressed against the joint 820 by the elastic force of the joint elastic support 832, the joint 820 is stably supported by a concave groove formed in front of the joint slider 831a. The overall operation of the training device may be stabilized by the configuration of the joint support 830.
In the modular training apparatus system 900 according to the exemplary embodiment illustrated in
The bodies 910, 910b, and 910c have a plurality of training device mounting locations 912 on which training devices 920, 930, and 940 are mounted, respectively.
The training devices 920 and 930 corresponding to the arms of the person include a shaft 921, a joint 922 coupled to one end portion of the shaft 921, an assembly 920a of the shaft and the joint, which has a first part 923 coupled to the other end portion of the shaft 921, and a shaft support and a joint support which are mounted in a training device mounting location 912. The assembly 920a of the shaft and the joint may be mounted by selecting any one of a plurality of training device mounting locations 912.
The training device 940 corresponding to the first of the person may also include a first part 943, a shaft 941, and a joint 942 and may be mounted on the plurality of training device mounting locations 912.
A head training device 950 having a shaft 951, a joint 952, and a head 953 may be mounted on the uppermost body 910.
Further, the lowermost body 910c may be mounted on a coupling location 961 of a base 960 installed on the floor.
In the modular training apparatus system 1000 according to the exemplary embodiment illustrated in
The central body 1010B is coupled to the lower body 1010C by an assembly 1015 of the body shaft and joint, which includes a body shaft 1011 and a body joint 1012. The lower body 1010C may perform a function corresponding to the leg of the person.
The lower body 1010C is coupled to bases 1050 and 1060 supported on the floor by an assembly 1055 of the body shaft and joint, which includes a body shaft 1051 and a body joint 1052.
According to the modular training apparatus system having the configuration described in the exemplary embodiment illustrated in
A joint assembly 1100 including a shaft 1101, a joint 1102, and a first part 1103 may be elastically coupled to mounting elements 1107 that may be embedded in or coupled to the body, for example. The shaft support and the joint support of the training device according to the exemplary embodiment illustrated in
A body 1200 according to the exemplary embodiment shown in
A body 1300 according to the exemplary embodiment shown in
A body 1400 according to the exemplary embodiment illustrated in
A body 1500 according to the exemplary embodiment illustrated in
The mounting location of the body according to the exemplary embodiment illustrated in
By using the body having the configuration according to the exemplary embodiment illustrated in
A description of configurations and effects of the exemplary embodiments is just illustrative, and it would be appreciated by those skilled in the art that various modifications and other equivalent exemplary embodiments may be made therefrom. Accordingly, the true technical scope of the present invention should be defined by the appended claims.
Number | Date | Country | |
---|---|---|---|
62403730 | Oct 2016 | US |