Training progress indicator

Information

  • Patent Grant
  • 8101813
  • Patent Number
    8,101,813
  • Date Filed
    Thursday, October 30, 2008
    16 years ago
  • Date Issued
    Tuesday, January 24, 2012
    13 years ago
Abstract
The present subject matter relates to absorbent articles and signaling devices for use therewith. An absorbent article may be provided with selected electrical components used as wetness or other type sensors which may be determined by a coupled signaling device. An attached signaling device may automatically determine physiological changes of a wearer of the absorbent article including increases in void volume over time, increases in time between voids and proximity to bathroom fixtures. The signaling device may provide data analysis and/or display, and may provide remote alarm functions.
Description
BACKGROUND OF THE INVENTION

Absorbent articles such as diapers, training pants, and the like conventionally include a liquid permeable body-side liner, a liquid impermeable outer cover, and an absorbent core. The absorbent core is typically located in between the outer cover and the liner for taking in and retaining liquids (e.g., urine) exuded by the wearer.


The absorbent core can be made of, for instance, superabsorbent particles. Many absorbent articles, especially those sold under the tradename HUGGIES™ by the Kimberly-Clark Corporation, are so efficient at absorbing liquids that it is sometimes difficult to tell whether or not the absorbent article has been insulted with a body fluid.


Accordingly, various types of moisture or wetness indicators have been suggested for use in absorbent articles. The wetness indicators may include alarm devices that are designed to assist parents or attendants identify a wet diaper condition early on. The devices produce either a visual or an audible signal.


In some previously known arrangements, for instance, inexpensive conductive threads, foils, or paper have been placed in the absorbent articles in the machine direction. The conductive materials serve as conductive leads for a signaling device and form an open circuit in the article that can be closed when a body fluid, such as urine, closes the circuit. In these arrangements, although the absorbent articles may be disposable, the signaling devices are not. Thus, the signaling devices are intended to be removed from the article and reattached to a subsequent article.


Problems, however, have been encountered in employing such products with respect to potty training children in that the signals produced by such products generally relate only to the detection of wetness. It would be beneficial if alternative signaling in the form of positive feedback were available to encourage children or their trainers to take or encourage actions that will assist the child in developing health and hygiene life skills. Similarly, problems have been encountered in employing such products with respect to adult care systems. It would, likewise be beneficial if signaling in the form of information relayed to a caregiver and/or wearer provided information regarding changes in void size and/or spacing that could be indicative of health concerns.


SUMMARY OF THE INVENTION

In general, the present disclosure is directed to improved sensing and signaling arrangements and methodologies for use with a variety of absorbent articles for providing indications to a parent or guardian that potty training progress has been made. Additionally, such signaling arrangements and methodologies may be employed in adult care setting involving adult life skills assessment and/or training addressing such as, but not limited to, enuresis (bedwetting). Signaling devices corresponding to various configurations may be attached in whole or in part by appropriate mechanisms to disposable absorbent articles. The signaling device, for instance, may be configured as a single device attached to an absorbent article or may correspond to separate components with one component attached to the absorbent article and one component remote from the absorbent article and may as a single device or collectively be configured to indicate to a user increases in amounts of body fluid volume and/or increase in time between detection of fluids. For example, in one embodiment, the absorbent article comprises a diaper and the signaling device is configured to indicate the presence of urine or of a bowel movement. In other embodiments, however, the signaling device may be configured to indicate the physical location of a diaper wearer relative to a bathroom fixture. In all embodiments, the signaling device may provide feedback to the parent, guardian, and/or wearer to encourage appropriate action to be taken for health and hygiene life skills training.


In one embodiment, a system is provided comprising a chassis configured to be worn by an individual. The chassis comprises an outer cover having an interior surface and an exterior surface and an absorbent structure positioned adjacent the interior surface of the outer cover. At least one conductive element is contained in the chassis and forms part of a sensing circuit that is configured to sense physiological changes of a wearer. At least one electrical device is associated with the at least one conductive element, which electrical device is configured to indicate sensed physiological changes related to the wearer. As used herein, physiological changes are meant to include both changes in a wearer resulting in an insult to an absorbent article as well as changes in the physical location of a wearer.


In particular embodiments the at least one electrical device is directly coupled to the at least one conductive element although in other embodiments wireless coupling to a remote component of the electrical device may be used. In certain embodiments the at least one conductive element comprises at least one pair of conductive elements and the at least one electrical device comprises an indicator configured to indicate one of increases in void volume of a wearer over time and increases in time between voids of a wearer.


In still further embodiments a system is provided wherein the at least one electrical device comprises an indicator configured to indicated proximity of a wearer to one of a predetermined item and a predetermined location. In particular embodiments, proximity of a wearer to a fixture in a bathroom may be indicated.


In yet still further embodiments a system is provide to provide a signal at a location remote from the chassis and wearer that signals sensed physiological changes to alert a parent or guardian of the changes.


In accordance with still further embodiments a memory may be provided and configured to store data representing sensed physiological changes. In particular embodiments data may be transferred from the memory to a computer or other device to provide indicia representative of the data. Data may be transferred by any suitable means including by one of direct electrical connection, USB connection, wireless connection, Bluetooth connection, WiFi connection, and optical connection.


In yet still further embodiments a visual display of data trend tracking over time as well as audible and visual alarms based on data received from the electrical device may be provided either locally or at a remote location.


Other embodiments of the present subject matter also relate to methodologies for providing physiological change related signals comprising providing a wearable absorbent article that includes an absorbent structure and at least one conductive element that forms part of a sensing circuit configured to sense physiological changes of a wearer. A signaling device is provide that is capable of producing humanly perceptible signals responsive to sensed physiological changes of a wearer the signaling device is coupled to the absorbent article. In particular methods, the signaling device may be directly connected or wirelessly coupled to the absorbent article.


In accordance with further methodologies, the signaling device may be responsive to one or more of increases in void volume over time of a wearer, increases in the time between voids of the wearer, and proximity of the wearer to a bathroom fixture. Alternative methodologies provide for voice instructions to be delivered to a wearer of the absorbent article.


Other features and aspects of the present invention are discussed in greater detail below.





BRIEF DESCRIPTION OF THE DRAWINGS

A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:



FIG. 1 is a rear perspective view of one embodiment of an absorbent article made in accordance with the present invention;



FIG. 2 is a schematic diagram of an exemplary pulse circuit usable in conjunction with components of the absorbent article to detect and/or measure insults to the absorbent article;



FIG. 3 is a graph depicting a rate of change of voltage vs. volume insulted to the absorbent article;



FIGS. 4A, 4B, and 4C illustrate various rates of voltage return over time depending on ionic concentration of the insult; and



FIGS. 5A, 5B, and 5C illustrate various waveform slopes that may be used in an alternative method to determine ionic concentration.





Repeat use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present invention.


DETAILED DESCRIPTION OF THE INVENTION

It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary embodiments only, and is not intended as limiting the broader aspects of the present invention.


The present disclosure is generally directed to absorbent articles adapted to be attached to a signaling device that may be configured to indicate the presence of a body fluid in the absorbent article or other changes in the condition of the product or wearer. The absorbent article may be, for instance, a diaper or a training pant, and the like. It should be appreciated that while the present disclosure is more generally described with respect to articles designed to be worn by children, such is not a limitation of the present subject matter. In fact, absorbent articles designed for use in adult care setting may equally benefit from present disclosure. Absorbent articles made according to the present disclosure may include a sensing circuit that detects when a conductive fluid, such as a body fluid, is sensed between a pair of conductive leads. Generally, the absorbent articles containing the sensing circuit are disposable meaning that they are designed to be discarded after a limited use rather than being laundered or otherwise restored for reuse.


A sensing circuit contained within the absorbent articles in accordance with the present subject matter is configured to be attached to a signaling device. The signaling device can provide power to the sensing circuit while also optionally including some type of audible and/or visible signal that indicates to the user the presence of, or characteristics related to, a body fluid. In alternate embodiments, the signaling device may correspond to multiple portions with a portion attached to the absorbent article and another portion space from and wirelessly coupled to the portion attached to the absorbent article. Although the absorbent article itself is disposable, the signaling device may be reusable from article to article. In this regard, the present disclosure is particularly directed to determining selected physiological changes related to the absorbent article.


This present subject matter describes instrumentation and signal analysis that can measure the volume and concentration of an insult in an absorbable disposable garment as well as numbers of insults over time and time periods between insults. The system herein disclosed may correspond to two individual components: an absorbent disposable pant with conductive foils placed beneath the liner, and a semi-durable sensor which incorporates a pulse circuit and a DC power supply. The absorbent pant may correspond to a training pant with parallel conductive foils placed beneath the liner of the pant. In an exemplary configuration, the present subject matter may be incorporated within and used with HUGGIES™ Pull-Ups® training pant.


Referring to FIG. 1, for exemplary purposes, an absorbent article 20 that may be made in accordance with the present subject matter is shown. The absorbent article 20 may or may not be disposable. It should be understood that the present subject matter is suitable for use with various other absorbent articles intended for personal wear, including but not limited to diapers and training pants, and the like without departing from the scope of the present invention.


By way of illustration only, various materials and methods for constructing absorbent articles such as the diaper 20 of the various aspects of the present invention are disclosed in PCT Patent Application WO 00/37009 published Jun. 29, 2000 by A. Fletcher et al; U.S. Pat. No. 4,940,464 issued Jul. 10, 1990 to Van Gompel et al.; U.S. Pat. No. 5,766,389 issued Jun. 16, 1998 to Brandon et al., and U.S. Pat. No. 6,645,190 issued Nov. 11, 2003 to Olson et al. which are incorporated herein by reference to the extent they are consistent (i.e., not in conflict) herewith.


Diaper 20 is representatively illustrated in FIG. 1 in a partially fastened condition and defines a pair of longitudinal end regions, otherwise referred to herein as a front region 22 and a back region 24, and a center region, otherwise referred to herein as a crotch region 26, extending longitudinally between and interconnecting the front and back regions 22, 24. Diaper 20 also defines an inner surface 28 adapted in use (e.g., positioned relative to the other components of the article 20) to be disposed toward the wearer, and an outer surface 30 opposite the inner surface. The front and back regions 22, 24 are those portions of the diaper 20, which when worn, wholly or partially cover or encircle the waist or mid-lower torso of the wearer. The crotch region 26 generally is that portion of the diaper 20 which, when worn, is positioned between the legs of the wearer and covers the lower torso and crotch of the wearer. The absorbent article 20 has a pair of laterally opposite side edges 36 and a pair of longitudinally opposite waist edges, respectively designated front waist edge 38 and back waist edge 39.


A signaling device 110 is shown attached to conductive pad members 104 and 106. Signaling device 110 includes a pair of opposing terminals that are electrically connected to the corresponding conductive pad members. When a body fluid is present in the absorbent article 20, the open circuit formed by the conductive elements 100 and 102 together with circuitry within signaling device 110 senses the fluid and, in turn, activates additional circuitry within signaling device 110 to record aspects of the sensed fluid for purposes as will be more fully described later.


Signaling device 110 can emit an audible and/or visual signal and/or can transmit information to a remote portion 114 of the sensor system. Remote portion 114 may correspond to a dedicated device or may correspond to, such as, a personal computer, which may be used to analyze and/or display information from signaling device 110. In an alternative configuration data received by remote portion 114 may be transferred to a personal computer by any suitable means for storage, display, and/or further analysis. In exemplary configurations, data may be transferred from signaling device 110 to remote portion 114 and from remote portion 114 to a personal computer (not illustrated) and/or directly to a personal computer from remote portion 114 by a variety of well known ways including, but not limited to, direct coupling via a cable, optical coupling, and/or wireless coupling. Wireless communications may be conducted over such as Bluetooth, WiFi, or other like arrangements.


With reference now to FIG. 2, there is schematically illustrated a pulse circuit 200 which is designed to take a reading with signal processing circuit 220 as controller 210 causes transistors Q1-Q4 to alternately excite and ground conductive foils 100, 102 to emulate AC excitation of the foils using DC source VCC. Conductive foils 100, 102 may be connected to terminals X1, X2, respectively by appropriate electrical connectors. In addition, pulse circuit 200 is configured to decrease the time the strips are excited in order to reduce the ionization of particles, therefore prolonging the conductive life of the foils. In an exemplary configuration the power supply (VCC) may correspond to a DC 3 volt battery.


In operation, signal processing circuit 220 measures both the volume and the concentration (specific gravity) of urine from an insult in an absorbable disposable garment during use. This will be accomplished by measuring several electrical properties of the system. A dry product, with power supplied, will exhibit an infinite resistance because there is no connection between the foils. When an ionic solution (such as urine) is introduced to the product, an electrical path between the two conductive foils 100, 102 is created. While completing the circuit, the ionic solution introduces a variable impedance to the system. The impedance produced by the conductive ionic solution varies depending on the adsorption of the solution by the product. Smaller volumes will absorb faster than larger volumes, and therefore the rate of change of impedance with smaller volumes will be different than that of larger volumes. Since the voltage of a system is directly proportional to the impedance, the volume of urine insulted is determined by measuring the rate of change in voltage across conductive foils 100, 102. FIG. 3 illustrates the rate of change in voltage compared to the volume insulted for several exemplary samples.


Along with the previously mentioned attributes that pulse circuit 200 provides, the emulated AC excitation of the circuit also induces a capacitive charge/discharge with ionic solution, much like that of a capacitor. There are several different ways to determine the concentration of an insult by investigating this capacitive property. The first method simply looks at the envelope of the oscillation of the voltage output over a period of time after an insult. The rate of voltage return measured by circuit 220 during this time period is different for each ionic concentration of solution used. FIGS. 4A, 4B, and 4C illustrate the voltage output oscillations for three different concentrations of solutions used over a 90 second time period. The exemplary results illustrated in FIGS. 4A, 4B, and 4C were obtained using 60 ml each of solutions with specific gravities of 1.001. 1.02. and 1.037, respectively. By comparing the rate of voltage return, the concentration of solution can be determined.


Other methods for determining insult concentrations may examine the shape of the charge/discharge waveform produced. The shape of this voltage charge/discharge waveform for an insult changes over time. A dry product will produce a square wave function representing the pulse. After an insult occurs the waveform flattens to a linear oscillation and changes to a sawtooth wave, becoming more pronounced over time until it eventually returns to the original square wave. At a given time point, each ionic concentration of urine will display waveforms distinctly different from each other. This trend can be measured and used to determine the ionic concentration of an insult in several ways. FIGS. 5A, 5B, and 5C illustrate exemplary charge/discharge waveforms at 60 seconds after an insult for three solutions of different ionic concentrations corresponding to the same volume and specific gravities as employed in the respective FIGS. 4A, 4B, and 4C. From the figures it can be seen how at the same time point, each solution displays a different shaped waveform. The areas under the curves from each solution are independent of those from the others and can be measured to determine the ionic concentration they represent.


In an alternative method for determining ionic concentration, the slope of the waveforms at a given time point may be examined. The slope of the curves for each solution in FIGS. 5A, 5B, and 5C are unique to their specific concentration. The slope of the waveform at a given time point could therefore be used to differentiate between different ion concentrations of urine. Testing of several products under these electrical conditions showed consistent and repeatable data for the correlation of volume and concentration of an insult in the product. Through repetitive testing, a calibration curve can be established for each analysis. Such a calibration curve could then be used in a device to monitor electrical conditions of the product. Measurement and signal analysis may be performed by an on board processor and/or by associated additional sensor and display devices including, but not limited to, personal computers (PC).


A system constructed in accordance with present disclosure may correspond to a semi-durable sensor that can be clipped onto the back of a pant product with conductive foils beneath the liner. The sensor will measure the volume and ionic concentration of insult urine as well as the volumes and concentrations of second, third, etc. insults. In an exemplary configuration the sensor 110 (FIG. 1) may contain a visual display screen that will display insult volume, insult concentration, insult time, number of insults, fullness of product, etc. Alternatively, sensor 110 may also transmit data to a separate device 114 (FIG. 1) for display, analysis, and/or storage. Sensor 110 may also communicate with a PC and save all insult information in, for example, a spreadsheet document for later analysis by the parents and/or doctor.


These and other modifications and variations to the present invention may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present invention, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various embodiments may be interchanged either in whole or in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the invention so further described in such appended claims.

Claims
  • 1. A system, comprising: a chassis configured to be worn by an individual comprising an outer cover having an interior surface and an exterior surface and an absorbent structure positioned adjacent the interior surface of the outer cover;a pair of conductive elements contained in the chassis and forming part of a sensing circuit that is configured to sense physiological changes of a wearer; andat least one electrical device associated with said pair of conductive elements, said at least one electrical device configured to determine and to indicate sensed physiological changes of a wearer comprising at least one of increases in void volume over time, increases in time between voids, and proximity of a wearer to a fixture in a bathroom.
  • 2. A system as defined in claim 1, wherein said at least one electrical device is directly coupled to said pair of conductive elements.
  • 3. A system as defined in claim 1, wherein said at least one electrical device is wirelessly coupled to said pair of conductive elements.
  • 4. A system as defined in claim 1, wherein said at least one electrical device is configured to provide a signal at a location remote from said chassis, said signal indicative of said sensed physiological changes.
  • 5. A system as defined in claim 1, wherein said electrical device further comprises a memory configured to store data representing said sensed physiological changes.
  • 6. A system as defined in claim 5, further comprising: at least one second electrical device, said at least one second electrical device configured to provide indicia representative of data transferred from said memory of said electrical device.
  • 7. A system as defined in claim 6, wherein said at least one second electrical device comprises a computer.
  • 8. A system as defined in claim 6, wherein said at least one second electrical device is configured to receive data from said electrical device by one of direct electrical connection, USB connection, wireless connection, Bluetooth connection, WiFi connection, and optical connection.
  • 9. A system as defined in claim 6, wherein said at least one second electrical device is configured to provide a visual display of data trend tracking over time.
  • 10. A system as defined in claim 6, wherein said at least one second electrical device is configured to provide at least one of audible and visual alarms based on data received from said electrical device.
  • 11. A method for providing physiological change related signals, comprising: providing a wearable absorbent article comprising an absorbent structure and a pair of conductive elements, the pair of conductive elements forming part of a sensing circuit configured to sense physiological changes of a wearer;providing a signaling device capable of producing humanly perceptible signals;configuring the signaling device to determine in response to sensed physiological changes of a wearer including at least one of increases in void volume over time, increases in the time between voids, and proximity to a bathroom fixture; andcoupling the signaling device to the absorbent article.
  • 12. The method of claim 11, wherein coupling comprises direct coupling.
  • 13. The method of claim 11, wherein coupling comprises wireless coupling.
  • 14. The method of claim 11, further comprising providing voice instructions from the signaling device to a wearer.
  • 15. The method of claim 11, further comprising: associating a memory with said signaling device;storing data indicative of one or more of sensed physiological changes of a wearer; anddisplaying indicia of said stored data.
  • 16. The method of claim 15, further comprising: transferring stored data from said memory to a remote device; anddisplaying indicia of the transferred data on the remote device.
  • 17. The method of claim 16, wherein the remote device is a computer.
  • 18. The method of claim 16, wherein transferring stored data comprises transferring data by one of direct electrical connection, USB connection, wireless connection, Bluetooth connection, WiFi connection, and optical connection.
US Referenced Citations (96)
Number Name Date Kind
3675654 Baker et al. Jul 1972 A
3731685 Eidus May 1973 A
4022211 Timmons et al. May 1977 A
4100324 Anderson et al. Jul 1978 A
4192311 Felfoldi Mar 1980 A
4292916 Bradley et al. Oct 1981 A
4327731 Powell May 1982 A
4366241 Tom et al. Dec 1982 A
4734238 Sugimori et al. Mar 1988 A
4812053 Bhattacharjee Mar 1989 A
4903254 Haas Feb 1990 A
4931051 Castello Jun 1990 A
4940464 Van Gompel et al. Jul 1990 A
4987849 Sherman Jan 1991 A
5006711 Hamashima et al. Apr 1991 A
5045283 Patel Sep 1991 A
5053339 Patel Oct 1991 A
5058088 Haas et al. Oct 1991 A
5089548 Zimmel et al. Feb 1992 A
5284703 Everhart et al. Feb 1994 A
5350625 Peterson et al. Sep 1994 A
5352582 Lichtenwalter et al. Oct 1994 A
5389093 Howell Feb 1995 A
5486166 Bishop et al. Jan 1996 A
5490846 Ellis et al. Feb 1996 A
5602804 Haas Feb 1997 A
5645542 Anjur et al. Jul 1997 A
5681298 Brunner et al. Oct 1997 A
5719828 Haas et al. Feb 1998 A
5726435 Hara et al. Mar 1998 A
5766389 Brandon et al. Jun 1998 A
5785354 Haas Jul 1998 A
5820973 Dodge, II et al. Oct 1998 A
5854148 Asada et al. Dec 1998 A
5954512 Fruge Sep 1999 A
5989923 Lowe et al. Nov 1999 A
6200250 Janszen Mar 2001 B1
6200765 Murphy et al. Mar 2001 B1
6250929 Kolb et al. Jun 2001 B1
6294392 Kuhr et al. Sep 2001 B1
6295252 Holt et al. Sep 2001 B1
6297424 Olson et al. Oct 2001 B1
6307119 Cammarota et al. Oct 2001 B1
6362389 McDowall et al. Mar 2002 B1
6417455 Zein et al. Jul 2002 B1
6436651 Everhart et al. Aug 2002 B1
6610386 Williams et al. Aug 2003 B2
6642427 Roe et al. Nov 2003 B2
6645190 Olson et al. Nov 2003 B1
6710221 Pierce et al. Mar 2004 B1
6713660 Roe et al. Mar 2004 B1
6722886 Blumberg Apr 2004 B2
6752430 Holt et al. Jun 2004 B2
6772708 Klofta et al. Aug 2004 B2
6786412 Shimizu Sep 2004 B2
6856249 Strubbe et al. Feb 2005 B2
6904865 Klofta et al. Jun 2005 B2
6997384 Hara Feb 2006 B2
7195165 Kesler et al. Mar 2007 B2
7306764 Mody Dec 2007 B2
7321315 Brumm et al. Jan 2008 B2
7332642 Liu Feb 2008 B2
7355090 Ales et al. Apr 2008 B2
7674747 Long Mar 2010 B1
7722357 Payette-Hebert et al. May 2010 B2
20010031954 Jordan et al. Oct 2001 A1
20040055367 Swiecicki et al. Mar 2004 A1
20040078219 Kaylor et al. Apr 2004 A1
20050065489 Driskell et al. Mar 2005 A1
20050101841 Kaylor et al. May 2005 A9
20050112085 MacDonald et al. May 2005 A1
20050137543 Underhill et al. Jun 2005 A1
20050217791 Costello et al. Oct 2005 A1
20050252967 Kesler et al. Nov 2005 A1
20060114754 MacDonald et al. Jun 2006 A1
20060149197 Niemeyer Jul 2006 A1
20060224443 Soza et al. Oct 2006 A1
20060229577 Roe et al. Oct 2006 A1
20070071320 Yada Mar 2007 A1
20070079748 Ahmed et al. Apr 2007 A1
20070138286 Kamijoh et al. Jun 2007 A1
20070149936 Weber et al. Jun 2007 A1
20070199994 Cattrone et al. Aug 2007 A1
20070259997 Bakker et al. Nov 2007 A1
20070282286 Collins et al. Dec 2007 A1
20080147031 Long et al. Jun 2008 A1
20080243099 Tippey et al. Oct 2008 A1
20090050700 Kamijoh et al. Feb 2009 A1
20090062757 Long et al. Mar 2009 A1
20090155753 Ales et al. Jun 2009 A1
20090247979 Sosalla et al. Oct 2009 A1
20090326491 Long et al. Dec 2009 A1
20100164733 Ales et al. Jul 2010 A1
20100168694 Gakhar et al. Jul 2010 A1
20110015063 Gil et al. Jan 2011 A1
20110015597 Gil et al. Jan 2011 A1
Foreign Referenced Citations (19)
Number Date Country
10 2007 006 230 Aug 2008 DE
1 398 014 Mar 2004 EP
4143876 May 1992 JP
2002022688 Jan 2002 JP
2003 058759 Feb 2003 JP
2004529730 Sep 2004 JP
2005-000602 Jan 2005 JP
2006-043389 Feb 2006 JP
2006-068466 Mar 2006 JP
2006 249638 Sep 2006 JP
2007-007352 Jan 2007 JP
2007-286024 Nov 2007 JP
2009 280946 Dec 2009 JP
WO 9608788 Mar 1996 WO
WO 0037009 Jun 2000 WO
WO 0065348 Nov 2000 WO
WO 2004084765 Oct 2004 WO
WO 2008072116 Jun 2008 WO
WO 2010015881 Feb 2010 WO
Related Publications (1)
Number Date Country
20100114046 A1 May 2010 US