Unguided artillery rockets, utilized for area suppression fire missions, are most vulnerable to trajectory perturbations during launch and the first several seconds of flight. The trajectory perturbations are manifested as dispersion of the rockets over the target area, with the result that many such rockets must be fired to ensure that the area of interest is sufficiently covered.
Efforts have been made to add low or medium cost guidance packages to such ballistic rockets to make them impact the selected target more accurately. One system, intended for small and short range rockets, included a semi-active laser seeker and canard guidance package for direct fire guidance all the way to the target. Another system, focusing on large indirect fire artillery rockets for longer ranges, utilized Global Positioning System inputs to an inertial measurement unit along with nose-mounted canards for trajectory control.
However, such efforts required the development of a new airframe for the rockets. Further, both systems placed the control actuators and the associated electronics in the nose of the weapon and controlled the trajectory all the way until target impact. Even though these systems rendered such rockets more accurate against point or very much smaller objects than area targets, neither system is suitable for use with the large stocks of unguided artillery rockets that are already in existence, because of the incompatibility with the rockets' airframe.
The Trajectory Correction Kit (TCK) is a completely self-contained retrofit kit that is externally and fixedly mounted onto the rear (aft of the tailfins) of the rocket. The TCK continuously measures the pitch and yaw of the rocket as it is released from the launch tube and during the initial seconds of the flight and corrects the initial flight path perturbations by firing selected thrusters to steer the rocket until the measured pitch and yaw are eliminated. This results in significant reductions in both the rocket flight path dispersion and collateral damage.
Referring now to the drawing wherein like numbers represent like parts in each of the several figures, the structure and operation of the trajectory correction kit (TCK) is described in detail.
Any and all of the numerical dimensions and values that follow should be taken as nominal values rather than absolutes or as a limitation on the scope of the invention. These nominal values are examples only; many variations in size, shape and types of materials may be used as will readily be appreciated by one skilled in the art as successfully as the values, dimensions and types of materials specifically set forth hereinafter. In this regard, where ranges are provided, these should be understood only as guides to the practice of this invention.
Free-flight rocket theory and practice have established that the most significant trajectory errors occur within the first few seconds of flight. The most significant error sources are launch-induced errors and aerodynamic effects that occur before the rocket fins deploy and before the rocket velocity is sufficient to generate aerodynamic stability. TCK corrects these errors immediately, whereas the canard type guidance systems, such as previously available, must allow the rocket velocity to build before corrections become effective. Consequently, using canard systems makes the magnitude and duration of the necessary correction larger. Additionally, the canard correction system significantly alters the aerodynamics of the rocket and usually necessitates new firing algorithms for the rocket. In contrast, as will be seen below, the thin cross section of the TCK and its aerodynamic housing has minimal effect on the drag of the rocket on which it is mounted, thus enabling the rocket's original firing algorithm to be used with little or no modification.
TCK 101 is intended to be installed on the rear (aft of tailfins 103) of rocket 100 so the TCK can be partially aerodynamically obscured by the tailfins. The TCK, which is essentially a tube having an annular vertical cross section, is mounted onto the rocket by being slipped over the rear portion of the rocket body so as to wrap around the rear portion. This is illustrated in
One such securing mechanism is explained with respect to the Multiple Launch Rocket System (MLRS) rocket. The general configuration of the MLRS is shown in
Other suitable mounting mechanisms may be found for extant rockets that accommodate the unique airframes of the rockets. For rockets yet to be produced, the TCK can be integrated into the airframe during manufacture or internalized and placed in the payload bay or the nose.
As seen further in
If the TCK is to be installed on the rocket during the manufacturing process, the plates may be formed as a single, integrated unit.
Over the first and second hemispherical plates and sharing the same design, including any necessary cut-outs, third and fourth hemispherical plates 205 and 207 can be added to serve as aerodynamic covers. The third and fourth plates together form an annulus and are joined to the first and second plates, respectively, using any suitable aerospace fastening means.
Due to the high temperature environment of the artillery rocket launch tube, suitable materials for the TCK plates are aluminum, stainless steel or non-metallic materials that are capable of withstanding high temperatures.
It is noted that the placement of any particular component on the first or second hemispherical plate is not critical, except that the multiple thrusters should be positioned in an orderly, pre-determined pattern such that they are distributed around the circumference of the rocket body and render symmetry to the two hemispherical plates with respect to the thrusters.
Each thruster has therein propellant material, an igniter and an exhaust port 309 through which the exhaust gas can escape. The thrusters can be grouped into blocs, each bloc having several (such as six to seven) thrusters.
The operation of the TCK begins upon first motion of rocket 100 when it is launched. Powered by battery packs 307 and 405, angular rate sensor 303 and computer 305 are triggered by the motion of the launch. The computer has therein data as to the normal parameters for the rocket at launch, such as the sustained acceleration (example: 35-80 g's for MLRS rocket) and the spin acceleration (example: from 0—prior to launch—to 4,000 degrees/second in five feet of travel). The angular rate sensor, in co-operation with the computer, verifies that the rocket motion is within the parameters for launch (i.e. that launch has actually occurred) and that the TCK operation can begin. The trajectory correction begins when the rocket is released from the launch tube after a per-determined time and distance interval from launch. The angular rate sensor continuously measures the pitch and yaw rates of the rocket in flight and inputs these rates into the computer.
A functional diagram of the TCK is presented in
The computer uses the pitch and yaw rates to determine which particular thrusters should be fired and when so as to eliminate the measured pitch and yaw and transmits ignition commands to the selected thrusters at the appropriate time.
The thrusters respond to the ignition commands by igniting the propellant material and expelling the resulting exhaust gas through exhaust ports 309, thus steering the rocket in a given direction. The pitch and yaw rates are continuously measured and one or more thrusters ignited from time to time to eliminate the measured pitch and yaw until either all of the thrusters have been ignited or there is no more measured pitch and yaw, whichever occurs first.
A power-conditioning card can be used to maximize the function of the TCK. Card 403 is coupled, as depicted in
Although a particular embodiment and form of this invention has been illustrated, it is apparent that various modifications and embodiments of the invention may be made by those skilled in the art without departing from the scope and spirit of the foregoing disclosure.
One modification is equipping the TCK with a release mechanism to allow the TCK to fall away from the rocket when trajectory correction has been accomplished. This would reduce the weight of the rocket and remove any aerodynamic drag that may be caused by the TCK. One release mechanism is a means for pulling longitudinal bolts 501 free from the plate lugs 503 and compressed springs mounted on the underside of first and second hemispherical plates. When the bolts are released from the plate lugs, the springs eject the hemispherical plates away from each other as well as away from the rocket itself. Other similar modifications may be made to the TCK to enhance its performance.
Accordingly, the scope of the invention should be limited only by the claims appended hereto.
The invention described herein may be manufactured, used and licensed by or for the Government for U.S. governmental purposes; provisions of 15 U.S.C. section 3710c apply.
Number | Name | Date | Kind |
---|---|---|---|
3802190 | Kaufmann | Apr 1974 | A |
4408735 | Metz | Oct 1983 | A |
4463921 | Metz | Aug 1984 | A |
4482107 | Metz | Nov 1984 | A |
4689845 | Stessen | Sep 1987 | A |
4712748 | Schafer | Dec 1987 | A |
4790493 | Schwarzkopf et al. | Dec 1988 | A |
4844380 | Peoples et al. | Jul 1989 | A |
4928906 | Sturm | May 1990 | A |
5054712 | Bar et al. | Oct 1991 | A |
5062593 | Goddard et al. | Nov 1991 | A |
5123611 | Morgand | Jun 1992 | A |
5129604 | Bagley | Jul 1992 | A |
5259569 | Waymeyer et al. | Nov 1993 | A |
5456425 | Morris et al. | Oct 1995 | A |
5507452 | Mayersak | Apr 1996 | A |
5657947 | Mayersak | Aug 1997 | A |
6178741 | Nelson et al. | Jan 2001 | B1 |
6254031 | Mayersak | Jul 2001 | B1 |
6267326 | Smith et al. | Jul 2001 | B1 |
6347763 | Harkins et al. | Feb 2002 | B1 |
6367735 | Folsom et al. | Apr 2002 | B1 |
6629668 | Grau et al. | Oct 2003 | B1 |
6695251 | Rodden et al. | Feb 2004 | B2 |
6752351 | John | Jun 2004 | B2 |
6889935 | O'Dwyer | May 2005 | B2 |
6951317 | Woessner et al. | Oct 2005 | B2 |
7004423 | Folsom et al. | Feb 2006 | B2 |
7118065 | Heitmann et al. | Oct 2006 | B1 |
20030197088 | Folsom et al. | Oct 2003 | A1 |
20040084564 | John | May 2004 | A1 |
20050103925 | Folsom et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20070063095 A1 | Mar 2007 | US |