This document relates generally to trajectory guides, and more specifically, but not by way of limitation, to a trajectory guide with at least one angled lumen or with patterned lumens.
Neurosurgery sometimes involves inserting an instrument through a burr hole or other entry portal into a subject's brain toward a target region of the brain. Because of the precision needed to reach the target, while avoiding nearby structures that are often critical to brain function, stereotactic instrument guidance is sometimes provided. In one such technique, a stereotactic headframe is mounted about the patient's skull. A trajectory guide is mounted to the headframe to provide an instrument-guiding trajectory through the burr hole and aimed toward the target. In another technique (sometimes referred to as “frameless stereotaxy”), a trajectory guide is mounted directly to the skull in or about the burr hole. The skull-mounted trajectory guide also provides an instrument-guiding trajectory through the burr hole and aimed toward the target. In either technique, an image-guided workstation may be used to provide navigational guidance to the neurosurgeon, such as by displaying preoperative images of the subject to assist the neurosurgeon in planning or performing the procedure.
Among other things, the present inventors have recognized that the limited diameter of the burr hole limits the size and location of the target area that can be accessed via the burr hole. The present inventors have also recognized an unmet need for reducing trauma to the brain. For these and other reasons, which will become apparent upon reading the following detailed description and viewing the drawings that form a part thereof, the present inventors have recognized an unmet need for trajectory guide systems, devices, and methods that provide improved access and/or reduced trauma.
In the drawings, which are not necessarily drawn to scale, like numerals describe substantially similar components throughout the several views. Like numerals having different letter suffixes represent different instances of substantially similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
In the following detailed description, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that the embodiments may be combined, or that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents.
In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one. In this document, the term “or” is used to refer to a nonexclusive or, unless otherwise indicated. Furthermore, all publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this document and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconcilable inconsistencies, the usage in this document controls.
In
The instrument guide 110 can be conceptualized as including a through axis 120. In this particular example, axis 120 extends substantially orthogonally through the instrument guide 110, as illustrated in
At least one lumen 125 extends through the instrument guide 110 for providing an instrument-guiding trajectory path therethrough. As an illustrative example, but not by way of limitation,
In the illustrative example of
In this example, an affixation mechanism, such as a thumbscrew 204, passes through an opening in the tower-like portion of the base 105 and engages a portion of the platform 300 to prevent further rotation of the tower-like portion of the base 105 with respect to the platform 300 once a desired rotational position has been obtained. In this example, a capturing device, such as an L-shaped arm 206, retains the thumbscrew 204 together with the base 105.
Another affixation mechanism, such as a thumbscrew 208A-B, passes through a slotted opening (tilt slot) in the saddle 130 and engages a portion of the base 105 to prevent further riding of the curved portion of the saddle 130 along the curved portion of the base 105 once a desired trajectory angle has been obtained. This example also includes attachment fasteners 210A-B passing through corresponding slots in the saddle 130 for additionally securing the saddle 130 to the base 105. In this illustrative example, the attachment fasteners 210A-B include screws passing through respective retainer brackets, each of which includes a curved surface conforming to a curved surface of the saddle 130.
Also in this example, an interior portion of a socket or other receptacle 212 on the saddle 130 provides a socket portion of a ball-and-socket joint. An affixation mechanism, such as a thumbscrew 214, passes through a threaded opening in the socket 212 to secure the position of a ball 304 housed therein. The socket 212 also includes fine-tuning thumbscrews 216A-C, which pass through threaded openings in the socket 212 for further adjusting the exact position of the ball 304 within the socket 212. The socket 212 further carries the instrument guide 110. In this example, the instrument guide 110 includes a tapered barrel sleeve 306 that is releasably coupled, such as by release tab 218 and associated structure(s), within a cylindrical opening 310 through the ball 304.
However, in an alternative example, the ball 304 is omitted, and the barrel sleeve 306 is sized and shaped to be received directly within the collar of the receptacle 212. In one such example, the fine-tuning thumbscrews 216A-C are also omitted. In another such example, the fine-tuning thumbscrews 216A-C are replaced by a single thumbscrew, e.g., the thumbscrew 216A. In a further example, the barrel sleeve 306 includes threads mating to threads on an interior portion of the receptacle 212. This implements an adjustable coupling device that adjustably couples the instrument guide 110 to the base 105. For example, this allows adjustment of the height of the instrument guide 110 above the entry portal 115 by screwing the barrel sleeve 306 into the threaded receptacle 212 by an appropriate amount. In another example, the height is adjusted by inserting a non-threaded barrel sleeve 306 into a non-threaded receptacle 212 by the desired amount. Then, barrel sleeve 306 is locked down, such as by tightening the thumbscrew 216A, or by using any other suitable fixation technique.
In the example of
In the examples of
In one example, such as discussed above with respect to
In this example, the instrument guide 410 includes at least one instrument-guiding lumen 460A-E extending through the instrument guide 410 at an angle with respect to an axis 465A that extends through the instrument guide 410 aimed at the center of the entry portal 435A. (In one example, axis 465A is also orthogonal to one or both of the planes defined by the top surface 455A and the bottom surface 445A of the instrument guide 410). By contrast, the instrument guide 430 includes instrument-guiding lumens 470A-E extending through instrument guide 430 parallel to an axis 475A that extends through instrument guide 430 aimed at the center of the entry portal 435B. (In one example, axis 475A is also orthogonal to one or both of the planes defined by the top surface 455B and the bottom surface 445B. orthogonal to the planes defined by its top surface 455B and its bottom surface 445B of the instrument guide 430.) In the example illustrated in
The instrument guide 430 includes the offset lumen 470D, which is separated from the center lumen 470A by a distance d along the top surface 455B. Because these lumens define parallel axes 475A and 470D, such axes intersect target plane 480B with the same radial separation d, as illustrated in
The instrument guide 410 includes the offset lumen 460D, which is separated from the center lumen 460A by a like distance d along the top surface 455A. However, the coaxial axes 465D and 465A defined by the respective lumens 460D and 460A are configured to intersect at a common focus point 485, which is typically located at or beyond entry portal 435A (e.g., within the subject), but which can alternatively be located outside the subject above the entry portal 435A. This results in the axes 465D and 465A intersecting target plane 480A at points separated by a distance D. The angle between the axes 465D and 465A can be selected such that (for a given distance Z between the bottom surface 445A of the instrument guide 410) the axes 465D and 465A intersect the target plane 480A at the separation distance D, where the separation distance D at the target plane 480A is capable of exceeding the separation distance d at top surface 445A of the instrument guide 410. Moreover, the distance D is not limited to the radius of the burr hole entry portal 435A, but may instead exceed the radius of the burr hole entry portal 435A. Furthermore, using the arcuate tilting of the saddle 130, an even greater range of points on the target range plane 480A will be accessible by using the instrument guide 410. In addition, the instrument guide 410 will be able to accommodate more arcuate tilting than the instrument guide 430 because the angled trajectory axes are more focused within the entry portal 435A than the parallel trajectory axes are within the similarly-sized entry portal 435B. This will further extend the accessible area on target plane 480A beyond that accessible on target plane 480B. Additionally or alternatively, the focused trajectory axes allow use of a smaller burr hole 435A, as illustrated in
In the illustrative example of
In one example, trajectory guide assembly 100 is prepared as a kit providing multiple different instrument guides 110. Each instrument guide 110 in the kit provides a predetermined distance d and a predetermined offset lumen angle 140 that obtains a different resulting predetermined distance D at a given height of the instrument guide 110 above the entry portal 115. In a further example, the height of the instrument guide 110 above the entry portal 115 is also adjustable. This, in turn, adjusts the depth of the focus point 485. For example, in operation in a brain surgery application, positioning the focus point 485 at a single cortical entry point just beneath the entry portal 435A reduces trauma to the subject's brain.
In one example, the height of the instrument guide 110 above the entry portal 115 is adjusted by inserting a washer-like spacer (having a predetermined thickness) over the barrel sleeve 306 of the instrument guide 110 before the barrel sleeve 306 is inserted into the opening 310 in the ball 304. In this example, the trajectory guide assembly 100 is prepared as a kit with multiple spacers of different predetermined thicknesses to adjust the height of the instrument guide 110 above the entry portal 115. The user can select the appropriate spacer that adjusts the height of the instrument guide 110 above the entry portal 115 to obtain, for example: the desired depth of focus point 485; the desired depth of the target plane 480A corresponding to the predetermined distance D; or, to adjust the value of D for a target plane 480A at a given depth beneath the entry portal 435A. In one example, the trajectory guide kit includes printed instructions or a computer program providing the necessary computations to assist the user in selecting the appropriate height of the instrument guide 110 for obtaining the desired access to accomplish one or more of these various objectives. In a further example, at least some of such information is printed on the spacers.
In
In
In one example, the desired pattern 620 represents an anatomical, pathological, or other clinically relevant feature within the brain. In one illustrative example, the desired pattern 620 may be shaped similarly to a tumor or lesion, having a particular shape, for which treatment by a primary instrument (guided by instrument guide 600) is desired. In another illustrative example, the desired pattern 620 is shaped like the subject's putamen and/or caudate nucleus-anatomical regions of the subject's brain that may benefit from, among other things, transplanted fetal nigral cells for treating Parkinson's disease. Similarly, minor image guide lumen pattern 615 may be configured to obtain any other desired pattern shape 620 and/or target distribution at a particular depth, whether to match an anatomical or pathological feature or to obtain any other clinically desirable instrument access. Moreover, by adjusting a height of instrument guide 600 above entry portal 435A, the same pattern shape 620 can be obtained in three dimensions for various target range planes 630 located at different depths beneath entry portal 435A. Alternatively or additionally, trajectory guide assembly 100 is configured as a kit with multiple instrument guides 600 for obtaining the same or different patterns 620 at the same or different depths beneath entry portal 435A.
Although
In this example, the trajectory guide base 1300 includes a receptacle 1305 that is sized and shaped to receive a barrel sleeve (or other portion) of an instrument guide. In one example, the received instrument guide includes at least one lumen that is angled with respect to a center axis aimed at the center of the underlying entry portal, e.g., as described above with respect to the instrument guide 410. In the example illustrated in
In one example, an interior portion of the receptacle 1305 includes circumferential gear teeth 1330 that mate with and engage corresponding circumferential gear teeth on a cylindrical outer portion of the instrument guide inserted therein. This prevents the instrument guide from rotatably slipping within the receptacle 1305 unless the instrument guide is intentionally lifted out, rotated, and re-inserted into the receptacle 1305. This example also includes a cutout portion of the saddle 1340 riding on an arcuate joint of base 1300. This allows viewing and access of the instrument being inserted through the instrument guide received in receptacle 1305, as discussed above. Such viewing and access enhances both safety and usability of any surgical or other procedures being performed using the instrument.
In the example of
The example of
In the example illustrated in
In
After the hollow tubes 1800A-E have been slipped over the respective pins 1712A-E, the interstices between the tubes 1800A-E, e.g., within the lumen 1704 of the bushing 1700, are filled with liquid epoxy (or any other flowable hardening agent). This epoxy solidifies to form a solid plug 1802. The solid plug 1802 holds and carries the tubes 1800A-E in the orientation defined by their respective pins 1712A-E. The pins 1712A-E are then removed from the base 1708 of the fixture 1702. The lumens of the tubes 1800A-F then provide the respective lumens 460A-E of the completed instrument guide 410. The completed instrument guide 410 (which includes the bushing 1700, the tubes 1800A-E, and the solid plug) is then removed from the fixture 1702.
The above described method of manufacture is well-suited for manufacturing an instrument guide 410 having one or more angled lumens, which would generally be incompatible with a plastic molding process. Moreover, drilling such lumens is limited by the accuracy of drilling, which may be subject to wander of the drill bit. The above described method of manufacture is also well-suited for manufacturing an instrument guide 420 having parallel lumens. Although parallel lumens are not wholly incompatible with a plastic molding process, such a plastic molding process would likely result in tapered lumens. By contrast, the tubes 1800A-E are capable of providing lumens of uniform circumference. Moreover, the above described method is applicable to manufacturing an instrument guide having any number of one or more lumens used for providing trajectory guidance or for any other purpose.
The various bases discussed in this document are presented as illustrative examples, and are not intended to be limiting. The instrument guides discussed in this document that have at least one lumen angled with respect to a center axis aimed at the center of the underlying entry portal will be capable of use with other skull-mounted or frame-mounted bases. Moreover, the techniques discussed herein are not limited to targeting locations within a subject's brain, but are also applicable to targeting other locations within a subject. Furthermore, the techniques discussed herein may also be useful for accessing locations within any material, particularly where access to the material is limited by a finite-sized entry portal.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments may be used in combination with each other. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects.
This application is a continuation application of U.S. patent application Ser. No. 10/370,090, filed Feb. 20, 2003, which application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
431187 | Foster | Jul 1890 | A |
438801 | Delehanty | Oct 1890 | A |
873009 | Baxter | Dec 1907 | A |
1129333 | Clarke | Feb 1915 | A |
1664210 | Hall | Mar 1928 | A |
2119649 | Roosen | Jun 1938 | A |
2135160 | Beekhuis | Nov 1938 | A |
2497820 | Kielland | Feb 1950 | A |
2686890 | Davis | Aug 1954 | A |
3010347 | Kron | Nov 1961 | A |
3016899 | Stenvall | Jan 1962 | A |
3017887 | Heyer | Jan 1962 | A |
3055370 | McKinney et al. | Sep 1962 | A |
3055371 | Kulick et al. | Sep 1962 | A |
3115140 | Volkman | Dec 1963 | A |
3135263 | Connelley, Jr. | Jun 1964 | A |
3223087 | Vladyka et al. | Dec 1965 | A |
3262452 | Hardy et al. | Jul 1966 | A |
3273559 | Evans | Sep 1966 | A |
3282152 | Myer | Nov 1966 | A |
3402710 | Paleschuck | Sep 1968 | A |
3444861 | Schulte | May 1969 | A |
3457922 | Ray | Jul 1969 | A |
3460537 | Zeis | Aug 1969 | A |
3508552 | Hainault | Apr 1970 | A |
3672352 | Summers | Jun 1972 | A |
3760811 | Andrew et al. | Sep 1973 | A |
3817249 | Nicholson | Jun 1974 | A |
3893449 | Lee et al. | Jul 1975 | A |
3981079 | Lenczycki | Sep 1976 | A |
4013080 | Froning | Mar 1977 | A |
4026276 | Chubbuck | May 1977 | A |
4040427 | Winnie | Aug 1977 | A |
4131257 | Sterling | Dec 1978 | A |
4230117 | Anichkov et al. | Oct 1980 | A |
4265252 | Chubbuck et al. | May 1981 | A |
4312337 | Donohue | Jan 1982 | A |
4318401 | Zimmerman | Mar 1982 | A |
4328813 | Ray | May 1982 | A |
4341220 | Perry | Jul 1982 | A |
4345606 | Littleford | Aug 1982 | A |
4350159 | Gouda | Sep 1982 | A |
4355645 | Mitani et al. | Oct 1982 | A |
4386602 | Sheldon et al. | Jun 1983 | A |
4418894 | Mailliet et al. | Dec 1983 | A |
4448195 | LeVeen et al. | May 1984 | A |
4463758 | Patil et al. | Aug 1984 | A |
4475550 | Bremer et al. | Oct 1984 | A |
4483344 | Atkov et al. | Nov 1984 | A |
4571750 | Barry | Feb 1986 | A |
4572198 | Codrington | Feb 1986 | A |
4579120 | MacGregor | Apr 1986 | A |
4592352 | Patil | Jun 1986 | A |
4598708 | Beranek | Jul 1986 | A |
4608977 | Brown | Sep 1986 | A |
4617925 | Laitinen et al. | Oct 1986 | A |
4618978 | Cosman | Oct 1986 | A |
4629451 | Winters et al. | Dec 1986 | A |
4638798 | Shelden et al. | Jan 1987 | A |
4660563 | Lees | Apr 1987 | A |
4665928 | Linial et al. | May 1987 | A |
4699616 | Nowak et al. | Oct 1987 | A |
4705436 | Robertson et al. | Nov 1987 | A |
4706665 | Gouda | Nov 1987 | A |
4733661 | Palestrant | Mar 1988 | A |
4755642 | Parks | Jul 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4793355 | Crum et al. | Dec 1988 | A |
4798208 | Faasse, Jr. | Jan 1989 | A |
4805615 | Carol | Feb 1989 | A |
4805634 | Ullrich et al. | Feb 1989 | A |
4807620 | Strul et al. | Feb 1989 | A |
4809694 | Ferrara | Mar 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4826487 | Winter | May 1989 | A |
4869247 | Howard, III et al. | Sep 1989 | A |
4883053 | Simon | Nov 1989 | A |
4896673 | Rose et al. | Jan 1990 | A |
4902129 | Siegmund et al. | Feb 1990 | A |
4922924 | Gambale et al. | May 1990 | A |
4955891 | Carol | Sep 1990 | A |
4957481 | Gatenby | Sep 1990 | A |
4986280 | Marcus et al. | Jan 1991 | A |
4986281 | Preves et al. | Jan 1991 | A |
4989608 | Ratner | Feb 1991 | A |
4991579 | Allen | Feb 1991 | A |
4998938 | Ghajar et al. | Mar 1991 | A |
5006122 | Wyatt et al. | Apr 1991 | A |
5024236 | Shapiro | Jun 1991 | A |
5027818 | Bova et al. | Jul 1991 | A |
5030223 | Anderson et al. | Jul 1991 | A |
5050608 | Watanabe et al. | Sep 1991 | A |
5052329 | Bennett | Oct 1991 | A |
5054497 | Kapp et al. | Oct 1991 | A |
5057084 | Ensminger et al. | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5065761 | Pell | Nov 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5078142 | Siczek et al. | Jan 1992 | A |
5080662 | Paul | Jan 1992 | A |
5087256 | Taylor et al. | Feb 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5116344 | Sundqvist | May 1992 | A |
5116345 | Jewell et al. | May 1992 | A |
5120322 | Davis et al. | Jun 1992 | A |
5125888 | Howard et al. | Jun 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5143086 | Duret et al. | Sep 1992 | A |
5154179 | Ratner | Oct 1992 | A |
5154723 | Kubota et al. | Oct 1992 | A |
5163430 | Carol | Nov 1992 | A |
5166875 | Machida et al. | Nov 1992 | A |
5171217 | March et al. | Dec 1992 | A |
5174297 | Daikuzono et al. | Dec 1992 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5207223 | Adler | May 1993 | A |
5207688 | Carol | May 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5221264 | Wilk et al. | Jun 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5230623 | Guthrie et al. | Jul 1993 | A |
5242415 | Kantrowitz et al. | Sep 1993 | A |
5246448 | Chang | Sep 1993 | A |
5257998 | Ota et al. | Nov 1993 | A |
5263939 | Wortrich | Nov 1993 | A |
5263956 | Nobles | Nov 1993 | A |
5267970 | Chin et al. | Dec 1993 | A |
5269305 | Corol | Dec 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5279575 | Sugarbaker | Jan 1994 | A |
5280427 | Magnusson et al. | Jan 1994 | A |
5290266 | Rohling et al. | Mar 1994 | A |
5291890 | Cline et al. | Mar 1994 | A |
5300080 | Clayman et al. | Apr 1994 | A |
5305203 | Raab | Apr 1994 | A |
5306272 | Cohen et al. | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5330485 | Clayman et al. | Jul 1994 | A |
5354283 | Bark et al. | Oct 1994 | A |
5361763 | Kao et al. | Nov 1994 | A |
5366446 | Tal et al. | Nov 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5375596 | Twiss et al. | Dec 1994 | A |
5380302 | Orth | Jan 1995 | A |
5383454 | Bucholz | Jan 1995 | A |
5387220 | Pisharodi | Feb 1995 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5405330 | Zunitch et al. | Apr 1995 | A |
5423832 | Gildenberg | Jun 1995 | A |
5423848 | Washizuka et al. | Jun 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5452720 | Smith et al. | Sep 1995 | A |
5464446 | Dreessen et al. | Nov 1995 | A |
5470307 | Lindall | Nov 1995 | A |
5474564 | Clayman et al. | Dec 1995 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5494034 | Schlondorff et al. | Feb 1996 | A |
5494655 | Rocklage et al. | Feb 1996 | A |
5515160 | Schulz et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5528652 | Smith et al. | Jun 1996 | A |
5541377 | Stuhlmacher | Jul 1996 | A |
5572905 | Cook, Jr. | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5575798 | Koutrouvelis | Nov 1996 | A |
5618288 | Calvo | Apr 1997 | A |
5622170 | Schulz | Apr 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5639276 | Weinstock et al. | Jun 1997 | A |
5643286 | Warner et al. | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5649936 | Real | Jul 1997 | A |
5658272 | Hasson | Aug 1997 | A |
5662600 | Watson et al. | Sep 1997 | A |
5667514 | Heller | Sep 1997 | A |
5695501 | Carol et al. | Dec 1997 | A |
5713858 | Heruth et al. | Feb 1998 | A |
5755697 | Jones et al. | May 1998 | A |
5776064 | Kalfas et al. | Jul 1998 | A |
5776143 | Adams | Jul 1998 | A |
5776144 | Leysieffer et al. | Jul 1998 | A |
5788713 | Dubach et al. | Aug 1998 | A |
5807033 | Benway | Sep 1998 | A |
5809694 | Postans et al. | Sep 1998 | A |
5810712 | Dunn | Sep 1998 | A |
5817106 | Real | Oct 1998 | A |
5823975 | Stark et al. | Oct 1998 | A |
5833627 | Shmulewitz et al. | Nov 1998 | A |
5843150 | Dreessen et al. | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5865817 | Moenning et al. | Feb 1999 | A |
5865842 | Knuth et al. | Feb 1999 | A |
5871445 | Bucholz | Feb 1999 | A |
5871487 | Warner et al. | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5891157 | Day et al. | Apr 1999 | A |
5927277 | Baudino et al. | Jul 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5954687 | Baudino | Sep 1999 | A |
5957933 | Yanof et al. | Sep 1999 | A |
5957934 | Rapoport et al. | Sep 1999 | A |
5964705 | Truwit et al. | Oct 1999 | A |
5980535 | Barnett et al. | Nov 1999 | A |
5984930 | Maciunas et al. | Nov 1999 | A |
5993463 | Truwit | Nov 1999 | A |
5997471 | Gumb et al. | Dec 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6018094 | Fox | Jan 2000 | A |
6021343 | Foley et al. | Feb 2000 | A |
6024729 | Dehdashtian et al. | Feb 2000 | A |
6030223 | Sugimori | Feb 2000 | A |
6039725 | Moenning et al. | Mar 2000 | A |
6042540 | Johnston et al. | Mar 2000 | A |
6044304 | Baudino | Mar 2000 | A |
6058323 | Lemelson | May 2000 | A |
6071288 | Carol et al. | Jun 2000 | A |
6076008 | Bucholz | Jun 2000 | A |
6079681 | Stern et al. | Jun 2000 | A |
6110182 | Mowlai-Ashtiani | Aug 2000 | A |
6117143 | Hynes et al. | Sep 2000 | A |
6120465 | Guthrie et al. | Sep 2000 | A |
6135946 | Konen et al. | Oct 2000 | A |
6179826 | Aebischer et al. | Jan 2001 | B1 |
6195577 | Truwit et al. | Feb 2001 | B1 |
6206890 | Truwit | Mar 2001 | B1 |
6210417 | Baudino et al. | Apr 2001 | B1 |
6231526 | Taylor et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6238402 | Sullivan, III et al. | May 2001 | B1 |
6254532 | Paolitto et al. | Jul 2001 | B1 |
6257407 | Truwit et al. | Jul 2001 | B1 |
6261300 | Carol et al. | Jul 2001 | B1 |
6267769 | Truwit | Jul 2001 | B1 |
6267770 | Truwit | Jul 2001 | B1 |
6273896 | Franck et al. | Aug 2001 | B1 |
6282437 | Franck et al. | Aug 2001 | B1 |
6290644 | Green, II et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6321104 | Gielen et al. | Nov 2001 | B1 |
6327491 | Franklin et al. | Dec 2001 | B1 |
6356792 | Errico et al. | Mar 2002 | B1 |
6368329 | Truwit | Apr 2002 | B1 |
6400992 | Borgersen et al. | Jun 2002 | B1 |
6457963 | Tawara et al. | Oct 2002 | B1 |
6482182 | Carroll et al. | Nov 2002 | B1 |
6488620 | Segermark et al. | Dec 2002 | B1 |
6491699 | Henderson et al. | Dec 2002 | B1 |
6529765 | Franck et al. | Mar 2003 | B1 |
6537232 | Kucharczyk et al. | Mar 2003 | B1 |
6546277 | Franck et al. | Apr 2003 | B1 |
6546279 | Bova et al. | Apr 2003 | B1 |
6547795 | Schneiderman | Apr 2003 | B2 |
6556857 | Estes et al. | Apr 2003 | B1 |
6609020 | Gill et al. | Aug 2003 | B2 |
6610100 | Phelps et al. | Aug 2003 | B2 |
6632184 | Truwit | Oct 2003 | B1 |
6655014 | Babini | Dec 2003 | B1 |
6662035 | Sochor | Dec 2003 | B2 |
6676669 | Charles et al. | Jan 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6726678 | Nelson et al. | Apr 2004 | B1 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752812 | Truwit | Jun 2004 | B1 |
6765122 | Stout | Jul 2004 | B1 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6782288 | Truwit et al. | Aug 2004 | B2 |
6802323 | Truwit et al. | Oct 2004 | B1 |
6902569 | Parmer et al. | Jun 2005 | B2 |
6913478 | Lamirey et al. | Jul 2005 | B2 |
6944895 | Truwit | Sep 2005 | B2 |
6960216 | Kolb et al. | Nov 2005 | B2 |
7204840 | Skakoon et al. | Apr 2007 | B2 |
7479146 | Malinowski | Jan 2009 | B2 |
20010014771 | Truwit et al. | Aug 2001 | A1 |
20010027271 | Franck et al. | Oct 2001 | A1 |
20010037524 | Truwit | Nov 2001 | A1 |
20020010479 | Skakoon et al. | Jan 2002 | A1 |
20020019641 | Truwit | Feb 2002 | A1 |
20020022847 | Ray et al. | Feb 2002 | A1 |
20020052610 | Skakoon et al. | May 2002 | A1 |
20020077646 | Truwit et al. | Jun 2002 | A1 |
20020156372 | Skakoon et al. | Oct 2002 | A1 |
20030079287 | Truwit | May 2003 | A1 |
20030187351 | Franck et al. | Oct 2003 | A1 |
20030208122 | Melkent et al. | Nov 2003 | A1 |
20040059260 | Truwit | Mar 2004 | A1 |
20040176750 | Nelson et al. | Sep 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040255991 | Truwit et al. | Dec 2004 | A1 |
20040260323 | Truwit et al. | Dec 2004 | A1 |
20040267284 | Parmer et al. | Dec 2004 | A1 |
20060192319 | Solar | Aug 2006 | A1 |
20060195119 | Mazzocchi et al. | Aug 2006 | A1 |
20070250078 | Stuart | Oct 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080004632 | Sutherland et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
3108766 | Sep 1982 | DE |
3937052 | May 1990 | DE |
19726141 | Jan 1999 | DE |
29612100 | Aug 1999 | DE |
19808220 | Sep 1999 | DE |
19820808 | Sep 1999 | DE |
19826078 | Nov 1999 | DE |
0386936 | May 1990 | EP |
0427358 | May 1991 | EP |
0724865 | May 1991 | EP |
0609085 | Aug 1994 | EP |
0832611 | Apr 1998 | EP |
0904741 | Mar 1999 | EP |
2237993 | May 1991 | GB |
2329473 | Apr 1998 | GB |
2346573 | Aug 2000 | GB |
WO-8809151 | Dec 1988 | WO |
WO-9522297 | Aug 1995 | WO |
WO-9610368 | Apr 1996 | WO |
WO-9633766 | Oct 1996 | WO |
WO-9703609 | Feb 1997 | WO |
WO-9721380 | Jun 1997 | WO |
WO-9742870 | Nov 1997 | WO |
WO-9817191 | Apr 1998 | WO |
WO-9825535 | Jun 1998 | WO |
WO-9851229 | Nov 1998 | WO |
WO-0001316 | Jan 2000 | WO |
WO-0018306 | Apr 2000 | WO |
WO-0124709 | Apr 2001 | WO |
WO-0149197 | Jul 2001 | WO |
WO-0176498 | Oct 2001 | WO |
WO-2004026161 | Apr 2004 | WO |
Number | Date | Country | |
---|---|---|---|
20070191867 A1 | Aug 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10370090 | Feb 2003 | US |
Child | 11738893 | US |