This document relates generally to surgical trajectory guides. More specifically, but not by way of limitation, it relates to apparatuses and methods that facilitate alignment of surgical and observational instruments into a body.
In the treatment of some diseases or defects associated with a patient, it has been found necessary to access specific targets within a patient. In the treatment of some diseases of or defects of human beings, it has been found necessary to access specific portions of the brain. Currently there are several methods for inserting surgical and observational instruments into a patient's brain.
U.S. Pat. No. 3,055,370 issued to McKinney et al. shows one currently used method for placing a surgical instrument to access a specific portion of the brain. The surgical instrument of the '370 patent includes a ball which has a bore. The direction of the bore can be changed. The instrument has an elongated tube of a specific length. A stylet is inserted within the tube to access the globus pallidus and perform a pallidotomy. An opening or burr hole is made in the skull at a specific landmark on the skull. Next, X-rays are taken in the fore-and-aft (AP) and lateral positions, and the line of the bar is projected downwardly by a ruler both in the fore-and-aft (AP) and lateral positions, so that the direction of the needle can be determined before it is inserted. When the direction of the longitudinal axis of the tubular member is determined to be satisfactory, a holder is threaded further into a tap to force a surface against a ball and lock a tubular member into place. Alignment of the trajectory is not measurable along a specific line occurring at the intersection of two planes. Alignment is dependent on placement of the burr hole at a specific location to determine one plane. X-rays are used to determine another plane-based use of common landmarks on the skull. The end result is that an educated guess is being used to position the stylet at the globus pallidus for the pallidotomy. One shortcoming with the method of using X-ray imaging to direct a surgical or observational instrument, is that many of the destinations within a patient are not viewable via X-ray. Another shortcoming relates to the slight shifting of intracranial contents, once a burr hole is placed and the dura and arachnoid are penetrated. Once cerebrospinal fluid is released via the burr hole, the intracranial contents (i.e. brain) may shift one or more millimeters. In such a case, the calculated trajectory is no longer accurate. Hence, there is an inherent inaccuracy with the described scheme.
Several other methods are also used to place instruments, catheters, or observational tools into patients. Currently, surgical procedures are performed through craniotomy flaps or craniotomy burr holes. A burr hole of about 14 mm is made in the skull. Needles or probes are typically passed through the burr hole into the brain using framed stereotaxy, frameless stereotaxy or freehand without stereotaxy.
The freehand method depends very heavily on the knowledge and judgment of the surgeon. In the freehand method, the surgeon determines the insertion point with a couple of measurements from a known landmark. The surgeon then looks at the measured point, makes adjustments, determines the angle of insertion and then inserts the surgical instrument or tool.
In framed stereotaxy, a ring frame is mounted to the patient's skull by multiple (typically three or four) pins or screws. This ring frame is used to determine a three dimensional data set. From this data set, Cartesian coordinates are calculated for both the lesion, the location of the pins or screws, and the fiducial marks on the frame. The ring frame fits into a large frame. A large frame is then attached to the patient in the operating suite. The large frame provides known positions and guides the surgical or observational instruments. The large frame is used to position the instrument to be introduced into the patient through a burr hole so that it intersects the target. In frameless stereotaxy, the ring frame is replaced with several markings on the patient's skull which can be used to determine several known positions. The large frame is replaced by a camera. The camera is usually infrared or some such device. Multiple sensors readable by the camera are placed on the instrument. For example, the surgical instrument or tool is provided with one or more light emitting diodes (“LEDs”) which are tracked by the camera. The position of the surgical instrument can be calculated from the information from the LEDs on the surgical instrument or observational tool.
U.S. Pat. No. 4,955,891 and U.S. Pat. No. 4,805,615, both issued to Carol, each discuss the use of stereotaxy surgery with computerized tomographic (“CT”) scanning. CT scanning is used to determine the exact position of a lesion or specific portion of the brain. After the exact position of the lesion or specific portion of the brain is determined, a phantom fixture is set up. The phantom fixture replicates the position of the ring frame on the patient. A phantom target is set up. The instrument can then be positioned on the phantom such that it intersects the target. The information from the phantom can then be used in actually positioning the instrument in the operating suite.
U.S. Pat. No. 4,998,938 issued to Ghajar et al. shows another surgical device for facilitating the insertion of an instrument into a patient's cranial cavity through a burr hole. The device includes a guide having an end configured to pass into the burr hole. There is a separate locking member. A body member includes alignment markings to help with insertion of a catheter or stylet. Unlike the '370 patent, there is no movable member for adjusting the path of the guide.
The methods currently in use all have a number of shortcomings. Most of the techniques currently used to place a surgical instrument or observational tool within a patient employ a limited amount of accuracy. In particular, current framed, frameless, and freehand methods compute or predict trajectories on the basis of imaging data or anatomic landmarks that do not account for the slight, but real shifting of the brain upon opening the cranium and meninges to the level of the subarachnoid space. This inherent inaccuracy inherently limits the success of these various methodologies. In other words, these systems do not use any means of updating the data files to include data obtained following the placement of a surgical burr hole and opening of the meninges. In addition, all the methods require large amounts of judgment on the part of the surgeon placing the surgical instrument or tool, and in particular, offer no direct feedback on the success or failure of the trajectory to reach the target. Very few of the techniques use an imaging or scanning apparatus to aid in the placement of the surgical instrument or observational tool. The only one that does requires a phantom frame and target to be set up to simulate the real geometry. In short, none of the apparatuses appear to use an imaging or scanning apparatus as extensively as they could be used to minimize the time and effort needed to accurately place a surgical instrument into a patient, and to offer immediate data on the success or failure of the trajectory to reach the target.
The trajectory guide system taught in Published International Patent Application PCT/US98/10008 (International Publication number WO 98/51229) addresses these and other shortcomings of prior art surgical working platform systems as described above. The disclosed system provides a means for accurately determining the trajectory of a surgical instrument within a passage which in turn lies within a guide or positioning stem that extends from a movable member that is selectably lockable in position with respect to a base. Some embodiments of this system employ removable guide stems or positioning stems that can be removed from the movable member once an appropriate trajectory has been chosen and a surgical instrument inserted into the passage formed within the chosen stem and movable member. One disadvantage of this system is that there may be axial movement introduced to the instrument by the process of removing the stem; that is, the instrument may be disadvantageously introduced further into the body, or disadvantageously removed farther from the body, by the axial motion of the stem as it is removed.
This document discusses a method and apparatus for accurately aligning the trajectory of, guiding of, and introducing or withdrawing a surgical instrument. The apparatus includes a base which has a movable member positioned in or movably attached to the base. The movable member has a passage therein which forms a portion of the trajectory path. The movable member also includes a removably attachable guide stem which has an opening therein. The guide stem is attached to said movable member such that the opening in the guide stem substantially aligns with the passage in the movable member. A removable positioning stem can be placed within the removably attached guide stem for purposes of trajectory alignment. In one embodiment, the removable positioning stem includes an MRI alignment stem or image-guided workstation probe with LEDs or light reflectors.
A positioning stem further includes a first locator and a second locator. The first and second locators are associated with two different portions of the positioning stem so that they are essentially two points on a line. The first and second locators are also locatable by a scanning or imaging system. The positioning stem is inserted into the guide stem and used to position the movable member. Moving the positioning stem while within the guide stem moves the passage therein to different trajectories. Once the passage within the movable member is more or less aligned with a target within the body, a locking member locks the movable member into a fixed position.
The base, movable member and guide stem are adapted for clinical applications in which a distal portion of an instrument is positioned in a specified targeted tissue location, and further in which a proximal portion of the instrument is implanted or tunneled under a skin flap. In these applications, it is desirable to keep the base of the apparatus securely attached to the patient's body (typically attached to the patient's skull), and bend or otherwise angle the flexible instrument over the edge of the base until it is extended generally parallel to the body surface, between the body and overlying skin flap (or in the case of attachment to the skull, the scalp flap). To provide sufficient resistance to potential infection by microorganisms which may migrate down the shaft of the instrument, a tunnel of approximately 4-5 centimeters in length is preferred, but the exact length will depend on the specific clinical situation.
In one embodiment the first locator and the second locator are readable by a magnetic resonance imaging apparatus. The locator can include a fluid readable by a magnetic resonance imaging apparatus or a source of radio frequency, such as a coil, which is readable by a magnetic resonance imaging apparatus. In the latter embodiment, the first and second locators may be small radio frequency (RF) coils that detect an electromagnetic signal in a magnetic resonance imaging environment. The electromagnetic signal detected can be used to locate the first and second locators. The line formed by the first locator and the second locator may be substantially aligned with the centerline of the passage in the movable member or may be offset from the centerline of passage in the movable member. In other embodiments, the first and second locators may be light emitting diodes which are readable by an infrared camera.
The first and second locators may be located within an essentially solid plastic positioning stem, or in another embodiment, the first and second locators may be located within an MR-visible chamber within the positioning stem. In the latter embodiment, the chamber may be filled with an MR-visible fluid (paramagnetic, for example), which can be used to afford a first approximation of alignment. The first and second locators may be either MR-visible (different than the MR-visible chamber) or may be MR-invisible, in which case they would exhibit a negative image against the background of the MR-visible fluid within the larger chamber of the positioning stem. Advantageously, the fluid in the chamber produces an image which can be easily located and can be used to roughly align the positioning stem. The MR-visible or MR-invisible fluid of the first and second locators can then be used for fine or precise alignment.
The movable member includes a threaded axial opening which receives and engages a threaded end of the guide stem. The movable member may be a ball capable of swiveling with respect to the base.
The movable member may also include a separate relaxable stabilizer or, alternatively, a portion of the movable member is manufactured to provide similar characteristics. In either case, the relaxable material of the instrument stabilizer holds a catheter or other instrument in place so that a guide stem may be unthreaded or otherwise detached from the movable member and removed axially, over the body of the catheter or instrument, without the catheter or instrument being subjected to undesirable axial motion. Alternatively, a rigid material may be used, and a passage through the rigid material is at least partially offset with respect to the trajectory passage through the movable member to reduce an effective area of the passages and grasp an instrument.
In another embodiment, the movable member may also include a stage which allows for planar movement in a direction intersecting the trajectory. A surgical instrument, such as a needle, probe (cryotherapy probe, laser probe, RF ablation probe, microwave interstitial therapy probe, or focused ultrasound therapy probe), catheter, endoscope, or electrode, can then be inserted through the movable member and the opening in said guide stem to guide the instrument toward the target position within the patient. This allows repositioning of the surgical instrument without altering the trajectory itself, by first withdrawing it from the targeted tissue and then adjusting the stage in a direction intersecting the trajectory.
The openings within the movable member and guide stem (whether integral to the movable member or removably attached) are designed to accommodate surgical instruments and observational tools. As there is a wide variety of different surgical instruments and observational tools, it is anticipated that multiple movable members and guide stems with openings of different diameter for such a wide array of surgical instruments and observational tools will be employed. In addition, in the case of a guide stem that is integral to the movable member, an additional positioning stem, of a diameter that may be fit into the guide stem, may be employed.
Advantageously, the scanning device used for diagnostic purposes can be employed to place an instrument within the body of a patient. There is no need for framed stereotaxy or unframed stereotaxy, two procedures that require large amounts of time to perform. Procedures that formerly required many hours can now be performed in substantially less amounts of time with the trajectory guide. Time is saved over framed or unframed stereotaxy since there is no need to spend time placing a frame onto the patient or calculating the location of several selected points before the actual introduction of a surgical instrument. The procedure is not only quicker, but allows real-time feedback as the surgical instrument progresses into the body. A computer associated with the scanning device also calculates the trajectory to determine if the line defined by the first locator and the second locator is collinear with the trajectory.
One procedure for use includes: attaching a base to a body (preferably a skull); positioning a movable member (with a guide stem attached) in relationship to the base; loosely attaching a locking member to the base; inserting an alignment stem into the guide stem; performing an alignment procedure; tightening the locking ring to lock the moveable member in place; removing the alignment stem; advancing the distal portion of the catheter to the target through the guide stem; removing the guide stem to allow the relaxable member to secure the catheter in position; removing the locking ring; flexing the catheter into the groove in the base plate; tunneling the proximal portion of the catheter under the skin to a desired location; securing a cap to the base plate (over the moveable member and catheter); and laying the skin flap over the base plate and suturing it in place. For a two-piece base including a mounting seat and a locking collar, after the guide stem and locking member are removed, the locking collar is also removed to leave behind the lower profile mounting seat portion of the base. Other aspects of the present apparatuses and methods will become apparent upon reading the following detailed description of the invention and viewing the drawings that form a part thereof.
In the drawings, which are not necessarily drawn to scale, like reference numerals describe substantially similar components throughout the several views. Like reference numerals having different letter suffixes represent different instances of substantially similar components. The drawings illustrate generally, by way of example, but not by way of limitation, various embodiments discussed in the present document.
a is an exploded isometric view of the movable member or ball and guide stem of the trajectory guide.
b is a cross-sectional view of the movable member or ball of the trajectory guide.
c is a cross-sectional view of the movable member or ball of the trajectory guide after insertion of the relaxable stabilizer and removably attached guide member.
d is a cross-sectional view of the assembly of
e is a view of the assembly of
f is a view of the assembly of
g is a close up side view of a portion of
a and 6b are isometric views of one example of a base of the trajectory guide.
c-6e are bottom, side, and top views, respectively, of the base of
f is a cross sectional view taken along the line 6f-6f of
g is a side view of the base of
a and 7b are isometric views of one example of the locking member of the trajectory guide.
c is a top view of the example of the locking member of the trajectory guide.
d is a cross-sectional view of the example of the locking member of the trajectory guide, taken along the line 7d-7d of
a, 8b and 8c are perspective views showing the use of a base with a flexible instrument that is tunneled under a skin flap.
a is a perspective view of one example of a cap member of a trajectory guide.
b and 9c are side and bottom views, respectively, of the cap member of
d is a close up side view of a portion of
a is an isometric view of a preferred embodiment of a alignment or positioning member for the trajectory guide.
b is an exploded side view of the embodiment of
c is a side view of a portion of the embodiment of
d is a side cross sectional view of the embodiment of
e is an end view of the embodiment of
f is a detailed view of a portion of the embodiment of
a is a partial cutaway side view of an alternative embodiment of the base and alignment guide.
b is a side view illustrating the use of the alternative embodiment of
a is a partial cutaway isometric view of yet another alternative embodiment of the base and alignment guide.
b is an isometric view illustrating the use of the alternative embodiment of
a is a top perspective view of a movable member, a guide stem, and a two-piece base including a mounting seat and a collar.
b is a top exploded view of a cap and the mounting seat and the movable member of
c is a bottom exploded view of the mounting seat and cap of
d is a bottom perspective view of the mounting seat and cap of
e is a top perspective view of the cap and mounting seat of
a is a top perspective view of a two-piece base, including a mounting seat and collar, and a movable member.
b is an exploded side view of the two-piece base of
a is a top perspective view of a low-profile mounting seat, movable member and guide stem.
b is a side view of the apparatus illustrated in
a is a top view of a low-profile mounting seat, movable member, and collar.
b is a side view of the mounting seat and collar of
c is a top exploded view of the two-piece base provided by the mounting seat and collar of
a is a bottom perspective view of an example of a low-profile mounting seat and cap.
b is a top view of the cap and mounting seat of
c is a side perspective view of the cap and mounting seat of
a is a side view of a mounting seat, ball, and stabilizing cap.
b is a top view of the ball and cap with aligned openings.
c is a top view of the ball and cap with offset openings to grasp and stabilize an instrument.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that the embodiments may be combined, or that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims and their equivalents. In this document, the terms “a” or “an” are used, as is common in patent documents, to include one or more than one. Furthermore, all publications, patents, and patent documents referred to in this document are incorporated by reference herein in their entirety, as though individually incorporated by reference. In the event of inconsistent usages between this documents and those documents so incorporated by reference, the usage in the incorporated reference(s) should be considered supplementary to that of this document; for irreconciliable inconsistencies, the usage in this document controls.
This application incorporates International Patent Application PCT/US98/10008 (International Publication number WO 98/51229) by reference, together with the disclosure of its U.S. counterpart, issued U.S. Pat. No. 5,993,463, which is also incorporated herein by reference in its entirety.
The MRI system 100 also includes gradient amplifier 150. Also included are a set of RF amplifiers 160 and RF coils 162 which are used in conjunction with the magnet system 140 to produce and transmit RF pulses in the magnetic field. Either the same RF coil or another RF coil is used to detect the MR signals from the interrogated tissues. This detected MR signal is then amplified by a preamplifier 164 and received by a receiver 166 for transmission to the data acquisition system 170 and then transmitted to the image data processing computer system 110. The data acquisition system is input to the system controllers and waveform generator portion 120 of the computer 102 as part of a feedback loop. The data is interpreted and placed on a display 180 associated with the computer of the MRI system 100. The computer 102 and the CPU 104 and memory 106 can use data acquired from the MRI system 100 to build up images of a portion of the patient which is being scanned. The images are typically referred to as slices. For example, a horizontal slice and a vertical slice can be made of the portion of the body or patient being imaged. The computer can also recalculate and build other slices for use by doctors and radiologists having any selected orientation needed to facilitate study of various items within a patient. For example, lesions can be found within the body as well as certain organs. Different slices can be requested to facilitate study of these targets. From the data acquired, the position of the lesions or organs can also be very accurately determined using a Cartesian or polar coordinate system. The above description of the MR scanner is simply for demonstrative purposes and multiple alternative MR scanning systems can be described herein.
Within some parts of a patient, it is critical to very accurately place a surgical instrument. For example, in neurosurgery, it is very critical to have instruments, such as catheters or needles, placed very accurately within the cranium or head of a patient.
The movable member 220 has an axial opening 222 which is shown in
As shown in
The locking member 230 also has an opening therethrough. The locking member 230 includes a cylindrical bottom portion 232 and a flange 234. The opening through the locking member 230 has sufficient space to allow movement of movable member 220 when the locking member is in an unlocked or untightened position. Although not shown in
A guide stem or guide member 240 is also shown in
a-10f show one example of a positioning stem. In
Alternatively, positioning stem 1700 may include a region of solid material that appears on the MR image only by virtue of its absence of MR visibility.
A series of bump-like protrusions or other features 1740 are arranged around a circumference of a distal portion of tapered distal shaft end 1730. Similarly, a series of box-like features 1770 are arranged around the central portion of the main portion 1710, proximal of the tapered distal shaft end 1730 and distal of a stop 1780. Features 1740 and 1770 are optional features that help hold positioning stem 1700 in place as it is inserted into guide stem 240 until it is stopped in place by stop 1780.
a and 5b show one example of a movable member 220 that includes two mating, substantially hemispherical portions 220a and 220b that, when assembled, provide a substantially spherically shaped movable member 220. Movable member 220 has an axial opening 222 therein. Axial opening 222 includes a first opening 223 in upper hemispherical portion 220a, and a second opening 224 in lower hemispherical portion 220b. The inside surface of first opening 223 is threaded as indicated by reference numeral 225. First opening 223 and threads 225 receive an external threaded portion 241 of guide stem 240. Second opening 224 is of a sufficient diameter to allow an instrument, such as a needle, probe, catheter, endoscope, or electrode to pass through the axial opening 222. Movable member 220 is made of a rigid or semi-rigid biocompatible polymer material. Suitable materials include polycarbonate or DELRIN®.
Lower hemispherical portion 220b further includes a recess 226 sized and shaped to accept a relaxable stabilizer 227. Relaxable stabilizer 227 is sized and shaped to complement the size and shape of recess 226, thus fitting closely inside recess 226 so as not to move out of proper position inadvertently. Also, relaxable stabilizer 227 has an axial opening 228 that generally is coaxial with axial opening 222 of the movable member 220.
Because movable member 220 is preferably a relatively stiff material such as polycarbonate, and relaxable stabilizer 227 is relaxable and therefore made of a relatively more compliant material such as silicone, the two hemispherical portions 220a and 220b and the relaxable stabilizer 227 will generally be manufactured separately and assembled into the configuration shown in
c through 5g illustrate one process of positioning a instrument 229 within the movable member 220 so as to restrict or prohibit axial motion of the instrument 229.
Before attachment of guide stem 240 to movable member 220 as shown in
Relaxable stabilizer 227 is sized and shaped such that: (1) upon removal of the tool, the previously stretched inside diameter of its axial opening 228 will attempt to return to a size somewhat less than the outer diameter of guide stem 240; but (2) relaxable stabilizer 227 will not hold guide stem 240 so tightly that it cannot be removed by unscrewing it from the movable member 220.
Before removal of guide stem 240, an instrument 229 may be inserted into the passage through opening 242 of guide stem 240, as shown in
From this description it can be appreciated that the relaxable stabilizer 227 operates in a manner exactly opposite from known stabilization techniques, because the relaxable stabilizer 227 relies on self-relaxation to provide stabilizing force to instrument 229, as opposed to techniques in which compression of a material provides stabilization. For example, the well-known Touhy-Borst valve uses a compressible “O-ring” to provide stabilization of objects such as guidewires, leads, catheters, and the like upon twisting by a clinician's hand, but the present relaxable stabilizer stabilizes instruments by relying on relaxation, not compression.
a to 6g show an example of base 210 of trajectory guide 200. Base 210 includes a generally cylindrical portion 212 and a flange 214. Flange 214 includes openings 215, 216, and 217. Flange 214 also a seat 218 that receives movable member 220. Seat 218 is part of an opening 600 which includes an internally threaded portion 610. Internally threaded portion 610 is dimensioned so as to receive the threads of cylindrical portion 232 of locking member 230. Groove 219 lies in base 210 and is sized and shaped to accommodate a flexible instrument 229 or other instrument, as discussed further herein with respect to a stabilization or tunneling procedure.
In other embodiments, base 210 may separated into two or more pieces.
a-7d illustrate an example locking member 230 of trajectory guide 200. Locking member 230 includes cylindrical portion 232 and flange 234. The external surface of the cylindrical portion 232 is threaded to form a threaded external surface 700. The threads associated with the externally threaded surface 700 are dimensioned so as to engage the internally threaded surface 610 of opening 600 of base 210. Locking member 230 also includes an opening 710 which passes through locking member 230. Locking member 230 also has a locking surface 720. In this particular example, locking surface 720 is shaped so that it smoothly engages the spherical face of movable member 220. Flanges 234 are outwardly extended so that the threads of the threaded surface 700 can be easily engaged with internal threads 610 of opening 600 of base 210. Other geometric shapes could be used for the locking member and other locking surfaces could be employed.
In operation, a patient undergoes a scan with an apparatus such as an MRI or magnetic resonance imaging system 100 as part of a normal diagnostic medical procedure. A scan can be used to locate a particular organ within a patient or to locate lesions or any other target 270 within the patient. It should be noted that targets are not necessarily limited to being within the head of a patient. There can also be other areas of a patient where it would be critical to accurately place a surgical or observational tool. In addition, it should also be noted that the patient need not necessarily be human. A patient may include any living animal. Once a target is found and located using an MRI or other scanning system, base 210 of trajectory guide 200 can be attached to the patient. The base is affixed to the patient in an area near the target 270. The computer 102 of scanning device 100 is used to determine the exact location of the target 270. The exact location can be found in any type of coordinate system, although normally a Cartesian coordinate system is used. Once base 210 is attached to the patient, the remaining portions of trajectory guide 200 are attached to base 210. In other words, movable member 220, guide stem 240, locking member 230, and positioning stem 400 are added to form a complete trajectory guide 200.
Scanning system 100 reads first locator 420 and second locator 430 of positioning stem 400. A line defined by first locator 420 and second locator 430 is calculated by computer 102. The calculated line corresponds to the center line of axial opening 222 and opening 242 of guide stem 240. If the line aligns with target 270, locking member 230 is used to lock movable member 220 into position. If the line does not intersect target 270, positioning stem 400 is moved until the line formed by first locator 420 and second locator 430 intersects target 270. If the patient and positioning stem 400 can be easily reached by a surgeon during a scanning operation, positioning stem 400 can be moved or readjusted manually. If the patient is remote from the surgeon or cannot be reached by the surgeon, a hydraulic or other actuator may be used to move positioning stem 400. Once such a trajectory line is formed, the locking member 230 is secured.
After fixing the position of movable member 220, positioning stem 400 is removed from guide stem 240. Opening 242 in guide stem 240, and opening 224 in movable member 220 form the trajectory 260. An instrument 229 may be placed through the guide opening to intersect target 270.
a, 8b and 8c illustrate one procedure for securing the distal portion of a flexible instrument 229 so that the proximal portion of flexible instrument 229 may be tunneled under a skin flap.
Base 210 is attached to the patient as described above. Flexible instrument 229 extends through movable member 220 to target location 270 and is secured in place by relaxable stabilizer 227 (not shown in
In
In
a-9d illustrate one example of cap 310 in detail. In this example, cap 310 includes a relatively larger top 320 and a relatively smaller, generally cylindrical base 330. The exterior of base 330 also has an opening 340 designed to permit the flexible catheter to bend and extend through opening 340 and groove 219 of base 210.
Any means for attaching cap 310 to base 210 is within the scope of the invention. In one example, cap 310 includes a feature that snap-fits into base 210. In another example, the exterior of the base 330 has several circumferential ridges 350 shaped and located to engage internal threads 610 of base 210. In this particular example, the ridges are parallel and thus not external threads that would mate into the internal threads 610 of the base in a manner similar to that of the external threads of the locking ring. However, such a threaded cap is also within the scope of the invention.
a shows a modified guide stem 240a, which includes a ball-shaped end 220c located within base 210. Modified guide stem 240a also has an axial opening 222a that is similar in function to axial opening 222 previously described. Modified guide stem 240a may be shorter than previously described guide stem 240 but otherwise functions similarly.
b illustrates using alignment stem 1700 as described above. Locking ring 230 is used to secure the ball-shaped end 220c within base 210, thereby aligning axial opening 222a as desired. After removal of alignment stem 1700, a catheter is inserted directly into axial opening 222a so that it may be held in place by any convenient means for securing the catheter in place. For example, the diameter of axial opening 222a could be chosen so that, even though ball-shaped end 220c is constructed of a rigid material, friction alone would be adequate to grip the catheter in place yet allow sufficient movement to insert the catheter to the desired position. The catheter is tunneled under the skin as described above; the relatively shorter length of modified guide stem 240a permits the skin flap to cover the base without removal of a relatively longer guide stem 240, as previously described.
a and 12b illustrate schematically still another example within the scope of the invention.
Alignment stem 1700 is employed as described above, and locking ring 230 is used to secure ball 220d within the base 210, thereby aligning axial opening 222b as desired. After removal of alignment stem 1700, catheter 229 is inserted directly into axial opening 222a, emerging from the distal outlet and then puncturing through alignment material 290, which secures catheter 229 in place. The catheter is then tunneled under the skin as described above for the preferred embodiment.
The catheters used in the preferred embodiment of neurosurgery typically range in size from 3 to 12 French (1-4 millimeters in diameter). This is small enough that a wide range of materials are suitable for alignment material 290, notably many medical-grade silicones and urethanes.
Yet another variation on this embodiment combines two means for securing the catheter in place. For example, the first means could be either the embodiment of
a-13e are various views illustrating an alternate example of a two piece version of base 210. Two-piece base 1300 includes a mounting seat 1302 and a collar 1304. In this example, mounting seat 1302 includes a flange with bone screw holes. Mounting seat 1302 also includes a hemispherical recess for receiving a swiveling one or two piece ball-shaped movable member 220. Movable member 220 includes an opening 223 into which a guide stem 240 is threaded. Cylindrical collar 1304 includes internal threads for receiving a locking member 230 for securing movable member 220, after it has been positioned to provide the desired trajectory, while an instrument 280 is inserted through guide stem 240 toward target 270. Collar 1304 includes a coupler, such as legs that detachably snap-fit into receptacles 1308 in base 1302. After instrument 280 is guided to target 270, guide stem 240 is then removed over instrument 280. This allows relaxable stabilizer 227 to hold instrument 280 in place. Locking member 230 and collar 1304 are also then removed. Instrument 280 is bent laterally into a groove 1310 in base 1302. Cap 1312, which includes legs 1314 for snap-fitting into receptacles 1308, is then snapped onto base 1302. Cap 1312 also includes one or more grooves 1316, which aligns with the one or more grooves 1310 in base 1302 for allowing instrument 280 to pass laterally therethrough. This example illustrates how, by separating base 210 into more than one piece (e.g., 1302 and 1304), its profile above the skull may advantageously be reduced by removing one of the pieces (e.g., 1304).
a-14b are various views illustrating another alternate example of a two piece version of base 210. Two-piece base 1400 includes a mounting seat 1402 and a collar 1404. In this example, mounting seat 1402 includes a flange with bone screw holes. Mounting seat 1402 also includes a hemispherical recess for receiving a swiveling one or two piece ball-shaped movable member 220. Movable member 220 includes an opening 223 into which a guide stem 240 is threaded. Cylindrical collar 1404 includes internal threads for receiving a locking member 230 for securing movable member 220, after it has been positioned to provide the desired trajectory, while an instrument 280 is inserted through guide stem 240 toward target 270. Collar 1404 includes a coupler, such as countersunk holes for receiving screws 1406 that detachably engage internally threaded receptacles 1408 in base 1402. This example illustrates how, by separating base 210 into more than one piece (e.g., 1402 and 1404), its profile above the skull may advantageously be reduced by removing one of the pieces (e.g., 1404).
a and 15b are various views illustrating another example of a low profile mounting seat 1502, to which a removable internally threaded collar can be snap-fit, along with a movable member 220 and guide stem 240. This example includes three grooves 1504 into which an instrument 280 can be laterally bent. A matching cap with an aligning groove is then snap-fitted into the receptacles.
a-16c are various views illustrating another example of a two-piece base 1600 including a mounting seat 1602, a removable internally-threaded collar 1604, and a movable member 220. This example of mounting seat 1602 includes three grooves 1610 into which an instrument 280 can be laterally bent after removing collar 1604. In this example, collar 1604 includes a coupler, such as attachment feet 1606 that are pushed toward each other by the user in order to snap collar 1604 into and out of receptacles 1608 in mounting seat 1602. This example also includes three grooves 1610 into which an instrument 280 can be laterally bent after removing collar 1604, as illustrated in
a-18c are various views illustrating an alternate example of a low-profile mounting seat 1802 portion of a two-piece base and a cap 1804. In this example, mounting seat 1802 includes three grooves 1806 into which an instrument 280 can be laterally bent. Cap 1804 includes a single groove 1808 that is aligned, by rotating cap 1804 with respect to mounting seat 1802 before snap-fitting it thereto, to the groove in mounting seat 1802 into which instrument 280 has been laterally bent. Three feet in cap 1804 align with matching receptacles 1810 in mounting seat 1802 so that groove 1808 in cap 1804 is capable of being aligned with any of the grooves 1806 in mounting seat 1802.
a-c are various views illustrating an alternative example capable of using a cap or other slide component to stabilize a catheter or other medical instrument.
The invention as described above can be used with various known aspects of remote actuation systems, perhaps with minor modifications to accommodate the features of the invention that would be within the ordinary skill of the art. Suitable examples are the mechanical and hydraulic remote actuation and control devices taught in the International Patent Application cited above. Similarly, mechanisms to laterally displace the apparatus without changing the trajectory of the catheter or instrument held by the relaxable stabilizer in the movable member may be employed. An example would be the stage mechanism taught in the same International Patent Application. Any suitable system for computerized monitoring and/or control of the invention may be employed.
The invention can be practiced in conjunction with trajectory guides adapted for various parts of the body, including uses related to biopsies or therapy provided to organs in or near the abdomen or pelvis. Among the uses are liver biopsies, renal biopsies, pancreatic biopsies, adrenal biopsies. In addition, some procedures require both a biopsy as well as a therapy. The biopsy needle is used first and then an instrument used in therapy is substituted for the biopsy needle. The instrument for applying therapy includes instruments for thermal ablation, and instruments for providing shunts to various organs such as TIPS (transjugular interhepatic portal systemic shunts). The inventive trajectory guide can also be used to conduct biliary drainages, and used to conduct other biopsies and treatments at or near the abdomen of the pelvis. The trajectory guide can also be used for procedures on the back and near the spine of a patient. Nerve blocks, epidural injections, facet injections, sacroiliac joint injections, and spinal cordotomy are just a few of the procedures possible with the trajectory guide. Non-brain treatments and biopsies in the head and neck can also be accomplished using the trajectory guide. Trigeminal neuralgia can be treated using the trajectory guide. Biopsies of the pleura, the lung, and the mediastinum and removal of emphysematous to reduce the volume of the lung can be done percutaneously using the trajectory guide. The trajectory guide can also be used for fetal surgery such as for diversion of fetal hydrocephalus, and for treatment of fetal hydronephrosis. These are just a sampling of the possible procedures that can be done using the body portal type trajectory guide. Numerous other procedures will be accomplished using this device. In addition, the device will give rise to other future surgical procedures.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments may be used in combination with each other. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “including” and “wherein.”
This application is a divisional application of U.S. patent application Ser. No. 09/932,141, filed Aug. 17, 2001 now U.S. Pat. No. 6,902,569, which claims the benefit of priority, under 35 U.S.C. Section 119(e) to U.S. Provisional Patent Application Ser. No. 60/225,952, filed Aug. 17, 2000, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1129333 | Clarke | Feb 1915 | A |
1664210 | Hall | Mar 1928 | A |
2119649 | Roosen | Jun 1938 | A |
2135160 | Beekhuis | Nov 1938 | A |
2686890 | Davis | Aug 1954 | A |
3016899 | Stenvall | Jan 1962 | A |
3017887 | Heyer | Jan 1962 | A |
3055370 | McKinney et al. | Sep 1962 | A |
3055371 | Kulick et al. | Sep 1962 | A |
3115140 | Volkman | Dec 1963 | A |
3135263 | Connelley, Jr. | Jun 1964 | A |
3223087 | Vladyka et al. | Dec 1965 | A |
3262452 | Hardy et al. | Jul 1966 | A |
3273559 | Evans | Sep 1966 | A |
3282152 | Myer | Nov 1966 | A |
3402710 | Paleschuck | Sep 1968 | A |
3444861 | Schulte | May 1969 | A |
3457922 | Ray | Jul 1969 | A |
3460537 | Zeis | Aug 1969 | A |
3508552 | Hainault | Apr 1970 | A |
3672352 | Summers | Jun 1972 | A |
3760811 | Andrew | Sep 1973 | A |
3817249 | Nicholson | Jun 1974 | A |
3893449 | Lee et al. | Jul 1975 | A |
3981079 | Lenczycki | Sep 1976 | A |
4013080 | Froning | Mar 1977 | A |
4040427 | Winnie | Aug 1977 | A |
4230117 | Anichkov | Oct 1980 | A |
4265252 | Chubbuck et al. | May 1981 | A |
4312337 | Donohue | Jan 1982 | A |
4318401 | Zimmerman | Mar 1982 | A |
4328813 | Ray | May 1982 | A |
4341220 | Perry | Jul 1982 | A |
4345606 | Littleford | Aug 1982 | A |
4350159 | Gouda | Sep 1982 | A |
4355645 | Mitani et al. | Oct 1982 | A |
4386602 | Sheldon et al. | Jun 1983 | A |
4418894 | Mailliet et al. | Dec 1983 | A |
4448195 | LeVeen et al. | May 1984 | A |
4463758 | Patil et al. | Aug 1984 | A |
4475550 | Bremer et al. | Oct 1984 | A |
4483344 | Atkov et al. | Nov 1984 | A |
4571750 | Barry | Feb 1986 | A |
4572198 | Codrington | Feb 1986 | A |
4579120 | MacGregor | Apr 1986 | A |
4592352 | Patil | Jun 1986 | A |
4598708 | Beranek | Jul 1986 | A |
4608977 | Brown | Sep 1986 | A |
4617925 | Laitinen | Oct 1986 | A |
4618978 | Cosman | Oct 1986 | A |
4629451 | Winters et al. | Dec 1986 | A |
4638798 | Shelden et al. | Jan 1987 | A |
4660563 | Lees | Apr 1987 | A |
4665928 | Linial et al. | May 1987 | A |
4699616 | Nowak et al. | Oct 1987 | A |
4705436 | Robertson | Nov 1987 | A |
4706665 | Gouda | Nov 1987 | A |
4733661 | Palestrant | Mar 1988 | A |
4755642 | Parks | Jul 1988 | A |
4791934 | Brunnett | Dec 1988 | A |
4793355 | Crum et al. | Dec 1988 | A |
4805615 | Carol | Feb 1989 | A |
4805634 | Ullrich et al. | Feb 1989 | A |
4807620 | Strul et al. | Feb 1989 | A |
4809694 | Ferrara | Mar 1989 | A |
4824436 | Wolinsky | Apr 1989 | A |
4826487 | Winter | May 1989 | A |
4869247 | Howard, III et al. | Sep 1989 | A |
4883053 | Simon | Nov 1989 | A |
4896673 | Rose et al. | Jan 1990 | A |
4902129 | Siegmund et al. | Feb 1990 | A |
4922924 | Gambale et al. | May 1990 | A |
4955891 | Carol | Sep 1990 | A |
4957481 | Gatenby | Sep 1990 | A |
4986280 | Marcus et al. | Jan 1991 | A |
4986281 | Preves et al. | Jan 1991 | A |
4989608 | Ratner | Feb 1991 | A |
4991579 | Allen | Feb 1991 | A |
4998938 | Ghajar et al. | Mar 1991 | A |
5006122 | Wyatt et al. | Apr 1991 | A |
5024236 | Shapiro | Jun 1991 | A |
5027818 | Bova et al. | Jul 1991 | A |
5030223 | Anderson et al. | Jul 1991 | A |
5050608 | Watanabe et al. | Sep 1991 | A |
5052329 | Bennett | Oct 1991 | A |
5054497 | Kapp et al. | Oct 1991 | A |
5057084 | Ensminger et al. | Oct 1991 | A |
5057106 | Kasevich et al. | Oct 1991 | A |
5065761 | Pell | Nov 1991 | A |
5078140 | Kwoh | Jan 1992 | A |
5078142 | Siczek et al. | Jan 1992 | A |
5080662 | Paul | Jan 1992 | A |
5087256 | Taylor et al. | Feb 1992 | A |
5099846 | Hardy | Mar 1992 | A |
5102402 | Dror et al. | Apr 1992 | A |
5116344 | Sundqvist et al. | May 1992 | A |
5116345 | Jewell et al. | May 1992 | A |
5120322 | Davis et al. | Jun 1992 | A |
5125888 | Howard et al. | Jun 1992 | A |
5142930 | Allen et al. | Sep 1992 | A |
5143086 | Duret et al. | Sep 1992 | A |
5154179 | Ratner | Oct 1992 | A |
5154723 | Kubota et al. | Oct 1992 | A |
5163430 | Carol | Nov 1992 | A |
5166875 | Machida et al. | Nov 1992 | A |
5171217 | March et al. | Dec 1992 | A |
5174297 | Daikuzono et al. | Dec 1992 | A |
5186174 | Schlondorff et al. | Feb 1993 | A |
5201742 | Hasson | Apr 1993 | A |
5207223 | Adler | May 1993 | A |
5207688 | Carol | May 1993 | A |
5211165 | Dumoulin et al. | May 1993 | A |
5221264 | Wilk et al. | Jun 1993 | A |
5222499 | Allen et al. | Jun 1993 | A |
5230338 | Allen et al. | Jul 1993 | A |
5230623 | Gutherie et al. | Jul 1993 | A |
5246448 | Chang | Sep 1993 | A |
5257998 | Ota et al. | Nov 1993 | A |
5263939 | Wortrich | Nov 1993 | A |
5263956 | Nobles | Nov 1993 | A |
5267970 | Chin et al. | Dec 1993 | A |
5269305 | Corol | Dec 1993 | A |
5279309 | Taylor et al. | Jan 1994 | A |
5279575 | Sugarbaker | Jan 1994 | A |
5280427 | Magnusson et al. | Jan 1994 | A |
5290266 | Rohling et al. | Mar 1994 | A |
5291890 | Cline et al. | Mar 1994 | A |
5300080 | Clayman et al. | Apr 1994 | A |
5305203 | Raab et al. | Apr 1994 | A |
5306272 | Cohen et al. | Apr 1994 | A |
5309913 | Kormos et al. | May 1994 | A |
5330485 | Clayman et al. | Jul 1994 | A |
5354283 | Bark et al. | Oct 1994 | A |
5361763 | Kao et al. | Nov 1994 | A |
5366446 | Tal et al. | Nov 1994 | A |
5375588 | Yoon | Dec 1994 | A |
5375596 | Twiss et al. | Dec 1994 | A |
5380302 | Orth | Jan 1995 | A |
5383454 | Bucholz | Jan 1995 | A |
5387220 | Pisharodi | Feb 1995 | A |
5394457 | Leibinger et al. | Feb 1995 | A |
5405330 | Zunitch et al. | Apr 1995 | A |
5423848 | Washizuka et al. | Jun 1995 | A |
5445166 | Taylor | Aug 1995 | A |
5452720 | Smith et al. | Sep 1995 | A |
5464446 | Dressen et al. | Nov 1995 | A |
5470307 | Lindall | Nov 1995 | A |
5474564 | Clayman et al. | Dec 1995 | A |
5483961 | Kelly et al. | Jan 1996 | A |
5494034 | Schlondorff et al. | Feb 1996 | A |
5494655 | Rocklage et al. | Feb 1996 | A |
5515160 | Schulz et al. | May 1996 | A |
5517990 | Kalfas et al. | May 1996 | A |
5528652 | Smith et al. | Jun 1996 | A |
5541377 | Stuhlmacher | Jul 1996 | A |
5572905 | Cook, Jr. | Nov 1996 | A |
5572999 | Funda et al. | Nov 1996 | A |
5575798 | Koutrouvelis | Nov 1996 | A |
5618288 | Calvo | Apr 1997 | A |
5622170 | Schultz | Apr 1997 | A |
5638819 | Manwaring et al. | Jun 1997 | A |
5639276 | Weinstock et al. | Jun 1997 | A |
5643286 | Warner et al. | Jul 1997 | A |
5647361 | Damadian | Jul 1997 | A |
5649936 | Real | Jul 1997 | A |
5658272 | Hasson | Aug 1997 | A |
5662600 | Watson et al. | Sep 1997 | A |
5667514 | Heller | Sep 1997 | A |
5695501 | Carol et al. | Dec 1997 | A |
5713858 | Heruth et al. | Feb 1998 | A |
5755697 | Jones et al. | May 1998 | A |
5776064 | Kalfas et al. | Jul 1998 | A |
5776143 | Adams et al. | Jul 1998 | A |
5776144 | Leysieffer et al. | Jul 1998 | A |
5788713 | Dubach et al. | Aug 1998 | A |
5807033 | Benway | Sep 1998 | A |
5809694 | Postans et al. | Sep 1998 | A |
5810712 | Dunn | Sep 1998 | A |
5817106 | Real | Oct 1998 | A |
5823975 | Stark et al. | Oct 1998 | A |
5833627 | Shmulewitz et al. | Nov 1998 | A |
5843150 | Dreessen et al. | Dec 1998 | A |
5851183 | Bucholz | Dec 1998 | A |
5865817 | Moenning et al. | Feb 1999 | A |
5865842 | Knuth et al. | Feb 1999 | A |
5871445 | Bucholz | Feb 1999 | A |
5871487 | Warner et al. | Feb 1999 | A |
5873822 | Ferre et al. | Feb 1999 | A |
5891034 | Bucholz | Apr 1999 | A |
5891157 | Day et al. | Apr 1999 | A |
5927277 | Baudino et al. | Jul 1999 | A |
5950629 | Taylor et al. | Sep 1999 | A |
5954687 | Baudino | Sep 1999 | A |
5957933 | Yanof et al. | Sep 1999 | A |
5957934 | Rapoport | Sep 1999 | A |
5964705 | Truwit et al. | Oct 1999 | A |
5980535 | Barnett et al. | Nov 1999 | A |
5984930 | Maciunas et al. | Nov 1999 | A |
5993463 | Truwit | Nov 1999 | A |
6006126 | Cosman | Dec 1999 | A |
6018094 | Fox | Jan 2000 | A |
6021343 | Foley et al. | Feb 2000 | A |
6024729 | Dehdashtian et al. | Feb 2000 | A |
6039725 | Moenning et al. | Mar 2000 | A |
6044304 | Baudino | Mar 2000 | A |
6058323 | Lemelson | May 2000 | A |
6071288 | Carol et al. | Jun 2000 | A |
6076008 | Bucholz | Jun 2000 | A |
6079681 | Stern et al. | Jun 2000 | A |
6110182 | Mowlai-Ashtiani | Aug 2000 | A |
6117143 | Hynes et al. | Sep 2000 | A |
6120465 | Guthrie et al. | Sep 2000 | A |
6135946 | Konen et al. | Oct 2000 | A |
6179826 | Aebischer et al. | Jan 2001 | B1 |
6195577 | Truwit et al. | Feb 2001 | B1 |
6206890 | Truwit | Mar 2001 | B1 |
6210417 | Baudino et al. | Apr 2001 | B1 |
6231526 | Taylor et al. | May 2001 | B1 |
6236875 | Bucholz et al. | May 2001 | B1 |
6238402 | Sullivan, III et al. | May 2001 | B1 |
6254532 | Paolitto et al. | Jul 2001 | B1 |
6257407 | Truwit et al. | Jul 2001 | B1 |
6261300 | Carol et al. | Jul 2001 | B1 |
6267769 | Truwit | Jul 2001 | B1 |
6267770 | Truwit | Jul 2001 | B1 |
6273896 | Franck et al. | Aug 2001 | B1 |
6282437 | Franck et al. | Aug 2001 | B1 |
6290644 | Green et al. | Sep 2001 | B1 |
6298262 | Franck et al. | Oct 2001 | B1 |
6315770 | de la Torre et al. | Nov 2001 | B1 |
6321104 | Gielen et al. | Nov 2001 | B1 |
6327491 | Franklin et al. | Dec 2001 | B1 |
6356792 | Errico et al. | Mar 2002 | B1 |
6368329 | Truwit | Apr 2002 | B1 |
6400992 | Borgersen et al. | Jun 2002 | B1 |
6457963 | Tawara et al. | Oct 2002 | B1 |
6482182 | Carroll et al. | Nov 2002 | B1 |
6491699 | Henderson et al. | Dec 2002 | B1 |
6529765 | Franck et al. | Mar 2003 | B1 |
6537232 | Kucharczyk et al. | Mar 2003 | B1 |
6546279 | Bova et al. | Apr 2003 | B1 |
6547795 | Schneiderman | Apr 2003 | B2 |
6556857 | Estes et al. | Apr 2003 | B1 |
6609020 | Gill | Aug 2003 | B2 |
6610100 | Phelps et al. | Aug 2003 | B2 |
6632184 | Truwit | Oct 2003 | B1 |
6655014 | Babini | Dec 2003 | B1 |
6662035 | Sochor | Dec 2003 | B2 |
6676669 | Charles et al. | Jan 2004 | B2 |
6706050 | Giannadakis | Mar 2004 | B1 |
6726678 | Nelson et al. | Apr 2004 | B1 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752812 | Truwit | Jun 2004 | B1 |
6773443 | Truwit et al. | Aug 2004 | B2 |
6782288 | Truwit et al. | Aug 2004 | B2 |
6802323 | Truwit et al. | Oct 2004 | B1 |
6902569 | Parmer et al. | Jun 2005 | B2 |
6913478 | Lamirey et al. | Jul 2005 | B2 |
6944895 | Truwit | Sep 2005 | B2 |
6960216 | Kolb et al. | Nov 2005 | B2 |
7479146 | Malinowski | Jan 2009 | B2 |
20010014771 | Truwit et al. | Aug 2001 | A1 |
20010027271 | Franck et al. | Oct 2001 | A1 |
20010037524 | Truwit | Nov 2001 | A1 |
20020010479 | Skakoon et al. | Jan 2002 | A1 |
20020019641 | Truwit | Feb 2002 | A1 |
20020022847 | Ray et al. | Feb 2002 | A1 |
20020052610 | Skakoon et al. | May 2002 | A1 |
20020077646 | Truwit et al. | Jun 2002 | A1 |
20020156372 | Skakoon et al. | Oct 2002 | A1 |
20030079287 | Truwit | May 2003 | A1 |
20030187351 | Franck et al. | Oct 2003 | A1 |
20030208122 | Melkent et al. | Nov 2003 | A1 |
20040059260 | Truwit | Mar 2004 | A1 |
20040176750 | Nelson et al. | Sep 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040255991 | Truwit et al. | Dec 2004 | A1 |
20040260323 | Truwit et al. | Dec 2004 | A1 |
20040267284 | Parmer et al. | Dec 2004 | A1 |
20060192319 | Solar | Aug 2006 | A1 |
20060195119 | Mazzocchi et al. | Aug 2006 | A1 |
20070250078 | Stuart | Oct 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080004632 | Sutherland et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
3108766 | Sep 1982 | DE |
3937052 | May 1990 | DE |
29612100 | Sep 1996 | DE |
19726141 | Jan 1999 | DE |
19826078 | Aug 1999 | DE |
19808220 | Sep 1999 | DE |
19820808 | Nov 1999 | DE |
0386936 | May 1990 | EP |
0427358 | May 1991 | EP |
0609085 | Aug 1994 | EP |
0724865 | Aug 1996 | EP |
0832611 | Apr 1998 | EP |
0904741 | Mar 1999 | EP |
2237993 | May 1991 | GB |
2329473 | Mar 1999 | GB |
2346573 | Aug 2000 | GB |
WO-8809151 | Dec 1988 | WO |
WO-9522297 | Aug 1995 | WO |
WO-9610368 | Apr 1996 | WO |
WO-9633766 | Oct 1996 | WO |
WO-9703609 | Feb 1997 | WO |
WO-9721380 | Jun 1997 | WO |
WO-9742870 | Nov 1997 | WO |
WO-9817191 | Apr 1998 | WO |
WO-9825535 | Jun 1998 | WO |
WO-9851229 | Nov 1998 | WO |
WO-0001316 | Jan 2000 | WO |
WO-0018306 | Apr 2000 | WO |
WO-0124709 | Apr 2001 | WO |
WO-0149197 | Jul 2001 | WO |
WO-0176498 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040267284 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
60225952 | Aug 2000 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09932141 | Aug 2001 | US |
Child | 10894958 | US |