Embodiments of the invention are directed to systems and methods that allow for determining a transaction initiation mode used to conduct a transaction and applying a specific set of rules associated with the transaction initiation mode to the transaction. In recent years, different types of payment modes have developed. For example, payment transactions may be conducted at a physical store, online, or via mail order or telephone order. Additionally, a user may conduct the transaction using a physical card, mobile device, a token, a mobile wallet, etc. Consequently, each type of transaction can have a number of different attributes. It may be useful to identify the transaction initiation mode to identify these attributes. The widely differing transaction initiation attributes may have different risk, security and convenience characteristics that may be used during payment transaction processing.
Embodiments of the invention address this and other problems, both individually and collectively.
Embodiments of the invention broadly described, allow for determining a transaction initiation mode used to conduct a transaction and applying a specific set of rules associated with the transaction initiation mode to the transaction. More specifically, the invention pertains to generating a credential value and transmitting the credential value to a merchant. The credential value may be created based on a plurality of data elements received in a transaction authorization message and including at least access device information and payment device characteristic information.
Embodiments of the present invention relate to receiving data elements in an authorization transaction message. The authorization transaction message may be generated by a merchant. The type of data elements received may depend on a transaction initiation mode. The data elements may be analyzed and compared against an authentication database, and a credential value may generated based on the data elements. The credential value may be sent to the merchant. The merchant may include the credential value in an authorization request message to an issuer, and the issuer may approve or deny the transaction based on the credential value.
One embodiment of the invention is directed to a method for authenticating a user for a transaction including receiving, at a server computer, a transaction authorization request message for a transaction between a consumer and a merchant, wherein the transaction authorization request message comprises a plurality of data elements. The method also includes determining, by the server computer, a transaction initiation mode, from at least three different transaction initiation modes, used to conduct the transaction based at least in part on the data elements.
Another embodiment of the invention is directed to a device comprising a processor, and a computer readable medium coupled to the processor. The computer readable medium comprises code, executable by the processor, for implementing the above-described method.
Another embodiment of the invention is directed to a method including, receiving, at a server computer, a plurality of data elements. The method also includes validating the plurality of data elements. The method further includes generating a credential value based on the plurality of data elements. The method additionally includes transmitting the credential value to an entity.
It can be appreciated that while the discussion herein describes examples using a payment card and a cardholder, the payment card may be generically referred to as any payment instrument and the cardholder may be generically referred to as a user in other embodiments (where a card is not present). The cardholder may also be referred to as a consumer in other embodiments.
These and other embodiments of the invention are described in further detail below.
Prior to discussing the specific embodiments of the invention, a further description of some terms can be provided for a better understanding of embodiments of the invention.
A “payment device” may include any suitable device capable of making a payment. For example, a payment device can include a card including a credit card, debit card, charge card, gift card, or any combination thereof. A payment device can be used in conjunction with a communication device, as further defined below.
A “payment processing network” (e.g., VisaNet™) may include data processing subsystems, networks, and operations used to support and deliver authorization services, exception file services, and clearing and settlement services. An exemplary payment processing network may include VisaNet™. Payment processing networks such as VisaNet™ are able to process credit card transactions, debit card transactions, and other types of commercial transactions. VisaNet™ in particular, includes a VIP system (Visa Integrated Payments system) which processes authorization requests and a Base II system which performs clearing and settlement services.
A “server computer” can be a powerful computer or a cluster of computers. For example, the server computer can be a large mainframe, a minicomputer cluster, or a group of servers functioning as a unit. In one example, the server computer may be a database server coupled to a Web server.
A “terminal” (e.g. a point-of-service (POS) terminal) can be any suitable device configured to accept and process payment transactions such as credit card or debit card transactions, or electronic settlement transactions, and may have optical, electrical, or magnetic readers for reading data from other portable communication devices such as smart cards, keychain device, cell phones, payment cards, security cards, access cards, and the like.
An “acquirer” is a business entity (e.g., a commercial bank) that typically has a business relationship with the merchant and receives some or all of the transactions from that merchant.
An “issuer” is a business entity which issues a card to a user. Typically, an issuer is a financial institution.
A “cardholder” is a type of user that is authorized to use a payment card issued by the issuer. The terms “cardholder” and “user” may be used interchangeably in the following description. A “user” and/or “cardholder” may be any competent individual.
A “communication device,” as described herein, can be any electronic communication device that can execute and/or support electronic communications including, but not limited to, payment transactions. Some examples include a personal digital assistant (PDA), a smart phone, tablet computer, notebook computer, and the like.
An “authorization request message” may be an electronic message that is sent to a payment processing network and/or an issuer of a payment card to request authorization for a transaction. An authorization request message according to some embodiments may comply with (International Organization of Standardization) ISO 8583, which is a standard for systems that exchange electronic transaction information associated with a payment made by a consumer using a payment device or payment account. The authorization request message may include an issuer account identifier that may be associated with a payment device or payment account. An authorization request message may also comprise additional data elements corresponding to “identification information” (i.e., payment device information) including, by way of example only: a service code, a CVV (card verification value), a dCVV (dynamic card verification value), an expiration date, etc. An authorization request message may also comprise “transaction information,” such as any information associated with a current transaction, such as the transaction amount, merchant identifier, merchant location, etc., as well as any other information that may be utilized in determining whether to identify and/or authorize a transaction. However, it can be appreciated that the authorization request messages described herein may contain additional elements not defined in the ISO 8583 specification.
An “authorization response message” may be an electronic message reply to an authorization request message generated by an issuing financial institution or a payment processing network. The authorization response message may include, by way of example only, one or more of the following status indicators: Approval—transaction was approved; Decline—transaction was not approved; or Call Center—response pending more information, merchant must call the toll-free authorization phone number. The authorization response message may also include an authorization code, which may be a code that a credit card issuing bank returns in response to an authorization request message in an electronic message (either directly or through the payment processing network) to the merchant's access device (e.g. POS equipment) that indicates approval of the transaction. The code may serve as proof of authorization. As noted above, in some embodiments, a payment processing network may generate or forward the authorization response message to the merchant.
A “communications channel” may include any suitable path for electronic communication between two or more entities. Suitable communications channels may be present directly between two entities such as a payment processing network and a merchant or issuer computer, or may include a number of different entities. Any suitable communications protocols may be used for generating a communications channel. A communication channel may in some instance comprise a “secure communication channel,” which may be established in any known manner, including the use of mutual authentication and a session key and establishment of a secure socket layer (SSL) session. However, any method of creating a secure channel may be used. By establishing a secure channel, sensitive information related to a payment device (such as account numbers, CVV values, expiration dates, etc.) may be securely transmitted between the two or more entities to facilitate a transaction.
A “digital wallet provider” may include any suitable entity that can maintain a digital wallet. A digital wallet provider may provide standalone cardholder facing software applications that store account numbers, or representations of the account numbers (e.g., tokens), on behalf of a cardholder to facilitate payments at more than one unrelated merchant, perform person-to-person payments, or load financial value into the digital wallet.
A “merchant of record” may include a merchant that has a relationship with the payment processing network. The merchant of record receives the proceeds from the cardholder when a purchase is settled. The merchant of record is the company that is ultimately responsible for the financial transaction.
A “payment service provider” may include an entity that contracts with an acquirer for the purpose of providing acceptance to a sponsored merchant, the sponsored merchant then contracts with a payment service provider to obtain payment services.
A “card on file transaction” may include a transaction that is conducted using a stored account identifier. A card on file transaction can include transactions initiated by merchants, payment service providers, and/or a digital wallet service provider with, for example, a payment card account number that has been previously collected from the cardholder.
A “token” may include a substitute for a primary account identifier such as a primary account number. Tokens are used in lieu of the primary account number and can be used to generate original and subsequent transactions for an entire transaction lifecycle. A token may be in a format that is similar to a primary account number. For example, if a real primary account number has 16 digits, then a corresponding payment token may also have 16 digits.
An “access device” may include any device capable of initiating a payment transaction or accepting a payment device. The access device allows for acceptance of a payment card via inserting, swiping, manual key entry, digital wallet, secure token, etc. The access device can communicate with the acquirer, sometimes via the merchant, using a wired or wireless communication.
“Access device information” may include data relating to an access device used to conduct a payment transaction. Access device information can include, but is not limited to, information indicating whether a mobile device, a contactless reader, or a magnetic stripe reader was used to conduct the payment transaction. Access device information may also include information about the specific access device including an access device manufacturer's identifier, an access device make, an access device model, digital certificates associated with the specific access device, etc.
“Payment device characteristic information” may include data regarding a payment device that is used to conduct a payment transaction. Payment device characteristic information can include, but is not limited to, information indicating whether a physical card, a mobile device, or a token was used to conduct the payment transaction.
A “transaction initiation channel” may include a channel that is used to conduct a payment transaction. The transaction initiation channel indicates whether a payment transaction was conducted at a physical store, online, via mail order, via telephone order, etc.
A “transaction initiation mode” may define the type of transaction between a consumer and a merchant. The transaction initiation mode can be determined based on the access device information and the payment device characteristic information. Some transaction initiation modes include, but are not limited to, magnetic stripe read, chip card, secure mobile near field communication (NFC), manual primary account number (PAN) entry, card account on file, certified token, and uncertified token.
I. Exemplary Systems
The communication device 110 may be in communication with the various entities shown in
In an embodiment, the communication device 110 is in electronic communication with the access device 120. The communication device 110 can be a personal digital assistant (PDA), a smart phone, tablet computer, notebook computer, or the like, that can execute and/or support payment transactions with a payment system 100. A communication device 110 can be used in conjunction with a payment device, such as a credit card, debit card, charge card, gift card, or other payment device and/or any combination thereof. The combination of a payment device (e.g., credit card) and the communication device 110 (e.g., smart phone) can be referred to as the communication device 110 for illustrative purposes. In other embodiments, the communication device 110 may be used in conjunction with transactions of currency or points (e.g., points accumulated in a particular software application). In further embodiments, the communication device 110 may be a wireless device, a contactless device, a magnetic device, or other type of payment device that would be known and appreciated by one of ordinary skill in the art with the benefit of this disclosure. In some embodiments, the communication device 110 includes software (e.g., application) and/or hardware to perform the various payment transactions and capture user voice data as further described below.
The access device 120 may be a point of sale terminal at a merchant's physical location (e.g., at a merchant's store) or it may be a gateway to a website operated by the merchant 125.
In some embodiments, the access device 120 is configured to be in electronic communication with the acquirer 130 via a merchant 125. In one embodiment, the terminal 120 is a point-of-sale (POS) device. Alternatively, the terminal 120 can be any suitable device configured to process payment transactions such as credit card or debit card transactions and may have optical, electrical, or magnetic readers for reading data from portable electronic communication devices such as smart cards, keychain device, cell phones, payment cards, security cards, access cards, and the like. In some embodiments, the terminal 120 is located at and controlled by a merchant. For example, the terminal 120 can be a POS device at a grocery store checkout line. In other embodiments, the terminal could be a client computer or a mobile phone in the event that the user is conducting a remote transaction.
In other embodiments, the access device 120 may be a gateway for a Web site operated by the merchant 125. The merchant's Web site may include an electronic storefront, a shopping cart, and other functions associated with e-commerce Web sites.
The acquirer 130 (e.g., acquirer bank) includes an acquirer computer (not shown). The acquirer computer can be configured to transfer data (e.g., bank identification number (BIN), etc.) and financial information to the payment processing network 140. In some embodiments, the acquirer 130 does not need to be present in the system 100 for the communication device 110 to transfer the financial and user data to the payment processing network 140.
In one embodiment, the payment processing network 140 can be any suitable combination of computers that can facilitate payment transactions involving a number of issuers and merchants. One example of a payment processing network is VisaNet™, where Visa internal processing (VIP) performs the various payment processing network 140 or multi-lateral switch functions described herein. The payment processing network 140 can include an authorization and settlement server (not shown). The authorization and settlement server (“authorization server”) performs payment authorization functions. The authorization server is further configured to send and receive authorization data to the issuer 150.
In some embodiments, the issuer 150 is a business entity which issues an account for a user. The account can be associated with a payment card used by the user. Typically, an issuer is a financial institution. The issuer 150 is configured to receive the authorization data from the payment processing network 140 (e.g., the authorization server).
In some embodiments, the communication device 110 may be connected to and communicate with the payment processor network 140 via an interconnected network 160. One example of an interconnected network 160 is the Internet. The payment processor network 140 may inform the communication device 110 when a payment has been successfully processed. In some embodiments, the payment processor network 140 may be connected to and communicate with the access device 120 via the interconnected network 160. The payment processor network 140 may inform the access device 120 when a payment has been successfully processed which in turn the access device 120 may complete the transaction with the communication device 110.
A server computer 200 is also shown in
The interconnected network 160 may comprise one or more of a local area network, a wide area network, a metropolitan area network (MAN), an intranet, the Internet, a Public Land Mobile Network (PLMN), a telephone network, such as the Public Switched Telephone Network (PSTN) or a cellular telephone network (e.g., wireless Global System for Mobile Communications (GSM), wireless Code Division Multiple Access (CDMA), etc.), a VoIP network with mobile and/or fixed locations, a wireline network, or a combination of networks.
In a typical payment transaction in embodiments of the invention, a user may interact with the access device 120 (e.g., with a payment device such as a payment card, or by entering payment information) to conduct a transaction with the merchant 125. The merchant 125 may operate a merchant computer, which may route an authorization request message to the acquirer 130, and eventually to the issuer 150 via the payment processing network 140.
The issuer 140 will then determine if the transaction is authorized (e.g., by checking for fraud and/or sufficient funds or credit). The issuer will then transmit an authorization response message to the terminal 120 via the payment processing network 140 and the acquirer 130.
At the end of the day, or at another predefined time, the transaction is cleared and settled between the acquirer 130 and the issuer 150 by the payment processing network 140.
The description below provides descriptions of other components in the system as well as methods for determining a transaction initiation mode. The methods can be performed at any suitable point during the above-described transaction flow. For example, the method may be performed before or after the user uses a payment device to interact with the terminal 120. If it is afterwards, then the method may be performed when the authorization request message is received by the payment processing network 140 or the issuer 150.
The input/output (I/O) interface 210 is configured to receive and transmit data. For example, the I/O interface 210 may receive the transaction data from the communication device 110 (
Memory 220 may be any magnetic, electronic, or optical memory. It can be appreciated that memory 220 may include any number of memory modules, that may comprise any suitable volatile or non-volatile memory devices. An example of memory 220 may be dynamic random access memory (DRAM).
Processor 230 may be any general-purpose processor operable to carry out instructions on the server computer 200. The processor 230 may be coupled to other units of the server computer 200 including input/output interface 210, memory 220, authentication database 240, and computer-readable medium 250.
Authentication database 240 may store a table of data elements used to compare against a plurality of transaction specific data elements received from communication device 110, access device 120, and/or merchant 125 during a transaction. The table may be used by transaction initiation mode determination module 254 (described below) to determine a transaction initiation mode. The data elements stored in the authentication database 240 may include payment device characteristic information, access device information, and transaction initiation channel information. The payment device characteristic information, access device information, and transaction initiation channel information may be compared to a plurality of fields included in a typical authorization request message, which are stored in the authentication database 240. For example, if the authorization request message includes the following data elements, the transaction initiation mode may be characterized as a secure mobile NFC transaction: cardholder verification method (POS), dynamic card verification value (DCVV) (POS), chip cryptogram, address verification service (AVS), Advanced Authentication (AA) score data, merchant verification value, and a third party agent (TPA) registration ID. In some embodiments, the values within these data elements may be used to determine the transaction initiation mode. For example, the chip cryptogram data element could come in a credentials on a chip or secure element 326 transaction and a secure mobile NFC 324 transaction, and the chip cryptogram may be different for the credentials on a chip or secure element 326 and the secure mobile NFC 324 transaction. Thus, the value of the chip cryptogram may assist in determining the transaction initiation mode.
Computer-readable medium 250 may be any magnetic, electronic, optical, or other computer-readable storage medium. Computer-readable storage medium 250 includes transaction initiation mode determination module 252, rule application module 254, and credential value generation module 256. Computer-readable storage medium 250 may comprise any combination of volatile and/or non-volatile memory such as, for example, buffer memory, RAM, DRAM, ROM, flash, or any other suitable memory device, alone or in combination with other data storage devices.
Transaction initiation mode determination module 252 is configured to evaluate the plurality of data elements received from communication device 110 (
Rule application module 254 is configured to determine a specific set of rules applicable to the transaction based on the determined transaction initiation mode. The specific set of rules may include rules defining a merchant's liability for the transaction or rules defining the cost of processing the transaction by the payment processor network 140 (
Credential value generation module 256 is configured to generate a credential value based on the plurality of data elements received by the server computer 200. The evaluation may comprise a yes/no matching verification process, calculation of a validation score, or creation of a hash value that could be passed through existing fields in the authorization message. The resulting value may comprise credential value information. The credential value information can be transmitted to the merchant 125 (
As noted above, the server computer 200 may reside within the payment processor network 140 (
A user 310 may interact with the system 300 by initiating a payment transaction using a combination of a variety of payment devices and access devices. These may include manual entry 320 of an account number, swiping a payment card at a merchant terminal 322, waving a payment card at a contactless terminal 324, providing a communication device (e.g., mobile phone) that contains payment credentials on a chip (e.g., SIM card) or other secure element 326, or using an account on file 328, a certified token 327, or an uncertified token 329 to conduct a payment transaction. Tokens can be certified by having data embedded indicating certification by a certification entity. An uncertified token 329 is a token that has not been certified by the certification entity. It can be appreciated that the variety of payment devices and access devices listed are merely examples, and many other combinations of payment devices and access devices used to initiate a payment transaction may be used with the system 300. For example, the user 310 may scan a bar code at the merchant terminal using a communication device (e.g., snap transaction).
In another illustration, the user 310 may select goods at a merchant's 125 store and proceed to a check-out area with a terminal. The user 310 can swipe the payment card 322 to pay for the goods. By swiping the payment card 322, the terminal receives the user's primary account number or other relevant information, thereby initiating the payment transaction.
At step 340, credential data may be submitted to the server computer 200 directly or via the merchant 125. The credential data may be submitted in the form of an authorization request message. In some embodiments, this request may be different than the payment authorization request, while in other embodiments the credential data may be submitted with the payment authorization request. The credential data may include data that is typically sent in an authorization transaction message, regardless of the transaction initiation mode. This data could include the transaction amount and date, transaction ID, primary account number, account expiration date, acquirer BIN, merchant category code (MCC), merchant of record (MOR) name and location, card acceptor ID, and terminal ID. The credential data may also include a plurality of data elements that include at least access device information and payment device characteristic information. Some possible data elements include, but are not limited to: data elements for a cardholder verification method (POS), card verification value (CVV), card verification value for integrated circuit cards (iCVV), dynamic card verification value (DCVV) (POS), chip cryptogram, CVV2, cardholder authentication verification value (CAVV), data elements for an address verification service (AVS), data elements for a fraud algorithm such as Advanced Authentication (AA) by Visa®, a merchant verification value, a third party agent (TPA) registration ID, a merchant geo-location (POS), a wallet ID, a registered user status (AII), and level II/III data. In some embodiments, the server computer 200 may request additional data elements, either directly or via the merchant 125, if the received plurality of data elements are not sufficient to determine the transaction initiation mode (described below). For example, additional data elements may be required for an account on file 328, a certified token 327, or an uncertified token 329 transaction initiation mode since the plurality of data elements 450 initially received by the server computer 200 are the same for each of those transaction initiation modes.
It can be appreciated that in addition to the plurality of data elements 450 received by the server computer 200, the server computer 200 may also receive other data elements that are standard and may be necessary for every transaction initiation mode. For example, these other data elements may include a transaction amount/date, a transaction ID, a PAN, an account expiration date, an acquirer BIN, a merchant category code (MCC), a merchant of record (MOR) name and location, a card acceptor ID, and a terminal ID.
In some embodiments, the server computer 200 may also receive a transaction initiation mode data element from the merchant 125 or access device. The transaction initiation data element may readily identify which transaction initiation mode was used to initiate the payment transaction. For example, an access device such as a POS terminal may have an application that analyzes data elements relating to a transaction, and the application may assign a transaction initiation data element to the transaction. As an illustration, a mobile phone with secure element may store a PAN, which is transmitted to a POS terminal. Using information from the mobile phone, and activation data from the POS terminal's RFID reader, the POS terminal may determine that the transaction being conducted is between a contactless terminal and a mobile phone with a secure element and an RFID contactless transmitter and receiver. This type of transaction may be assigned a value (e.g., “118”) which may serve as the transaction mode initiation data element. This transaction initiation mode data element may be used by the server computer 200 to determine the transaction initiation mode. In some embodiments, the transaction initiation mode data element may include a unique PSP or Digital Wallet Provider (DWP) ID. The server computer 200 may determine that is the transaction was initiated using a digital wallet transaction or a payment service provider transaction based on detecting the PSP or DWP ID in the transaction initiation mode data element. In some embodiments, the transaction initiation mode data element may be received as part of the authorization request message, while in other embodiments the transaction imitation mode data element may be received separately from the authorization request message.
In other embodiments, the server computer 200 may determine the transaction initiation mode based on the received plurality of data elements. In yet other embodiments, the server computer 200 may receive both a transaction mode initiation data element and additional data elements from an access device and/or a communication device. The additional data elements may be received by the server computer 200 in band (i.e., through the conventional electronics payments messaging path that includes an acquirer, payment processing network, and issuer), or out of band (e.g., by direct communication between the payment processing network and the user's communication device).
At step 342, the server computer 200 may determine the transaction initiation mode initiated by the user 310 by evaluating the received credential data, which may include the plurality of data elements. The transaction initiation mode determination module 252 (
The server computer 200 may additionally, via credential value generation module 256, generate a credential value and transmit the generated credential value to the merchant. The credential value may be generated based on an evaluation of the received plurality of data elements and may comprise a yes/no matching verification process, calculation of a validation score, or creation of a hash value that could be passed through existing fields in the authorization message and could be validated by the payment processor network or issuer. The resulting value may comprise credential value information. The credential value information can be transmitted to the merchant 125 or the user 310. It is understood that the credential value may vary depending on the determination of the transaction initiation mode by the transaction initiation mode determination module 252 (
In some embodiments, at step 344, the merchant 125 can provide the authentication information, including the credential value information, with an authorization request to a third party agent 330 (e.g., payment service provider (PSP), wallet provider, payment enabler), and then to an acquirer 130. When no third party agent 330 is involved, the credential value information and the authorization request may be transmitted directly from the merchant 125 to the acquirer 130. It can be appreciated that the credential value information may be a hash value that includes many unique values. The acquirer 130 can transmit the information to the payment processing network 140, and then to the issuer 150.
The payment processor network 140 may process the credential value information. As described above, the credential value information may indicate what type of transaction was initiated by the user 310. At step 346, the server computer 200 may, via rule application module 254, determine a specific set of rules applicable to the transaction based on the determined transaction initiation mode. In some embodiments, step 346 may occur simultaneous to step 342. The specific set of rules may include rules defining the merchant's 342 liability for the transaction, rules defining the cost of processing the transaction by the payment processor network 140 (
The authorization process may be initiated after the credential validation information is processed, as described with respect to step 344. When the authentication information in the authorization request message reaches the payment processing network 140, via the acquirer 130 and merchant 125, the payment processing network 140 may apply the specific set of rules to the transaction prior to forwarding the authentication information to the issuer 150. In an embodiment, the price/value can be affected by the credential data submitted or the credential validation information produced. For example, if the authorization request message includes credential validation information, the payment processing network can use a combination of credential data elements to determine the overall value provided. That is, the cost of processing the transaction or the liability of the transaction can vary based on the specific credential data received and/or the credential validation information received. As an illustration, additional fraud prevention measures may be reduced if transactions are more secure. Three transaction initiation modes may be defined including (i) a first conventional magnetic stripe transaction conducted with a magnetic stripe reader, (ii) a second transaction conducted using a smart card with a chip (and a PAN stored in the chip) and a contactless terminal, and (iii) a third contactless phone transaction conducted with a contactless terminal, where the contactless phone stores a token of a real PAN in a secure element in the phone. As described above, each transaction initiation mode may have a different perceived level of risk. After the server computer 200 identifies the type of transaction, fraud prevention measures may be applied depending upon the level of security associated with the identified transaction initiation mode. Additionally, appropriate processing fees may be applied based on the determined transaction initiation mode. In some embodiments, the fee may be based on the relationship with the merchant 125 and an amount of data exchange provided by the merchant.
After the payment processing network 140 receives the authorization request from the acquirer 130, via the transmission chain of step 344, the payment processing network 140 can apply the specific set of rules to the transaction prior to forwarding the transaction information to the issuer 150 for authorization. The issuer 150 may approve or deny the transaction based on the credential value information included in the authorization request message. For example, if the perceived risk of the determined transaction initiation mode is high, the issuer 150 may deny the transaction or initiate additional fraud prevention measures (e.g., by calling the user 310). Further, based on the determined transaction initiation mode the issuer 150 or the payment processing network 140 may assess varying fees to the transaction and/or liability for the transaction to the merchant 125. Conversely, if the credential value information indicates a low risk transaction initiation mode, the issuer 150 may approve the transaction or not initiate additional fraud prevention measures.
The payment device information 410 may include information about which type of payment device what used to initiate a payment transaction. For example, the payment device information 410 could include, but is not limited to, a physical card, a mobile device associated with a payment account, or a secure token. Determining the particular payment device may be accomplished by the transaction initiation mode determination module 252 (
The access device information 420 may include information about which type of access device was used to initiate the payment transaction. In some embodiments, the payment device may interface with the access device to initiate the transaction. In other embodiments, the payment device and the access device may be the same device. For example, the access device information 420 could include, but is not limited to, a mobile device, a contactless reader, or a magnetic stripe reader. An example of a payment device interfacing with an access device could be a physical card interfacing with a contactless reader at a POS check-out terminal. Determining the particular access device may be accomplished by the transaction initiation mode determination module 252 (
It is also noted that access devices (e.g., POS terminals) may have multiple modes of operation. For example, a POS terminal may have a contactless reader as well as a magnetic stripe reader. In such cases, the POS terminal may provide additional data which indicates how payment data was read from a payment card. Such additional data may be in the form of a data flag (e.g., “0” for a magnetic strip read and “1” for a contactless read), or such additional data may relate to the formatting of authorization request message by the POS terminal or the data included in the authorization request message. For instance, a contactless card with a chip can have the capability of generating a DCVV (dynamic verification value) while a magnetic stripe can cannot. The presence of the DCVV value in a DCVV field in the authorization request may indicate that the transaction was initiated by the POS terminal's contactless reader, and not the POS terminal's magnetic stripe reader.
The transaction initiation channel information 430 may include information about which type of channel was used to initiate the payment transaction. For example, the transaction initiation channel information 430 could include, but is not limited to, a physical store, online, mail order, or telephone order. Determining the particular transaction initiation channel may be accomplished by the transaction initiation mode determination module 252 (
The information about the plurality of transaction initiation modes 450 indicates the potential transaction initiation mode categorizations that could be determined by the transaction initiation mode determination module 252 (
A transaction initiation mode may be determined based on the received plurality of data elements 470, as described with respect to step 440 of
In another non-limiting example, for a manual entry 320 of an account number transaction initiation mode, the CVM (POS), CVV2, CAW, AVS, AA Score Data, Merchant Verification Value, TPA Registration ID, Merchant Geo-location, Level I/III data, and Registered User Status data elements may be relevant. Upon receiving these data elements, the transaction initiation mode determination module 252 (
In another non-limiting example, for a communication device containing payment credentials on a chip or other secure element 326 transaction initiation mode, the CVM (POS), iCVV, Chip Cryptogram, AVS, AA Score Data, Merchant Verification Value, TPA Registration ID, and Merchant Geo-location data elements may be relevant. Upon receiving these data elements, the transaction initiation mode determination module 252 (
In another non-limiting example, for a card account on file 328 transaction initiation mode, the CVV2, CAW, AVS, AA Score Data, Merchant Verification Value, and TPA Registration ID data elements may be relevant. Upon receiving these data elements, the transaction initiation mode determination module 252 (
In another non-limiting example, for a secure mobile NFC 324 transaction initiation mode, the CVM, DCVV, Chip Cryptogram, AVS, AA Score Data, Merchant Verification Value, and TPA Registration ID data elements may be relevant. Upon receiving these data elements, the transaction initiation mode determination module 252 (
In another non-limiting example, for a certified token 327 transaction initiation mode, the CVV2, CAVV, AVS, AA Score Data, Merchant Verification Value, TPA Registration ID, Merchant Geo-location, Level II/III data, and Registered User Status data elements may be relevant. Upon receiving these data elements, the transaction initiation mode determination module 252 (
In another non-limiting example, for an uncertified token 329 transaction initiation mode, the CVV2, CAVV, AVS, AA Score Data, Merchant Verification Value, TPA Registration ID, Merchant Geo-location, Level II/III data, and Registered User Status data elements may be relevant. Upon receiving these data elements, the transaction initiation mode determination module 252 (
It can be appreciated that the plurality of data elements 450 listed in
The transaction flow for determining the transaction initiation mode depicted in
The merchant 125 may then send the authentication information to the server computer 200. As described above with respect to
The merchant 125 may then send an authorization request message, including the credential value, to the payment service provider 520. In some embodiments, the credential value information may be transmitted in a cardholder authentication verification value (CAVV) field within the authorization request message. In some embodiments, the CAVV is generated by the issuer 150 when the cardholder is authenticated. The CAVV may then be sent from the issuer 150 to the PSP 520. The payment service provider 520 may then forward the authorization request message to an acquirer 130 having a relationship with the PSP 520.
Upon receiving the authorization request message, the acquirer 130 may determine whether to accept or deny the transaction based at least in part on the credential value, and then forward the authorization request message to the payment processing network 140 for further processing. The payment processing network 140 may validate the authorization request message and authentication data may be validated prior to the payment processing 140 network interfacing with the issuer 150 to settle the transaction.
Table 1 illustrates some bold and italicized data elements that may be may be desirable for this process flow. In the table below, the “minimum” data elements are those elements that are included for this type of transaction. The data elements that are “supplemental for risk” are data elements that can be additionally used in risk analyses, and the “supplemental for value added services” data elements are those that can be used to provide value added services.
/CVV2/iCVV/DCVV
/Online PIN
In some embodiments, the transaction initiation mode may be determined to be a PSP transaction based on a PSP identification data element in the authorization request message. For example, a PSP may register with the payment processor network 140 and provide details about their location, identification, etc. The payment processing network 140 may provide the PSP with a unique PSP ID to use in all authorization request messages. The system 200 may determine that the transaction initiation mode is a PSP transaction by detecting the unique PSP ID in the authorization request message.
The transaction flow for determining the transaction initiation mode depicted in
In some embodiments, the payment credentials 610 on a chip may be sent to the server computer 200 (out of band or in band), along with authentication information for the payment transaction. As described above with respect to
The merchant 125 may then send an authorization request message, including the credential value, to the payment service provider 520. In some embodiments, the credential value information may be transmitted in a cardholder authentication verification value (CAVV) field within the authorization request message. The payment service provider 520 may then forward the authorization request message to an acquirer 130 having a relationship with the PSP 520. In some embodiments, where a PSP 520 does not exist, the merchant 125 may send the authorization request message directly to the acquirer 130. In some embodiments, the credential data may also include the underlying payment transaction initiation mode primary account number.
Upon receiving the authorization request message, the acquirer 130 may forward the authorization request message to the payment processing network 140 for further processing. The payment processing network 140 may validate the authorization request message and authentication data may be validated prior to the payment processing 140 network interfacing with the issuer 150 to settle the transaction.
Table 2 illustrates some bold and italicized data elements that may be may be desirable for this process flow:
The transaction flow for determining the transaction initiation mode depicted in
In some embodiments, the card on file 328 may be sent to the server computer 200, along with authentication information for the payment transaction. As described above with respect to
The merchant 125 may then send an authorization request message, including the credential value, to the acquirer 130. In some embodiments, the credential value information may be transmitted in a cardholder authentication verification value (CAVV) field within the authorization request message. In some embodiments, the credential data may also include the underlying payment transaction initiation mode primary account number.
Upon receiving the authorization request message, the acquirer 130 may determine whether to accept or deny the transaction based at least in part on the credential value, and then forward the authorization request message to the payment processing network 140 for further processing. The payment processing network 140 may validate the authorization request message and authentication data may be validated prior to the payment processing 140 network interfacing with the issuer 150 to settle the transaction.
Table 3 illustrates some bold and italicized data elements that may be may be desirable for this process flow:
In some embodiments, the transaction initiation mode may be determined to be a digital wallet transaction based on a digital wallet provider identification data element in the authorization request message. For example, a DWP may register with the payment processor network 140 and provide details about their location, identification, etc. The payment processor network 140 may provide the DWP with a unique DWP ID to use in all authorization request messages. The system 200 may determine that the transaction initiation mode is a digital wallet transaction by detecting the unique DWP ID in the authorization request message.
Upon
At step 812, in some embodiments, the merchant 125 may provide the user 310 with an option to checkout using a digital wallet 820. At step 814, the digital wallet 820 may send an authorization request to an authentication server computer 200. The authorization request may be sent via a secure protocol. The secure protocol may be a 3-D Secure protocol used in a third party authentication process such as Verified by Visa™.
At step 816 or 818, the authentication service computer may determine if the stored credential in the authorization request (e.g., primary account number, consumer device information, and determined transaction initiation mode by server computer 200) has been previously authenticated. The determination may be in real-time and may comprise a risk assessment for the transaction. The process may then proceed to step 850 or 860. Further details regarding real-time risk analysis that could be incorporated into the above-described system can be found in U.S. Provisional patent application Ser. No. 13/706,226, filed on Dec. 5, 2013, to Faith et al., which is herein incorporated by reference in its entirety for all purposes.
At step 860, the authentication server computer 200 may determine that the transaction is low risk 830 if the data element associated with the user 310 has been previously authenticated and/or if the determined transaction initiation mode is of low risk. In this case, no additional authentication may be required and the transaction may be transmitted to the digital wallet 820 to process the authorization.
At step 850, the authentication service computer may notify the digital wallet 820 if the data element associated with the user 310 has not been previously authenticated or the transaction is high risk 840. For example, the transaction may not be authenticated if the consumer uses a new device or a new primary account number to initiate the transaction. The digital wallet 820 can proceed to authenticate the user 310 via a secure protocol, such as the 3-D secure protocol used by Verified by Visa®. The user 310 may be prompted with a challenge related to the authentication process.
A user may begin by initiating a payment transaction using one of many transaction initiation modes. The transaction initiation modes include, but are not limited to, manual entry 320 of an account number, swiping a payment card at a merchant terminal 322, waving a payment card at a contactless terminal 324, providing a communication device (e.g., mobile phone) that contains payment credentials on a chip (e.g., SIM card) or other secure element 326, an account on file 328, a certified token 327, or an uncertified token 329.
After the user initiates the payment transaction using one of the transaction initiation modes, a credential validation process may be initiated. The credential validation request may include the credential validation code 920, the authorization validation code 930, and the settlement validation code 940. The credential validation process may be carried out using an authorization request message. The authorization request message may be initiated at the merchant 125 and sent to the acquirer 130. In some embodiments, a third party agent 330 may receive the authorization request message from the merchant 125 and forward it to the acquirer 130. The authorization request message may include a credential validation request. The acquirer 130 may then attempt to validate the credential validation request, via a secure computer 910, between the acquirer 130 and the issuer 150. The server computer 910 may be located out-of-band from the traditional payment transaction process flow described with respect to
In some embodiments, a the secure computer 910 may authenticate the credential validation request based at least in part on a determined transaction initiation mode, as described above with respect to
The user 310 may begin by initiating a mobile wallet software application on a communication device, which in turn initiates a payment transaction. Upon initiation of the payment transaction, credential data and a proxy primary account number may be sent to a mobile wallet provider computer 1010 by the mobile wallet software application running on the communication device. In some embodiments, the credential data may include information about the transaction initiation mode (e.g., an account on file 328 transaction initiation mode). The mobile wallet provider computer 1010 may verify that the received credential data and proxy PAN match data stored within the computer 1010 and associated with the user 310. The mobile wallet provider computer 1010 may then forward the credential data and a translation of the proxy PAN to the payment processor network 140. The translation of the proxy PAN may be a translation from the proxy PAN to an actual PAN associated with the user 310.
In some embodiments, when the credential data does not already include the transaction initiation mode information, the mobile wallet provider computer 1010 may forward the credential data, proxy PAN, and other data elements to the server computer 200. The server computer 200 may determine the transaction initiation mode, as described above, and then forward the credential data with the determined transaction initiation mode, proxy PAN, and other data elements to the payment processing network 140. In some embodiments, the mobile wallet software application may access a wireless signal in order to send and receive data.
In some embodiments, the server computer 200, making use of authentication database 240, may convert the credential data to a stored credential validated value (SCVV) hash value. The hash value may be returned to the mobile wallet software application via the mobile wallet provider computer 1010. The mobile wallet software application may then transmit the transaction data and the stored credential validated value (SCVV) (hash value) in an authorization request message to the acquirer 130, via the merchant 125. The acquirer 130 may forward the transaction data and the authorization request message to the payment processing network 140 to validate the authorization request message and credential data, as done in the typical payment transaction flow of
II. Exemplary Methods
The method includes receiving, at a server computer, a transaction authorization request message for a transaction between a consumer and a merchant, wherein the transaction authorization request message includes a plurality of data elements (step 1101). For example, in
After receiving a transaction authorization request between the consumer and the merchant, the method 1100 performed continues by determining, by the server computer, a transaction initiation mode, from among at least three different transaction initiation modes, used to conduct the transaction based at least in part on the data elements (step 1102). For example, in
As noted above, the server computer may maintain a data table that includes at least three, preferably at least about 5, 10, 20, 50, or even 100 different types of transactions. The data elements that are used to determine which type of transaction is currently being conducted may include data elements relating to an access device (e.g., a type of access device, an access device manufacturer), a payment device (e.g., whether it is a phone, a card, etc.), the type of merchant or the specific merchant, the location of the transaction, characteristics of the user, etc. By providing a more detailed transaction table at the server computer, more detailed and accurate processing of the transaction can occur.
After determining the transaction initiation mode used to conduct the transaction, the method 1100 continues by applying, by the server computer, a specific set of rules associated with the transaction initiation mode to the transaction (step 1103). For example, in
In some embodiments, the server computer may also generate a credential value based on the received plurality of data elements. The credential value may include risk information about the transaction initiation mode being used to conduct the payment transaction. The credential value may be transmitted from the server computer to the merchant and the merchant may use the credential value in assessing a risk of allowing the transaction. The transaction may be authorized or denied based on the credential value.
In some embodiments, the server computer may generate an electronic receipt that includes the plurality of data elements and transmit the electronic receipt to a communication device operated by the user.
It should be appreciated that the specific steps illustrated in
III. Electronic Receipts Using Transaction Data Elements
Some embodiments of the present invention, relate to systems and methods for incorporating data elements from a transaction message with data elements from an electronic receipt, or incorporating data elements from an electronic receipt data system with a transaction message.
In an illustrative embodiment, a consumer may shop at a first clothing store such as the Gap® and opt to receive an electronic receipt from the first clothing store for the purchase. In a standard transaction, the consumer may receive the electronic receipt from the first clothing store. In an embodiment of the invention, however, a payment processing network may route a transaction message such as an authorization request message for a transaction conducted by a consumer with a payment device from the first clothing store to an issuer. The payment processing network may interact with the first clothing store before the transaction and send an electronic receipt to an electronic device operated by the consumer on behalf of first clothing store. The payment processing network can advantageously transmit standardized receipts from multiple stores.
The electronic receipt may be enhanced with information received in the transaction message by the payment processing network. Further, in an embodiment of the invention, the enhanced receipt can include the location of the consumer (e.g., the geo-location of the consumer at the corner of Main Street and First Street).
In yet another example, the electronic receipt may be enhanced by data appended to the electronic receipt from the payment processing network. For example, the electronic receipt may include data elements required for all transactions, data elements required for risk, or data elements required for value added analysis.
The electronic receipt may include fraud or advertising information. For example, a map of the location of the transaction can be provided on the electronic receipt or the receipt may include offers or advertisements.
The electronic receipt may also include account aging information. For example, the transaction message can include information about how long the consumer used a particular primary account number (PAN) at a particular merchant or information on whether the consumer is a new consumer at a particular store. The system may analyze the frequency with which the consumer may use a payment device (e.g., a consumer shops every Thursday and purchases $300 worth of clothes, consumer has used the PAN three times in three months).
In still another example, the payment processing network can retrieve the payment history for a primary account number (PAN) and incorporate the information in a risk analysis. For example, the payment processing network can build a database and analyze the transaction during real time.
Each of the examples cited above are for illustrative purposes. For example, an entity or system other than a payment processing network may be used to incorporate universal electronic receipts with data elements from a transaction message.
The system 1200 may comprise a user 310, a communication device 110 (e.g., a phone that is capable of payments), an interconnected network 160, payment processing network 140, transaction module 141, receipt module 142, transaction database 143, receipt database 144, merchant 125, access device 1260, acquirer computer 1270, and issuer computer 1280. In some embodiments, acquirer computer 1270 may reside within the acquirer 130 (
In an embodiment of the invention, the user 310 may use a communication device 110 to communicate with a payment processing network 140 via an interconnected network 160. The user 310 may register for a universal electronic receipts program with the payment processing network 140. The payment processing network 140 may use a receipt module 142 to process the request. The receipt module 142 may store information about the electronic receipt in the receipt database 144.
The payment processing network 140 may contact a merchant 125 via the interconnected network 160 at a communication device 110. The payment processing network 140 may retrieve information about the particular electronic receipt for the merchant 125. The receipt module 142 may process the information received from the merchant 125, and store any information related to the merchant's electronic receipt in the receipts database 144.
The user 310 may initiate a payment transaction with the communication device 110. The communication device 110 can communicate with the access device 1260 to conduct a transaction. For example, the method of initiating the transaction may be a manual primary account number (PAN) key entry (e.g., typing a PAN, capturing an image of a barcode at the access device and transmitting the image or scraped details), magnetic stripe reader (e.g., swipe), chip card (e.g., dip or wave a consumer device), card account on file (e.g., consumer registers PAN prior to transaction), secure mobile near field communication (NFC) (e.g., wave a consumer device at an access device, remote payment), certified token/proxy account (e.g., consumer registers token or proxy account prior to transaction), or uncertified token/proxy account.
The access device 1260 may transmit the transaction message to an acquirer computer 1270. The transaction message may be an authorization request message and include information about the type of the transaction within the message. The acquirer computer 1270 can transmit the transaction message to the payment processing network 140, which can transmit the transaction message to an issuer computer 1280. The issuer computer 1280 can approve or deny the transaction, and transmit the transaction message back to the payment processing network 140. The transaction message may be an authorization response message. The payment processing network 140 can transmit the transaction message to the acquirer computer 1270, and then to the access device 1260.
In an embodiment, the payment processing network 140 stores information from the transaction messages in the transaction database 143, using the transaction module 141. For example, the transaction module 141 may process the transaction message by extracting information from the message, and storing it in the transaction database.
Prior to or during the transaction initiation, data elements relating to the transaction (e.g., SKU data, access device ID, etc.) may be received at the receipt module from the access device 1260 and/or the consumer device 110 via the interconnected network 160.
The receipt module 142 may process and generate a receipt. For example, the receipt module 142 can query the receipt database 144 with information included in the transaction message, transmit the receipt to the communication device 110 via the interconnected network 160. The receipt may be communicated to the communication device 110 using any suitable messaging protocol including e-mail and SMS messaging protocols.
In some embodiments, the electronic receipt data may be incorporated with transaction messages according to an embodiment of the invention.
In one embodiment of the method, an electronic receipt may be enhanced with transaction data elements. The transaction data elements may include data elements required for all transactions (e.g., primary account number, expiration date of the payment device), data elements required for risk analysis (e.g., address verification system (AVS), geo-location, consumer device identifier, merchant device identifier, or account aging), or data elements required for value added analysis (e.g., stock keeping unit (SKU) data, account aging). Any of these data elements may be incorporated into an electronic receipt. This might be done in order to inform the consumer of someone else of the particular transaction elements associated with a transaction. For example, geo-location information might inform the consumer of where a particular transaction was conducted.
In other embodiments of the invention, information from a receipt may be obtained, and used by a payment processing network. For instance, SKU level data may be obtained from the merchant receipt and used in a fraud analysis or marketing campaign.
Embodiments of processing electronic receipts and transaction messages provide numerous advantages. For example, a positive consumer experience can be provided by aligning a digital wallet transaction with transaction reporting, where possible. A consistent, repeatable approach can be ensured for collecting data requirements or data elements. Implementation options can be facilitated to meet new data requirements or data elements. Further, value exchange can be ensured for merchants who implement universal electronic receipts.
IV. Exemplary Computer Apparatus
The various participants and elements described herein may operate one or more computer apparatuses to facilitate the functions described herein. Any of the elements in the above-described Figures, including any servers or databases, may use any suitable number of subsystems to facilitate the functions described herein.
The software components or functions described in this application may be implemented as software code to be executed by one or more processors using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object-oriented techniques. The software code may be stored as a series of instructions, or commands on a computer-readable medium, such as a random access memory (RAM), a read-only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a CD-ROM. Any such computer-readable medium may also reside on or within a single computational apparatus, and may be present on or within different computational apparatuses within a system or network.
The present invention can be implemented in the form of control logic in software or hardware or a combination of both. The control logic may be stored in an information storage medium as a plurality of instructions adapted to direct an information processing device to perform a set of steps disclosed in embodiments of the present invention. Based on the disclosure and teachings provided herein, a person of ordinary skill in the art will appreciate other ways and/or methods to implement the present invention.
In embodiments, any of the entities described herein may be embodied by a computer that performs any or all of the functions and steps disclosed.
Any recitation of “a”, “an” or “the” is intended to mean “one or more” unless specifically indicated to the contrary.
One or more embodiments of the invention may be combined with one or more other embodiments of the invention without departing from the spirit and scope of the invention.
The above description is illustrative and is not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of the disclosure. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the pending claims along with their full scope or equivalents.
The present application is a non-provisional application of and claims priority to U.S. Provisional Application No. 61/717,558, filed on Oct. 23, 2012, U.S. Provisional Application No. 61/767,717, filed on Feb. 21, 2013, and U.S. Provisional Application No. 61/767,732 filed on Feb. 21, 2013, the entire contents of which are herein incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5613012 | Hoffman | Mar 1997 | A |
5781438 | Lee | Jul 1998 | A |
5883810 | Franklin | Mar 1999 | A |
5953710 | Fleming | Sep 1999 | A |
5956699 | Wong | Sep 1999 | A |
6000832 | Franklin | Dec 1999 | A |
6014635 | Harris | Jan 2000 | A |
6044360 | Picciallo | Mar 2000 | A |
6163771 | Walker | Dec 2000 | A |
6227447 | Campisano | May 2001 | B1 |
6236981 | Hill | May 2001 | B1 |
6267292 | Walker | Jul 2001 | B1 |
6327578 | Linehan | Dec 2001 | B1 |
6341724 | Campisano | Jan 2002 | B2 |
6385596 | Wiser | May 2002 | B1 |
6422462 | Cohen | Jul 2002 | B1 |
6425523 | Shem Ur | Jul 2002 | B1 |
6592044 | Wong | Jul 2003 | B1 |
6636833 | Flitcroft | Oct 2003 | B1 |
6748367 | Lee | Jun 2004 | B1 |
6783065 | Spitz et al. | Aug 2004 | B2 |
6805287 | Bishop | Oct 2004 | B2 |
6879965 | Fung | Apr 2005 | B2 |
6891953 | DeMello | May 2005 | B1 |
6901387 | Wells | May 2005 | B2 |
6931382 | Laage | Aug 2005 | B2 |
6938019 | Uzo | Aug 2005 | B1 |
6941285 | Sarcanin | Sep 2005 | B2 |
6980670 | Hoffman | Dec 2005 | B1 |
6990470 | Hogan | Jan 2006 | B2 |
6991157 | Bishop | Jan 2006 | B2 |
7051929 | Li | May 2006 | B2 |
7069249 | Stolfo | Jun 2006 | B2 |
7103576 | Mann, III | Sep 2006 | B2 |
7113930 | Eccles | Sep 2006 | B2 |
7136835 | Flitcroft | Nov 2006 | B1 |
7177835 | Walker | Feb 2007 | B1 |
7177848 | Hogan | Feb 2007 | B2 |
7194437 | Britto | Mar 2007 | B1 |
7209561 | Shankar et al. | Apr 2007 | B1 |
7237251 | Oz | Jun 2007 | B1 |
7264154 | Harris | Sep 2007 | B2 |
7287692 | Patel | Oct 2007 | B1 |
7292999 | Hobson | Nov 2007 | B2 |
7350230 | Forrest | Mar 2008 | B2 |
7353382 | Labrou | Apr 2008 | B2 |
7379919 | Hogan | May 2008 | B2 |
RE40444 | Linehan | Jul 2008 | E |
7415443 | Hobson | Aug 2008 | B2 |
7444676 | Asghari-Kamrani | Oct 2008 | B1 |
7469151 | Khan | Dec 2008 | B2 |
7548889 | Bhambri | Jun 2009 | B2 |
7567934 | Flitcroft | Jul 2009 | B2 |
7567936 | Peckover | Jul 2009 | B1 |
7571139 | Giordano | Aug 2009 | B1 |
7571142 | Flitcroft | Aug 2009 | B1 |
7580898 | Brown | Aug 2009 | B2 |
7584153 | Brown | Sep 2009 | B2 |
7593896 | Flitcroft | Sep 2009 | B1 |
7606560 | Labrou | Oct 2009 | B2 |
7627531 | Breck | Dec 2009 | B2 |
7627895 | Gifford | Dec 2009 | B2 |
7650314 | Saunders | Jan 2010 | B1 |
7685037 | Reiners | Mar 2010 | B2 |
7702578 | Fung | Apr 2010 | B2 |
7707120 | Dominguez | Apr 2010 | B2 |
7712655 | Wong | May 2010 | B2 |
7734527 | Uzo | Jun 2010 | B2 |
7753265 | Harris | Jul 2010 | B2 |
7770789 | Oder, II | Aug 2010 | B2 |
7784685 | Hopkins, III | Aug 2010 | B1 |
7793851 | Mullen | Sep 2010 | B2 |
7801826 | Labrou | Sep 2010 | B2 |
7805376 | Smith | Sep 2010 | B2 |
7805378 | Berardi | Sep 2010 | B2 |
7818264 | Hammad | Oct 2010 | B2 |
7828220 | Mullen | Nov 2010 | B2 |
7835960 | Breck | Nov 2010 | B2 |
7841523 | Oder, II | Nov 2010 | B2 |
7841539 | Hewton | Nov 2010 | B2 |
7844550 | Walker | Nov 2010 | B2 |
7848980 | Carlson | Dec 2010 | B2 |
7849020 | Johnson | Dec 2010 | B2 |
7853529 | Walker | Dec 2010 | B1 |
7853995 | Chow | Dec 2010 | B2 |
7865414 | Fung | Jan 2011 | B2 |
7873579 | Hobson | Jan 2011 | B2 |
7873580 | Hobson | Jan 2011 | B2 |
7890393 | Talbert | Feb 2011 | B2 |
7891563 | Oder, II | Feb 2011 | B2 |
7896238 | Fein | Mar 2011 | B2 |
7908216 | Davis et al. | Mar 2011 | B1 |
7922082 | Muscato | Apr 2011 | B2 |
7931195 | Mullen | Apr 2011 | B2 |
7937324 | Patterson | May 2011 | B2 |
7938318 | Fein | May 2011 | B2 |
7954705 | Mullen | Jun 2011 | B2 |
7959076 | Hopkins, III | Jun 2011 | B1 |
7996288 | Stolfo | Aug 2011 | B1 |
8025223 | Saunders | Sep 2011 | B2 |
8046256 | Chien | Oct 2011 | B2 |
8060448 | Jones | Nov 2011 | B2 |
8060449 | Zhu | Nov 2011 | B1 |
8074877 | Mullen | Dec 2011 | B2 |
8074879 | Harris | Dec 2011 | B2 |
8082210 | Hansen | Dec 2011 | B2 |
8095113 | Kean | Jan 2012 | B2 |
8104679 | Brown | Jan 2012 | B2 |
RE43157 | Bishop | Feb 2012 | E |
8109436 | Hopkins | Feb 2012 | B1 |
8121942 | Carlson | Feb 2012 | B2 |
8121956 | Carlson | Feb 2012 | B2 |
8126449 | Beenau | Feb 2012 | B2 |
8171525 | Pelly | May 2012 | B1 |
8175973 | Davis et al. | May 2012 | B2 |
8190523 | Patterson | May 2012 | B2 |
8196813 | Vadhri | Jun 2012 | B2 |
8205791 | Randazza | Jun 2012 | B2 |
8219489 | Patterson | Jul 2012 | B2 |
8223949 | Mahalank | Jul 2012 | B2 |
8224702 | Mengerink | Jul 2012 | B2 |
8225385 | Chow | Jul 2012 | B2 |
8229852 | Carlson | Jul 2012 | B2 |
8265993 | Chien | Sep 2012 | B2 |
8280777 | Mengerink | Oct 2012 | B2 |
8281991 | Wentker et al. | Oct 2012 | B2 |
8297501 | Kowalchyk et al. | Oct 2012 | B1 |
8328095 | Oder, II | Dec 2012 | B2 |
8336088 | Raj et al. | Dec 2012 | B2 |
8346666 | Lindelsee et al. | Jan 2013 | B2 |
8376225 | Hopkins, III | Feb 2013 | B1 |
8380177 | Laracey | Feb 2013 | B2 |
8387873 | Saunders | Mar 2013 | B2 |
8401539 | Beenau | Mar 2013 | B2 |
8401898 | Chien | Mar 2013 | B2 |
8402555 | Grecia | Mar 2013 | B2 |
8403211 | Brooks | Mar 2013 | B2 |
8412623 | Moon | Apr 2013 | B2 |
8412837 | Emigh | Apr 2013 | B1 |
8417642 | Oren | Apr 2013 | B2 |
8447699 | Batada | May 2013 | B2 |
8453223 | Svigals | May 2013 | B2 |
8453925 | Fisher | Jun 2013 | B2 |
8458487 | Palgon | Jun 2013 | B1 |
8484134 | Hobson | Jul 2013 | B2 |
8485437 | Mullen | Jul 2013 | B2 |
8494959 | Hathaway | Jul 2013 | B2 |
8498908 | Mengerink | Jul 2013 | B2 |
8504475 | Brand et al. | Aug 2013 | B2 |
8504478 | Saunders | Aug 2013 | B2 |
8510816 | Quach | Aug 2013 | B2 |
8433116 | Davis et al. | Sep 2013 | B2 |
8533860 | Grecia | Sep 2013 | B1 |
8538845 | Liberty | Sep 2013 | B2 |
8555079 | Shablygin | Oct 2013 | B2 |
8566168 | Bierbaum | Oct 2013 | B1 |
8567670 | Stanfield | Oct 2013 | B2 |
8571939 | Lindsey | Oct 2013 | B2 |
8577336 | Mechaley, Jr. | Nov 2013 | B2 |
8577803 | Chatterjee | Nov 2013 | B2 |
8577813 | Weiss | Nov 2013 | B2 |
8578176 | Mattsson | Nov 2013 | B2 |
8583494 | Fisher | Nov 2013 | B2 |
8584251 | Mcguire | Nov 2013 | B2 |
8589237 | Fisher | Nov 2013 | B2 |
8589271 | Evans | Nov 2013 | B2 |
8589291 | Carlson | Nov 2013 | B2 |
8595098 | Starai | Nov 2013 | B2 |
8595812 | Bomar | Nov 2013 | B2 |
8595850 | Spies | Nov 2013 | B2 |
8606638 | Dragt | Dec 2013 | B2 |
8606700 | Carlson | Dec 2013 | B2 |
8606720 | Baker | Dec 2013 | B1 |
8615468 | Varadarajan | Dec 2013 | B2 |
8620754 | Fisher | Dec 2013 | B2 |
8635157 | Smith | Jan 2014 | B2 |
8646059 | Von Behren | Feb 2014 | B1 |
8651374 | Brabson | Feb 2014 | B2 |
8656180 | Shablygin | Feb 2014 | B2 |
8657192 | Hodges | Feb 2014 | B2 |
8689328 | Ormazabal | Apr 2014 | B2 |
8751391 | Freund | Jun 2014 | B2 |
8762263 | Gauthier et al. | Jun 2014 | B2 |
8793186 | Patterson | Jul 2014 | B2 |
8838982 | Carlson et al. | Sep 2014 | B2 |
8856539 | Weiss | Oct 2014 | B2 |
8887308 | Grecia | Nov 2014 | B2 |
9065643 | Hurry et al. | Jun 2015 | B2 |
9070129 | Sheets et al. | Jun 2015 | B2 |
9100826 | Weiss | Aug 2015 | B2 |
9160741 | Wentker et al. | Oct 2015 | B2 |
9229964 | Stevelinck | Jan 2016 | B2 |
9245267 | Singh | Jan 2016 | B2 |
9249241 | Dai et al. | Feb 2016 | B2 |
9256871 | Anderson et al. | Feb 2016 | B2 |
9280765 | Hammad | Mar 2016 | B2 |
9367843 | Jurss | Jun 2016 | B2 |
9530137 | Weiss | Dec 2016 | B2 |
20010029485 | Brody | Oct 2001 | A1 |
20010034720 | Armes | Oct 2001 | A1 |
20010054003 | Chien | Dec 2001 | A1 |
20020007320 | Hogan | Jan 2002 | A1 |
20020016749 | Borecki | Feb 2002 | A1 |
20020029193 | Ranjan | Mar 2002 | A1 |
20020035548 | Hogan | Mar 2002 | A1 |
20020073045 | Rubin | Jun 2002 | A1 |
20020116341 | Hogan | Aug 2002 | A1 |
20020133467 | Hobson | Sep 2002 | A1 |
20020147913 | Lun Yip | Oct 2002 | A1 |
20030028481 | Flitcroft | Feb 2003 | A1 |
20030130955 | Hawthorne | Jul 2003 | A1 |
20030191709 | Elston | Oct 2003 | A1 |
20030191945 | Keech | Oct 2003 | A1 |
20030212642 | Weller et al. | Nov 2003 | A1 |
20040010462 | Moon | Jan 2004 | A1 |
20040050928 | Bishop | Mar 2004 | A1 |
20040059682 | Hasumi | Mar 2004 | A1 |
20040093281 | Silverstein | May 2004 | A1 |
20040139008 | Mascavage | Jul 2004 | A1 |
20040143532 | Lee | Jul 2004 | A1 |
20040158532 | Breck | Aug 2004 | A1 |
20040162781 | Searl | Aug 2004 | A1 |
20040210449 | Breck | Oct 2004 | A1 |
20040210498 | Freund | Oct 2004 | A1 |
20040230530 | Searl | Nov 2004 | A1 |
20040232225 | Bishop | Nov 2004 | A1 |
20040260646 | Berardi | Dec 2004 | A1 |
20050037735 | Coutts | Feb 2005 | A1 |
20050080730 | Sorrentino | Apr 2005 | A1 |
20050108178 | York | May 2005 | A1 |
20050199709 | Linlor | Sep 2005 | A1 |
20050246293 | Ong | Nov 2005 | A1 |
20050269401 | Spitzer | Dec 2005 | A1 |
20050269402 | Spitzer | Dec 2005 | A1 |
20060235795 | Johnson | Oct 2006 | A1 |
20060237528 | Bishop | Oct 2006 | A1 |
20060278704 | Saunders | Dec 2006 | A1 |
20070107044 | Yuen | May 2007 | A1 |
20070129955 | Dalmia | Jun 2007 | A1 |
20070136193 | Starr | Jun 2007 | A1 |
20070136211 | Brown | Jun 2007 | A1 |
20070170247 | Friedman | Jul 2007 | A1 |
20070179885 | Bird | Aug 2007 | A1 |
20070208671 | Brown | Sep 2007 | A1 |
20070245414 | Chan | Oct 2007 | A1 |
20070288377 | Shaked | Dec 2007 | A1 |
20070291995 | Rivera | Dec 2007 | A1 |
20080015988 | Brown | Jan 2008 | A1 |
20080029607 | Mullen | Feb 2008 | A1 |
20080035738 | Mullen | Feb 2008 | A1 |
20080052226 | Agarwal | Feb 2008 | A1 |
20080054068 | Mullen | Mar 2008 | A1 |
20080054079 | Mullen | Mar 2008 | A1 |
20080054081 | Mullen | Mar 2008 | A1 |
20080065554 | Hogan | Mar 2008 | A1 |
20080065555 | Mullen | Mar 2008 | A1 |
20080086473 | Searl | Apr 2008 | A1 |
20080201264 | Brown | Aug 2008 | A1 |
20080201265 | Hewton | Aug 2008 | A1 |
20080228646 | Myers | Sep 2008 | A1 |
20080243702 | Hart | Oct 2008 | A1 |
20080245855 | Fein | Oct 2008 | A1 |
20080245861 | Fein | Oct 2008 | A1 |
20080283591 | Oder, II | Nov 2008 | A1 |
20080294563 | Boutahar | Nov 2008 | A1 |
20080302869 | Mullen | Dec 2008 | A1 |
20080302876 | Mullen | Dec 2008 | A1 |
20080313264 | Pestoni | Dec 2008 | A1 |
20090006262 | Brown | Jan 2009 | A1 |
20090010488 | Matsuoka | Jan 2009 | A1 |
20090037333 | Flitcroft | Feb 2009 | A1 |
20090037388 | Cooper | Feb 2009 | A1 |
20090043702 | Bennett | Feb 2009 | A1 |
20090048971 | Hathaway | Feb 2009 | A1 |
20090054092 | Stonefield | Feb 2009 | A1 |
20090106112 | Dalmia | Apr 2009 | A1 |
20090106160 | Skowronek | Apr 2009 | A1 |
20090134217 | Flitcroft | May 2009 | A1 |
20090157555 | Biffle | Jun 2009 | A1 |
20090159673 | Mullen | Jun 2009 | A1 |
20090159700 | Mullen | Jun 2009 | A1 |
20090159707 | Mullen | Jun 2009 | A1 |
20090173782 | Muscato | Jul 2009 | A1 |
20090200371 | Kean | Aug 2009 | A1 |
20090218402 | Hodges | Sep 2009 | A1 |
20090248583 | Chhabra | Oct 2009 | A1 |
20090276347 | Kargman | Nov 2009 | A1 |
20090281948 | Carlson | Nov 2009 | A1 |
20090294527 | Brabson | Dec 2009 | A1 |
20090307139 | Mardikar | Dec 2009 | A1 |
20090308921 | Mullen | Dec 2009 | A1 |
20090327131 | Beenau | Dec 2009 | A1 |
20100008535 | Abulafia | Jan 2010 | A1 |
20100010930 | Allen et al. | Jan 2010 | A1 |
20100088237 | Wankmueller | Apr 2010 | A1 |
20100094755 | Kloster | Apr 2010 | A1 |
20100106644 | Annan | Apr 2010 | A1 |
20100120408 | Beenau | May 2010 | A1 |
20100133334 | Vadhri | Jun 2010 | A1 |
20100138347 | Chen | Jun 2010 | A1 |
20100145860 | Pelegero | Jun 2010 | A1 |
20100161433 | White | Jun 2010 | A1 |
20100185545 | Royyuru | Jul 2010 | A1 |
20100211422 | Zanzot | Aug 2010 | A1 |
20100211505 | Saunders | Aug 2010 | A1 |
20100223186 | Hogan | Sep 2010 | A1 |
20100228668 | Hogan | Sep 2010 | A1 |
20100235284 | Moore | Sep 2010 | A1 |
20100258620 | Torreyson | Oct 2010 | A1 |
20100291904 | Musfeldt | Nov 2010 | A1 |
20100299267 | Faith et al. | Nov 2010 | A1 |
20100306076 | Taveau | Dec 2010 | A1 |
20100325041 | Berardi | Dec 2010 | A1 |
20110010292 | Giordano | Jan 2011 | A1 |
20110016047 | Wu | Jan 2011 | A1 |
20110016320 | Bergsten | Jan 2011 | A1 |
20110040640 | Erikson | Feb 2011 | A1 |
20110047076 | Carlson et al. | Feb 2011 | A1 |
20110066551 | Bruesewitz | Mar 2011 | A1 |
20110083018 | Kesanupalli | Apr 2011 | A1 |
20110087596 | Dorsey | Apr 2011 | A1 |
20110093397 | Carlson | Apr 2011 | A1 |
20110125597 | Oder, II | May 2011 | A1 |
20110153437 | Archer | Jun 2011 | A1 |
20110153498 | Makhotin et al. | Jun 2011 | A1 |
20110154466 | Harper | Jun 2011 | A1 |
20110161233 | Tieken | Jun 2011 | A1 |
20110178926 | Lindelsee et al. | Jul 2011 | A1 |
20110191244 | Dai | Aug 2011 | A1 |
20110238511 | Park | Sep 2011 | A1 |
20110238573 | Varadarajan | Sep 2011 | A1 |
20110238575 | Nightengale et al. | Sep 2011 | A1 |
20110246317 | Coppinger | Oct 2011 | A1 |
20110258111 | Raj et al. | Oct 2011 | A1 |
20110272471 | Mullen | Nov 2011 | A1 |
20110272478 | Mullen | Nov 2011 | A1 |
20110276380 | Mullen | Nov 2011 | A1 |
20110276381 | Mullen | Nov 2011 | A1 |
20110276424 | Mullen | Nov 2011 | A1 |
20110276425 | Mullen | Nov 2011 | A1 |
20110295745 | White | Dec 2011 | A1 |
20110302081 | Saunders | Dec 2011 | A1 |
20120006893 | Hodges | Jan 2012 | A1 |
20120023567 | Hammad | Jan 2012 | A1 |
20120028609 | Hruska | Feb 2012 | A1 |
20120030047 | Fuentes et al. | Feb 2012 | A1 |
20120030094 | Khalil | Feb 2012 | A1 |
20120035998 | Chien | Feb 2012 | A1 |
20120041881 | Basu | Feb 2012 | A1 |
20120047237 | Arvidsson | Feb 2012 | A1 |
20120066078 | Kingston | Mar 2012 | A1 |
20120072350 | Goldthwaite | Mar 2012 | A1 |
20120078735 | Bauer | Mar 2012 | A1 |
20120078798 | Downing | Mar 2012 | A1 |
20120078799 | Jackson | Mar 2012 | A1 |
20120095852 | Bauer | Apr 2012 | A1 |
20120095865 | Doherty | Apr 2012 | A1 |
20120095918 | Jurss | Apr 2012 | A1 |
20120116902 | Cardina | May 2012 | A1 |
20120123882 | Carlson | May 2012 | A1 |
20120123940 | Killian | May 2012 | A1 |
20120129514 | Beenau | May 2012 | A1 |
20120143767 | Abadir | Jun 2012 | A1 |
20120143772 | Abadir | Jun 2012 | A1 |
20120158580 | Eram | Jun 2012 | A1 |
20120158593 | Garfinkle | Jun 2012 | A1 |
20120173431 | Ritchie | Jul 2012 | A1 |
20120185386 | Salama | Jul 2012 | A1 |
20120197807 | Schlesser | Aug 2012 | A1 |
20120203664 | Torossian | Aug 2012 | A1 |
20120203666 | Torossian | Aug 2012 | A1 |
20120215688 | Musser | Aug 2012 | A1 |
20120215696 | Salonen | Aug 2012 | A1 |
20120221421 | Hammad | Aug 2012 | A1 |
20120226582 | Hammad | Sep 2012 | A1 |
20120231844 | Coppinger | Sep 2012 | A1 |
20120233004 | Bercaw | Sep 2012 | A1 |
20120246070 | Vadhri | Sep 2012 | A1 |
20120246071 | Jain | Sep 2012 | A1 |
20120246079 | Wilson et al. | Sep 2012 | A1 |
20120265631 | Cronic | Oct 2012 | A1 |
20120271724 | Hodges | Oct 2012 | A1 |
20120271770 | Harris | Oct 2012 | A1 |
20120284187 | Hammad et al. | Nov 2012 | A1 |
20120297446 | Webb | Nov 2012 | A1 |
20120300932 | Cambridge | Nov 2012 | A1 |
20120303503 | Cambridge | Nov 2012 | A1 |
20120303961 | Kean | Nov 2012 | A1 |
20120304273 | Bailey | Nov 2012 | A1 |
20120310725 | Chien | Dec 2012 | A1 |
20120310831 | Harris | Dec 2012 | A1 |
20120316992 | Oborne | Dec 2012 | A1 |
20120317035 | Royyuru | Dec 2012 | A1 |
20120317036 | Bower | Dec 2012 | A1 |
20130017784 | Fisher | Jan 2013 | A1 |
20130018757 | Anderson et al. | Jan 2013 | A1 |
20130019098 | Gupta | Jan 2013 | A1 |
20130031006 | Mccullagh et al. | Jan 2013 | A1 |
20130054337 | Brendell | Feb 2013 | A1 |
20130054466 | Muscato | Feb 2013 | A1 |
20130054474 | Yeager | Feb 2013 | A1 |
20130081122 | Svigals | Mar 2013 | A1 |
20130091028 | Oder ("J.D."), II et al. | Apr 2013 | A1 |
20130110658 | Lyman | May 2013 | A1 |
20130111599 | Gargiulo | May 2013 | A1 |
20130117185 | Collison | May 2013 | A1 |
20130124290 | Fisher | May 2013 | A1 |
20130124291 | Fisher | May 2013 | A1 |
20130124364 | Mittal | May 2013 | A1 |
20130138525 | Bercaw | May 2013 | A1 |
20130144888 | Faith | Jun 2013 | A1 |
20130145148 | Shablygin | Jun 2013 | A1 |
20130145172 | Shablygin | Jun 2013 | A1 |
20130159178 | Colon | Jun 2013 | A1 |
20130159184 | Thaw | Jun 2013 | A1 |
20130166402 | Parento | Jun 2013 | A1 |
20130166456 | Zhang | Jun 2013 | A1 |
20130173736 | Krzeminski | Jul 2013 | A1 |
20130185202 | Goldthwaite | Jul 2013 | A1 |
20130191286 | Cronic | Jul 2013 | A1 |
20130191289 | Cronic | Jul 2013 | A1 |
20130198071 | Jurss | Aug 2013 | A1 |
20130198080 | Anderson et al. | Aug 2013 | A1 |
20130200146 | Moghadam | Aug 2013 | A1 |
20130204787 | Dubois | Aug 2013 | A1 |
20130204793 | Kerridge | Aug 2013 | A1 |
20130212007 | Mattsson | Aug 2013 | A1 |
20130212017 | Bangia | Aug 2013 | A1 |
20130212019 | Mattsson | Aug 2013 | A1 |
20130212024 | Mattsson | Aug 2013 | A1 |
20130212026 | Powell et al. | Aug 2013 | A1 |
20130212298 | Bunch | Aug 2013 | A1 |
20130212666 | Mattsson | Aug 2013 | A1 |
20130218698 | Moon | Aug 2013 | A1 |
20130218769 | Pourfallah et al. | Aug 2013 | A1 |
20130226799 | Raj | Aug 2013 | A1 |
20130226813 | Voltz | Aug 2013 | A1 |
20130238507 | Hodges | Sep 2013 | A1 |
20130246199 | Carlson | Sep 2013 | A1 |
20130246202 | Tobin | Sep 2013 | A1 |
20130246203 | Laracey | Sep 2013 | A1 |
20130246258 | Dessert | Sep 2013 | A1 |
20130246259 | Dessert | Sep 2013 | A1 |
20130246261 | Purves et al. | Sep 2013 | A1 |
20130246267 | Tobin | Sep 2013 | A1 |
20130254028 | Salci | Sep 2013 | A1 |
20130254052 | Royyuru | Sep 2013 | A1 |
20130254102 | Royyuru | Sep 2013 | A1 |
20130254117 | Von Mueller | Sep 2013 | A1 |
20130262296 | Thomas | Oct 2013 | A1 |
20130262302 | Lettow | Oct 2013 | A1 |
20130262315 | Hruska | Oct 2013 | A1 |
20130262316 | Hruska | Oct 2013 | A1 |
20130262317 | Collinge | Oct 2013 | A1 |
20130275300 | Killian | Oct 2013 | A1 |
20130275307 | Khan | Oct 2013 | A1 |
20130275308 | Paraskeva | Oct 2013 | A1 |
20130282502 | Jooste | Oct 2013 | A1 |
20130282575 | Mullen | Oct 2013 | A1 |
20130282588 | Hruska | Oct 2013 | A1 |
20130297501 | Monk et al. | Nov 2013 | A1 |
20130297504 | Nwokolo | Nov 2013 | A1 |
20130297508 | Belamant | Nov 2013 | A1 |
20130304649 | Cronic | Nov 2013 | A1 |
20130308778 | Fosmark | Nov 2013 | A1 |
20130311382 | Fosmark | Nov 2013 | A1 |
20130317982 | Mengerink | Nov 2013 | A1 |
20130332344 | Weber | Dec 2013 | A1 |
20130339253 | Sincai | Dec 2013 | A1 |
20130346314 | Mogollon | Dec 2013 | A1 |
20140007213 | Sanin | Jan 2014 | A1 |
20140013106 | Redpath | Jan 2014 | A1 |
20140013114 | Redpath | Jan 2014 | A1 |
20140013452 | Aissi et al. | Jan 2014 | A1 |
20140019352 | Shrivastava | Jan 2014 | A1 |
20140025581 | Calman | Jan 2014 | A1 |
20140025585 | Calman | Jan 2014 | A1 |
20140025958 | Calman | Jan 2014 | A1 |
20140032417 | Mattsson | Jan 2014 | A1 |
20140032418 | Weber | Jan 2014 | A1 |
20140040137 | Carlson | Feb 2014 | A1 |
20140040139 | Brudnicki | Feb 2014 | A1 |
20140040144 | Plomske | Feb 2014 | A1 |
20140040145 | Ozvat | Feb 2014 | A1 |
20140040148 | Ozvat | Feb 2014 | A1 |
20140040628 | Fort | Feb 2014 | A1 |
20140041018 | Bomar | Feb 2014 | A1 |
20140046853 | Spies | Feb 2014 | A1 |
20140047551 | Nagasundaram et al. | Feb 2014 | A1 |
20140052532 | Tsai | Feb 2014 | A1 |
20140052620 | Rogers | Feb 2014 | A1 |
20140052637 | Jooste | Feb 2014 | A1 |
20140068706 | Aissi | Mar 2014 | A1 |
20140074637 | Hammad | Mar 2014 | A1 |
20140108172 | Weber et al. | Apr 2014 | A1 |
20140114857 | Griggs | Apr 2014 | A1 |
20140143137 | Carlson | May 2014 | A1 |
20140164243 | Aabye et al. | Jun 2014 | A1 |
20140188586 | Carpenter et al. | Jul 2014 | A1 |
20140294701 | Dai et al. | Oct 2014 | A1 |
20140297534 | Patterson | Oct 2014 | A1 |
20140310183 | Weber | Oct 2014 | A1 |
20140330721 | Wang | Nov 2014 | A1 |
20140330722 | Laxminarayanan et al. | Nov 2014 | A1 |
20140331265 | Mozell et al. | Nov 2014 | A1 |
20140337236 | Wong et al. | Nov 2014 | A1 |
20140344153 | Raj et al. | Nov 2014 | A1 |
20140372308 | Sheets | Dec 2014 | A1 |
20150019443 | Sheets et al. | Jan 2015 | A1 |
20150032625 | Dill | Jan 2015 | A1 |
20150032626 | Dill | Jan 2015 | A1 |
20150032627 | Dill | Jan 2015 | A1 |
20150046338 | Laxminarayanan | Feb 2015 | A1 |
20150046339 | Wong et al. | Feb 2015 | A1 |
20150052064 | Karpenko et al. | Feb 2015 | A1 |
20150088756 | Makhotin et al. | Mar 2015 | A1 |
20150106239 | Gaddam et al. | Apr 2015 | A1 |
20150112870 | Nagasundaram et al. | Apr 2015 | A1 |
20150112871 | Kumnick | Apr 2015 | A1 |
20150120472 | Aabye et al. | Apr 2015 | A1 |
20150127529 | Makhotin et al. | May 2015 | A1 |
20150127547 | Powell et al. | May 2015 | A1 |
20150140960 | Powell et al. | May 2015 | A1 |
20150142673 | Nelsen et al. | May 2015 | A1 |
20150161597 | Subramanian et al. | Jun 2015 | A1 |
20150178724 | Ngo et al. | Jun 2015 | A1 |
20150180836 | Wong et al. | Jun 2015 | A1 |
20150186864 | Jones et al. | Jul 2015 | A1 |
20150193222 | Pirzadeh et al. | Jul 2015 | A1 |
20150195133 | Sheets et al. | Jul 2015 | A1 |
20150199679 | Palanisamy et al. | Jul 2015 | A1 |
20150199689 | Kumnick et al. | Jul 2015 | A1 |
20150220917 | Aabye et al. | Aug 2015 | A1 |
20150269566 | Gaddam et al. | Sep 2015 | A1 |
20150312038 | Palanisamy | Oct 2015 | A1 |
20150319158 | Kumnick | Nov 2015 | A1 |
20150332262 | Lingappa | Nov 2015 | A1 |
20150356560 | Shastry et al. | Dec 2015 | A1 |
20160028550 | Gaddam et al. | Jan 2016 | A1 |
20160042263 | Gaddam et al. | Feb 2016 | A1 |
20160065370 | Le Saint et al. | Mar 2016 | A1 |
20160092696 | Guglani et al. | Mar 2016 | A1 |
20160092872 | Prakash et al. | Mar 2016 | A1 |
20160103675 | Aabye et al. | Apr 2016 | A1 |
20160119296 | Laxminarayanan et al. | Apr 2016 | A1 |
20160224976 | Basu | Aug 2016 | A1 |
20170046696 | Powell et al. | Feb 2017 | A1 |
20170103387 | Weber | Apr 2017 | A1 |
20170220818 | Nagasundaram et al. | Aug 2017 | A1 |
20170228723 | Taylor | Aug 2017 | A1 |
Number | Date | Country |
---|---|---|
2156397 | Feb 2010 | EP |
10-2010-0024030 | Mar 2010 | KR |
10-2011-0095845 | Aug 2011 | KR |
2001035304 | May 2001 | WO |
2001035304 | May 2001 | WO |
2004042536 | May 2004 | WO |
2006113834 | Oct 2006 | WO |
2009032523 | Mar 2009 | WO |
2010078522 | Jul 2010 | WO |
2012068078 | May 2012 | WO |
2012098556 | Jul 2012 | WO |
2012142370 | Oct 2012 | WO |
2012167941 | Dec 2012 | WO |
2013048538 | Apr 2013 | WO |
2013056104 | Apr 2013 | WO |
2013119914 | Aug 2013 | WO |
2013179271 | Dec 2013 | WO |
Entry |
---|
Petition for Inter Partes Review of U.S. Pat. No. 8,533,860 Challenging Claims 1-30 Under 35 U.S.C. § 312 and 37 C.F.R. § 42.104, filed Feb. 17, 2016, Before the USPTO Patent Trial and Appeal Board, IPR 2016-00600, 65 pages. |
Wang, U.S. Appl. No. 62/000,288 (unpublished), Payment System Canonical Address Format filed May 19, 2014. |
Sharma et al., U.S. Appl. No. 62/003,717 (unpublished), Mobile Merchant Application filed May 28, 2014. |
Kalgi et al., U.S. Appl. No. 62/024,426, (unpublished) Secure Transactions Using Mobile Devices filed Jul. 14, 2014. |
Prakash et al., U.S. Appl. No. 62/037,033 (unpublished), Sharing Payment Token filed Aug. 13, 2014. |
Hoverson et al., U.S. Appl. No. 62/038,174 (unpublished), Customized Payment Gateway filed Aug. 15, 2014. |
Wang, U.S. Appl. No. 62/042,050 (unpublished), Payment Device Authentication and Authorization System filed Aug. 26, 2014. |
Gaddam et al., U.S. Appl. No. 62/053,736 (unpublished), Completing Transactions Without a User Payment Device filed Sep. 22, 2014. |
Patterson, U.S. Appl. No. 62/054,346 (unpublished), Mirrored Token Vault filed Sep. 23, 2014. |
Dimmick, U.S. Appl. No. 14/952,514 (unpublished), Systems Communications With Non-Sensitive Identifiers filed Nov. 25, 2015. |
Dimmick, U.S. Appl. No. 14/952,444 (unpublished), Tokenization Request Via Access Device filed Nov. 25, 2015. |
Prakash et al., U.S. Appl. No. 14/955,716 (unpublished), Provisioning Platform for Machine-To-Machine Devices filed Dec. 1, 2015. |
Wong et al., U.S. Appl. No. 14/966,948 (unpublished), Automated Access Data Provisioning filed Dec. 11, 2015. |
Stubbs et al., U.S. Appl. No. 62/103,522 (unpublished), Methods and Systems for Wallet Provider Provisioning filed Jan. 14, 2015. |
McGuire, U.S. Appl. No. 14/600,523 (unpublished), Secure Payment Processing Using Authorization Request filed Jan. 20, 2015. |
Flurscheim et al., U.S. Appl. No. 15/004,705 (unpublished), Cloud-Based Transactions With Magnetic Secure Transmission filed Jan. 22, 2016. |
Flurscheim et al., U.S. Appl. No. 62/108,403 (unpublished), Wearables With NFC HCE filed Jan. 27, 2015. |
Sabba et al., U.S. Appl. No. 15/011,366 (unpublished), Token Check Offline filed Jan. 29, 2016. |
Patterson, U.S. Appl. No. 15/019,157 (unpublished), Token Processing Utilizing Multiple Authorizations filed Feb. 9, 2016. |
Cash et al., U.S. Appl. No. 15/041,495 (unpublished), Peer Forward Authorization of Digital Requests filed Feb. 11, 2016. |
Le Saint et al., U.S. Appl. No. 15/008,388 (unpublished), Methods for Secure Credential Provisioning filed Jan. 27, 2016. |
Kinagi, U.S. Appl. No. 62/117,291 (unpublished), Token and Cryptogram Using Transaction Specific Information filed Feb. 17, 2015. |
Galland et al. U.S. Appl. No. 62/128,709 (unpublished), Tokenizing Transaction Amounts filed Mar. 5, 2015. |
Rangarajan et al., U.S. Appl. No. 61/751,763 (unpublished), Payments Bridge filed Jan. 11, 2013. |
Li, U.S. Appl. No. 61/894,749 (unpublished), Methods and Systems for Authentication and Issuance of Tokens in a Secure Environment filed Oct. 23, 2013. |
Aissi et al., U.S. Appl. No. 61/738,832 (unpublished), Management of Sensitive Data filed Dec. 18, 2012. |
Wong et al., U.S. Appl. No. 61/879,362 (unpublished), Systems and Methods for Managing Mobile Cardholder Verification Methods filed Sep. 18, 2013. |
Powell, U.S. Appl. No. 61/892,407 (unpublished), Issuer Over-The-Air Update Method and System filed Oct. 17, 2013. |
Powell, U.S. Appl. No. 61/926,236 (unpublished), Methods and Systems for Provisioning Mobile Devices With Payment Credentials and Payment Token Identifiers filed Jan. 10, 2014. |
International Preliminary Report on Patentability and Written Opinion dated May 7, 2015 in PCT/US2013/066467, 10 pages. |
Chipman, et al., U.S. Appl. No. 15/265,282 (Unpublished), Self-Cleaning Token Vault, filed Sep. 14, 2016. |
Lopez, et al., U.S. Appl. No. 15/462,658 (Unpublished), Replacing Token on a Multi-Token User Device, filed Mar. 17, 2017. |
International Search Report and Written Opinion for International Patent Application No. PCT/US2013/066467, dated Feb. 17, 2014, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20140114857 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
61717558 | Oct 2012 | US | |
61767732 | Feb 2013 | US | |
61767717 | Feb 2013 | US |