Test and measurement instruments (e.g. signal capture and analysis instruments such as spectrum analyzers, oscilloscopes, multimeters, network analyzers; signal source instruments such as signal generators, DC sources, and other waveform or power sources) are used across a product's entire life cycle to design, debug, manufacture, test, and maintain the product.
Different instruments within the same instrument family are often used at different stages in the product life cycle. For example, there are many kinds of spectrum analyzers within the spectrum analyzer family of instruments. A spectrum analyzer used during the research and design (R&D) phase of a cellular phone is usually more sophisticated and has more capabilities than a spectrum analyzer used in manufacturing to test thousands of phones from an assembly line. Similarly, the R&D spectrum analyzer is typically bigger than a portable spectrum analyzer used in the field to test a cellular base station. However, all three spectrum analyzers (the R&D, manufacturing, and portable spectrum analyzers) need to be capable of making many of the same measurements, calculations, and algorithms. The measurements, calculations, algorithms, computational logic, etc. that each instrument is capable of performing shall hereinafter be collectively referred to as “measurement intellectual property” or “measurement IP”.
In the past, instruments were designed to have the measurement IP directly and implicitly aware of both the hardware composition and limitations of the product. This approach bound the measurement IP to the hardware and prevented reuse of the measurement IP across different instruments, both within the same instrument family as well as across different families. For example, a sweep algorithm in a prior art spectrum analyzer would be designed to be inherently aware of the specifics of the hardware within the spectrum analyzer. The sweep measurement would be pre-customized to the hardware capabilities and limitations of the spectrum analyzer. As a result, product developers and users have had to rework or even recreate their most valuable and difficult measurement IP across the different instruments. In the example given above for the three different kinds of spectrum analyzers, a command to perform an AC-coupled sweep could be implemented three different ways to accommodate the different hardware present in the three different instruments.
Another difficulty was in determining if errors or variations in results were due to actual problems in a device under test (DUT), or simply differences in implementations of the measurement IP. In the past (using the example given above), if the same measurement (e.g. an error vector magnitude measurement) were performed on the three kinds of spectrum analyzers, and a different result was obtained from each spectrum analyzer, it was difficult to determine the reason for the variance. Was there an actual problem in the DUT (e.g. cell phone, base station, etc.)? Or did the difference stem from variations in implementation of the measurement algorithm? The answer was difficult to ascertain in the past.
Prior attempts to solve these problems included using the same syntax, such as defined by the Standard Commands for Programmable Instrumentation (SCPI). SCPI defines a standard set of commands to control test and measurement instruments by specifying a command structure and syntax to control programmable instruments. However, using the same syntax was insufficient to eliminate the rework needed between instrument types and platforms, because the same command could mean different things in different instruments. Even if the command had the same meaning across different instruments, it could be implemented differently and return different results. Furthermore, the SCPI code for the spectrum analyzer does not overlap much with the oscilloscope, so there is not much reusability or savings by using SCPI.
A solution to these problems is provided by using a transaction interface. The transaction interface sits between measurement instrument hardware (or a simulation of the measurement instrument hardware) and a client application that provides the measurement IP. The transaction interface is a set of guidelines which components in a measurement system follow in their interactions with each other. The transaction interface is implemented using a transaction server.
The transaction interface provides a common syntax and common semantics for transactions between the client application and the instrument hardware. The transaction interface also allows for measurement IP portability between instruments within a family (e.g. between an R&D spectrum analyzer, a manufacturing spectrum analyzer, and a portable spectrum analyzer), as well as between different families of instruments (e.g. between a spectrum analyzer, an oscilloscope, a frequency counter, etc.).
The transaction interface requires that the capabilities of a measurement instrument are discoverable by the client application. The client application determines those capabilities by submitting a query to the transaction interface. The transaction server initiates the proper hardware routines to determine the capabilities and returns those capabilities to the client application, which then utilizes the desired capabilities. However, the client application and instrument hardware do not communicate directly with one another—all communication between them passes through and is facilitated by the transaction interface.
By using the transaction interface consistently across different instruments within a family, the rework needed to implement measurements, calculations and other algorithms is reduced. The transaction interface can be used across different families of instruments as well. The capabilities and results are both standardized and versioned. Using a transaction form allows for efficient remote deployments of hardware from the measurement IP.
For the description of the present invention, the following terms shall have the meanings here set forth:
“Measurement instrument” means any instrument used to determine a characteristic or parameter of a device under test. This definition includes instruments such as signal sources, which create signals that are used in a measurement, for example signals that serve as a reference or standard in a measurement. The term “measurement instrument” is used interchangeably with “test and measurement instrument” and “instrument”. Examples of measurement instruments include (but are not limited to): spectrum analyzers, network analyzers, logic analyzers, protocol analyzers, oscilloscopes, multimeters, voltmeters, power meters, frequency counters, impedance analyzers, signal sources, and Electronic Design Automation (EDA) software such as the simulation products produced by EEsof EDA, a division of Agilent Technologies, Inc. of Santa Clara, Calif.
“Measurement intellectual property” or “Measurement IP” means any calculation, measurement, computational logic, or algorithm that is performed either on measurement instrument data, or to generate measurement instrument data (with respect to signal sources). Examples of measurement IP include, but are not limited to: making error vector magnitude measurements, carrier power measurements, generating specific waveforms, such as WCDMA reference pilot signals, etc.
“Measurement” means any measurement of an aspect of fundamental physics, such as a measurement of voltage, time, frequency, power, current, resistance, inductance, capacitance, S parameters, Z parameters, etc.
“Instrument family” means a collection of similar instruments that have varying degrees of capabilities or sophistication, but have similar purposes. For example, within the spectrum analyzer instrument family are the R&D spectrum analyzer, the manufacturing spectrum analyzer, and the portable spectrum analyzer. Spectrum analyzers are not in the same family as oscilloscopes, which are not in the same family as network analyzers, etc. However, there may be some overlap between measurements across different families. For example, a sweep measurement can be run in both a spectrum analyzer as well as an oscilloscope.
“Client application” means any software program or application that utilizes a capability of a measurement instrument. The term “client application” is used interchangeably with “client”.
“Transaction” means an interaction between a client application and the transaction interface. Every transaction has an explicit requester. Errors and return values are reported only to that requester. Each transaction is unique to a client/server pair and is not affected by any concurrent transactions by other requesters.
The transaction interface 12 is analogous to a contract with a set of requirements, which components in a measurement instrument follow in their interactions with each other. The requirements of the transaction interface 12 are implemented using a transaction server (not shown in
The transaction interface 12 sits between a client application 14 and the hardware 16 of the measurement instrument 10. The transaction interface requires a standard format for transactions between the client application and the instrument hardware, and uses a common syntax and common semantics for these transactions. A user interacts with and controls the instrument via the client application 14, which initiates all transactions. A ticket identification (ID) is assigned to each transaction. The ticket ID is globally unique. The client application 14 includes a user interface 18 that the user uses to set parameters for a measurement, execute a measurement, etc. More importantly, the client application 14 includes measurement IP 20 that is performed on data collected by the instrument hardware 16.
The hardware 16 includes the hardware driver and other low-level, hardware-related firmware that communicates directly with the instrument hardware. The client application 14 does not need to be aware of the specifics of the instrument hardware or how a measurement is implemented on a particular instrument, since it is not in direct communication with the hardware 16. Instead, as indicated by arrows 17, the client application 14 communicates only with the transaction interface 12, and the hardware 16 communicates only with the transaction interface 12. The hardware 16 collects measurement data from a device under test (DUT, not shown). The data sent back by the hardware is corrected or “cleaned-up” to compensate for deficiencies in the hardware prior to being sent back to the client application. The data sent back by the transaction server is to maintain the client application's independence from the hardware functionality or quality.
It should be noted that the transaction interface 12 can also be used in systems where the instrument hardware 16 is replaced with a software simulation of the hardware, which is common for development purposes. Simulations are often used before the hardware is available in a design cycle, as well as for the design process itself.
The transaction interface 12 provides a common syntax and common semantics for communications between the client application 14 and the instrument hardware 16. By using the transaction interface 12, measurement IP 20 can be reused between instruments within a family (e.g. between an R&D spectrum analyzer, a manufacturing spectrum analyzer, and a portable spectrum analyzer), as well as between different families of instruments (e.g. between a spectrum analyzer, an oscilloscope, a frequency counter, etc.). This increased portability eliminates the rework that needed to be done in the past to implement similar measurements within and across instrument families.
Finally in step 34, the transaction interface 12 passes the response back to the client application 14. The capability query 26 is performed at initialization, when the instrument is first powered on. The client application 14 can also subscribe to notifications from the hardware 16 (discussed below), so that changes in the hardware capabilities can be used to trigger another capability query.
Action requests can be implemented hierarchically, and refer to results from previous data requests and results, as well. Furthermore, the capability queries and action requests are versioned to remain adaptable.
In an alternate embodiment, the transaction interface 12 can return the data/result to the client application 14 as soon as it is ready and available. The client application 14 does not need to fetch the data itself.
In order to communicate with the transaction interface 12, every capability query, action request, and data request submitted by the client application 14 must conform to a standard format specified for the transaction. Similarly, every response and result notification submitted by the hardware to the transaction server must also conform to the same standard format. All data are value-typed, which means that they can be fully and independently represented without pointers or implied connections to other programming constructs. A ‘C’ programming language struct which contains no pointers or function references is an example of a value-type. By requiring the hardware and the client application to communicate via the transaction server using standard formats, interoperability is achieved between instruments within a family, and between families of instruments. The client application does not need to be aware of the specifics of how the capability queries, action requests or data requests are implemented by the instrument, because that is hidden from the client application behind the transaction server. The particular standard format selected for the capability queries, requests, settings, results, etc., are designed so as to not be inherently dependent upon any particular operating system (OS) or remoting technology.
The client application initiates all capability queries, action requests, and data requests. The hardware only responds to transactions initiated by the client application, except in a few cases. One case is when the hardware capabilities of the instrument change. For example, the instrument may gain additional capabilities, such as when new electronics (e.g. a new circuit board) are hot-plugged into the instrument. The instrument may lose capabilities as well, such as when existing electronics are hot-swapped out of the instrument, or when something (e.g. a circuit or component) fails in the instrument. In either situation, the hardware server must send a notification broadcast via the transaction interface to the client application relating the change in capabilities.
For example, suppose an R&D spectrum analyzer 53 has 3 capabilities, represented by the symbols triangle 54, circle 56, and star 58. (Only 3 capabilities are shown for the sake of simplicity, but in reality, a spectrum analyzer will have much more than just 3 capabilities). Suppose also that measurement IP has been developed to utilize these capabilities, represented by the hollow symbols of a triangle 62, a circle 64, and a star 66. The desired measurement IP is taken from the common library and plugged into client application A that is designed to work with the R&D spectrum analyzer 53. The transaction interface standardizes client application A's communications with the R&D spectrum analyzer 53.
Suppose that, some time later, a portable spectrum analyzer 70 is being developed. Its hardware provides similar but fewer capabilities than the R&D spectrum analyzer 53. The capabilities of the portable spectrum analyzer 70 are represented by triangle 54 and star 58. Notice that the portable spectrum analyzer 70 has fewer capabilities than the R&D spectrum analyzer 53. In the past, the developer of client application B needed to start from scratch to develop measurement IP (or at least substantially rework measurement IP) to utilize the portable spectrum analyzer's capabilities. The transaction interface of the present invention allows the developer to pick and choose which components in the common library 52 of measurement IP to plug into the client application B and reuse the measurement IP previously developed. Any relevant limitations in the portable spectrum analyzer's capabilities that should be taken into account by the measurement IP will be made known to client application B using a capability query as described previously.
For example, suppose the shaded triangle 54 represents a sweep capability, and the hollow triangle 62 in the common library represents a sweep algorithm. The R&D spectrum analyzer 53 is capable of performing a sweep up to X GHz, whereas the portable spectrum analyzer 70 is only capable of performing a sweep up to Y GHz. The sweep algorithm (triangle 62) in the common library 52 is implemented generically, with a variable instead of a hardcoded frequency limitation. The client application submits a capability query to the corresponding instrument and determines its capabilities and limitations, include the frequency limitation in a sweep measurement. Once it receives a response from the instrument hardware, the client application simply plugs in the proper limitation into the sweep algorithm. For the R&D spectrum analyzer, client application A would plug in X GHz into sweep algorithm 62. For the portable spectrum analyzer, client application B would plug in Y GHz into sweep algorithm 62. In this way, the same sweep algorithm can be used across different instruments in the same family. A developer of a client application no longer needs to reinvent or redevelop his own measurement IP.
A similar savings can be applied across instrument families as well. A developer of a signal generator 72 can plug in any measurement IP that exists already in the common library that is shared with the R&D spectrum analyzer 53, as represented by circle 64. For example, one capability that might be shared across these two different families (spectrum analyzer and signal source) is a bit error rate test. Any new measurement IP (as represented by the dashed cross 68) that does not currently exist in the common library for the signal generator's capabilities can be created, and added to the common library for future reuse.
All transactions between the client application 14 and the instrument hardware 16 are handled by the transaction server 67, which can be in-process or remote. The transaction server 67 receives requests from the client-side helper 65 and executes concrete algorithms. It also dispatches method calls to the instrument hardware and fills in the results of the execution for later retrieval. Both layers work asynchronously. The transaction server 67 is capable of supporting multiplicity (multiple clients and multiple servers) and concurrency (fulfilling/executing multiple requests at the same time). The transaction server 67 can be utilized through a direct application programming interface (API) and through industry standard remote access mechanisms, including Web Services.
In an actual reduction to practice, the transaction interface 12 was implemented using C sharp in a .NET environment. However, any suitable software/programming language and environment may be used to implement the transaction interface 12.
Use of the transaction interface is not limited to within a measurement instrument alone—a transaction interface can be used in networked measurement systems as well.
For example, suppose a user of the PC 74 desires to run a sweep measurement. The PC 74 itself has no measurement instrument hardware installed. Instead, the client application on PC 74 can send a capability query out onto the network 73. Every component having a transaction server would send back a response with its respective capabilities. Suppose instrument 80 is an oscilloscope, hardware 82 is spectrum analyzer hardware (with no local client application), and hardware 84 is signal source hardware (with no local client application). The responses of instrument 80 (the oscilloscope) and hardware 82 (the spectrum analyzer hardware) would include sweep capabilities, whereas the response of hardware 84 (the signal source hardware) would not. After determining which capabilities are available over the network 73, the user of PC 74 can determine which sweep capabilities fit his needs and send out action requests to the appropriate instrument.
The client application communicates with the transaction interface 12. The transaction interface 12 communicates with a request interface 92. The request interface 92 transports requests from the client application 14. The transaction interface 12 also has the responsibilities of dispatching start/stop/pause requests. The dispatch of start/stop/pause requests is owned and processed by the transaction server control 91.
The request interface 92 communicates with a request entity 96, which owns the input parameters passed from the client application 14. The request entity 96 communicates with the request algorithm 98. The request algorithm 98 is software that knows how to communicate with the hardware subsystem to execute the request. The request algorithm 98 is responsible for executing request steps, owning the result, and filling in the results.
The request algorithm 98 communicates with the hardware subsystem 16 through an algorithm interface 100. The algorithm interface 100 has the responsibilities of setting up the hardware and brokering data. The hardware subsystem 16 provides the hardware capabilities and captures the data requested, then returns it via the algorithm interface 100 to the request algorithm 98. The request algorithm 98 stores the data in the result entity 94, which owns the result data.
The transaction interface 12 communicates with the result interface 90, which communicates with the result entity 94. When the client application 14 is notified that the result is ready, it retrieves the result through the transaction interface 12 and the result interface 90.
The transaction server control 91 owns a server capability 112. The server capability 112 is an entity that holds the capabilities of the server, such as what types of requests the transaction server can process.
The client application 14 also communicates with a discoverability interface 108. The client application 14 uses the discoverability interface 108 to discover what transaction servers may be available. The discoverability interface 108 is responsible for dispatching discoveries and communicates with a discoverability control 110. The discoverability control 110 finds and communicates with the transaction server control 91 to determine which transaction servers the client application 14 can connect to over a network.
A system controller 102 exists to instantiate a transaction server. The system controller 102 is responsible for initiating construction and destruction of a transaction interface. The system controller 102 communicates with a factory interface 104. The factor interface 104 communicates with a factory control 106 to dispatch the creation of a transaction server control 91.
Although the present invention has been described in detail with reference to particular embodiments, persons possessing ordinary skill in the art to which this invention pertains will appreciate that various modifications and enhancements may be made without departing from the spirit and scope of the claims that follow.