Transactive control and coordination framework and associated toolkit functions

Information

  • Patent Grant
  • 10740775
  • Patent Number
    10,740,775
  • Date Filed
    Monday, December 16, 2013
    11 years ago
  • Date Issued
    Tuesday, August 11, 2020
    4 years ago
Abstract
Disclosed herein are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). For example, embodiments of the disclosed technology can be used to improve the resiliency of a power grid and to allow for improved consumption of renewable resources. Further, certain implementations facilitate a degree of decentralized operations not available elsewhere.
Description
FIELD

This application relates generally to the field of power grid management and control.


SUMMARY

Disclosed below are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). For example, embodiments of the disclosed technology can be used to improve the resiliency of a power grid and to allow for improved consumption of renewable resources. Further, certain implementations facilitate a degree of decentralized operations not available elsewhere.


“Transactive control and coordination” features market-like mechanisms for the selection of resources and demand-side assets in an electric power grid. The disclosed technology concerns new embodiments of transactive control and coordination. Such embodiments allow for transactive control and coordination where: (1) the system is implemented over large geographic areas; (2) the system is implemented across multiple grid regulation and/or business boundaries; (3) a large diversity of participating resources and loads are to be coordinated; and/or (4) the system desirably functions at multiple scales (e.g., both large areas of the transmission region and at individual devices).


Locations on the electric power grid that perform one or more of the disclosed techniques of are sometimes referred to herein as “transactive nodes.” Further, embodiments of the disclosed technology are described in terms of an “algorithmic framework,” where the highest-level responsibilities that are to be conducted at a transactive node are discussed. In certain embodiments, two functional blocks within the algorithmic framework allow for the further incorporation of (1) “toolkit resource functions” and/or (2) “toolkit load functions.” For example, depending on the unique features extant at a given transactive node (e.g., certain types of generation resources, inelastic electrical loads, other loads that might be responsive to a price-like signal in a demand-responsive way), one or more toolkit functions and their unique functionality may be incorporated. These toolkit functions can respectively modify the formulation of the price-like signal by the framework, or modify the amount of load that is to be generated or consumed by assets at this grid location. The functions can also advise the control of responsive assets.


Embodiments of the disclosed technology can be used to realize the fully distributed coordination of electrical power grids. In certain embodiments, such coordination can be accomplished by having nearest circuit neighbors exchange transactive signals. Desirably, these signals include not only price and quantity signals for an imminent time interval, but also predicted signals for future time intervals. In certain implementations, at least two subclasses of transactive signal are used—one price-like and the other representing power. The transactive signal that represents power (the TFS) is usefully aggregated where the power is also combined in a circuit and represents the power flow between circuit neighbors; a price-like signal (the TIS) may fairly represent costs of multiple resources and incentives if such costs are proportionately added where the resources are injected into and where the incentives occur in the electrical circuit.


In certain implementations, and in contrast to system utilizing explicit bilateral markets, some of the disclosed systems use planned energy consumption as the feedback.


Also disclosed herein are tools and techniques for computing distributed relative power flow. For example, a distributed relative power flow method is formulated for electrical power systems. In certain embodiments, a node is allowed to allocate its generation or load changes among the power flows with its neighbors without the global knowledge of the power system. Further, in some embodiments, decisions are made independently at distributed locations to respond to incentive signals from distributed transactive control. The impacts of these decisions on power flow are desirably predicted, which is presently challenging to do with conventional power flow formulations. In certain embodiments, parallel computation is an inherent feature of the disclosed formulation.


Conventional power flow solvers, usually located at a central location, rely on the global knowledge of the power system to predict the impacts of generation or load changes on the power flow. However, it is challenging to predict the power flow by using such solvers at distributed locations, where only information from neighbor nodes may be available. This is not the case with embodiments of the disclosed distributed relative power flow formulations.


Embodiments of the disclosed power flow formulation can be used in a variety of environments. For example, such implementations can be used as part of a “smart grid” system, which heavily relies on two-way communication and transactive control.


Decisions to respond to incentive signals from transactive control cause power flow changes, which can be predicted in parallel at distributed locations, without knowledge of the entire power system.


Details of exemplary non-limiting embodiments of the disclosed technology are disclosed and illustrated in the sections below. Any one or more of the features, aspects, and/or functions described in any of the sections below or above can be used alone or in any combination or sub-combination with one another.


Embodiments of the disclosed methods can be performed using computing hardware, such as a computer processor or an integrated circuit. For example, embodiments of the disclosed methods can be performed by software stored on one or more non-transitory computer-readable media (e.g., one or more optical media discs, volatile memory components (such as DRAM or SRAM), or nonvolatile memory or storage components (such as hard drives)). Such software can be executed on a single computer or on a networked computer (e.g., via the Internet, a wide-area network, a local-area network, a client-server network, a cloud-based network, or other such network). Embodiments of the disclosed methods can also be performed by specialized computing hardware (e.g., one or more application specific integrated circuits (“ASICs”) or programmable logic devices (such as field programmable gate arrays (“FPGAs”)) configured to perform any of the disclosed methods). Additionally, any intermediate or final result created or modified using any of the disclosed methods can be stored on a non-transitory storage medium (e.g., one or more optical media discs, volatile memory or storage components (such as DRAM or SRAM), or nonvolatile memory or storage components (such as hard drives)) and are considered to be within the scope of this disclosure. Furthermore, any of the software embodiments (comprising, for example, computer-executable instructions which when executed by a computer cause the computer to perform any of the disclosed methods), intermediate results, or final results created or modified by the disclosed methods can be transmitted, received, or accessed through a suitable communication means.


The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The application contains at least one drawing executed in color. Copies of this patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.



FIG. 1 is a generalized example of a suitable computing hardware environment for a computing device with which several of the described embodiments can be implemented.



FIG. 2 is a block diagram illustrating the transactive control concept.



FIG. 3 is an illustration of the node-by-node changes to a transactive incentive signal as it flows from generation to end-use.



FIG. 4 illustrates the dynamics of an electric vehicle charging example of the disclosed technology.



FIG. 5 illustrates a simple topology for wind availability as will be used to illustrate an embodiment of the disclosed technology.



FIG. 6 is a representation of toolkit functions for bulk power resources



FIG. 7 is a graph showing the power generated at the transactive node represented by FIG. 5 over time.



FIG. 8 is a graph illustrating the unit costs of power for the current transactive control example.



FIG. 9 is a graph that presents the hourly resource costs for wind power according to a conventional approach versus a transactive control approach.



FIG. 10 is a graph that shows the cumulative cost comparison for a transactive control approach versus a conventional approach.



FIG. 11 is a graph illustrating an example transactive incentive signal as it is affected by a wind power resource.



FIG. 12 is a skeleton diagram of the algorithmic framework at a transactive node.



FIG. 13 is a block diagram illustrating the example timing model.



FIG. 14 is a diagram exemplifying the stacked component resource and incentive costs that compose a transactive signal.



FIG. 15 is another diagram showing an example skeleton model of a standard transactive node that emphasizes the relationship between an exemplary overall methodology and the toolkit functions.



FIG. 16 is a diagram illustrating one view of how multiscale intervals could be addressed by embodiments of the transactive system.



FIG. 17 is a simple view of the responsibilities of a transactive node.



FIG. 18 illustrates a basic transactive node model.



FIG. 19 illustrates the constraint function transactive node component.



FIG. 20 illustrates the load function transactive node component.



FIG. 21 is a graph showing conceptual responses of methods to variation of an incentive signal.



FIG. 22 illustrates a supply function node component.



FIG. 23 illustrates a general transactive node.



FIG. 24 is a flowchart illustrating an exemplary method for operating a transactive node according to certain embodiments of the disclosed technology.



FIG. 25 is another flowchart illustrating an exemplary method for operating a transactive node according to certain embodiments of the disclosed technology.



FIG. 26 is another flowchart illustrating an exemplary method for operating a transactive node according to certain embodiments of the disclosed technology.



FIG. 27 is another flowchart illustrating an exemplary method for selecting a specific toolkit function from among a library of such toolkit functions.



FIG. 28 illustrates the structure of numbered attributes at an exemplary transactive node.



FIG. 29 shows an example state diagram for a transactive node.



FIG. 30 is an exemplary connection state diagram that applies to transactive neighbors, system managers, assets, and local information.



FIG. 31 is a diagram that illustrates TIS and TFS generation being decoupled.



FIG. 32 is a diagram that illustrates TIS processing as may occur for some embodiments.



FIG. 33 is a diagram illustrating an example where a perpetual exchange of signals might become sustained between two transactive node neighbors



FIG. 34 is a graph showing weighting factors for a set of demonstration intervals (IST0=0:00) using three different values of constant γ.



FIG. 35 is a flowchart showing an example toolkit framework of functions and processes at a transactive node.



FIG. 36 is a flowchart illustrating an exemplary “receive transactive incentive signal” process.



FIG. 37 is a flowchart for an exemplary “calculate new transactive signal intervals” process.



FIG. 38 is a flowchart illustrating an exemplary “formulate TIS” process.



FIG. 39 is a flowchart of an exemplary “formulate IFS” process.



FIG. 40 is a flowchart of an exemplary “sum total predicted load” process.



FIG. 41 is a flowchart of an exemplary “calculate applicable toolkit load functions” process



FIG. 42 is a flowchart of an exemplary “send transactive signals” process.



FIG. 43 is a flowchart of an exemplary “calculate applicable toolkit resource and incentive functions” process.



FIG. 44 is a flowchart of an exemplary “control responsive asset systems” process.



FIG. 45 is a flowchart of an exemplary “sum total predicted resources” process.



FIG. 46 is a flowchart of an exemplary “control responsive resource” process.



FIG. 47 is a set of graphs showing predicted load {circumflex over (P)} compared to measured load P for an example function.



FIG. 48 is a set of graphs that show the linear least-squares error fit for each hour of the day, for day 4 given the measured data for an example function.



FIG. 49 is a set of graphs that show the linear least-squares error fit for each hour of the day, for day 12 given the measured data for an example function.



FIG. 50 is a set of graphs that show the linear least-squares error fit for each hour of the day, for day 14 given the measured data for an example function.



FIG. 51 is a set of graphs showing predicted load P compared to measured load P for an example function.



FIG. 52 is a set of graphs that show the linear least-squares error fit for each hour of the day, for day 4 given the measured data for an example function.



FIG. 53 is a set of graphs that show the linear least-squares error fit for each hour of the day, for day 12 given the measured data for an example function.



FIG. 54 is a set of graphs that show the linear least-squares error fit for each hour of the day, for day 14 given the measured data for an example function.



FIG. 55 is a graph of power vs. wind speed for wind turbines for an example function.



FIG. 56 is a graph of a hypothetical supply stack.



FIG. 57 is a diagram showing a sample daily DowJones Mid-C hourly index.



FIG. 58 is a plot of examplary overall cost of energy for hydropower for each season for an example function.



FIG. 59 shows example graphs for DIST(TIS0) and Φ(TIS0).



FIG. 60 is a graph showing a typical water heater power consumption during week and weekend days.



FIG. 61 is an example profile of PS(t).



FIG. 62 is a plot of a winter profile of TOSP(t) that uses the winter parameters.



FIG. 63 is a plot of a summer profile of TOSP(t) that uses the summer parameters.



FIG. 64 is a graph of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=10° C.



FIG. 65 is a graph of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=0° C.



FIG. 66 is a graph of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=0° C.; Δ TDRSP=−2° C. from 8:00 to 10:00 am.



FIG. 67 is a graph of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=0° C.; KDRP=0.75 from 8:00 to 10:00 am.



FIG. 68 is a plot showing results of simulating MATLAB code with one response level.



FIG. 69 is another plot showing results of simulating MATLAB code with one response level.



FIG. 70 is another plot showing results of simulating MATLAB code with one response level.



FIG. 71 is another plot showing results of simulating MATLAB code with one response level.



FIG. 72 is another plot showing results of simulating MATLAB code with one response level.



FIG. 73 is a plot showing results of simulating MATLAB code with two response levels.



FIG. 74 is another plot showing results of simulating MATLAB code with two response levels.



FIG. 75 is another plot showing results of simulating MATLAB code with two response levels.



FIG. 76 is another plot showing results of simulating MATLAB code with two response levels.



FIG. 77 is another plot showing results of simulating MATLAB code with two response levels.



FIG. 78 is an example plot of a lighting load.



FIG. 79 is an example plot of a refrigerator load.



FIG. 80 is an example plot of a cooking range load.



FIG. 81 is an example plot of a dishwasher load.



FIG. 82 is an example plot of a clothes washer load.



FIG. 83 is an example plot of a clothes dryer load.



FIG. 84 is an example plot of a miscellaneous electric load.



FIG. 85 is a block diagram showing an example model of ramp up and ramp down periods.



FIG. 86 is a block diagram of an example block input/output function model.



FIG. 87 is a set of plots for DIST(TIS0) and Φ(b).



FIG. 88 is an illustration of TOU voltage control concurrent with shedding water heaters.



FIG. 89 is a series of plots that show possible scenarios for changes in generation during one interval.



FIG. 90 is an infrastructure cost control diagram.



FIG. 91 shows a graph illustrating the improvement of uninitialized infrastructure cost estimate for different a parameter selections assuming 5-minute update intervals.



FIG. 92 shows a graph illustrating the uninitialized correction of TIS over time for different a parameter selections assuming 5-minute update intervals.



FIG. 93 is a diagram of an exemplary block input/output function model.



FIG. 94 is a graph illustrating an example for one iteration at a given time.



FIG. 95 is a diagram that shows the specified strategy during a month.



FIG. 96 is a graph illustrating power operations concepts.



FIG. 97 is a diagram of an exemplary block input/output function model.



FIG. 98 is a first diagram illustrating an example power flow computation.



FIG. 99 is a second diagram illustrating an example power flow computation.



FIG. 100 is a third diagram illustrating an example power flow computation.



FIG. 101 is table illustrating an interpretation of a recommended advisory signal.





DETAILED DESCRIPTION
1. General Considerations

Disclosed below are representative embodiments of methods, apparatus, and systems for facilitating operation and control of a resource distribution system (such as a power grid). The disclosed methods, apparatus, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and subcombinations with one another. Furthermore, any one or more features or aspects of the disclosed embodiments can be used in various combinations and subcombinations with one another. The disclosed methods, apparatus, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.


Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods. Additionally, the description sometimes uses terms like “determine” and “generate” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms may vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art. Furthermore, as used herein, the term “and/or” means any one item or combination of items in the phrase.


Any of the disclosed methods can be implemented using computer-executable instructions stored on one or more computer-readable media (e.g., non-transitory computer-readable media, such as one or more optical media discs, volatile memory components (such as DRAM or SRAM), or nonvolatile memory components (such as hard drives)) and executed by a processor in a computing device (e.g., a computer, such as any commercially available computer). Any of the computer-executable instructions for implementing the disclosed techniques as well as any intermediate or final data created and used during implementation of the disclosed systems can be stored on one or more computer-readable media (e.g., non-transitory computer-readable media). The computer-executable instructions can be part of, for example, a dedicated software application or as part of a software agent's transport payload that is accessed or downloaded via a network (e.g., a local-area network, a wide-area network, a client-server network, or other such network).


Such software can be executed on a single computer (e.g., a computer embedded in or electrically coupled to a sensor, controller, or other device in the power grid) or in a network environment. For example, the software can be executed by a computer embedded in or communicatively coupled to a sensor for measuring electrical parameters of a power line or electrical device, a synchrophasor sensor, a smart meter, a control unit for a home or household appliance or system (e.g., an air-conditioning unit; heating unit; heating, ventilation, and air conditioning (“HVAC”) system; hot water heater; refrigerator; dish washer; washing machine; dryer; oven; microwave oven; pump; home lighting system; electrical charger; electric vehicle charger; home electrical system; or any other electrical system having variable performance states), a control unit for a distributed generator (e.g., photovoltaic arrays, wind turbines, or electric battery charging systems), a control unit for controlling the distribution or generation of power along the power grid (e.g., a transformer, switch, circuit breaker, generator, resource provider, or any other device on the power grid configured to perform a control action), and the like. Further, any of the control units can also include or receive information from one or more sensors. Any of the transactive nodes described herein can be formed by such sensors, meters, control units, and/or other such units.


For clarity, only certain selected aspects of the software-based embodiments are described. Other details that are well known in the art are omitted. For example, it should be understood that the software-based embodiments are not limited to any specific computer language or program. For instance, embodiments of the disclosed technology can be implemented by software written in C++, Java, Perl, JavaScript, Adobe Flash, Python, JINI, .NET, Lua or any other suitable programming language. Likewise, embodiments of the disclosed technology are not limited to any particular computer or type of hardware. Details of suitable computers and hardware are well known and need not be set forth in detail in this disclosure. Furthermore, any of the software-based embodiments (comprising, for example, computer-executable instructions which when executed by a computer cause the computer to perform any of the disclosed methods) can be uploaded, downloaded, or remotely accessed through a suitable communication means. Such suitable communication means include, for example, the Internet, the World Wide Web, an intranet, software applications, cable (including fiber optic cable), magnetic communications, electromagnetic communications (including RF, microwave, and infrared communications), electronic communications, or other such communication means.


The disclosed methods can also be implemented by specialized computing hardware that is configured to perform any of the disclosed methods. For example, the disclosed methods can be implemented by a computing device comprising an integrated circuit (e.g., an application specific integrated circuit (“ASIC”) or programmable logic device (“PLD”), such as a field programmable gate array (“FPGA”)). The integrated circuit or specialized computing hardware can be embedded in or directly coupled to a sensor, control unit, or other device in the power grid. For example, the integrated circuit can be embedded in or otherwise coupled to a synchrophasor sensor, smart meter, control unit for a home or household appliance or system, a control unit for a distributed generator, a control unit for controlling power distribution on the grid, or other such device.



FIG. 1 illustrates a generalized example of a suitable computing hardware environment 100 for a computing device with which several of the described embodiments can be implemented. For example, any of the transactive nodes disclosed herein can be implemented by a computing hardware environment, such computing environment 100. The computing environment 100 is not intended to suggest any limitation as to the scope of use or functionality of the disclosed technology, as the techniques and tools described herein can be implemented in diverse general-purpose or special-purpose environments that have computing hardware.


With reference to FIG. 1, the computing environment 100 includes at least one processing unit 110 and memory 120. In FIG. 1, this most basic configuration 130 is included within a dashed line. The processing unit 110 executes computer-executable instructions. In a multi-processing system, multiple processing units execute computer-executable instructions to increase processing power. The memory 120 may be volatile memory (e.g., registers, cache, RAM), non-volatile memory (e.g., ROM, EEPROM, flash memory), or some combination of the two. The memory 120 stores software 180 for implementing one or more of the described techniques for operating or using the disclosed systems. For example, the memory 120 can store software 180 for implementing any of the disclosed techniques.


The computing environment can have additional features. For example, the computing environment 100 includes storage 140, one or more input devices 150, one or more output devices 160, and one or more communication connections 170. An interconnection mechanism (not shown) such as a bus, controller, or network interconnects the components of the computing environment 100. Typically, operating system software (not shown) provides an operating environment for other software executing in the computing environment 100, and coordinates activities of the components of the computing environment 100.


The storage 140 can be removable or non-removable, and includes magnetic disks, magnetic tapes or cassettes, CD-ROMs, DVDs, or any other tangible storage medium which can be used to store information in a non-transitory manner and which can be accessed within the computing environment 100. The storage 140 can also store instructions for the software 180 implementing any of the described techniques, systems, or environments. The input device(s) 150 can be a touch input device such as a keyboard, mouse, touch screen, pen, or trackball, a voice input device, a scanning device, or another device that provides input to the computing environment 100. The output device(s) 160 can be a display, touch screen, printer, speaker, or another device that provides output from the computing environment 100.


The communication connection(s) 170 enable communication over a communication medium to another computing entity. The communication medium conveys information such as computer-executable instructions, an agent transport payload, or other data in a modulated data signal. A modulated data signal is a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media include wired or wireless techniques implemented with an electrical, optical, RF, infrared, acoustic, or other carrier.


The various methods, systems, and interfaces disclosed herein can be described in the general context of computer-executable instructions stored on one or more computer-readable media. Computer-readable media are any available media that can be accessed within or by a computing environment but do not encompass transitory signals or carrier waves. By way of example, and not limitation, with the computing environment 100, computer-readable media include tangible non-transitory computer-readable media, such as memory 120 and storage 140.


The various methods, systems, and interfaces disclosed herein can also be described in the general context of computer-executable instructions, such as those included in program modules, being executed in a computing environment on a target processor. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, and the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments.


Computer-executable instructions for program modules may be executed within a local or distributed computing environment. As noted, the disclosed technology is implemented at least part using a network of computing devices (e.g., any of the computing device examples described above). The network can be implemented at least in part as a Local Area Network (“LAN”) using wired networking (e.g., the Ethernet IEEE standard 802.3 or other appropriate standard) or wireless networking (e.g. one of the IEEE standards 802.11a, 802.11b, 802.11g, or 802.11n or other appropriate standard). Furthermore, at least part of the network can be the Internet or a similar public network.


1.1 Acronyms and Abbreviations

This disclosure sometimes makes reference to the following acronyms:

  • HVAC heating, ventilating and air conditioning
  • IST interval start time
  • LMP locational marginal price
  • RMS root mean square
  • TCS transactive coordination system
  • TFS transactive feedback signal
  • TIS transactive incentive signal
  • UTC Coordinated Universal Time


1.2 Terms

This disclosure will sometimes make reference to the following terms, whose non-limiting definitions are provided below. These definitions do not necessarily apply in all instances and may vary depending on the context.















advisory control
A signal that is transmitted by a transactive node to its local responsive


signal
asset systems advising these systems to change their energy



consumption or generation


asset model
A usually dynamic model of an asset system (e.g., a population of



electric water heaters) that can predict its change in load or change in



supply in light of an event (e.g., a curtailment of the asset system).


locational
A unit price of energy that represents the spatial and temporal price of


marginal price
the marginal supply resource. Today, locational marginal price is



calculated centrally.


non-transactive
Refers to energy that can be exchanged between transactive nodes of


energy
a transactive coordination system and entities that reside outside the



boundaries of the transactive coordination system


relaxation
A criterion against which changes in subsequent transactive signals are


criterion
compared. If changes are significant based on this criterion, then new



transactive signals are calculated and published.


transactive
A distributed system-of-systems in which transactive nodes coordinate


coordination
the balance between energy resources and loads by communicating


system
transactive signals


toolkit function
A function that is invoked by the transactive node object model to



represent the unique set of incentives, resources, and loads that are



managed at the transactive node. Includes two subclasses-toolkit



resource and incentive functions and toolkit load functions.


toolkit load
One type of a plurality of toolkit functions that calculates load, change in


function
elastic load, and control signals for the specific demand-side assets at a



transactive node


toolkit resource
One type of a plurality of toolkit functions that calculates incentive costs,


and incentive
supply energy, and energy costs for the specific incentives and supply


function
resources at a transactive node. Includes toolkit resource functions and



toolkit incentive functions.


transactive
Energy that is exchanged between transactive nodes of a transactive


energy
coordination system


transactive
One of a plurality of subclasses of transactive signals. Represents


feedback signal
predicted aggregate power flow between two neighboring transactive



nodes.


transactive
One of a plurality of subclasses of transactive signal. Represents the


incentive signal
delivered unit cost of energy at a system location.


transactive
Adjacent transactive nodes that exchange energy and are therefore


neighbors
obligated to exchange transactive signals with one another. This term



may be equivalently stated as neighboring transactive nodes or circuit



neighbors.


transactive node
A node that participates in a transactive coordination system to send



and receive transactive signals


transactive node
The formal state model that resides at a transactive node and defines


object model
its behaviors, interactions, and interfaces. This term usually refers to the



common responsibilities of transactive nodes that are interoperable,



standardized.


transactive signal
A class of signal shared between transactive neighbors









2. Introduction

This section introduces some of the basic concepts of the disclosed transactive control and coordination technology. FIG. 2 is a block diagram illustrating a general system 200 for implementing transactive control. The figure represents a simple electric power system topology 200 with power flowing from generation resources on the right through the components of the system to loads on the left.


At any point in the topology where one can affect the flow of power, operational objectives may be taken into account. In the transactive control technique of the disclosed technology, these objectives can be monetized and included in a signal referred to as the “transactive incentive signal” (TIS). If at a given point, one should reduce load below that point, then the monetization computations will result in altering (e.g., raising) the value of the TIS. If, on the other hand, it is beneficial to add load below that point, then the computations will alter (e.g., lower) the value of the TIS in the opposite direction. In other words, by using embodiments of the disclosed transactive system, one can represent operational objectives to responsive elements of the system and incentivize them to change their behavior in response to the monetized objectives. In FIG. 2, this is represented by the arrow from right-to-left labeled “operational objectives.”


The responsive elements of the system also play an active role through making information available about their planned consumption of electric power. This is represented by the arrow from left-to-right labeled “status and opportunities.” In embodiments of the disclosed technology, information about the future forecast of the plans for generation resources and constraints associated with the flow of power through the system interact with temporally aligned information about the planned behavior or loads or other responsive resources. Local storage systems are an example of another type of responsive resource that may be thought of as being a positive, neutral (not consuming), or negative load.


With this general background, the following additional features of the transactive control and coordination system will now be introduced.

    • Transactive Control: A single, integrated, smart grid incentive signaling approach utilizing an economic signal as the primary basis for communicating the desire to change the operational state of responsive assets.
    • Transactive Incentive Signal (TIS): A representation of the actual delivered cost of electric energy at a specific system location (e.g., at a transactive node). Includes both the current value and a forecast of future values. In certain embodiments, the current incentive signal value refers to the value for the imminent (or next-to-occur) interval.
    • Transactive Feedback Signal (TFS): A representation of the net electric load at a specific system location (e.g., between neighboring transactive nodes). Includes both the current value and a forecast of future values. In certain embodiments, the current value refers to the feedback signal value for the imminent (or next-to-occur) interval.


2.1 What is a Transactive Control Node?

The basic operational unit of embodiments of the illustrated transactive control technique is the transactive control node. In certain implementations, the transactive control node responds to system conditions as represented by incoming Transactive Incentive Signals and Transactive Feedback Signals through (a) incorporation of local asset status and other local information; (b) decisions about behavior of local assets; and/or (c) updating both transactive incentive and feedback signals. Inputs are used by the node to compute incentive and feedback signals. Further, in some embodiments, each signal is a sequence of forecasts for a time-series, so inputs will also be sequences of future (forecast/planned) values


Transactive control nodes may be implemented any place in the power system topology, preferably where it is possible to affect the flow of power in the system. This is true in both the bulk power system and carries through into the distribution system down to the end-use level. For example, embodiments of the disclosed technology can be used in a large region of the power grid (e.g., a large interconnected region of the transmission grid, sometimes referred to as a transmission zone), a distribution utility service territory, or for any other sized region, area, or space (e.g., at the substation level, at the feeder level, at a building level, or even at the household level. Transactive control nodes may be implemented down to the level of individual devices. One may also implement transactive control nodes that manage a collection of devices as an aggregated responsive asset or asset system.


2.2 An End-to-End View


FIG. 3 is an illustration 300 of the node-by-node changes to a transactive incentive signal (TIS) as it flows from generation to end-use. In particular, FIG. 3 provides a high level end-to-end view of the flow of transactive incentive signals through a transactive control and coordination system. In the figure, the TIS begins at a generation resource with the TIS values representing the generation cost. To simplify the example, transmission costs are also included so that when the signal is received at the utility-level, it represents the full cost of power delivered to the utility.


At the utility level, the utility has the opportunity to introduce local information and operational objectives. For example, the utility may wish to avoid demand charges associated with peak loads. The financial impact of peak loads can be used in calculating TIS values to incentivize load shifting.


In the example, there are also renewable generation assets local to the utility. The utility may also incentivize consumption of energy from these assets through the TIS. On the right hand side of FIG. 3, one can see the TIS presented to responsive assets as an aggregation of the costs to delivery power to the end-uses including generation costs, constraints, and operational objectives.


Missing from this example is the transactive feedback signal representing the behavior of the responsive assets. A feature of certain embodiments of the transactive control technique is that this signal and the transactive incentive signal are both used at a transactive control node to make decisions about the behavior of responsive assets controlled at that node or to be incentivized by that node. This interaction between the TIS and TFS takes place based on the forecast of cost of power delivered and the behavior of responsive assets. Through this interaction, a form of closed loop control is achieved. The decision logic and algorithmic functions of the transactive control node are desirably constructed in such a manner as to have convergence and to avoid oscillation.


2.3 an End-to-End View Via an Illustrative Example

One can better understand this interaction between the TIS and TFS through a simple qualitative example. Consider the following scenario. On a distribution feeder, imagine a pole top transformer feeding three houses. Each home has an electric vehicle. For this example, assume that each of the vehicle owners will want to fast charge their vehicle. With the normal base load for the three houses, all three vehicles fast charging will overload the pole top transformer.


In this example, the pole top transformer is receiving a TIS from upstream (presumably from the substation) and a TFS from each of the houses. The TFS from each house includes information about the planned charging activity for the corresponding electric vehicle. The transformer desirably makes decisions about whether to change the value of the TIS based on the current and future load as represented by aggregating the TFS from each house. It also may take into account other information, such as the ambient air temperature, weather forecasts, operating history, and so forth.


The three electric vehicles in this example, EV1, EV2, and EV3, each have different charging strategies. EV1 is capable of flexible charging, meaning that the rate of charge can be varied. EV2 charges at any cost. EV3 is a bargain hunter and will schedule charging when cost is low.


For this example, assume the following: EV1 desires to charge at 5 PM, EV2 wishes to charge at 6 PM and EV3 wishes to charge at 7 PM. Assume as well that there is a typical diurnal load curve for the three houses seen in this example as the combined load at the transformer. The pole-top transformer has a load rating of 40 kW. As long as the load is below 40 kW, the service life of the transformer is not being degraded. If the load is above 40 kW, then the service life of the transformer is reduced depending on factors including the load, the duration of load above the 40-kW limit, ambient air temperature and possibly other factors. The operating principle for the transformer's update to the TIS is a computation in which the monetary impact of load is computed based on the forecasted duration above the limit and the other factors mentioned. This computation can be performed with information about the cost to replace the transformer, the rated service life, and if desired, economic factors such as the cost of money. The point is that the impact of overloading the transformer is monetized and the result used to change the forecast value of the TIS.


The electric vehicle smart chargers may then respond to the change in TIS value (e.g., increased for overloading) and adjust their plans accordingly. A back and forth exchange, a negotiation if you will, takes place through the exchange of TIS and TFS updates. When the negotiation settles, then the “agreed” solution to consumption should be stable barring other perturbations.


A key challenge in this negotiation is to avoid oscillation. The algorithms and decision logic for both the smart charger and the transformer desirably have appropriate damping factors to drive the negotiation to a stable, non-oscillatory result. In this simple example, a qualitative result is presented to illustrate the nature of the interaction.



FIG. 4 illustrates the dynamics of the electric vehicle charging example. As described above, EV1 forecasts that it will start charging at 5 pm (hour 17), EV2 forecasts that it will start charging at 6 pm (hour 18) and EV3 forecasts that it will start charging at 7 pm (hour 19). None of the EV smart chargers have knowledge of the plans of the other. Information is communicated via their forecasts sent to the pole-top transformer and the resulting changes in the forecast TIS value.


In the figure, the broad dashed line represents the forecast total load. Notice that between hours 16 and 17, it simply tracks the normal diurnal load pattern. When the charging plans of the EV's are revealed through the TFS sent to the pole-top tranformer's transactive control node the forecast total load remains below the transformer's load limit until the time that EV2 proposes to start charging. Note that, in this example, all vehicles are proposing a level-2 fast charge initially.


When EV2 proposes to begin charging at hour 18, the forecast total load goes above the load limit. The TIS correspondingly increases above the TIS that is associated with the normal diurnal load. EV3's proposal to begin charging at hour 19 pushes the forecast load even higher. If all three vehicles are level-2 charging, the load approaches 10 kW above the load limit. With the three proposed charging times revealed, the TIS is adjusted and the vehicles respond. For this example, the result is simplified by showing the final result. In practice several iterations would typically be used to achieve the final, stable result.


The final result, as illustrated in FIG. 4, shows that EV1 adapts its plans based on its flexible charging strategy. EV2 does not modify its plan. Remember this is the vehicle that will charge at any price. EV3, the bargain hunter, chooses to shift charging to a night time hour when prices are even lower than its original proposal to begin charging at hour 19. As seen in the figure, EV1's flexible charging strategy offsets EV2's charge at any price to maintain the total load just at the transformer's load limit.


This simple example illustrated the basic principle of the transactive control technique. The technique can be applied at any point in the power systemand can coordinate monetized energy impacts and the behaviors of responsive loads where such devices and opportunities exist. Consider, for example, a battery storage system at a distribution substation. The associated transactive control node would be making decisions about whether to charge, discharge, or do nothing with the battery system based on the incoming TISs, the incoming TFSs, local conditions such as the state of the battery system, and updating the TIS and TFS it sends to neighboring transactive control nodes accordingly. Transactive control nodes can be deployed throughout the power system from generation resources, through the transmission system, and in the distribution system down to end uses. The technique can be applied within end use points including residential, commercial and industrial uses to manage the behavior of responsive systems and devices.


2.4 Extended Example

The example above showed the use of the transactive control technique at end-use points within a distribution system. In this section, a further example of the transactive control and coordination system is considered. This example further illustrates the use of the technique to use local responsive assets to help facilitate the integration of intermittent renewable energy resources.


In order to facilitate discussion of this example, first consider the formalization of the transactive control technique. This allows the use of standard way of referring to the functional elements of an implemented transactive control and coordination system.


For embodiments of the disclosed technology, consider a formal model of the functionality of transactive control nodes. A transactive control node object state model has been defined and is the basis for implementing a transactive node object model (TNOM). This approach is scalable, algorithmic and supports explicit consideration of interoperability through the formal specification of both the syntax and semantics of the transactive incentive signal and transactive feedback signal. The “responsibilities” of a transactive control node summarized earlier are formally represented in the object model.


For embodiments of the disclosed technology, a standardized approach to implementation is made possible through the design and implementation of a “toolkit.” The toolkit includes well-defined interfaces to utility responsive asset systems and simple, common algorithms for updating transactive signals and determining “control” signals to responsive asset systems.


In designing the toolkit, functions for resources and loads can be defined. The resource functions are primarily defined for the bulk power system and represent systems that supply power. At the utility level, functions associated with local resources or utility concerns such as avoiding demand charges are defined. Load functions can be defined that are associated with the different classes of loads or with local resources such as battery storage systems that may have load or resource behaviors (which are treated as negative loads.)


In embodiments of the disclosed technology, the resource functions include functions from a wide variety of categories. For example, in certain embodiments, the resource functions include one or more of:

    • 1. Imported electrical energy
      • 1.1. Non-transactive imported energy
      • 1.2. Transactive imported energy
    • 2. Renewable energy resource
    • 2.1. Wind energy
    • 2.2. Solar energy
    • 2.3. Hydropower
    • 3. Thermal generation
    • 4. General infrastructure cost
    • 5. System constraints
      • 5.1. Transmission constraints
      • 5.2. Equipment and line constraints
    • 6. System energy losses
      • 6.1. Transmission losses
      • 6.2. Distribution losses
      • 6.3. Device/component losses
    • 7. Demand charges
    • 8. Market impacts


In embodiments of the disclosed technology, the load functions include one or more functions from the following categories: (1) inelastic, (2) elastic with limited numbers of discrete events available, (3) elastic with daily events available, or (4) elastic with a continuum or near continuum of responses available. There can then exist a matrix of these four categories, with specific loads that fit into one or more of these categories. For example purposes only, the following is a list of example load functions that should not be construed as limiting in any manner. For instance, load functions can be created for a wide variety of assets or asset systems that that can be used in embodiments of the disclosed technology (e.g., for a residence, there may be functions for a variety of different assets and/or asset systems, such as responsive water heaters, thermostats, clothes dryers, web portals, in-home displays, or other such assets and asset systems).

    • 1. Bulk inelastic load
      • 1.1. Bulk commercial load
      • 1.2. Bulk industrial load
      • 1.3. Bulk residential load
      • 1.4. Small wind generator negative load
      • 1.5. small-scale distributed generator negative load
      • 1.6. Small-scale solar generator negative load
    • 2. General event-driven demand response
      • 2.1. Commercial
      • 2.2. Distribution system voltage control
      • 2.3. Residential behavior
      • 2.3.1. Portals
    • 3. General time-of-use demand response
      • 3.1. Battery storage
      • 3.2. Commercial
      • 3.3. Residential behavioral
      • 3.3.1. Portals
      • 3.4. Residential
      • 3.5. Distribution system voltage control
    • 4. General real-time continuum demand response
      • 4.1. Battery storage
      • 4.2. Commercial
      • 4.3. Residential behavioral
      • 4.3.1. Portals
      • 4.4. Residential


It should be understood that in embodiments of the disclosed technology, a transactive node may host multiple toolkit functions, including any combination of multiple resource and incentive functions, multiple load functions, or combinations of both resource and incentive and load functions. For instance, the resource and/or incentive functions used at a transactive node will typically depend on the location of the transactive node in a power grid topology, and on the one or more resources and/or loads for which the transactive node is responsible. This ability to “mix and match” resource and incentive functions while still maintaining a common transactive signal communication structure gives embodiments of the disclosed technology wide flexibility and scalability for implementing a transactive control system.


2.4.1 an Example Using Wind Resources

For this example, consider the following general conditions and objectives: (a) the predicted transactive incentive signal increases when wind energy decreases and visa versa; (b) the transactive incentive signal is communicated and mixed between transactive nodes; and/or (c) assets respond to improve consumption of wind when wind energy is available or near where wind is available.


For purposes of this example, also consider the simple topology 500 illustrated in FIG. 5. In the left hand side of the figure, a transactive control node can be observed with two generation resources. The lower illustration in the figure represents conventional generation such as a coal fired power plant. The upper illustration represents wind turbines. On the right hand side of the figure, one can see a transactive control node with three types of assets: conventional resistive load in the form of a water heater, a distributed energy resource in the form of battery storage, and a distribution system voltage control system represented by the cartoon with wires and power poles. For this example, the two transactive control nodes are communicating with each other through the exchange of transactive incentive signals and transactive feedback signals. Note that the transactive control node on the left is associated with features of the bulk power system—bulk generation resources—while the transactive control and coordination system on the right is associated with assets in the distribution system.


Consider now the toolkit load functions associated with the resources shown in the left hand side of illustration 600 in FIG. 6, which shows representations of toolkit functions for bulk power resources. A graphical representation of these toolkit functions is also shown in FIG. 6.


For conventional generation, toolkit resource function #2 shown in FIG. 6, the function is a single point representing a fixed cost of production. The vertical access represents cost in $/MWh and the horizontal axis the power produced. For purposes of this example, assume that this resource operates at a fixed point ignoring for this example ramping and any other factors that would cause the power output to vary.


The other example of wind power, toolkit resource function #1, is more complicated. In this case, assume a cost of power that is inversely proportional to the power output of the system. Thus, when there is low wind and low production the cost per unit of power is high. On the other hand, when there is high wind and corresponding high power output the cost is low. It should be noted that there are many possible ways to construct the resource functions. The underlying question is how to assign cost—to monetize the activity of the resource asset. In embodiments of the disclosed technology, one should assign cost in a way that incentivizes desired outcomes. In this example, the resource function defined for the wind resource has lowest cost when there is an abundance of wind power thus incentivizing consumption of wind power when it is available. Another consideration when evaluating potential resource functions is that candidate resource functions for a given asset should ensure the same total cost over relatively long periods of time.


Having defined resource functions allows one to look at their behavior over time. FIG. 7 is a graph 700 that depicts the power generated at transactive node #1. Base generation is shown as constant at 10 MW. Wind generation varies from 10 MW for the first 30 hours dropping to zero (0) thereafter.


With this forecast of power production in mind, consider the forecast of cost of power from these two resources both with current approaches and with the transactive control approach using embodiments of the resources functions disclosed herein.


In this example, short-term power trading on spot or even day-ahead markets is ignored. In this case, the cost of power will be an aggregated value based on the fixed rate associated with each of the two resources. From the point of view of today's consumer, the cost of power is at a fixed rate—thus there is no incentive to change consumption behavior associated with the cost of power.



FIG. 8 is a graph 800 illustrating the unit costs of power for the current transactive control example. In this case, the base generation is still provided at a fixed cost as previously shown. The unit cost of wind power is at a relatively lower cost while the wind is blowing and rises when the wind dies—eventually becoming infinite when wind power is unavailable. The aggregate cost, that seen by consumers, is an average (possibly weighted) of the two representing the incentive to consume when wind is available at a cost below normal base generation cost and to not consume when wind is unavailable at a cost above normal base generation cost.


Embodiments of the disclosed technology provide a scheme that incentivizes the desired behavior—preferentially to consume wind power. But what about the long-term cost objective? Let us compare how costs accumulate over time. FIG. 9 is a graph 900 that presents a comparison of hourly resource costs with or without transactive control. Given the examples, the resource function for base generation, the hour cost for that resource is the same in either case. For the wind resource, however, the hourly cost is quite different. As the system and economics are currently formulated, the wind resource is only compensated when it is producing power. The rate is fixed and costs should be recovered based on an estimate over the long term of the percentage of time the resource will be available. This is represented by the line in FIG. 9 that starts at the hourly cost of 100 and then drops to zero (0) at hour 31. In contrast, the hourly cost for the wind resource is constant at 40 using transactive control. This is because during the period of time when wind power is available, loads are incentivized to consume via a lower cost (e.g., using the transactive incentive signal) and incentivized to not consume via a higher cost when wind is not available. The cost of wind production still should be recovered. So over the excess cost recovery when wind is not available (as compared to base generation cost) is used to make the wind producer whole resulting in an apparent fixed hourly cost.


Integrating the hourly costs allows one to check the long-term criteria—that costs should be the same over the long term for transactive versus the non-transactive approaches. FIG. 10 is a graph 1000 that shows this cumulative cost comparison and shows that the transactive control technique can be formulated in such a manner as to achieve this objective.


Now that the formulation of toolkit resource functions have been considered, example differences between conventional approaches and embodiments of the transactive approach can be summarized. For instance, the resource functions for generation assets of the disclosed technology create a transactive incentive signal as depicted in graph 1100 of FIG. 11. The dynamics of the signal are as described above in the discussion of unit costs.


Attention can be shifted to the consumption, or load, side of the computation. From a behavioral or responsiveness point of view, loads will be mixed. Some will be controllable; in other words, the loads will have the potential to respond to an incentive signal. Still further, in some instances, some loads will also be capable of acting as a load or a generation resource. For example, a battery system may have either behavior, and decisions about the battery may be made about when to charge, discharge, and/or at what rates. In this respect, a battery load may be highly responsive. For any given class of load assets, one may construct one or more load toolkit functions. These functions desirably take into account the load functions for other distribution system assets, and are discussed in more detail below.


Embodiments of the disclosed technology implement a distributed system for engaging responsive assets within the power system to manage constraints and support the integration of elastic energy resource (e.g., wind power and/or other intermittent renewable energy resources).


In particular implementations, the technique primarily uses two signals—the transactive incentive signal and the transactive feedback signal—representing the cost of power delivered to a given point in the system and the load at a given point in the system respectively. In particular embodiments, both signals are forward forecasts. The use of these representations reduces communications capacity requirements but relies on the development of algorithms for monetizing operational objectives. This was illustrated through a simple electric vehicle charging example and an extended example for wind power integration.


3 Exemplary Embodiments of the Disclosed Transactive Control Signals
3.1 Introduction

The transactive control and coordination system (TCS) of the disclosed technology can be implemented primarily using two classes of transactive signals: transactive incentive signals (TIS) and transactive feedback signals (TFS). These signals are exchanged between distributed system sites. The purpose of these signals is to coordinate supply and load in the near future, from a few minutes to several days out.


Some might compare the TCS with locational marginal pricing (LMP), in which energy prices are differentiated by time and by circuit location to address the economics of resource availability and to help mitigate transmission system congestion. A TCS shares certain goals with LMP. Like an LMP price signal, a TIS is a price-like signal that may represent the value of energy resources while taking into account the location, the time, transmission congestion, and transmission losses. Unlike an LMP signal, however, a transactive signal has been generalized to represent other additional impacts that can be monetized. Furthermore, a TCS facilitates fully distributed, not centralized, formulations of transactive signals. Because the calculations may be fully distributed, a TCS system is scalable throughout transmission systems, distribution systems, customer premises, and/or device levels.


An LMP represents the cost of the marginal energy resource and is therefore useful for coordinating the dispatch of energy resources. An implication is that dispatch decisions for supply-side or demand-side resources are based solely on comparison against the current marginal resource. By contrast, embodiments of the TIS are preferably formulated to represent energy cost as a function of time and location so that it may coordinate multiple supply-side and demand-side resources, not just the marginal ones. (This distinction is increasingly of interest as must-run renewable resources become a significant fraction of system resources. Economic dispatch and marginal energy price are currently based largely on fuel expenses. Renewable resources, which consume no fuel, displace fueled resources. Therefore, the marginal price, which is determined by the marginal fueled resource, incurs downward pressure. If the resulting marginal price is used to calculate revenues, then revenues also experience downward pressure, even though the must-run renewable resources may have generated relatively expensive energy.) The economic usefulness of many resources is determined during planning stages, not as they operate. Once the resource has been built, it should be called upon anytime it is useful, not only when it competes well with the current marginal resource.


A TCS and its transactive signals, in principle, may thereby unify some decision processes that are conventionally addressed separately or sequentially—the using the dispatch of must-run resources and economic dispatch, for example, or the testing of economic power flow against permissible constrained power flow.


While quantity of energy is most certainly used during the calculations of LMP signals, there is seldom a need for those signals to be communicated outside the location of the central solver. In embodiments of the disclosed technology, however, the TFS, which represents a quantity of power, accompanies the price-like TIS. For example, distributed formulations can be used with signals that represent both the paired price and the quantity of power for time intervals. In particular, transactive signals can enable the coordination of the TCS, where each transactive node has a responsibility to perform its share of what is presently a very centralized calculation. The standardization of a TCS and its transactive signals can permit new implementers to join a TCS.


Now that some general characteristics of a TCS have been introduced, largely through a comparison between TCS and LMP systems (see, e.g., Table 1), further details and qualities of the TCS will be introduced. For example, the sections below describe the component parts of a TCS, including its transactive signals, and how each of the two subclasses of transactive signal are influenced and formulated.









TABLE 1







Comparison Summary between LMP and TCS








LMP
TCS





Calculation is performed centrally
Calculation may be distributed


Signal represents unit price of
Signals preferably represent inclusive


marginal resource
unit cost of energy and quantity of



energy


Somewhat scalable to
Very scalable, in principle,


disaggregated regions of
throughout generation, transmission,


generation, transmission, maybe
distribution, customer, and end-use


into distribution
devices


Usually relevant only to
May represent perspectives of any


perspective of one single system
and many system component owners


operator


Contractually engages large
May engage many small, flexible


blocks of firm resources
resources and large blocks of firm



resources alike through the normal



course of energy pricing or through



alternative and diverse incentive



mechanisms


May include forecasted future
Includes forecasted future intervals


intervals









3.2 An Example Transactive Coordination and Control System

An exemplary embodiment of the TCS may be understood by its components and their behaviors. In particular implementations, its principal components comprise one or more of the following:

    • transactive node—system sites that are active participants in a TCS. A transactive node hosts a transactive node object model and exchanges transactive signals with its transactive neighbors.
    • transactive signal—comprises one or more subclasses of signals that are exchanged by transactive nodes. For instance, in particular implementations, the transactive signal comprises two subclasses that include the TIS and TFS.
    • transactive node object model—the state model of the actions and responsibilities that are managed by a transactive node
    • toolkit functions—one or more functions that may be called upon by the transactive node object model to customize it for the unique set of inelastic and elastic supply and demand-side resources that are managed at a respective transactive node. The functions can belong, for example, to a plurality of subclasses. The subclasses can include, for instance, toolkit resource and incentive functions and toolkit load functions.


3.3 Example Transactive Node

In embodiments of the disclosed technology, transactive nodes are points in the topology of a TCS. In particular embodiments, transactive nodes periodically exchange transactive signals with their neighbors (e.g., their nearest neighbors) with which they can exchange electrical energy. For instance, transactive signals are exchanged between neighboring transactive nodes that share an electrical conductor. (This is true in the sense that two transactive nodes that exchange power also communicate. The actual pathway and communication media between transactive nodes can vary from implementation to implementation.) The resulting interconnection topology can, in some embodiments, be hierarchical. Transactive nodes can be established at any hierarchical point in the topology (e.g., at any point of the utility-side topology, such as a sub-station, feeder, transformer, or the loke) or at any point of the load-side topology, a feeder, transformer, household control unit, electric vehicle charger, or any control unit at the household or other load control unit).


3.4 Example Transactive Signals

Transactive signals can be represented as a series of data. For instance, in particular implementations, the transactive signals are a series of triplets. Each triplet is comprised of a time interval, a value, and a confidence level that qualifies the value. In other implementations, the transactive signals comprise a series of value pairs, where each value pair comprises any combination of a time interval, a value, or a confidence level. In still other implementations, the transactive signals comprise one or more of a time interval, a value, and/or a confidence level. In particular implementations, there are two subclasses of transactive signals:

    • the TIS—a representation of preferably the delivered unit cost of the energy that is stated in the corresponding TFS. There is a TIS representation at each transactive node and for each time interval.
    • the TFS—the power flowing between two transactive nodes during a given time interval. The unit cost of the energy that is being exchanged is the corresponding TIS of the given time interval and for the given transactive node that supplies the energy. There is a TFS representation for each transactive neighbor at each transactive node and for each time interval.


The examples herein were simplified to address real power and real energy. However, the reader skilled in the art of electrical power will understand that the examples could be extended to refer to real energy (meaning the product of real power and elapsed time), reactive energy (meaning the product of reactive power and elapsed time), or both real and reactive energy components. That is, a TIS may separately or jointly monetize real energy, reactive energy, or both real and reactive energies, and a TFS may represent real, reactive, or both the real and reactive power components of the power flowing between two transactive nodes.


3.4.1 Predictive Signal Intervals

In particular embodiments, the transactive signals are forecasts. The forecasts refer to an imminent time interval (e.g., the time interval that will start next) and a number of additional future intervals thereafter. The future intervals are defined by their starting times and durations. Once stated, an interval remains fixed in time, and a future interval moves closer with the passing of time. The intervals in a transactive signal are successive in one particular embodiment of the disclosed technology (e.g., they do not overlap).


A subsequent transactive signal updates the values and confidence levels for many or all of the previous transactive signal's time intervals. New intervals may also be created to push the forecast even farther into the future.


In one particular embodiment of the disclosed technology, termed “the demonstration”, 56 successive intervals ranging in duration from 5 minutes to 1 day were elected. Refer, for instance, to Table 2. It should be understood, however, that any number of intervals of any duration can be used to implement embodiments of the disclosed technology. In Table 2, the term “ISTn” refers to the time at which the nth interval begins—the interval start time. The durations of the thirteenth, thirty-third, fifty-first, and fifty-fifth interval may change from one transactive signal to the next; this was done in the illustrated embodiment to make sure that the intervals remain aligned with major 15-minute, 1-hour, 6-hour, and 1-day transitions.


The shortest interval could be any duration. For instance, the duration might be limited by the sum of the system's calculation and communication latencies. If the system were to use relatively short intervals (e.g., five minutes or less), it could respond to many dynamic issues, even area control errors, which are typically managed on 4-second intervals.


In one embodiment, intervals were defined with increasingly longer durations into the future because more distant future values may only be meaningfully and accurately forecasted in a statistical, averaged sense. For example, if one knows the accurate status of a thermostat and the building temperature that the thermostat manages, one may accurately predict quite precisely when this system will begin or end its current heating or cooling cycle. For tomorrow, however, one cannot predict precisely when each cycle will begin and end, but one can quite accurately predict the fraction of time that the system will be actively cooling or heating. (In other embodiments, longer intervals (such as over 1 hour) are avoided. It has been observed, for example, that intervals longer than 1 hour tend to destroy important boundaries that have been defined at the boundaries between hours. For example, some utility billing practices presently distinguish “heavy load hours” that occur from 6:00 a.m. to 10:00 p.m. Pacific.)


The 56 intervals used in the example embodiment discussed herein extend more than 3 days into the future, but could extend to any desired time period. The total number of intervals and durations of the longest intervals in the example embodiment were influenced by the desire to allow the system to be unattended for at least three days—the duration of a long holiday weekend.









TABLE 2







Example Intervals









Duration
No. Intervals
Interval Start Times













5
minutes
12
IST0, IST0 + 0:05, . . . , IST10 + 0:05


15
minutes
20
Round(IST11 + 0:15)*, IST12 + 0:15, . . . ,





IST30 + 0:15


1
hour
18
Round(IST31 + 1:00)*, IST32 + 1:00, . . . ,





IST48 + 1:00


6
hours
4
Round(IST49 + 6:00)*, IST50 + 6:00, . . . ,





IST52 + 6:00


1
day
2
Round(IST53 + 1:00:00)*, IST54 + 1:00:00,





IST55 + 1:00:00


>3
days
56 intervals
57 interval start times (IST)





*The function “Round” indicates rounding down to the next 15-minute, 1-hour, 6-hour, or 1-day interval start time. Times are indicated as dd:hh:mm (days, hours, and minutes).






In Table 2, the 57th IST was used to define the end of the 56th interval, which is the final interval in a transactive signal of the example embodiment.


Published future intervals remain valid and may be used, in principle, until they are overcome by time. This means that a transactive signal's Friday forecast for a Monday morning interval can be used even if the system fails to calculate any new transactive signals through the weekend. In this capability, the system is resilient to temporary failures of individual system components. If, however, a part of the system fails, the signals that had been predicted much earlier become increasingly dated and inaccurate. The system also loses its ability to recognize and respond to change while new signals are absent. Also, because later intervals have longer duration, signal dynamics diminish as the system relies on progressively longer prior predictions. In one embodiment, the confidence attribute is degraded (e.g., indicates diminished confidence) over time as signals become stale, unupdated.


Although any suitable time standard can be used, embodiments of the disclosed technology use the Coordinated Universal Time (UTC) standard (ISO/IEC 2004). The UTC can be used, for example, to enforce a consistent and standardized representation of time across time zones. UTC times are unchanged across time zones and across transitions into and out of daylight savings periods. In certain embodiments, and in order to avoid problems with aligning time zones ad contractual obligations that may exist, the use of intervals longer than one hour is avoided.


3.4.2 Confidence Attribute of a Transactive Signal

In some embodiments, transactive signals also include a confidence attribute that is specified to qualify the values in the transactive signals. In particular implementations, the confidence attribute estimates the relative positive root-mean-square (RMS) accuracy of each value that is published in a transactive signal. In many cases, this interpretation is quite naturally incorporated. For example, forecasts for renewable energy resources are already qualified in a way comparable to an RMS error.


Some events or conditions are not as naturally represented using the metric relative RMS error. For example, one might have diminished confidence if a signal has been delayed or if some component information to be used in a calculation has become stale. Other examples might include startup conditions while only limited information has been received, suspect status of computational equipment that hosts a calculation, or calculated values that are simply outside a normally accepted range for unknown reasons. Nevertheless, these conditions can be functionally represented by relative RMS error.


The recipient of a value that is accompanied by a high relative RMS error may use such information in many ways. The local practices and policies may differ at each transactive node. The possible responses include, for example, the publication of error or warning flags, performing alternative calculations that are more conservative, resorting to safe default values, using statistical algorithms that optimize outcomes or minimize risk, or no action at all.


3.4.3 Transactive Incentive Signal

In particular embodiments, a transactive node has one TIS for any given time interval and any given calculation result. No differentiation of TIS value is allowed across a transactive node. If for any reason electrical energy should be valued differently across a transactive node, the transactive node should be divided into more than one node at the feature that causes different valuation.


In one particular implementation, the TIS is calculated by summing the incurred costs and dividing the sum by the energy to which the costs refer. The total energy may be thought of as either entire load (including exported energy), or as the entire supply (including imported energy), at the transactive node. The transactive node can assume that total supply is equal to total load. It has been found that it is more natural to work from the supply side during the formulation of TIS. It is the costs of the various mixes of supply resources that directly affect the TIS.


The input parameters of the TIS formula in Table 3 create a useful interoperability boundary. The parameters represent various costs (“C”) and power (“P”), where the subscripts refer to terms for energy (“E”), generation (“G”), capacity (“C”), infrastructure (“I”), or other (“O”). Further, subscript n is the interval number and Δtn is that interval's duration. Members of a TCS may be invited to generate their own functional algorithms that in turn influence the TIS by simply designing algorithms that assign values to these various parameters. The parameters are distinguished by their units. Implementers may select and use the parameters that most naturally represent the forecasted cost impacts. It should be understood that these parameters are not limiting or even required for a particular component. In certain embodiments of the disclosed technology, the functions that generate these parameters are called toolkit resource and incentive functions. Resource functions model energy supply resources. Incentive functions affect the TIS, but they do not represent any energy resource. Example resource and incentive functions are described in more detail below, including Appendices B and C.









TABLE 3





Example formula by which the TIS is to be updated













TIS
n

=







a
=
1

A








C

E
,
a
,
n


·


P
^


G
,
a
,
n


·

Δt
n



+




b
=
1

B








C

C
,
b
,
n


·


P
^


C
,
b
,
n




+




d
=
1

D







C

O
,
d
,
n








a
=
1

A









P
^


G
,
a
,
n


·

Δt
n




+




c
=
1

C







C

os
,
c





,









Or









TIS
=


(



energy





cost

+

capacity





cost

+

other





costs



energy





resources


)

+

offset





costs















In other embodiments, infrastructure costs are among the numerator terms. However, in such embodiments, an undesirable inverse relationship between TIS and total power demand may result. In Table 3, infrastructure costs can be included among the “offset costs”.


3.4.4 Transactive Feedback Signal

The TFS is calculated readily for a radial distribution circuit branch. The transactive node on a radial distribution branch simply sums its predicted inelastic and elastic loads. The upstream transactive node is the only resource available to supply the load at this system location, so the TFS is identical to the predicted load for the branch.


The TFS is not as easily predicted between transactive nodes that are not on a radial distribution branch and have more than one transactive neighbor. Their network system connections may be meshed. Desirably, power flow is allocated among multiple TFS in a way that would be fully consistent with a proper power flow calculation.


In a fully deployed TCS, economic dispatch decisions would be made at each transactive node to balance load. To the degree that energy can be imported from the transactive node's neighbors, the neighbors' energy competes with local resources. Any mismatch is desirably allocated among the TFSs.


In certain embodiments, each member of a pair of transactive neighbors estimates a TFS for the interface that they share. (The general case of meshed networks and bidirectional power flow desirably uses each transactive neighbor to publish and receive paired cost (TIS) and quantity (TFS) signals.) The convergence of the two estimates is a metric that can be used to determine whether the two neighbors have concluded their negotiated solution or not.


3.5 Transactive Node Object Model

In certain embodiments, the formal model of the transactive node class and its behavior has been specified by the transactive node object model.


3.5.1 Algorithmic Framework

An example model of the algorithmic responsibilities of a transactive node is introduced below in Appendix B. The details of this model can be used to implement exemplary transactive nodes (e.g., using Standard ISO/IEC 18012 (ISO/IEC 2004) or using a unified object-oriented modeling language such as UML-2 (OMG 2013)). The algorithmic framework has proven to be applicable across many different types of transactive nodes.



FIG. 12 is a skeleton diagram 1200 of the algorithmic framework at a transactive node. The diagram addresses two main objectives: First, it provides that the TIS may be calculated. Second, it provides that the TFS may be calculated.


A particular implementation of the function “3. Formulate TIS” is disclosed in Appendix B. This function receives information about intervals, costs of various resources and incentives, and the sum of imported and generated energy to which the cost information is relevant.


The model states that both the input information and resulting TIS values are stored in a data buffer. These buffer contents may be mined for data by those who have permission to do so. But the greater importance of the buffered data is that such stored information makes the system resilient to imperfect communications: the input values from a prior series of forecast intervals remain this transactive node's best prediction of the input interval values until updated information can be received. This is especially useful when the information is delayed or when a communication link becomes temporarily severed.


The impacts of energy supply and incentives (or disincentives) at a given transactive node are received through toolkit resource and incentive functions, a modular library of functions that model the costs and energy supplied by energy resources and other cost incentives or disincentives at a given transactive node. An example implementation of the function “8. Calculate Applicable Toolkit Resources and Incentives” (near the top center of FIG. 12) is disclosed in Appendix B. In certain embodiments, these toolkit functions are not themselves inside the algorithmic framework, but they inject their influences into the updating of the TIS via a standardized set of parameters.


A particular implementation of the function “4. Formulate TFS” (at the bottom right of FIG. 12) is disclosed in Appendix B. The objective of this algorithmic framework function is to forecast the flow of energy between it and its transactive neighbors. It therefore receives information about the set of future intervals. It also receives information about forecasted supply and load so that the balance may be allocated to the TFS between this transactive node and its transactive neighbors.


In certain embodiments, the load forecast has two threads. The first forecasts the inelastic load. This is the base case that is unaffected by the TIS. The second thread is the elastic load—the change in load that may be attributed to the TIS and events that are generated in light of the TIS. The separation of these threads is practical and it helps measure and verify system responses. The sum of the inelastic and elastic load forecast components accurately forecasts the actual load.









TABLE 4





Formula for total load used for TFS

















Total load = Inelastic load + Change in elastic load










The model of a single asset system may forecast both inelastic and elastic load components. For example, the thermostatic building asset model forecasts both its normal building load and the changes in load caused by temperature setback events. In certain embodiments of the disclosed technology, a single feeder model forecasted bulk inelastic load that in effect included many inelastic components of responsive assets. Provided that the components are properly summed for the given transactive node and not double-counted, it will not matter that the thermostat model did not model its own inelastic load component.


More information about the toolkit resource and incentive and toolkit load functions are discussed below as well as in Appendices B and C.


3.5.2 Signal Timing

In certain embodiments, the transactive node object model includes functionality and attributes that control the times at which transactive signals are transmitted to transactive neighbors. An exemplary timing model is discussed in this section, but is not to be construed as limiting, as any number of intervals having other durations can be used. The example timing model was designed to allow propagation of information about disturbances (e.g., of the electric transmission grid) across the TCS system while reducing unfruitful chatter and calculations. As noted, the example timing model is not necessarily one that should be standardized or used in implementations of the systems.


A transactive node should normally not publish transactive signals for which any interval starting time has already passed. This expectation creates a useful framework for the calibration of system clocks. The error between clocks at different system locations should desirably be small compared to the shortest intervals-5 minutes for the example timing model. Tight tolerances are, in principle, achievable for transactive nodes that are internet connected.


In the example timing model, each transactive node, at the beginning of a 5-minute interval, publishes transactive signals that address the interval that begins 5 minutes from now and into the future.


Various timers were implemented to avoid unnecessary chatter. One timer begins when a transactive signal is received. Another timer begins after a transactive signal is transmitted. No transactive signal of the same type may be transmitted again until after these timers expire. FIG. 13 is a block diagram 1300 illustrating the example timing model.


In one embodiment, the time model is event-based. For example, the timing model can be adapted to become more responsive to status or condition events and less reliant upon clock-based events (e.g., hold-down timers, interval timers). New signals and additional calculations can be generated only after significant changes occur to schedules and forecasts, either locally or at remote system locations. As long as forecasts remain accurate, the system should be unperturbed.


Further, sets of prediction intervals that are nested rather than sequential can be used. That is, an understanding that the next 5 minutes are a subset of an hour-long interval that is a subset of the day that is a subset of a month, and so on, can be adopted.


Still further, in some instances, a relaxation criterion against which forecast changes may be compared can be used. The criterion can state a weighting of errors for each interval. For example, if the sum of the errors exceeds the overall threshold for a transactive signal, then the signal is updated and republished; otherwise, no signals should be transmitted because the changes are deemed to be insignificant. This criterion can be used in an event-based model wherein imminent and future intervals are rapidly iterated (e.g., on an asynchronous basis) until they resolve according to this criterion.


3.6 Transactive Data Collection Layer

In some embodiments, a transactive data collection system layer is also defined and used in implementations of the transactive nodes. For example, this system layer automatically retrieves toolkit function outputs from resource, incentive, and toolkit load functions; gathers resulting TIS and TFS signals that are generated at each node from its toolkit function inputs; and records various system management events and statuses. Because the system is distributed both in time and space, it is desirable to keep track of data provenance, including locations of nodes from which the data originates, times at which signals are generated, and time intervals to which predictive signals refer.


One advantage of a TCS is that the transactive signals, while revealing an aggregated cost and quantity of energy, do not necessarily reveal any sensitive or private data. The model used to store and collect information about local resources and loads at a transactive node can be useful, but such information would normally be shared only with the owner of a set of transactive nodes, who is entitled to receive such privileged information. Desirably, little or no sensitive information is shared by neighboring transactive nodes.


“Non-transactive” data can also be defined and collected. Non-transactive data is factual data that is collected from system meters and which can be used during analysis to assess the success with which the predictive TCS has influenced system loads and its consumption of various energy resources. Non-transactive data can also include weather data at each distributed site.


3.7 Influences on the TIS

This section addresses the formulation and interpretation of the TIS.


3.7.1 The TIS is an Aggregate of Multiple Resource and Incentive Costs

In some embodiments, while each TIS states a value for each future interval, each said value may be composed of a plurality of various resource and incentive cost components. This concept is demonstrated by diagram 1400 in FIG. 14, which shows multiple stacked component costs, the sum of which is the published TIS value. The biggest cost component, in this example, is the unit cost of the energy that is received by this transactive node from its transactive neighbors (the transactive component). The remaining components are ranked as the cost of infrastructure and the unit costs of wind, hydroelectric, and fossil-fueled resources.


Observe that influences are inherited from neighboring transactive nodes that supply this transactive node. For example, if 8% of a TIS value is from the costs of fossil energy resources, and if this transactive node is supplied another 10% of its resources by a neighbor for which 10% of this neighbor's TIS value is from fossil resources, then the total impact of fossil energy on the TIS at this transactive node would be 8%+10%×10%=9%. Therefore, one can look to propagated resource mixes one, two, or even more neighbors distant to accurately assess the resource supply mix at this transactive node.


3.7.2 TIS Calibration Measurements Identified

As discussed, in certain embodiments, delivered cost of energy is used as the metric for TIS magnitude. This metric is useful because (1) it provides a straight path to using the signal for revenue, if other implementations choose to do so, and (2) comparable calibration standards exist at some locations within a TCS for this metric.


In a distributed system, checks and balances are desirable to make sure that the TIS, which is collaboratively formulated, is meaningful and fair. The first step toward accomplishing this was to establish a common semantic understanding of the TIS as, for one embodiment, the delivered cost of energy at a location. The second step is the comparison of the TIS and its components against comparable calibration standards. For example, existing and historical contracts define the average unit cost of energy among many suppliers and recipients of electrical energy. Distribution utilities can accurately state how much they paid for a unit of energy during the past year. Therefore, the TIS and any other valid representation of the delivered cost of energy at a system location should be comparable over long periods of time.


3.7.3 Resource Toolkit Functions

Adequate energy resources are desirably received into or dispatched at a transactive node to balance system load. The mix of dispatched energy resources can be determined in a distributed manner (though it is also possible to use a central determination for smaller scale implementations).


In certain embodiments, resource toolkit functions from a library of functions are the functions that calculate the quantity of energy and its cost impacts toward the formulation of the TIS at a transactive node. The resource toolkit functions can reside at any of the transactive nodes (e.g., transmission zone nodes, which each represent large regions of a region's generation and transmission systems). One or more of the following functions can be used to represent groups of (or individual) energy resources:

    • Non-transactive energy function—represents energy imported into the system from entities that are not transactive nodes.
    • Transactive energy function—represents energy imported from a neighboring transactive node.
    • Wind energy function—represents energy from wind farms in this transactive node.
    • Hydropower generation energy function—represents energy from hydropower at this transactive node.
    • Fossil generation energy function—represents energy from fossil (more generally, “thermal”) resources at this transactive node.
    • Solar energy resource function—represents energy from solar resources at this transactive node.


3.7.4 Incentive Toolkit Functions

Incentive functions are similar to resource functions, but they are not tied to energy supply. One or more of the following exemplary incentive functions can be used in implementations of the disclosed technology:

    • Transmission congestion management function—if the power flowing through electricity transmission lines between two transactive nodes ever approaches the capacity limit on the transmission lines, this function adds cost disincentives to the downstream transactive node to reduce load on the line.
    • Cost of general infrastructure function—a cost that is amortized over time to represent the cost impacts of built infrastructure that has not otherwise been captured in the system. The offset from this function calibrates the TIS over time, pulling it gradually toward a reasonable TIS at each transactive node.
    • Demand charges function—this is an incentive toolkit function that can be applied at utility-site transactive nodes. Wholesale electriticy suppliers charge their utility customers according to quite complex cost structures. This function attempts to represent the cost impacts of demand charges and, to a lesser degree, time-of-use charges. Functions have been drafted to represent the cost structures of, for example, regional power administrations.


3.8 Influences on the TFS

A TFS represents the power flowing between a transactive node and its transactive neighbor during the imminent and future intervals. The majority of the power flow is usually inelastic: it is unaffected by the predicted unit cost of the energy—the TIS. If the transactive node hosts responsive asset systems, these systems might observe the TIS and change their forecast of how much energy they will consume during a future interval—they are elastic. The transactive node state model keeps track of the changes in load that are anticipated from these elastic asset systems.


Responsive asset systems that curtail load reduce load at a transactive node and therefore tend to reduce the energy that is generated at or imported into the transactive node. Demand-side generators have the same impact when they generate energy and displace load at the transactive node.


Even more useful are responsive asset systems that can increase their energy consumption (or equivalently, reduce their demand-side generation). These asset systems thereby increase system load at their transactive nodes and increase the energy that is either generated at or imported into the transactive node. This response is increasingly useful in power grids that experience excessive generation, as now occurs in regions that have high wind-power penetration.


3.8.1 TFS Calibration Measurements Identified

A straightforward comparison standard exists for TFS values at many system locations. Because the TFS represents forecasted power flow, the accuracy of the forecasted power-flow values in a TFS may be compared against actual metered power at that point in the power grid. For example, the electricity supplied to a distribution by its electricity supplier is accurately metered.


3.8.2 Inelastic Load Prediction Functions

Inelastic load functions forecast baseline load that is unaffected by the TIS. Inelastic load functions can be defined for each residential, commercial, and industrial load type. The load from these models can be scaled by the numbers of each customer type. Alternatively, a parametric model can be used that can be trained by historical data. The model appears to perform similarly for all of the different load types. The forecast model creates a correlation to forecasted weather information—including at least ambient temperature. If available, the model can also incorporate recent measurement data to improve the forecast.


3.8.3 Elastic Load Functions

Elastic toolkit load functions in conjunction with asset models model how responsive asset systems are influenced by the TIS. In certain embodiments, these functions have two principal responsibilities: First, the toolkit load function predicts when events may occur and how long they will last. Second, an asset model forecasts the change in load that will occur during an event for the given asset system.


Elastic toolkit load functions can be categorized as follows based on the nature of their forecasted events:

    • Event-driven—several events may be called each month. The principal challenge is to allocate a limited number of allowed yearly, monthly, and daily events (e.g., curtailment events) based on the forecasted TIS. Additional restrictions may apply to the minimum and maximum durations of the events for a given asset system.
    • Daily events (sometimes referred to herein as “time-of-use” events)—events are expected to occur almost daily. The events might be specified differently for weekdays, weekend days, and holidays. The principal challenge is to place an event at the best time of day based on the TIS. Additional restrictions may apply to the minimum and maximum durations of the events for each day type.
    • Continuous—in some emobdiments, dynamic responses are being made every interval. The challenge is not so much to specify events as to state a functional relationship between each TIS value and a system response.


An asset model then models the change in load during the above event types. It has been found that many possible pairings exist between event types and asset model types. For example, a water heater asset model may be used with either event-driven or daily event types. In principle, water heaters could be manufactured to have continuous responses.


By way of example, one or more of the following exemplary asset models can be applied in an implementation of the disclosed technology:

    • water heater population—for instance, the population of residential 40-gallon water heaters controlled by in-line switches (e.g., demand-response units). (Models for other sizes of water heater can also be used.) After the timing of events has been predicted, the challenge is to predict the power and energy that will be curtailed by the systems response.
    • thermostatic space conditioning with temperature setback—in one implementation, a first-order thermal model of a building is simulated. The model is scaled by numbers of building types and their thermal properties, parameters which are desirably configured by the implementer of this elastic toolkit load function. Dynamic inputs include ambient temperature, solar insolation, and modeled target interior temperatures that represent occupancy temperature settings. During events, the modeled target temperature is raised or lowered, depending on whether it is cooling or heating season. An advantage of using this thermal model is that it predicts thermal rebound if buildings that have had their thermostat load set back return to normal operation.
    • thermostatic space conditioning with cycling of the heating, ventilating and air-conditioning (HVAC) unit—uses the same first-order thermal model and simulation as for temperature setback, but events cause a reduction in modeled power of the space conditioning equipment to represent the cycling of HVAC equipment.
    • stationary battery storage systems—the TIS is an input to a simulation model that attempts to maximize the cost of energy discharged into the grid and minimize the cost of energy used to charge the batteries. The exchange of energy is scaled by and limited by the modeled useable energy capacity of the batteries and by the capacity of the bidirectional power converter that charges and discharges power into and out from the batteries. The responsiveness of the system may also be modified depending on how frequently the system's owner will permit it to become alternately charged and discharged.
    • controlled distribution voltage systems—estimate the change in load that will accompany a change in distribution voltage during an event. In one simplified implementation, the asset model uses a static factor to represent the change in load as a function of change in a feeder's voltage.
    • distributed generators—models a change in generation during events. In most cases, the generator becomes activated during events, and the generator supplies its nameplate rated power or another prescribed power level during the event.
    • in-home display and portal notifications—in one implementation, event periods are presumed to be indicated to in-home displays or portals as a small number of discrete states (e.g., a high-price event). The change in load is, of course, dependent upon the election of a population of energy customers to voluntarily turn their devices on or off. A typical change in power is forecasted by time of day that may be scaled by the numbers of in-home displays or portals in the population.
    • a suite of smart appliances, including washer, dryer, and dishwasher—These appliances are similar to in-home displays in that they notify customers of events during which the smart appliance owners may may elect to defer electrical load. In another exemplary implementation, these appliances have additional features by which customers may better automate decisions to delay the appliance loads, and some energy reduction is also achieved automatically when the appliances are in their conservation mode. The change in load is modeled simply as a fraction of typical appliance load by time of day and by appliance type.


Table 5 summarizes the potential pairings of the listed exemplary asset models with appropriate event types. Examples for some of these pairings are described in the appendices below. Implementations for other pairings can be developed by those skilled in the art in view of this disclosure.









TABLE 5







Pairing of Response Characteristics with Asset Models










Asset models
Event-Driven
Daily Events
Real-Time





Water heaters
Y
Y
Y


Thermostat setback
Y
Y
Y


HVAC cycling
Y
Y
Y


Battery storage
Y
Y
Y


Distribution voltage control
Y
Y
Y


Distributed generators
Y
Y
Y


In-home displays/portals
Y
Y
Y


Other smart appliances
Y
Y
Y









3.9 Additional Observations

In a fully deployed TCS, regional transmission and generation owners formulate TIS signals by stating the temporal and locational value of resources at many transmission and generation sites in the region, and the TFS, a feedback signal, influences their resource dispatch decisions at these distributed locations.


Further, as household devices become more intelligent, there will eventually exist vast populations of flexible, responsive assets that would be active in a TCS. These assets will be available to modify their consumption at each update interval. A TCS invites the demand side to participate in the system objectives on equal footing with supply.


3.10 Interoperability

Implementations of the disclosed technology can be standardized, if desired. Standardization efforts may be at a variety of different levels. For instance, the TCS can be defined at the organization and informational level. In this regard, FIG. 15 is a diagram 1500 showing an example skeleton model of a standard transactive node and the signals that it communicates with other transactive nodes and with modules and systems, some of which can be outside the boundary of a standardized system. Typically, neighboring transactive nodes will have to agree between themselves concerning an Interoperability Framework, including the remaining interoperability levels (“Technical/Syntactical” levels). Between unrelated sites, this negotiation is unique. However, if neighbor nodes share the same owner, a common technology may be applied to all the owner's transactive nodes. The TCS standard should desirably be agnostic of the technologies by which it may be implemented.


Certain implementers can choose to define additional implementation details beyond those in the standard. The implementations might, for example, further specify the syntactical levels of interoperability. These implementations should abide by and make reference to the main standard. However, the new implementations may themselves become standards, or they may be recognized as reference implementations of TCS.


Further, implementers may desire to keep their particular code (e.g., code for a toolkit function) confidential. Such a scenario is feasible so long as the resulting signals are conformant.


Embodiments of the disclosed technology can be integrated with academic distributed control approaches. For instance, the specification of transactive signals can be harmonized with signal characteristics specified in simulation studies. An outcome of such harmonization will be that the transactive signal that represents power flow will be a complex representation. (This use of complex here is mathematical. A complex number has real and imaginary components. The real component represents real power; the imaginary component represents the flow of reactive electrical power.)


Embodiments of the disclosed technology can be harmonized with LMP approaches. For instance, the practices of LMP and TCS can be harmonized, potentially allowing the TCS approach to compete with, supplement, or gain equal footing with LMP practices.


Embodiments of the disclosed technology can also be harmonized with other TCS approaches. For example, the price-like signal used in embodiments of the TCS approach may be modeled after cost, price, or competitive bids.


4 Overall Design for Embodiments of the Disclosed Transactive Control and Coordination System

In this section, additional details concerning the overall design for embodiments of a transactive control and coordination system according to the disclosed technology will be introduced. The discussion below also provides a supplemental discussion of the transactive control signals themselves. This discussion may, in some instances, be repetitive to the discussion above but is included herein for the sake of completeness.


4.1 Architecture of an Installed System Design

The architecture of an installed system is more diverse than for typical computer network designs. For instance, an installed system comprises generation, responsive assets, the electricity transmission and distribution systems, and digital communication and intelligence. The system therefore should consider:

    • Physical, geographical location
    • Electrical connectivity
    • Information flow.


These components are interdependent, and a close correlation will typically exist and be maintained between them.


4.1.1 Physical, Geographical Architecture

The physical, geographical system architecture captures the physical locations of each piece of the installed system. Physical location can be influential to transactive control because local attributes (e.g., weather) affect the behaviors of equipment, end users, and responsive assets. One tenet of transactive control is that the value of supplied electrical energy is location-dependent. Physical, geographical architecture is easily captured on a conventional map.


4.1.2 Electrical Connectivity Architecture—the Nodal Hierarchy

The electrical connectivity system architecture captures the flow of electrical energy through the installed system. One tenet of transactive control is that the communication of value and operational opportunities (e.g., the transactive signals) in a transactive control and coordination system should logically follow the pathways of electrical energy flow. Existing and future power capacity constraints are highly path-dependent.


In certain embodiments, the electrical connectivity within an installed transactive control and coordination system forms a hierarchy of nodes. Here, the word hierarchy refers to a flow direction of electrical power and is not necessarily a static assignment. Electrical transmission systems are typically mesh (not radial) systems, meaning that parallel paths in the transmission system compete to supply load. The direction of electrical power in the transmission system may change. Some of this complexity will not be discussed in detail herein because embodiments of the disclosed technology can be adapted for such complexities using software tools that properly model meshed transmission power flow.


4.1.3 Information Flow in the Transactive Control and Coordination System

The information flow design captures the flow of data and information within an installed system. An information flow architecture also indicates where manual and automated decisions are made. The information flow architecture can include, for example,

    • The communication channels used to transport transactive control signals
    • The communication channels used to transport asset control signals
    • The communication channels used for other data that supports local, regional, and client-run experiments
    • Meter data channels through which meter data flows
    • Locations within the information flow where functional calculations, like the estimation of future electrical load, take place
    • Any other communication channels necessary to employ the installed transactive control and coordination system.


The information flow architecture can also capture details about the communication channels and signals, including communication media, protocols, bandwidth, formats, software tools, exemplary functional computations, and security attributes and practices.


4.2 A Generalized Transactive Control and Coordination System

This section introduces embodiments of hierarchical transactive control that can be used in an installed system. Prior to recent efforts to build a smarter grid, most all opportunities to manage and control electrical power have been managed quite centrally from the supply side—bulk electrical generation and transmission. The role of the power grid has been simply to satisfy electrical demand—the energy consumption patterns of all the end users. Embodiments of the smart grid according to the disclosed technology will engage end users and responsive assets throughout the grid, resulting in a cooperative, more distributed approach. Transactive control can facilitate this migration to a smarter grid.


4.3 Review of Transactive Control

Transactive control is a bidirectionally negotiated system behavior. Market-like principles facilitate the negotiation; however, the signals need not be used to account for any monetary or revenue exchanges. In theory, the “winning” behaviors are optimal in some sense, having competed successfully in a “market” against alternative actions that could have been taken.


One or more of the following are characteristics that can be exhibited in embodiments of a transactive control and coordination system according to the disclosed technology:

    • Bidirectional communication—transactive control differs from the similar practice of real-time nodal pricing in that it uses dynamic feedback from its end uses.
    • Incentives and feedback are communicated via one nodal signal—at a node, a single incentive time series is transported downstream, and a single feedback time series is transported upstream. Components of the incentive and feedback signals are additively combined into one incentive and one feedback time series. Using a single signal facilitates interoperability between multiple operational objectives and multiple responsive asset systems.
    • Multiple operational objectives and responsive assets are simultaneously engaged—unlike present programmatic approaches that create unique engineered couplings between one operational objective and one or more responsive assets. Because operational objectives can be integrated into a single incentive time series, transactive control enables each responsive asset to respond to the integrated set of operational objectives. As a corollary, each operational objective may be acted upon by many responsive assets.
    • The signal in a transactive control and coordination system can be dynamic on multiple time scales—transactive control signals are dynamic. In principle, the time intervals may be made infinitesimally small. A transactive control and coordination system could respond to a need for fast grid regulation, for example, if its time intervals were made short compared to the dynamic performance of fast regulation services. Regardless, the responsive assets may respond according to each asset's own dynamic capabilities and limitations. Not all parts of the system need to agree on and use the same interval if dissimilar interval signals can be added or interpolated to create valid comparisons between signals that have dissimilar intervals.
    • Interoperability is facilitated—transactive control facilitates interoperability at the organizational and informational levels, and it allows technical layers of interoperability to become satisfied by any, or many, appropriate standards. This attribute helps make transactive control a worthy candidate for interoperable, regional smart grid communications.
    • Responds 24/7—transactive control can be always active. Small improvements and responses can be made throughout a day, not only during the worst several hours of the year.
    • End-user friendly—by taking advantage of numerous short intervals and distributed digital intelligence, impacts on end users can be reduced, if not entirely eliminated. For instance, end users should have a final say concerning their comfort and should be provided options to temporarily opt out of responses.
    • Facilitates distributed control—transactive control facilitates distributed intelligence and control. Centralized control is reduced or eliminated.
    • Uses low bandwidth—the elimination of unique signals and the distribution of control should reduce communication bandwidth.


The transactive control technique of this disclosure can be compared to other approaches to transactive control, specifically the GridWise® Olympic Peninsula Project. Table 6 summarizes the major differences between the transactive control approach used during the Olympic Peninsula Project and embodiments of the disclosed transactive control approach.









TABLE 6







Comparison between the GridWise Olympic Peninsula Project and


Embodiments of the Disclosed Technology










GridWise Olympic Peninsula
Embodiments of the Disclosed



Project
Technology





Electricity
Combinations of fixed and
Various approaches, as will be


customer
various dynamic price accounts.
determined individually by


incentives
The project maintained a shadow
participating utilities. Incentive



market and customer accounts
practices should be sustainable.



that were separate from utility




billing.



Feedback
A bid was received from every
Each transactive node reports


signal
responsive asset every five
feedback that consists of a time series



minutes ($/MWhr).
of expected energy consumption




during each time interval into the




future (kWhr/interval).


Operational
One single transmission line
Multiple constraints, regional


objectives
constraint was addressed.
renewable energy availability,


addressed

economic dispatch of resources,




hydrogeneration, peak load mitigation,




balancing resources, spot-market




purchase mitigation, . . .


Future time
Not more than five minutes.
To be determined (probably from one


horizon

to two days).


Approach for
Explicit clearing of the two-way
Uses iterative resolution of the


resolution of
“market” conducted every five
“market” future intervals over time.


the “market”
minutes.



Shortest time
Five minutes for real-time price
To be determined (perhaps five


intervals
customers.
minutes).


supported




Architecture
Centralized. Information flow
Enforces a nodal hierarchy, including



was managed from a central
plans for standardization and



operations center and included
extensibility of the hierarchy.



the aggregator's communication
Launched at multiple initial transactive



servers.
node sites.









Exemplary components of embodiments of the transactive control and coordination system include one or more of:

    • Transactive nodes—a physical point within an electrical connectivity map of the system. Electrical energy flows through a transactive node. A transactive node is not to be confused with locations within the information flow map that might also be called “nodes.”
    • Transactive signals—each node location receives an incentive signal from upstream and generates a corresponding feedback signal to be sent back upstream. These two signals—the transactive incentive signal and its feedback—together are the transactive signals.
    • Responsive assets—the “prime movers” of the transactive control and coordination system that can modify consumption of electrical energy (e.g., in response to the current values of the transactive signals).
    • Enabling assets—assets like communication infrastructure and metering that cannot by themselves modify energy consumption. Cost-benefit analysis typically cannot be properly assessed for an enabling asset alone because it represents only costs but no measureable smart grid benefits. The expenses of enabling assets are desirably allocated among and borne by truly responsive assets.


Responsive and enabling assets are more thoroughly discussed below.


4.4 Transactive Signals

This section describes example transactive signals and their use by the demonstration.


4.4.1 Introduction to Transactive Signals

In certain embodiments of the disclosed technology, there are two transactive signals at each transactive node:

    • A transactive incentive signal (TIS) time series comprising the aggregated present and future values of the electricity supplied to and through each transactive node; and
    • The transactive load feedback signal (TFS) comprising the sum of an estimate of the future quantity unresponsive and responsive electrical load to be consumed by the entire load downstream from the transactive node.


Each of the two signals is a time series, meaning that each is a vector of numbers, one for the present time interval and others for each future time interval (e.g., at least a day into the future). The time interval and horizon into the future can vary from embodiment to embodiment. In some embodiments, the time interval is five minutes. Shorter intervals than this would permit the demonstration system to provide additional ancillary services. Further, in some embodiments, shorter intervals are used for the near term and longer intervals into the signals' future. The signals' time horizon desirably extends at least to the future time when resource dispatch decisions are being made for the region.


The transactive signals at time t0 can have the forms:

TIS={TIS(t0),TIS(t0+Δt),TIS(t0+2Δt),TIS(t0+3Δt), . . . ,TIS(tƒ−Δt)}
TFS={TFS(t0),TFS(t0+Δt),TFS(t0+2Δt),TFS(t0+3Δt), . . . ,TFS(tƒ−Δt)},

where TIS and TFS are the transactive incentive and feedback signals, respectively, Δt is the selected time interval, and tƒ is the end of the prediction time horizon. The given time signal series can be updated next at time t0+Δt.


The time-series elements of these two transactive signals are paired for each future time interval. This pairing between transactive incentive signal and transactive feedback signal is illustrated in block diagram 1600 of FIG. 16, which also portrays how an upward trend in the transactive incentive signal for any future time interval should result in a corresponding downward trend in load supplied through the transactive node for that time interval. If the transactive node supplies any responsive electrical load (e.g., responsive assets that are responsive to the transactive incentive signal), the responsive electrical load should respond to changes in the transactive incentive signal. FIG. 16 indicates further that the granularity of the intervals for these signals could be relatively fine in the near term and courser into the distant future.


During the application of transactive signals, sensibility checks and default behaviors are desirably planned. For example, the nodes can be provided some independence to recognize and discount nonsensical signals that are believed to be erroneous. When no signals are received by transactive nodes, as may be the case when there has been a problem or equipment failure somewhere in the system, the nodes should again have the independence to revert to safe, bounded behaviors.


4.4.2 Transactive Incentive Signal

In particular embodiments of the disclosed technology, the transactive incentive time series is the main transactive signal. Each transactive node will typically have a unique blend of energy suppliers, upstream transmission pathways and distances, operational practices, local infrastructure, and/or downstream customers. Therefore, the values of the transactive incentive signal can be unique at a transactive node in the system.


In certain implementations, the basis for the transactive signal series at any node is a weighted sum of the transactive incentive signals received by that transactive node from immediately upstream transactive nodes that supply it electrical energy. The default approach, for example, can be to weigh the transactive signals according to the relative fraction of the node's power that is supplied from each upstream source as described below.


Each transactive node can also modify the transactive incentive signal that it relays downstream. At each transactive node, local conditions are analyzed and the incentive signal modified (or left unchanged) based on the local conditions. Modification of the incentive signal is for the purpose of influencing the behavior of responsive assets downstream from the node. The basic action at any node can be simply represented as:

TISoutput(t)=Weighted average(TISinput(t))+New incentives(t)
TISoutput(t)=Weighted average(TISinput(t))+New incentives(t).


Examples of how and why a transactive node will modify its transactive incentive signal include:

    • The expense of energy supplied at the node—those transactive nodes that host generation have the opportunity and responsibility to insert the initial incentive signal values for that resource. For example, the incentive signal may reflect fuel expenses, infrastructure expenses, and/or all other expenses that are incurred to operate the resource. Ideally, the sum of incentives inserted for a generator over a year or longer should approach the sum of its true operational expenses.
    • Infrastructure constraints or congestion avoidance imposed by the node—if the node itself becomes electrically constrained, it should modify the transactive incentive signal to incentivize downstream behavior that will alleviate the constraint. For example, the modification might be set equivalent to the incremental expense that would be incurred from the consequent shortening of a piece of equipment's lifetime, plus the likelihood that expenses will be incurred from outages after exceeding equipment ratings.
    • Amortization and other expenses of installed equipment—even idle equipment can be argued to incur expenses. One should insert an expense for maintaining necessary infrastructure of the node. This incentive component, for example, is part of a natural disincentive for consuming energy far from where it is generated and thus using transmission infrastructure.
    • Energy losses—modifications of the transactive incentive signal may account for line, transformation, and equipment energy losses.
    • Operational objectives that occur at business entity boundaries—especially at business entity boundaries, the system shall encounter new operational objectives and values that should be respected. For example, certain utilities manage spot market purchases that are not influential in the regional hierarchy but become important at the boundaries of that utility.


The formulation of the transactive incentive signal can, but need not directly, incorporate actual allocations and financial metrics used by utilities and other business entities; the transactive incentive signal can instead be formulated to allocate expenses in a way that will induce useful responses for the entity that owns a transactive node. However, a faithful transactive incentive signal formulation should approach the same overall value as for actual expense reporting over long periods of time. There is nothing that would prevent the transactive control and coordination system from supporting markets and revenue accounting in other formulations.


The incentive signal can have a variety of forms or units, but in some embodiments uses units of $/MWhr (or other equivalent, such as a number or value that is proportional (linearly or otherwise) to this unit). Thus, the signal need not be an actual price, but can be representative of a price or economic unit. One tenet of embodiments of the disclosed transactive control scheme is that items that are valued at a location in the system should be combined into one shared signal, and that can be achieved only after there is consensus about a common metric unit to be used by the signal. This principle will help enforce that business entities' operational objectives should fairly compete.


4.4.3 Transactive Load Feedback Signal

Corresponding to a transactive incentive signal time interval is a transactive load feedback signal (e.g., in the kW or other equivalent or representative unit). This transactive feedback signal time series includes the present and future electrical load that is predicted to be supplied through the transactive node during each time interval. In some embodiments, the signal is the sum of the unresponsive electric load that is not affected by the transactive signal and the responsive electric load that can monitor and respond to the transactive incentive signal.

TFSoutput(t)=ΣTFSunresponsive,input(t)+ΣTFSresponsive,input(t,TISoutput(t))


The transactive feedback signal is not a “load forecast” of the type that some utilities prepare as they plan resource commitments. There are no direct penalties to be incurred by subprojects when their transactive feedback signals prove inaccurate. The transactive control approach might diminish the importance of load forecasts in the future if the flexibility provided by transactive control can be shown to displace some of the need for predictive accuracy. Interestingly, the accuracy of a node's transactive feedback signal prediction may always be tested against the true consumption that is measured eventually at the transactive node. In some embodiments, the intelligence at a transactive node can “learn” over time to improve its own predictions. Neighboring transactive nodes learn also from an adjacent transactive node's inaccuracies and may choose to alter or suspect that transactive node's outputs.


In some embodiments, the inputs to the transactive feedback signal at a transactive node include any one or more of the following types of inputs:

    • Transactive feedback signals generated from transactive nodes that are immediately downstream;
    • Transactive feedback signals generated from smart responsive assets that are controlled from the present transactive node's position in the hierarchy;
    • Raw unresponsive load measurements that may be subjected to further computation or modeling to predict the remaining future time intervals; and/or
    • Raw responsive load measurements from responsive assets that do not themselves predict and provide transactive feedback signals but instead rely on the transactive node to perform predictions.


4.4.4 Implications for Customer and Utility Incentives

As has been stated, the transactive incentive signal is not intended to account for monetary exchanges or revenue between regional entities. However, the transactive incentive signal could become the foundation for regional exchanges or revenues. The transactive incentive signal may also be used as a basis for customer incentives if the subprojects can establish workable shadow accounts for these customers.


4.5 Transactive Nodes

Any of the physical locations in the electrical connectivity architecture of a power system can be transactive nodes. A node is a location or piece of equipment that electrical power flows through. The term “hierarchy” is used to describe a set of transactive nodes that may extend all the way upstream to bulk generators and all the way downstream to electrical loads.


4.5.1 Responsibilities of a Transactive Node

In certain embodiments, a location or piece of equipment in the electrical connectivity architecture is described as a transactive node if it performs one or both of the following:

    • Accepts at least one transactive incentive signal time series from upstream and sends a transactive incentive signal time series downstream. If multiple transactive incentive signals are received from upstream, a transactive node blends these incentives into a single transactive incentive signal to be sent downstream.
    • Accepts at least one transactive feedback time series from downstream and sends at least one transactive feedback time series upstream. A transactive node can further predict electrical load and can thereby convert raw electrical load meter readings, as necessary, into transactive feedback time series.


A transactive node can also: modify the output transactive incentive signal to address any local operational objective that exists at the transactive node; and/or predict the responsive electric load from any responsive assets that are being controlled from the location of the transactive node.


These responsibilities of a transactive node are summarized by block diagram 1700 of FIG. 17, where the “prediction and control machine” is the intelligence (typically implemented as software executed by computing hardware associated with a transactive node) that modifies the output transactive incentive signal, predicts the behaviors of downstream electrical load, and controls responsive assets at the transactive node.


Any one or more of the following functional behaviors can be carried out by transactive nodes:

    • Basic transactive node functions
    • Management of electrical constraints
    • Management of electrical supply
    • Management of responsive assets.


These general functional behaviors help form the basis for a basic building-block model of a transactive node, whose models may be linked together to model the behaviors of the transactive nodes in a completed nodal hierarchy. Each of these functional behaviors is discussed in more detail below.


4.5.2 Basic Transactive Node

This section addresses the most basic functions that a point in the electrical connectivity architecture (hierarchy) performs as part of its role as a transactive node. First, a transactive node desirably is able to receive at least one transactive signal and “blend” the signals into a single transactive signal output to be sent downstream through the hierarchy. For purposes of this discussion, this basic function is termed the incentive blending function and is illustrated in block diagram 1800 in FIG. 18. Secondly, a transactive node desirably is able to receive or meter the downstream electric load that it supplies and aggregate this information and these measurements into a complete transactive feedback signal to be sent upstream through the hierarchy. For purposes of this discussion, this basic function is termed load aggregation, and is also illustrated in FIG. 18.


As a starting point for the design, the default incentive blending function can be assigned as a weighted average of the transactive incentive signals that are received at the transactive node from upstream, where the weighting is performed according to the energy received from each source during the interval. For instance, this weighted average can be formulated as:








TSF
output



(
t
)


=






TFS

input





1




(
t
)


·


TIS

input





1




(
t
)



+



TFS

input





2




(
t
)


·

TIS

input





2



+





TFS

input





1




(
t
)


+


TFS

input





2




(
t
)


+



.





It is noteworthy that the relative electrical energy to be received from multiple source inputs to a transactive node during a time interval cannot be directly controlled by the transactive node and may only be predicted imperfectly from the transactive node's limited view of the system. This might not be problematic (or even evident) for transactive nodes that exist within largely radial distribution systems, but may become more evident for transactive nodes within highly redundant transmission pathways and near dispatchable generators. This observation results from the more distributed nature of the disclosed transactive control and coordination system and can be contrasted with systems where transmission system conditions are predicted by load flow calculation methods that assume nearly complete system visibility and use simultaneous solution of the entire system's status.


The load aggregation function is conceptually simple, but complexities potentially arise from the breadth of downstream electrical load types and conditions. In principle, the purpose of the load aggregation function is simply to receive or measure electrical load that is supplied through the transactive node and to convert these measurements and this information into the transactive feedback signal, including a prediction of the entire electrical load to be supplied through the transactive node for each time interval. The transactive node can implement this functionality according to one or more of the following cases:


Case 1. If there are transactive nodes immediately downstream from the given transactive node, then the transactive feedback signals that are received from them is already in the right format and should simply be added.


Case 2. The electric load that is not from responsive assets and is not supplied by another downstream node is predicted and converted into the format of the transactive feedback signal. This prediction might rely on an active model of the behaviors of the supplied load or its components. These unresponsive asset behaviors might be influenced by weather, day of week, customer habits, and/or many other conditions, but they are not affected by the transactive incentive signal.


Case 3. A third case is similar to case 2 above but further includes responsiveness to the transactive node's transactive incentive output signal.


4.5.3 Constraint Transactive Node

A transactive node that manages an electrically constrained piece of equipment at the transactive node additionally may modify its output transactive incentive signal to manage this constraint. This additional function is shown in diagram 1900 of FIG. 19 in line with the downstream output of the transactive node's transactive incentive signal. This function draws upon predicted electrical load and other local information, including the knowledge of the electrical constraint magnitude.


In summary, the transactive incentive signal can be made responsive to the constraint, and the downstream responsive assets can be made to reduce or curtail their consumption when the transactive incentive signal becomes high.


In contrast to a transactive approach where price is determined by a two-way clearing of a market, embodiments of the disclosed technology base the magnitude of the transactive incentive signal on actual risks and expenses. The transactive incentive signal is therefore not a marginal price but is instead a transparent accumulation of incurred expenses. This approach responds to the criticism received by marginal pricing that it results in more, not less, expense to customers.


If a constraint is to be addressed, the transactive node can be associated with the constrained piece of equipment. This practice can help in situations where it is desirable to have only one output transactive incentive signal be necessary from the perspective of the transactive node.


In some instances, local situation information can also be received from this function, which may generate useful alerts, for example, for system operators. That is, the prediction of constrained operation at a transactive node is reflected in both the transactive incentive and feedback signals at that node, and useful notifications may be generated if thresholds are exceeded in these signals.


4.5.4 Load Transactive Node

This transactive node function addresses a node associated with a load asset and builds on the structure of a basic node. In diagram 2000 of FIG. 20, a function is shown to reside on the path of the output transactive feedback signal. This function allows local situational information to affect prediction of future electric load, but it also includes the effect of the transactive incentive signal toward predicting energy consumption by responsive load. The responsive load is the load consumption of those responsive assets that are controlled at the transactive node. (Responsive assets that are controlled at downstream nodes are also responsive, but their behaviors are already captured in the basic transactive node's summing of signals from downstream transactive nodes.)


Smaller distributed generation can be addressed by using the load transactive node functions. Distributed generators can make their decisions to run or not based on the transactive incentive signal which is provided by the load transactive node functions. When the small generator operates, it effectively reduces downstream electrical load.


The transactive node further uses its version of the transactive incentive signal to functionally control its responsive assets via a toolkit load function selected from a library of such available functions. The output of this function to the responsive assets can depend upon the control method the utility has established for that responsive asset:

    • Direct demand response—an event-type of response is initiated by the responsive asset system when the transactive incentive signal exceeds a rather extreme threshold. Events occur infrequently.
    • Time-of-use—an event is initiated by the responsive asset system while the transactive incentive signal is within defined boundaries that are exceeded most days. Often used to address system peak load. Includes peak responses where more extreme events are recognized.
    • Real-time—a continuum of responses is provided by the responsive asset to the transactive incentive signal. This use case is active most, if not all, days and hours.


These responses are shown conceptually in graph 2100 of FIG. 21. Relative variations in the transactive incentive signal are shown to result in direct demand response, time-of-use (TOU), and real-time response options.


4.5.5 Supply Transactive Node

A supply transactive node function is shown in diagram 2200 of FIG. 22 and is similar to a load transactive node function. Both function types attempt to mitigate an imbalance between electrical supply and load, so it is reasonable that their forms would be similar.


This transactive node function is targeted mostly to bulk generation nodes. At these transactive nodes, the base foundation for transactive incentive signals is established. At a supply node, there may be no upstream nodes from which input transactive incentive signals could be received. The function in the path of the output transactive incentive signal is then the initial formulation of the base transactive incentive signal.


Local situational information can be generated or received by this transactive node. The supply transactive node can apply supply control (or a recommendation) if such supply generation is provided at this transactive node. Local information can also be used to inform what fuel expense and other operational expenses should be included into the initial transactive incentive signal at this location.


The incentive signal and the actual expenses of the supply desirably agree over long periods of time, but the function can (while adhering to this stated guideline) address the value of electrical generation in a way that instills useful responses by the region's responsive assets. For example, when this supply transactive node function is applied at wind farms, the created transactive incentive signal can induce the region's responsive assets to consume more of its energy while and near where the wind energy is produced.


4.6 Understanding Generalized Transactive Nodes as Combinations of the Functional Component Types

A set of transactive node functions has been introduced. These functions can be generalized as shown in diagram 2300 of FIG. 23. In particular, diagram 2300 illustrates a single model of a transactive node and its functions. Any one or more aspects of this model can be replicated throughout a transactive control and coordination system to represent a variety of types and instantiations of the system's transactive nodes.


In particular implementations of the transactive system, the output transactive incentive signal becomes an input transactive incentive signal to a transactive node that is immediately downstream; the output transactive feedback signal from a transactive node becomes the input for a transactive node immediately upstream.


4.7 Hierarchy

Block diagram 200 in FIG. 2 shows examples of significant transactive node locations that exist within a typical electric power grid. Embodiments of the transactive control technique are unique in that it addresses the power system from bulk generation to end use and back again. Ideally, and in certain embodiments, a complete hierarchy of transactive nodes is defined throughout the power system. In reality, there are parts of the electrical connectivity pathways without transactive nodes. In such cases, some nodes will perform more prediction and do so for more of a distribution system than they would do in a complete hierarchy. Further, in some cases, local constraints and other local operation objectives that might be mitigated by transactive nodes will remain unobserved.


5 Generalized Methods and Systems for Implementing Aspects of the Disclosed Technology

Having introduced the disclosed technology in the sections, this section presents general methods and systems for performing aspects of the disclosed transactive control approach. The embodiments below should not be construed as limiting and can be performed alone or in combination with any other feature or aspect disclosed herein.



FIG. 24 is a flowchart 2400 showing a generalized method for operating a transactive node in a transactive control electrical-energy-allocation system as can be used in any of the disclosed embodiments. The method can be performed using computing hardware (e.g., a computer processor or a specialized integrated circuit). For instance, the method can be performed by computing hardware associated with a transactive node where electrical energy is distributed, generated, and/or consumed.


At 2410, incentive signal data is computed. The incentive signal data can comprise data indicative of a cost of electric energy at the transactive node at a current time interval and data indicative of a forecasted cost of electric energy at the transactive node at one or more future time intervals. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive node will operate.


At 2412, feedback signal data is computed. The feedback signal data can comprise data indicative of an electric load at the transactive node at the current time interval and data indicative of a forecasted load for electric energy at the transactive node at the one or more future time intervals. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive node will operate


At 2414, the incentive signal data and the feedback signal data is transmitted. For example, the incentive signal data and feedback signal can be transmitted separately or together from one transactive node to each of its neighboring transactive nodes.


In certain embodiments, the data indicative of the cost of electric energy comprises data indicative of a cost of real electrical energy, reactive electrical energy, or a combination of both real and reactive electrical energies at the transactive node at the current time interval. Further, the data indicative of the forecasted cost of electric energy can comprise data indicative of a forecasted cost of real electrical energy, reactive electrical energy, or a combination of both real and reactive electrical energies at the transactive node at the one or more future time intervals. In some embodiments, the data indicative of the electric load comprises data indicative of a real electrical load, reactive electrical load, or a combination of both real and reactive electrical loads at the transactive node at the current time interval. Further, the data indicative of the forecasted load for electric energy can comprise data indicative of a forecasted load of real electrical load, reactive electrical load, or a combination of both real and reactive electrical loads at the transactive node at the one or more future time intervals.


In some embodiments, the incentive signal data further comprises data indicating a confidence level that the data indicative of the cost of electric energy at the transactive node at the current time interval is reliable (e.g., a confidence level for each time interval), and data indicating a confidence level that the data indicative of the forecasted cost of electric energy at the transactive node at the one or more future time intervals is accurate (e.g., a confidence level for each time interval). Further, in certain embodiments, the feedback signal data further comprises data indicating a confidence level that the data indicative of the electric load at the transactive node at the current time interval is accurate, and data indicating a confidence level that the data indicative of the forecasted load for electric energy at the transactive node at the one or more future time intervals is accurate.


In certain embodiments, the method further comprises receiving incentive signal data and feedback signal data from one or more neighboring transactive nodes. In such embodiments, the computation of the incentive signal data can be based at least in part on the received incentive signal data, and/or the computation of the feedback signal data can be based at least in part on the received feedback signal data.



FIG. 25 is a flowchart 2500 showing another generalized method for operating a transactive node in a transactive control electrical-energy-allocation system as can be used in any of the disclosed embodiments. The method can be performed using computing hardware (e.g., a computer processor or a specialized integrated circuit). For instance, the method can be performed by computing hardware associated with a transactive node where electrical energy is distributed, generated, and/or consumed.


At 2510, incentive signal data is received at the transactive node from two or more neighboring transactive nodes. The incentive signal data from the two or more neighboring transactive nodes can comprise data indicative of at least a cost of electric energy at a current time interval. In certain embodiments, the incentive signal data comprises data indicative of the cost of electric energy at the current time interval (e.g., the delivered unit cost of the energy at that node) and data indicative of a forecasted cost of electric energy at one or more future time intervals. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive node will operate


At 2512, aggregated incentive signal data is computed based at least in part on the incentive signal data from the two or more neighboring transactive nodes. In some embodiments, the aggregated incentive signal data comprises data indicative of the aggregated cost of electric energy at the current time interval and data indicative of a forecasted aggregated cost of electric energy at one or more future time intervals. Further, in some embodiments, the aggregated incentive signal data comprises a weighted sum of the incentive signal data from the two or more neighboring transactive nodes. In certain embodiments, the aggregated incentive signal data is further modified to provide an incentive or disincentive to the further transactive node based on local conditions at the transactive node. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive node will operate


At 2514, the aggregated incentive signal data is transmitted to a further transactive node (e.g., a neighboring transactive node).


In some embodiments, the received incentive signal data and the transmitted aggregated incentive signal data comprise data indicative of a cost of real electrical energy, reactive electrical energy, or a combination of both real and reactive electrical energies. In certain embodiments, the received incentive signal data further includes data indicating a confidence level of the received incentive signal data (e.g., a confidence level for each time interval). And in some embodiments, the transmitted incentive signal data further includes data indicating a confidence level of the transmitted incentive signal data (e.g., a confidence level for each time interval).


In some embodiments, the method further comprises receiving feedback signal data at the transactive node from the two or more neighboring transactive nodes, the feedback signal data from the two or more neighboring transactive nodes comprising data indicative of at least an electric load for electric energy at a current time interval; computing aggregated feedback signal data based at least in part on the feedback signal data from the two or more neighboring transactive nodes; and transmitting the aggregated feedback signal data to the further transactive node. In such embodiments, the received feedback signal data can comprise data indicative of the electric load for electric energy at the current time interval and data indicative of a forecasted load of electric energy at the one or more future time intervals, and the aggregated feedback signal data can comprise data indicative of the aggregated load of electric energy at the current time interval and data indicative of a forecasted aggregated load of electric energy at one or more future time intervals.



FIG. 26 is a flowchart 2600 showing another generalized method for operating a transactive node in a transactive control electrical-energy-allocation system as can be used in any of the disclosed embodiments. The method can be performed using computing hardware (e.g., a computer processor or a specialized integrated circuit). For instance, the method can be performed by computing hardware associated with a transactive node where electrical energy is distributed, generated, and/or consumed.


At 2610, feedback signal data is received at a transactive node from two or more neighboring transactive nodes. The feedback signal data from the two or more neighboring transactive nodes can comprise data indicative of at least an electric load for electric energy at a current time interval. In certain embodiments, the received feedback signal data comprises data indicative of the electric load of electric energy at the current time interval and data indicative of a forecasted load of electric energy at one or more future time intervals. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive node will operate


At 2612, aggregated feedback signal data is computed based at least in part on the feedback signal data from the two or more neighboring transactive nodes. In certain embodiments, the aggregated feedback signal data comprises data indicative of the aggregated load of electric energy at the current time interval and data indicative of a forecasted aggregated load of electric energy at the one or more future time intervals.


At 2614, the aggregated feedback signal data is transmitted to a further transactive node.


In certain embodiments, the received feedback signal data and the transmitted aggregated feedback signal data comprise data indicative of a real electrical load, reactive electrical load, or a combination of both real and reactive electrical loads. In some embodiments, the received feedback signal data further includes data indicating a confidence level of the received feedback signal data (e.g., a confidence level for each time interval). And in certain embodiments, the transmitted feedback signal data further includes data indicating a confidence level of the transmitted feedback signal data (e.g., a confidence level for each time interval).


In some embodiments, the method further comprises receiving incentive signal data at the transactive node from the two or more neighboring transactive nodes, the incentive signal data from the two or more neighboring transactive nodes comprising data indicative of at least a cost of electric energy at the current time interval; computing aggregated incentive signal data based at least in part on the incentive signal data from the two or more neighboring transactive nodes; and transmitting the aggregated incentive signal data to the further transactive node. In such embodiments, the received incentive signal data can comprise data indicative of the cost of electric energy at the current time interval and data indicative of a forecasted cost of electric energy at the one or more future time intervals, and the aggregated incentive signal data can comprise data indicative of the aggregated cost of electric energy at the current time interval and data indicative of a forecasted aggregated cost of electric energy at one or more future time intervals.



FIG. 27 is a flowchart 2700 showing another generalized method for operating a transactive node in a transactive control electrical-energy-allocation system as can be used in any of the disclosed embodiments. The method can be performed using computing hardware (e.g., a computer processor or a specialized integrated circuit). For instance, the method can be performed by computing hardware associated with a transactive node where electrical energy is distributed, generated, and/or consumed. The method can be performed for a transactive node associated with one or more electric resources, one or more electric loads, or a combination of both electric resources and loads.


At 2710, one or more functions from a library of functions are selected. The selection can be based at least in part on the type of one or more electric resources or electric loads associated with the transactive node. In certain embodiments, the selected one or more functions are adapted for the type of electrical load or electrical supply associated with the transactive node. In some embodiments, the configuring comprises causing computing hardware used to implement the transactive node to execute a software program for performing computations using the selected one or more functions. In certain embodiments, the selected one or more functions include a function that computes data representing one or more of energy, an energy cost, or an incentive for one or more electric resources associated with the transactive node. In some embodiments, the selected one or more functions include a function that computes data representing one or more of a predicted inelastic load or changes in elastic load for one or more electric loads associated with the transactive node


At 2712, the transactive node is configured to compute transactive signals using the selected one or more functions.


In some embodiments, the method can comprise accessing a database storing the library of functions (e.g., a locally stored database or a database remotely located from the transactive node).


Further, the library of functions can be an extensible library. For example, the library can be expanded to include newly formulated functions. Further, in some implementations, existing functions may be selected from the library, edited by a relevant party (e.g., a utility or system administrator), and returned to the library as a newly available function with modified features and capabilities. The parties that have access to editing and adding library functions can vary from implementation to implementation, and can encompass a wide variety of parties involved in the power transmission infrastructure. In some instances, the parties who can edit and/or add functions is limited to some selected group (e.g., system regulators or to a single utility).


Also disclosed herein are several embodiments for systems for distributing electricity. One of the disclosed systems is a system for distributing electricity, comprising: a plurality of transactive nodes, each transactive node being associated with one or more electric resources, one or more electric loads, or a combination of one or more electric resources and loads; and a network connected to the transactive nodes to facilitate communication between the transactive nodes. In these embodiments, the transactive nodes are configured to exchange incentive and feedback signals with one another in order to determine an electrical demand in the system for a current time interval and to provide an electrical supply sufficient to meet the electrical demand for the current time interval. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive nodes will operate


In certain embodiments, the transactive nodes are further configured to exchange incentive and feedback signals for two or more future time intervals in addition to the incentive and feedback signals for the current time interval. In some embodiments, the two or more future time intervals have increasingly coarser granularity. In certain embodiments, at least one of the transactive nodes modifies one or both of its incentive or feedback signals in response to previously received incentive and feedback signals. In some embodiments, the at least one of the transactive nodes is associated with an elastic load, and wherein the modified incentive or feedback signals corresponds to a predicted change in the elastic load. In certain embodiments, the at least one of the transactive nodes is associated with an electrical resource, and the modifed incentive or feedback signals corresponds to a change in the electrical resource. In further embodiments, the at least one of the transactive nodes is associated with an electrical resource, and the modified incentive signals correspond to a change in local conditions.


In certain embodiments, one or more of the transactive nodes compute their respective incentive and feedback signals using functions selected from a library of functions. Still further, in some embodiments, the incentive and feedback signals further include confidence level data indicating a respective reliability of the incentive and feedback signals.


Another system disclosed herein is a system for distributing electricity, comprising: a plurality of transactive nodes, each transactive node being associated with one or more electric resources, one or more electric loads, or a combination of one or more electric resources and loads; and a network connected to the transactive nodes and facilitating communication between the transactive nodes. In these embodiments, the transactive nodes are configured to exchange sets of signals with one another in order to determine an electrical demand in the system for a current time interval and to provide an electrical supply sufficient to meet the electrical demand for the current time interval. Each set of signals includes signals for determining the electric loads and supplies for the current time interval as well as signals for determining the electric loads and supplies for two or more future time intervals. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive nodes will operate


In some embodiments, the future time intervals have increasingly longer durations as the time intervals are farther into the future relative to the current time interval. In other embodiments, the transactive nodes are configured to update the values of the sets of signals at an update frequency, the update frequency corresponding to a duration of the current time interval. In some embodiments, the transactive nodes are configured to exchange the set of signals with one another iteratively over time such that the signals for a respective time interval stabilize as the respective time interval approaches the current time interval.


In certain embodiments, the transactive nodes are configured to exchange the set of signals with one another on an asynchronous event-driven basis or a clock-driven basis. In some embodiments, a respective set of the transactive nodes are configured to iteratively exchange a set of signals with one another until the exchanged set of signals converges to within an acceptable degree of tolerance. In certain embodiments, a transactive node in the respective set of the transactive nodes is further configured to transmit an updated set of signals when local conditions at the transactive node cause the updated set of signals to deviate from a previously transmitted set of signals beyond a relaxation criterion. In some embodiments, the sets of signals further include confidence level data indicating a respective reliability of the exchanged signals (e.g., a confidence level for each time interval).


Another system disclosed herein is a system for distributing electricity, comprising: a plurality of transactive nodes, each transactive node being associated with one or more electric supplies, one or more electric loads, or a combination of one or more electric supplies and loads; and a network connected to the transactive nodes and facilitating communication between the transactive nodes. In these embodiments, the transactive nodes are configured to exchange sets of signals with one another in order to determine an electrical demand in the system for a current time interval and to provide an electrical supply sufficient to meet the electrical demand for the current time interval, a respective one of the transactive nodes being configured to compute its incentive and feedback signals using one or more functions selected from a library of functions. In certain embodiments, the current time interval refers to the imminent (or next-to-occur) interval in which the transactive nodes will operate


In certain embodiments, the one or more functions selected from the library of functions are selected based on the type and number of electrical supplies and electrical loads with which the respective transactive node is associated. The one or more functions can be selected from a group of resource functions comprising one or more of: (a) a resource function adapted to account for imported electrical energy, (b) a resource function adapted to account for a renewable energy resource, (c) a resource function adapted to account for fossil fuel generation, (d) a resource function adapted to account for general infrastructure cost, (e) a resource function adapted to account for system constraints, (f) a resource function adapted to account for system energy losses, (g) a resource function adapted to account for demand charges, and (h) a resource function adapted to account for market impacts. The one or more functions can also be selected from a group of load functions comprising one or more of: (a) a load function adapted to account for a bulk inelastic load, (b) a load function adapted to account for an event-driven demand response, (c) a load function adapted to account for a time-of-use demand response, and (d) a load function adapted to account for a real-time continuum demand response.


In some embodiments, the respective one of the transactive nodes controls one or more elastic loads and adjusts the one or more elastic loads in response to the feedback and incentive signals received at the respective one of the transactive nodes. In certain embodiments, the one or more functions are implemented by individual software modules that can be combined with one another to implement the desired transactor behavior for the respective one of the transactive nodes.


In certain embodiments, through the use of the one or more functions, the respective one of the transactive nodes computes a control signal selected from a set of signed whole numbers and communicates the computed control signal to one or more loads, resources, or loads and resources associated with the respective one of the transactive nodes. The computed control signal can be interpreted by an electrical generator or set of electrical generators as a fraction of the generator's or generators' rated generation capacity. The computed control signal is interpreted by an electrical load or set of electrical laods as a fraction of the load's or loads' rated power.


It should be understood that in embodiments of the disclosed technology, a transactive node may host multiple toolkit funcitons, including any combination of multiple resource and incentive functions, multiple load functions, or combinations of both resource and incentive and load functions. For instance, the resource and/or incentive functions used at a transactive node will typically depend on the location of the transactive node in a power grid topology, and on the one or more resources and/or loads for which the transactive node is responsible. This ability to “mix and match” resource and incentive functions while still maintaining a common transactive signal communication structure gives embodiments of the disclosed technology wide flexibility and scalability for implementing a transactive control system.


6 Further Details and Embodiments

Having introduced the disclosed technology, this section includes four supplemental Appendices that provide additional details and configurations that can be used in implementations of the technology. The specific implementations disclosed below should not be construed as limiting. Further, any one or more of the features or aspects disclosed below can be used alone or in conjunction with any other feature or aspect of the disclosed technology discussed herein. Some portions of the appendices may, in some instances, be repetitive to other portions of this application, but such portions are included for the sake of completeness.


6.1 Appendix A—Transactive State Model
6.1.1 Purpose

A transactive control and coordination system is a network of loosely connected, interacting transactive nodes. This appendix states a high-level state model for a transactive node and types of connections that a transactive node desirably manages. This appendix should provide valuable guidance to system designers who are implementing a transactive control and coordination system from the perspective of a transactive node.


This appendix defines and discusses

    • example attributes of a transactive node and four example types of connections
    • the organization of these attributes into groups—transactive node, general connection, transactive neighbor, system manager, asset, and local information
    • example allowed states within the high-level transactive node state model
    • example functions and events by which attributes become changed and by which the states are navigated in this state model
    • example state transition tables and diagrams for the respective transactive node and its connections.


6.1.2 Structure

In some embodiments, a transactive node manages its own set of attributes and additionally manages additional types of connection. In certain implementations the transactive node manages four types of connections—connections to transactive neighbors, system managers, assets, and local input information. All four connection types can share a set of connection attributes in common in order to manage connections between this transactive node and each transactive neighbor, system manager, asset, or local input information. An example of this structure has been laid out in diagram 2800 in FIG. 28.


6.1.3 Transactive Node States and State Diagram

In certain embodiments, a transactive node has five states available to it as shown in the state transition diagram 2900 of FIG. 29:

  • 1—New or Terminated—initial and terminal state where the transactive node attributes are not defined. The transactive node leaves and returns to this state by running or terminating an executable program.
  • 2—Under Local Control—intermediate state where the transactive node executable process is up and running, but the transactive node and its connections are not adequately configured. Few, if any, of this transactive node's connections have been completed between this transactive node and its transactive neighbors, system managers, assets, or local information sources, which collectively will be referred to as the transactive node's “connection partners.” A transactive node enters this state when a transactive node executable program is run or when a Configuration Test fails.
  • 3—Configured—intermediate state where certain transactive node attributes (those transactive node attributes having asterisks in FIG. 28) have been defined and each of the connections that this transactive node manages is also in its Configured state. A transactive node enters this state by passing a Configuration Test or by failing a Connection Test.
  • 4—Connected & Configured—a transactive node state that has been Configured and now each of the connections that this transactive node manages is in its Connected (or temporarily in its Lost Connection) state. A transactive node enters this state by passing a Connection Test, by receiving and accepting a Halt Operations command, or by encountering a Fatal Operational Event.
  • 5—Operational—a transactive node that has been Connected & Configured and which now interacts with its connection partners according to its algorithmic responsibilities of membership in a transactive control and coordination system. The algorithmic responsibilities are addressed elsewhere as a “toolkit framework” of computational algorithms and a suite of “toolkit library functions” that may be incorporated to represent the more unique and individual algorithmic responsibilities of transactive nodes. The toolkit framework and the toolkit library functions are described in more detail in Appendices B and C. A transactive node enters this state by receiving and accepting an Operate command.


The identifying numbers that have been applied to the functions and events in FIG. 29 are derived from the prior and end states. A letter is appended wherever multiple functions or events achieve the same state transition. For example, the function numbered “54b” (e.g., a Halt Operations command in FIG. 29), is the second state transition that has been defined from state “5” to state “4.” These same function and event numbers will be used in corresponding state transition table.


6.1.4 Connection States and State Diagram

Each connection has four allowed states as shown in diagram 3000 of FIG. 30. The only details that really change between the four types of connections are those attributes that are tested if a Connection Configuration Test is to be passed for a given connection. These are the connection states and their descriptions:

    • 1—Listed—a connection has been listed when its identifier appears among those in any of these corresponding connection attribute lists:
      • 49—List of Transactive Neighbors (a transactive node attribute)
      • 50—List of System Managers (a transactive node attribute)
      • 51—List of Assets (a transactive node attribute)
      • 38—List of Local Information Connections (an asset connection attribute)
    • There is no expectation that any of the corresponding attributes have been configured in this state. A connection reaches this state by becoming listed in one of the attributes above, which may occur as a transactive node executable program is being run or thereafter using the Configure command. This is an initial and terminal state of any connection.
    • 2—Configured—certain attributes (see asterisks in FIG. 28) of this connection have been configured and are not empty. This connection enters this state by passing a Connection Configuration Test, by accepting a Disconnect command that has been directed to this connection, or when a Terminate Connection Event occurs after this connection has been in its Lost Connection state, which event indicates that either a timeout duration has expired or that too many Loss of Connection Events have occurred in the past hour or day. This is an intermediate state.
    • 3—Connected—a communication link (a “connection”) has become successfully established between this transactive node and one of its connection partners via this connection. A connection enters this state by receiving and accepting a Connect command or by having the connection re-established from a Lost Connection state by a Connect command or a Re-Establish Connection Event. This is an intermediate state, but a connection should be expected to remain in this state most of the time.
    • 4—Lost Connection—the state of a connection while the connection between this transactive node and one of its connection partners via this connection has become broken or severed. This temporary intermediate state may be entered by a connection only by a Loss of Connection Event. The connection should thereafter be either re-established by a Connect command or Re-Establish Connection Event, or the connection should become disconnected by a Disconnect command or by a Terminate Connection Event.


Again, the identifying numbers and letters that prepend the functions and events in FIG. 30 are derived from prior and end states and will be used also to identify these same transitions in state transition tables.


6.1.5 The Meaning of Attribute Dictionary Columns

Table 7 is a dictionary of example attributes that can be used to define the state of a transactive node. Later in this appendix, attribute dictionaries will be presented to address attributes of the four types of connections. The meanings of the columns in these dictionary tables are as follows.

    • Attribute—structured list of attributes (properties, characteristics) defines the pertinent properties of a class of objects. Assigning specific values to the full set of attributes, creates a specific instance or member of the class. Grouping certain attributes into subsets defines the states of an object, including a single start state, one or more intermediate states, and one or more final states.
    • Attribute Name—a string of alphanumeric (alphabetic, numeric) and possibly special characters given to the attribute for reference.
    • Description—an easy-to-read narrative about the attribute, clearly distinguishing it from other attributes.
    • Role—the reason the attribute is important for: 1) the definition of an object, and 2) the application of an attribute in the process that directs actions to instantiate a specific object.
    • Type—the attribute may represent a type of number, character string, a pointer to a procedure, set of algorithms, names of other classes, an address, or an array of types.
    • Format—the specific arrangement of the characters or the parts of the assigned attribute value(s).
    • Range of Values—the specific set of values a process may assign to an attribute, such as least value and greatest value for numbers.
    • Security—the level of security assigned to an attribute, the identification of the entities (people, systems) authorized to access an attribute, and whether the entities have the right only to read the value of the attribute or to both read and write the attribute value(s).


6.1.6 Transactive Node Attribute Dictionary

The transactive node attribute group contains those attributes that stand alone and refer to one transactive node and its transactive node state model. An example attribute dictionary is shown in Table 7.


Table 8 that follows is a summary of which of these attributes can be added, checked, or modified by the set of commands and events that occur within the state transition table (Table 7), as were introduced in the state transition diagram 2900 of FIG. 29.









TABLE 7







Dictionary of the Transactive Node Attributes














Attribute




Range of


No.
Name
Description
Role
Type
Format
values
















1
Node ID
Unique ID
This
Character
0-9, A-Z
See topology




of this
transactive
string
Example:
for the




transactive
node's name

“UT-01”
transactive




node.
that may be


control and





used to refer


coordination





to it.


system





This is a


where





attribute that


transmission





is desirably


zone,





found to


balancing





have been


authority,





configured


utility, and





during


site names





Configuration


have been





Tests.


stated.


3
Node
The type of

Character

TZ, BA, UT,



Type
transactive

string

ST




control




node. Four




types have




been




identified:




Transmission




Zone (TZ)




Balancing




Authority




(BA), Utility




(UT), Site




(ST)


4
Geographical
The
Perhaps

(latitude,
(−90 to 90, 0-360)



Location
representative
useful for

longitude)
degrees



of Node
physical
future global


(-pi to pi, 0-2 *




location of
information


pi) radians




this
system (GIS)


Default




transactive
representations.


value:




node.



(null, null)


5
Node
The
To keep
Two
“Filename,
“Filename”



Version*
implementation
track of
alphanumeric
##.##”,
should be an




version
successions
items
where ##.##
allowable




for the
of software

are the
executable




instantiated
during

major and
filename.




transactive
incremental

minor
“##.##” major




node at the
improvements,

version
and minor




time the
troubleshooting,

numbers of
versions




Run Node
testing.

this file,
anticipated




Executable
This is an

respectively.
from “0.00”




command is
attribute that


to “99.99”.




issued.
is desirably




This
found to




executable
have been




file
configured




represents
during




a “version”
Configuration




for the
Tests.




transactive




node




overall.


7
Node
The state of
Unambiguous
Single
Example: “1”
“1” - New or



Status*
this
representation
integer

Terminated,




transactive
of the state


“2” - Under




node within
of this


Local




this state
transactive


Control, “3” -




model.
node within


Configured,





this state


“4” -





model.


Connected &





This is an


Configured,





attribute that


“5” - Operational





is desirably





found to





have been





configured





during





Configuration





Tests.


8
Mode
The current

Single

“Experimental”,




mode of

character

“Production”,




operation.

string

“Test”


9
Update
The
The update
Single
Integer
From 1 to



Frequency*
frequency
frequency
integer
Example:
3600. The




used to
may change

“12”
Demonstration




update TIS
between


will most




and TFS.
testing and


often use




Units are
operation.


“12”,




“updates
This is an


meaning one




per hour”.
attribute that


update is





is desirably


performed





found to


every 5





have been


minutes.





configured





during





Configuration





Tests.


16
Electrical
The logical

Character
Varied
Varied



Topology
location of a

string



Location
transactive




node in an




electrical




system


18
Time*
Present
Time is used
See UTC
See UTC




time in UTC
to mark
standard.
standard




Format.
when node




Time is
state




coordinated
transitions




across the
occur and




system of
also to




transactive
support




nodes to
timing of




within 500
events




milliseconds,
related to




or so.
9 - Update





Frequency.





Each





transactive





node





calculates





transactive





signal





interval start





times





starting from





this, the





present time.





This is an





attribute that





is desirably





found to





have been





configured





during





Configuration





Tests.


21
Processing
The time
The time
Varied
Varied
Varied



Time
delay for
delay is used



Delay
this node
to manage




within the
the time




processing
sequence




time interval
relationships




for the




system of




transactive




control




nodes


22
Time Out
The time to
If expected
Varied
Varied
Varied




wait for
TIS/TFS




receipt of
are not




TIS and
received




TFS from
before the




adjacent
time out then




nodes
the node





proceeds





with





available





information





and reports





an





associated





change in





data quality





values


34
Resource
A storage
See toolkit
List of
Expected to
Reasonable



Schedules
location
framework.
series. The
be very
ranges may



and Cost
described
This storage
individual
similar to
be asserted.



Buffer
in the toolkit
location has
records will
TIS and




framework.
data that is
probably
TFS.




Records of
relevant to
resemble
See the




this storage
the
TIS and
toolkit




location
formulation
TFS. See
framework.




possess
of both the
toolkit




information
TIS and
framework.




about
TFS.




resources




and




incentives,




most of




which are




being




applied via




toolkit




functions.


38
Current
The series
A storage
One series
See the
See toolkit



IST Series
of interval
location
of times
toolkit
framework.



Buffer
start times
described in
using UTC
framework.
The




(IST) that
the toolkit
standard.
Series of
Demonstration




have been
framework.
See toolkit
times in
has




calculated
An interim
framework.
UTC
defined 56




and will be
data storage

standard
intervals.




used to
location

format.
The intervals




define the
within the


can align




intervals of
toolkit


with one of




transactive
framework.


the 12 major




signals that
Refer to the


division of an




are being
toolkit


hour.




formulated.
framework.


39
Input
A storage
Holding
List of TIS
See
Refer to



Transactive
location
place for
and TFS
transactive
range



Signals
described
most recent
(e.g., a list
signal
attributes of



Buffer
in the toolkit
transactive
of series).
formats and
TIS and TFS.




framework.
signals that
See toolkit
XML




Records
have been
framework.
schema.




include at
received.




least the
Holds at




most
least




recently
attributes




received
23 - Receive




transactive
TIS Buffer




signals.
and





24 - Receive





TFS Buffer,





but may also





retain





records of





prior





examples.





An interim





data storage





location





within the





toolkit





framework.





Refer to the





toolkit





framework.


40
Resource
A storage
Place where
List of
Various. See
Various for



and
location
the input
various
the toolkit
records that



Incentive
described
“other local
items and
framework.
should be



Input
in the toolkit
conditions”
series data
See
defined in



Buffer
framework.
that will be
as should
individual
toolkit





invoked by
be defined
toolkit
functions.





resource and
for each
resource





incentive
toolkit
and





toolkit
resource
incentive





functions
and
functions,





should be
incentive
where the





held and
function.
contents and





managed.
Refer to
formats





Attribute
toolkit
should be





25 - Local
resource
specified.





Information
and





Source
incentive





states the
functions





sources that
that are





should
used at





supply the
this





contents of
transactive





this storage
node





location.
where





An interim
these





data storage
specifications





location
should





within the
be made.





toolkit





framework.





Refer to the





toolkit





framework.


41
Load
A storage
Place where
List of
Various. See
Various for



Function
location
the input
various
the toolkit
records that



Input
described
“other local
items and
framework.
should be



Buffer
in the toolkit
conditions”
series data
See
defined in




framework.
that will be
as should
individual
toolkit





invoked by
be defined
toolkit load
functions.





load toolkit
for each
functions,





functions
toolkit load
where the





should be
function.
contents and





held and
Refer to
formats





managed.
toolkit load
should be





Attribute
functions
specified.





25 - Other
that are





Local
used at





Conditions
this





Source
transactive





states the
node





sources that
where





should
these





supply the
specifications





contents of
should





this storage
be made.





location.





An interim





data storage





location





within the





toolkit





framework.





Refer to the





toolkit





framework.


42
Output
A storage
The
One TIS
See TIS
See range



TIS Buffer
location
formulated


attributes of




described
TIS is held


TIS




in the toolkit
here and




framework.
may be




Place
replaced and




where
further




updated
updated until




TIS is held
it is finally




until it can
distributed to




be
transactive




distributed.
neighbors





(and maybe





other





entities). See





attribute





12 - Send





TIS Targets.





An interim





data storage





location





within the





toolkit





framework.





Refer to the





toolkit





framework.


43
Output
A storage
The
One TFS.
See TFS
See range



TFS
location
formulated


attributes of



Buffer
described
TFS is held


TFS




in the toolkit
here and




framework.
may be




Place
replaced and




where
further




updated
updated until




TIS is held
it is finally




until it can
distributed to




be
transactive




distributed.
neighbors





(and maybe





other





entities). See





attribute





13 - Send





TFS Targets.





An interim





data storage





location





within the





toolkit





framework.





Refer to the





toolkit





framework.


44
Total
A storage
Sum of
List of
Modeled
Represents



Predicted
location
average
series.
after, or
total average



Resource
described
power that is
Contents
identical to,
generated



Buffer
in the toolkit
generated
should be
a TFS
power and




framework.
within or
similar to
format.
imported





imported into
TFS with

power during





a transactive
same

an interval.





node during
format.

Reasonable





future


ranges can





intervals.


be stated,





Compared


but there is





against total


no such test





load during


in the





the


present





formulation


model.





of TFS





series.





An interim





data storage





location





within the





toolkit





framework.





Refer to the





toolkit





framework.


45
Inelastic
A storage
Records are
List of
Modeled
Records of



Load
location
the inelastic
series.
after, or
this list



Prediction
described
load
Contents
identical to,
represent the



Buffer
in the toolkit
predicted
should be
a TFS
load being




framework.
from one
similar to
format.
modeled by





toolkit load
TFS with

a toolkit load





function for
same

function.





future
format.

Reasonable





intervals.


ranges can





Used to


be stated,





predict total


but there is





load at future


no such test





intervals.


in the





An interim


present





data storage


model.





location





within the





toolkit





framework.





Refer to the





toolkit





framework.


46
Elastic
A storage
Records are
List of
Modeled
Records of



Load
location
the changes
series.
after, or
this list



Prediction
described
to elastic
Contents
identical to,
represent the



Buffer
in the toolkit
load that are
should be
a TFS
change in




framework.
predicted
similar to
format.
elastic





from one
TFS with

component





toolkit load
same

of a load that





function for
format.

is being





future


modeled by





intervals.


a toolkit load





Used to


function.





predict total


Reasonable





load at future


ranges can





intervals.


be stated,





An interim


but there is





data storage


no such test





location


in the





within the


present





toolkit


model.





framework.





Refer to the





toolkit





framework.


47
Predicted
A storage
An interim
List of
Modeled
Records of



Inelastic
location
data storage
series.
after, or
this list



and
described
location
Contents
identical to,
represent



Elastic
in the toolkit
within the
should be
a TFS
total load of



Load
framework.
toolkit
similar to
format.
a transactive



Buffer
An interim
framework.
TFS with

node.




data
Refer to the
same

Reasonable




storage
toolkit
format.

ranges can




location
framework.


be stated,




within the
An interim


but there is




toolkit
data storage


no such test




framework.
location


in the




Refer to the
within the


present




toolkit
toolkit


model.




framework.
framework.





Refer to the





toolkit





framework.


49
List of
List of
This
Comma-
Example #1:
See system



Transactive
transactive
transactive
separated
“UT06”,
topology.



Neighbors
nodes with
node
list of
which is the
List should




which this
declares
character
Demonstration's
include




transactive
transactive
strings
identifier for
nearby




node
neighbors

an
transactive




exchanges
that it plans

demonstration
nodes with




electrical
to interact

utility.
which this




energy and
with. A


transactive




will
transactive


node expects




therefore
neighbor that


to exchange




exchange
appears on


energy.




transactive
this list is


Naming




signals.
eligible to


practice





enter its


should be





Listed state


the same





after its 52 -


here and for





Transactive


attribute 52 -





Neighbor ID


Transactive





has become


Neighbor ID, a





configured.


Transactive





This attribute


Neighbor





is checked


attribute.





during





Configuration





Tests and





Connection





Tests to see





if expected





transactive





neighbors





have





become





Configured





and





Connected.


50
List of
List of
This is the
Comma-
Example #1:
See system



System
entities of a
attribute by
separated
“EI01” to
topology.



Managers
transactive
which this
list of
represent
Naming




control and
transactive
character
the system
practice




coordination
node
strings
manager,
should be




system
declares

from which
the same




that will be
which

system
here and for




granted at
entities it will

management
attribute




least limited
allow to

command
53 - System




permission
make

will likely be
Manager ID,




to make
system

received.
a System




system
management

Example #2:
Manager




management
commands.

“UT06”,
attribute.




commands
The system

which is the




to this
managers

Demonstration's




transactive
instantiate a

identifier for a




node. A
connection,

demonstration




system
and this

utility,




manager
transactive

which may




may be, but
node

be both a




is not
accepts a

system




necessarily,
responsibility

manager to




also a
to maintain

the




transactive
the

transactive




neighbor.
connection

nodes that it





to each

owns and a





system

transactive





manager. A

neighbor,





system

too.





manager in





this list is





eligible to





enter its





Listed state.





For each





Listed





system





manager,





this





transactive





node should





manage and





monitor its





state to enter





either the





3 - Configured





or





4 - Configured &





Connected





transactive





node states,





and for





which





Configuration





Tests and





Connection





Tests are





conducted.


51
List of
List of
This is the
Comma-
Example #1:
See toolkit



Assets
generation
attribute in
separated
“AV01” to
framework.




resources,
which a
list of
represent an
See




incentives,
transactive
character
asset
respective




and loads
node
strings
system of
toolkit




that are
declares its

Avista
function for a




engaged
assets. Each

Utilities.
given asset.




and used
asset should


Naming




by this
be


practice




transactive
accompanied


should be




node.
by a toolkit


the same





function that


here and for





defines its


attribute 2 -





predicted


Asset ID, an





participation


Asset





in ways that


attribute.





affect





transactive





signals that





are





formulated at





this





transactive





node. The





assets listed





here are





eligible to





enter their





Listed states





after





attribute 2 -





Asset ID





has been





configured.





This attribute





is checked





during





Configuration





Tests and





Connection





Tests to see





if expected





assets have





become





Configured





and





Connected.


57
Interval
An ordered
This attribute
Comma-
Demonstration
Integer



Durations*
list of
along with
separated
example:
values




interval
58 -
list of
{5, 15, 60,
between 1




durations in
Numbers of
integers
360, 1440},
and 1440.




minutes
Intervals
that
representing
An allowed




that will be
states the
represent
5 minutes,
number of




used by this
durations of
interval
15 minutes,
series




transactive
the intervals
durations
1 hour, 6
elements




node as it
that this
in minutes
hours, and 1
may be




formulates
transactive

day. The 1-
specified in




its
node will

day intervals
the future but




transactive
represent in

are most
will not be an




signals.
each of the

distant into
issue for the




Order is
transactive

the future.
Demonstration




from first to
signals that it

In the above
that will




most
calculates.

example, the
use only 5




distant into
The number

last sample
different




the future.
of series

of each
interval





elements in

duration has
durations.





this attribute

a flexible
Note that this





and in 58 -

duration that
approach





Numbers of

may vary
that uses





Intervals

between the
integer





should be

present and
minutes will





identical at

the following
limit the





the times

durations.
practice of





transactive

This is done
intervals that





signals are

to keep
are shorter





being

intervals
than 1





calculated.

aligned with
minute in the





This attribute

hourly
future.





creates no

market data.
The number





expectation


of series





that


elements in





transactive


this attribute





neighbors


and in 58 -





will have


Numbers of





used the


Intervals





same


should be





interval


identical at





durations.


the times





This


transactive





transactive


signals are





node should


being





be quite


calculated.





flexible in its





ability to





receive and





interpret





diverse time





series





information.


58
Numbers
An ordered
This attribute
Comma-
Demonstration
No explicit



of
list of the
along with
separated
example:
limit has



Intervals*
number of
57 - Interval
list of
{12, 20, 18,
been placed




each of the
Durations
integers
4, 2},
on the




57 - Interval
states the
that
representing
magnitude of




Durations
number of
represent
that there
each




that will be
the intervals
the
will be 12 5-
element;




used by this
of each
number of
minute, 20
however, an




transactive
duration that
each
15-minute,
element




node as it
this
corresponding
18 1-hour, 4
would




formulates
transactive
interval
6-hour, and
unlikely be




its
node will
duration
2 1-day
greater than




transactive
represent in
that is
intervals.
10,080 - the




signals.
each of the
listed in
The last
number of




Order is
transactive
57 -
member of
minutes in a




from first to
signals that it
Interval
each interval
week.




most
calculates.
Durations.
duration
An allowed




distant into
The number

(e.g., the
number of




the future.
of series

12th, 32nd,
series





elements in

50th, and
elements





this attribute

54th
may be





and in 57 -

intervals)
specified in





Interval

varies in
the future but





Durations

duration
will not be an





should be

between the
issue for the





identical at

durations of
Demonstration





the times

the present
that will





transactive

and next
use only 5





signals are

intervals.
different





being


interval





calculated.


durations.





This attribute


The number





creates no


of series





expectation


elements in





that


this attribute





transactive


and in 57 -





neighbors


Interval





will have


Durations





used the


should be





same


identical at





intervals.


the times





This


transactive





transactive


signals are





node should


being





be quite


calculated.





flexible in its





ability to





receive and





interpret





diverse time





series





information.
















TABLE 8







Ways in Which Transactive Node Attributes may be affected by this State


Model's Commands and Events



























Handle




Run Node


Halt
Terminate
Con-
Con-
Handle Fatal
Non-Fatal


Attribute

Executable
Configure
Operate
Operations
Node
figuration
nection
Operational
Operational


#
Attribute Name
Command
Command
Command
Command
Command
Test**
Test**
Event
Event




















1
Node ID*
++




C





5
Node Version*
++




C


7
Node Status*
(C)++
C0
C0
C0
C−
C0
C0
C00
C


9
Update Frequency*
+
+0



C

(C)
(C)


18
Time*
+
+0



C

(C)
(C)


57
Interval Durations*
+
+0



C


58
Numbers of Intervals*
+
+0



C


49
List of Transactive
+
+0



C
C



Neighbors


50
List of System Managers
+
+0



C
C


51
List of Assets
+
+0



C
C


34
Resource Schedules and
+
+0






Cost Buffer


38
Current IST Series
+
+0






Buffer


39
Input Transactive Signals
+
+0






Buffer


40
Resource and Incentive
+
+0






Input Buffer


41
Load Function Input
+
+0






Buffer


42
Output TIS Buffer
+
+0





43
Output TFS Buffer
+
+0





44
Total Predicted Resource
+
+0






Buffer


45
Inelastic Load Prediction
+
+0






Buffer


46
Elastic Load Prediction
+
+0






Buffer


47
Predicted Inelastic and
+
+0






Elastic Load Buffer


4
Geographical Location of
+
+0






Node


3
Node Type
+
+0





8
Mode
+
+0
+0
+0



+0
+0


16
Electrical Topology
+
+0






Location


21
Processing Time Delay
+
+0





22
Time Out
+
+0





(C)
(C)





*These Node attributes will be checked and should be configured (not empty) during a Configuration Test.


**The Configuration and Connection Tests will additionally check the Asset attribute 38 -


List of Local Information and the statuses of connections.


“C” = condition checked;


“(C)” = condition possibly checked;


“++” = “should establish new attribute content”;


“+” = “may establish new attribute content”;


“−−” = “should remove existing attribute content;


“−” = “may remove existing attribute content”;


“00 = “should modify existing attribute content”;


“0” = “may modify existing attribute content”






6.1.7 Functions and Events of the Transactive Node State Model

Run Node Executable(Filename) Command


Command Parameters

    • Filename—Filename that should be found in and run from a known file directory. If Filename cannot be found, fail in condition F1.


Command Logic

    • If Filename cannot be recognized or located, then reply
      • “Command failed—(F1) File could not be found”
    • If this transactive node is already running an executable file, as can be determined by transactive node attribute 7—Node Status being in a valid, defined state or other evidence that the executable is running, then reply
      • “Command failed—(F2) Node executable is already running.”
    • If the entity that made this command is not the local system manager and is not found to have been granted permission to make this command by attribute 31—Connection Partner's System Management Permissions, then reply
      • “Command failed—(F3) Lacking permission to make this command”
    • If after running Filename the attributes 1—Node ID, 5—Node Version, 7—Node Status, and 18— Time have not become configured, then do not run the node executable. Reply
      • “Command failed—(F4) Critical transactive node attributes were not configured”
    • If the node executable fails to run for any other reason, reply
      • “Command failed—(F5) Unknown reason”
    • Otherwise,
      • The node executable runs to completion and its process remains active, including the management present time 18—Time in UTC format.
      • Set attribute 7—Node Status=“2” (state 2—Under Local Control).
      • Populate attributes 1—Node ID, 5—Node Version, and 18—Time with the contents supplied by Filename. These attributes may not be empty at the successful conclusion of this command.
      • Additionally, any other attribute may be populated at the time the node executable is run.
      • Reply, “Command succeeded—(S1)”


Configure( ) (Node Attributes) Command—a flexible command that is applicable to the transactive node as well as to the other connections that a transactive node manages. An important concept in the use of this command is that the connection's identifier should be stated before any of its attributes may be modified. Because this section is addressing only the transactive node state model, the only attributes that will be addressed in this section are transactive node attributes for this transactive node.


Command Parameters

    • ConfigureFile=(Filename)—If a file is named using this parameter, a command script will be read from Filename found in a known file directory. It is recommended that Filename should contain scripted parameters as would be used in line with the command.
    • Any combination of the following comma-separated, in-line command parameters may be used and in any order:
    • Node=(1—Node ID)—(Optional) Should match the identity of this transactive node.
      • NodeAttribute=attribute #, attribute value 1[[, attribute value 2], . . . ] —This parameter may be used to initialize or change the contents of any Node group attribute except attribute 1—Node ID, 5—Node Version, 7—Node Status, or 18—Time.


Command Logic

    • If the entity that made this command is not the local system manager and if the entity has not been explicitly given permission to make this system management command among the commands in its 31—Connection Partner's System Management Permissions, then reply
      • “Command failed—(F1) Permissions do not include this command”
    • If attribute 7—Node Status=“5” (state 5—Operational), then reply
      • “Command failed—(F2) Configure command not allowed from Operational state.”
    • If Filename cannot be found, reply
      • “Command failed—(F3) File cannot be found or opened”
    • If the Node ID does not match the presently configured Node ID, then reply
      • “Command failed—(F4) Incorrect node ID”
    • If the node attribute number does not match a known Node attribute number (e.g., is not a member of {3, 4, 8, 9, 16, 21, 22, 34, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50 or 51}), then reply
      • “Command failed—(F5) Command did not address known node attributes”
    • If the command cannot be completed for any other reason, reply
      • “Command failed—(F6) Unknown reason”
    • Otherwise,
      • Reply, “Command succeeded—(S1)”
      • Finalize any changes to transactive node attributes that were specified in the file or on the command line.
      • Run a Configuration Test.
      • Run a Connection Test.


Configuration Test( )—this is neither a system management command nor an event, but it is a test of the present configuration that should be conducted automatically by a transactive node after a successful Configure( ) command. It is permissible that the test may be run more often, but the outcome should not be expected to change unless a successful Configure( ) command occurs.

    • Parameters—None.
    • Test Logic
      • If upon checking attribute 7—Node Status, this transactive node is found to be in state “5” (5—Operational), then
      • Test passed—(S1) The Operational state is necessarily Configured.
      • No further tests are required. No state transition occurs. No attributes are changed.
    • If any of the attributes 1—Node ID, 5—Node Version, 7—Node Status, 9—Update Frequency, 18—Time, 57—Interval Durations, or 58—Numbers of Intervals have not yet been configured and are therefore empty, then
      • Test failed—(F1) The transactive node is not configured.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any transactive neighbor connection listed in 49—List of Transactive Neighbors a corresponding 52—Transactive Neighbor ID has not been established, then
      • Test failed—(F2) Not all transactive neighbors have been Listed.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any system manager connection listed in 50—List of System Managers a corresponding 53—System Manager ID has not been established, then
      • Test failed—(F3) Not all system managers have been Listed.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any asset connection listed in 51—List of Assets a corresponding 2—Asset ID has not been established, then
      • Test failed—(F4) Not all assets have been Listed.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any Listed transactive neighbor (e.g., one for which a 52—Transactive Neighbor ID has become established) its 32—Connection Status is either undefined or “1” (connection state 1—Listed), then
      • Test failed—(F5) Not all transactive neighbors have become configured.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any Listed system manager (e.g., one for which a 53—System Manager ID has become established) its 32—Connection Status is either undefined or 1″ (connection state 1—Listed), then
      • Test failed—(F6) Not all system managers have become configured.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any Listed asset (e.g., one for which a 2—Asset ID has become established) its 32—Connection Status is either undefined or “1” (connection state 1—Listed), then
      • Test failed—(F7) Not all assets have become configured.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If for any asset connection that has local information connections listed in its 38—List of Local Information a corresponding 52—Transactive Neighbor ID has not been established, then
      • Test failed—(F8) Not all local information sources have been Listed.
      • Attribute 7—Node. Status=“2” (state 2—Under Local Control).
    • If for any Listed local information connection (e.g., one for which a 48—Local Information ID has become established) its 32—Connection Status is either undefined or “1” (connection state 1—Listed), then
      • Test failed—(F9) Not all local information connections have become configured.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control).
    • If the Configuration Test fails to run to completion for any other reason, then
      • Test failed—(F10) Unknown reasons.
      • Attribute 7—Node Status=“2” (state 2—Under Local Control)
    • Otherwise,
      • Test passed—(S2).
      • If prior 7—Node Status=“2” (state 2—Under Local Control), then Node Status=“3” (state 3—Configured).
      • Otherwise, Node Status should remain unchanged in the prior state.


Connection Test( )—this is neither a system management command nor an event, but it is a test of the completeness of the connections that should be completed between this transactive node and its connections. A Connection Test should be conducted automatically by a transactive node after a successful Configure( ) command and after any connection changes its connection state. A transactive node should have passed a Configuration Test before a Connection Test may be passed.


Parameters—None.


Test Logic

    • If upon checking attribute 7—Node Status this transactive node is found to be in state “2” (2—Under Local Control), then
      • Test failed—(F1) A transactive node should be Configured prior to a Connection Test.
      • No further tests are required.
    • If for any 52—Transactive Neighbor ID its 32—Connection Status is other than “3” (connection state 3—Connected) or “4” (connection state 4—Lost Connection), then
      • Test failed—(F2) Not all transactive neighbors are Connected.
      • Attribute 7—Node Status=“3” (state 3—Configured).
    • If for any 53—System Manager ID its 32—Connection Status is other than “3” (connection state 3—Connected) or “4” (connection state 4—Lost Connection), then
      • Test failed—(F3) Not all system managers are Connected.
      • Attribute 7—Node Status=“3” (state 3—Configured).
    • If for any 2—Asset ID its 32—Connection Status is other than “3” (connection state 3—Connected) or “4” (connection state 4—Lost Connection), then
      • Test failed—(F4) Not all assets are Connected.
      • Attribute 7—Node Status=“3” (state 3—Configured).
    • If for any 26—Local Information ID its 32—Connection Status is other than “3” (connection state 3—Connected) or “4” (connection state 4—Lost Connection), then
      • Test failed—(F5) Not all local information connections are Connected.
      • Attribute 7—Node Status=“3” (state 3—Configured).
    • If the Connection Test fails to run to completion for any other reason, then
      • Test failed—(F6) Unknown reason.
      • Attribute 7—Node Status=“3” (state 3—Configured).
    • Otherwise,
      • Test passed—(S1).
      • If prior 7—Node Status=“3” (state 3—Configured), then Node Status=“4” (state 4—Connected & Configured).
      • Otherwise, Node Status should remain unchanged in its prior state.


        Operate( ) Command


Command Parameters—None.


Command Logic

    • The entity making the command should be found to be this transactive node or one of its connections. If the entity making this system management command is not the local system manager and does not explicitly have this command listed among the commands in its 31—Connection Partner's System Management Permissions, then reply
      • “Command failed—(F1) Permissions do not include this command.”
    • If upon reviewing 7—Node Status the transactive node is found to be in a state other than “4” (state 4—Connected & Configured) or “5” (state 5—Operational), then reply
      • “Command failed—(F2) This command is not allowed from current state.”
    • If upon receiving this command this transactive node is not able to enter or remain in state 5—Operational for any reason, then reply
      • “Command failed—(F3) Unknown reason”
    • Otherwise,
      • Reply, “Command succeeded—(S1).”
      • Set 7—Node Status=“5” (state 5—Operational).
      • Begin interacting with transactive neighbor connections and other connections that are managed at this transactive node according to the algorithms of the toolkit framework and functions.


        Handle Fatal Operational Event/Handle Non-Fatal Operational Event
    • The following error categories have been identified:
      • Application errors—an application error occurs within the transactive control toolkit and may be due to faulty software, logic or algorithms
      • Security and signal validation errors:—security and signal validation errors are primarily associated with the incoming TIS and TFS signals
      • Network errors—network errors are related to communications network connectivity between transactive nodes.
    • Each error in these categories can further be classified as transient (“Non-Fatal”) or permanent (“Fatal”).
    • A non-fatal error is an error where the system can recover from the error without significant degradation of system functionality and can therefore remain in the Operational state. For example, if a transactive node does not receive a TIS signal within the update interval (5 minutes for the Demonstration), the TIS signal can be still be generated with minimal loss of functionality (refer to the toolkit framework for how this is accomplished). But if the TIS signal is not received for a number of hours, then the transactive node may consider this a fatal error and exit an Operational state. The function Handle Non-Fatal Operational Event( ) has been provided within this state model for the diagnostic recognition of and response to non-fatal errors that will occur while the transactive node is in an Operational state.
    • If a transient error happens often enough or lasts a long time it will turn into a fatal error. Fatal errors are, by definition, not recoverable and cause a transactive node to exit an Operational state. One of the two categories of fatal errors is due to a severe security, application, or network failure. A second category occurs when a non-fatal error is repeated “N” times in a row, or “K” times in an “M” minute interval depending on local policies. The function Handle Fatal Operational Event( ) has been provided within this state model for the diagnostic recognition of and response to fatal errors that may occur while the transactive node is in an Operational state.
    • The logic and details for these events remain to be worked out, but at this point the logic and details should be made to work within the state model that is being described here.


      Halt Operations( ) Command
    • Command Parameters—None.
    • Command Logic
      • The entity making the command should be found to be this transactive node or one of its connections. If the entity making this system management command is not the local system manager and does not explicitly have this command listed among the commands in its 31—Connection Partner's System Management Permissions, then reply
        • “Command failed—(F1) Permissions do not include this command.”
      • If upon reviewing 7—Node Status the transactive node is found to be in a state other than “5” (state 5—Operational), then reply
        • “Command succeeded—(S1) Operations already halted.”
      • Otherwise,
        • Reply, “Command succeeded—(S2).”
        • Set 7—Node Status=“4” (state 4—Connected & Configured).
        • Halt interacting with transactive neighbor connections and other connections that are managed at this transactive node according to the algorithms of the toolkit framework and functions.


          Terminate Node( ) Command
    • Command Parameters—None.
    • Command Logic
      • If the entity that made this command is not the local system manager and is not found to have been granted permission to make this command by attribute 31—Connection Partner's System Management Permissions, then reply
        • “Command failed—(F1) Lacking permission to make this command”
      • If upon checking 7—Node Status, this transactive node is found to be in a state other than “2” (state 2—Under Local Control) or “3” (state 3—Connected), then reply
        • “Command failed—(F2) Command not accepted in present transactive node state”
      • If the node executable fails to run for any other reason, reply
        • “Command failed—(F3) Unknown reason”
      • Otherwise,
        • (Optional) Save a copy of the prior configuration. This configuration may be reloaded the next time a node executable is run to jump start the maturity of its configuration. This is the condition of the final state of this transactive node 1—New or Terminated.
        • Stop the node executable process from running. Attributes may become undefined by this action.
        • Reply, “Command succeeded—(S1)”.


6.1.8 Transactive Node State Transition Table

In the table below, the numbering convention used for these functions and events are concatenations of the prior and end states. Where multiple functions and events have identical prior and end states, letters have been appended. For example, “54b” is the number applied to the second of two transitions from state number 5 to state number 4.









TABLE 9







State Transition Table for a Transactive Node












Acts Upon
Producing

Info.
















Internal
Current
Using
To Set
Next

On the
Gathered &


Row
Function
State
Input
Attributes
State
Output
Condition
Recorded





11
Fail to Run
1 - New/
Filename

1 - New
Reply:
Failure -
Command



Node
Terminated
parameter

Terminated
“Command
[(F1) File
log entry



Executable

Source of


failed -
could not be





command


[(F1) File
found/





Attributes


could not
(F3) Lacking





7 - Node


be found/
permission to





Status and


(F3) Lacking
make this





31 - Connection


Permission
command/





Partner's


to make
(F4) Critical





System


this
transactive





Management


command/
node





Permissions


(F4) Critical
attributes








transactive
were not








node
configured/








attributes
(F5)








were not
Unknown








configured/
reasons]








(F5)








Unknown








reasons]”








Command








log entry


12
Run Node
1 - New/
Filename
1 - Node
2 - Under
Reply:
Success -
Command



Executable
Terminated
parameter
ID,
Local
“Command
(S1).
log entry




(starting
Source of
5 - Node
Control
succeeded -
Node




state)
command
Version,

(S1)”
executable





Attributes
7 - Node

Action:
runs.





7 - Node
Status =

Node





Status and
“2” (state

executable





31 - Connection
2 - Under

runs





Partner's
Local

Command





System
Control),

log entry





Management
and 18 -





Permissions
Time






should be






configured.






Any and






all






remaining






attributes






may be






set.


21
Terminate
2 - Under
Source of
All
1 - New/
Reply:
Success -
Command



Node
Local
command
attributes
Terminated
“Command
(S1)
log entry




Control
Attributes
revert to
(final
succeeded -
Node





7 - Node
an
state)
(S1)”
executable





Status and
undefined

Action:
successfully





31 -
state

Node
terminated





Connection
and are

executable





Partner's
lost when

terminated





System
the node

Command





Management
executable

log entry





Permissions
is






terminated.


22a
Configuration
2 - Under
7 - Node

2 - Under
Test log
Failure -
Test log



Test
Local
Status,

Local
entry
[(F1) The
entry



Failed
Control
49 - List of

Control

transactive





Transactive



node is not





Neighbors,



configured/





50 - List



(F2) Not all





of System



transactive





Managers,



neighbors





51 - List



have been





of Assets,



Listed/





38 - List



(F3) Not all





of Local



system





Information,



managers





52 -



have been





Transactive



listed/





Neighbor



(F4) Not all





ID, 2 -



assets have





Asset ID,



been listed/





53 -



(F5) Not all





System



transactive





Manager



neighbors





ID, 48 -



have become





Local



configured/





Information



(F6) Not all





ID, 32 -



system





Connection



managers





Status



have become









configured/









(F7) Not all









assets have









become









configured/









(F8) Not all









local









information









connections









have been









Listed/









(F9) Not all









informations









have become









configured/









(F10) Unknown









reasons]


22b
Configure
2. Under
Source of
Node
2. Under
Reply:
Success -
Command



(Node
Local
command;
attributes
Local
“Command
(S1)
log entry



Attributes)
Control
Command-
in the
Control
succeeded -





line
following

(S1)”





parameters;
set may

Command





List of
be set or

log entry





node
modified





attributes
(e.g.,





that may
“configured”):





be
{3,





configured;
4, 8, 9,





Attributes
16, 21,





7 - Node
22, 34,





Status and
38, 39,





31 - Connection
40, 41,





Partner's
42, 43,





System
44, 45,





Management
46, 47,





Permissions;
49, 50 or





referenced
51}





configuration





file


22c
Connection
2 - Under
7 - Node

2 -
Test log
Test failed -
Test log



Test Failed
Local
Status,

Under
entry
(F1) A
entry




Control
52 - Transactive

Local

transactive





Neighbor

Control

node should





ID,



be





53 - System



Configured





Manager



prior to a





ID, 2 -



Connection





Asset ID,



Test





48 - Local





Information





ID,





32 - Connection





Status


22d
Fail to
2 - Under
Source of

2 - Under
Reply:
Failure - [(F1)
Command



Configure
Local
command;

Local
“Command
Permissions
log entry



(Node
Control
Command-

Control
failed -
do not



Attributes)

line


[(F1)
include this





parameters;


Permissions
command/





List of


do not
(F3) File





node


include this
cannot be





attributes


command/
found or





that may


(F3) File
opened/





be


cannot be
(F4) Incorrect





configured;


found or
node ID/





Attributes


opened/
(F5) Command





7 - Node


(F4) Incorrect
did not





Status and


node ID/
address





31 - Connection


(F5) Command
known node





Partner's


did not
attributes/





System


address
(F6)





Management


known
Unknown





Permissions;


node
reason]





Referenced


attributes/





Filename.


(F6)








Unknown








reason]”








Command








log entry


22e
Fail to
2 - Under
Source of

2 -
Reply:
Failure -
Command



Operate
Local
command;

Under
“Command
[(F1) Permissions
log entry




Control
Attributes

Local
failed -
do not





7 - Node

Control
[(F1) Permissions
include this





Status and


do
command/





31 - Connection


not include
(F2) This





Partner's


this
command is





System


command/
not allowed





Management


(F2) This
from current





Permissions


command
state]








is not








allowed








from








current








state]”








Command








log entry


22f
Fail to Halt
2 - Under
Source of

2 -
Reply:
Failure - (F1)
Command



Operations
Local
command,

Under
“Command
Permissions
log entry




Control
Attributes

Local
failed -
do not





7 - Node

Control
(F1)
include this





Status and


Permissions
commands





31 - Connection


do not





Partner's


include this





System


command”





Management


Command





Permissions


log entry


22g
Fail to Run
2 - Under
Filename

2 -
Reply:
Failure - [(F1)
Command



Node
Local
parameter;

Under
“Command
File could not
log entry



Executable
Control
Source

Local
failed -
be found/





of

Control
[(F1) File
(F2) Node





command;


could not
executable is





Attributes


be found/
already





7 - Node


(F2) Node
running]





Status and


executable





31 - Connection


is already





Partner's


running]”





System


Command





Management


log entry





Permissions


22h
Fail to
2 - Under
Source of

2 - Under
Reply:
Failure - [(F1)
Command



Terminate
Local
command;

Local
“Command
Lacking
log entry



Node
Control
Attributes

Control
failed -
permission to





7 - Node


[(F1)
make this





Status and


Lacking
command/





31 -


permission
(F3)





Connection


to make
Unknown





Partner's


this
reason]





System


command/





Management


(F3)





Permissions


Unknown








reason]”








Command








log entry


22i
Halt
2 - Under
Source of

2 -
Reply:
Success -
Command



Operations
Local
command;

Under
“Command
(S1)
log entry




Control
Attributes

Local
succeeded -





7 - Node

Control
(S1)”





Status and


Command





31 - Connection


log entry





Partner's





System





Management





Permissions


23
Configuration
2 - Under
Attributes
7 - Node
3 - Configured
Test log
Pass
Test log



on Test
Local
7 - Node
Status =

entry
condition
entry



Passed
Control
Status,
“3” (state


(S2). See test



(condition

49 - List of
3 - Configured)


logic.



(S2))

Transactive



Transactive





Neighbors,



node





50 - List



configuration





of System



is complete





Managers,



and internally





51 - List



consistent.





of Assets,





38 - List





of Local





Information,





52 -





Transactive





Neighbor





ID, 2 -





Asset ID,





53 -





System





Manager





ID, 48 -





Local





Information





ID, 32 -





Connection





Status


31
Terminate
3 - Configured
Source of
All
1 - New/
Reply:
Success -
Command



Node

command;
attributes
Terminated
“Command
(S1)
log entry





Attributes
revert to
(final
succeeded -
Node





7 - Node
an
state)
(S1)”
executable is





Status and
undefined

Action:
terminated.





31 - Connection
state

Node





Partner's
and are

executable





System
lost when

stops





Management
the node

Command





Permissions
executable

log entry






is






terminated.


32
Configuration
3 - Configured
Attributes
7 - Node
2 - Under
Test log
Failure -
Test log



Test

7 - Node
Status =
Local
entry
[(F1) The
entry



Failed

Status,
“2” (state
Control

transactive





49 - List of
2 -


node is not





Transactive
Under


configured/





Neighbors,
Local


(F2) Not all





50 - List
Control)


transactive





of System



neighbors





Managers,



have been





51 - List



Listed/





of Assets,



(F3) Not all





38 - List



system





of Local



managers





Information,



have been





52 -



Listed/





Transactive



(F4) Not all





Neighbor



assets have





ID, 2 -



been Listed/





Asset ID,



(F5) Not all





53 -



transactive





System



neighbors





Manager



have become





ID, 48 -



configured/





Local



(F6) Not all





Information



system





ID, 32 -



managers





Connection



have become





Status



configured/









(F7) Not all









assets have









become









configured/









(F8) Not all









local









information









connections









have been









Listed/









(F9) Not all









information









connections









have become









configured/









(F10) Unknown









reasons]


33a
Configuration
3 - Configured
Attributes

3 - Configured
Test log
Pass
Test log



Test

7 - Node


entry
condition
entry



Passed

Status,



(S2). See test



(condition

49 - List of



logic.



(S2)

Transactive



Transactive





Neighbors,



node





50 - List



configuration





of System



is complete





Managers,



and internally





51 - List



consistent.





of Assets,





38 - List





of Local





Information,





52 -





Transactive





Neighbor





ID, 2 -





Asset ID,





53 -





System





Manager





ID, 48 -





Local





Information





ID, 32 -





Connection





Status


33b
Configure
3 - Configured
Source of
Node
3 - Configured
Reply:
Success -
Command



(Node

command;
attributes

“Command
(S1)
log entry



Attributes)

Command-
in the

succeeded -





line
following

(S1)”





parameters;
set may

Command





List of
be set or

log entry





node
modified





attributes
(e.g.,





that may
“configured”):





be
{3,





configured;
4, 8, 9,





Attributes
16, 21,





7 - Node
22, 34,





Status and
38, 39,





31 - Connection
40, 41,





Partner's
42, 43,





System
44, 45,





Management
46, 47,





Permissions;
49, 50 or





Referenced
51}





configuration





file





Filename


33c
Connection
3 - Configured
Attributes

3 - Configured
Test log
Test failed -
Test log



Test Failed

7 - Node


entry
[(F2) Not all
entry





Status,



transactive





52 - Transactive



neighbors are





Neighbor



Connected/





ID,



(F3) Not all





53 - System



system





Manager



managers are





ID, 2 -



Connected/





Asset ID,



(F4) Not all





48 - Local



assets are





Information



Connected/





ID,



(F5) Not all





32 - Connection



local





Status



information









connections









are









Connected/









(F6) Unknown









reason]


33d
Fail to
3 - Configured
Source of

3 - Configured
Reply:
Failure - [(F1)
Command



Configure

command;


“Command
Permissions
log entry



(Node

Command-


failed -
do not



Attributes)

line


[(F1)
include this





parameters;


Permissions
command/





List of


do not
(F3) File





node


include this
cannot be





attributes


command/
found or





that may


(F3) File
opened/





be


cannot be
(F4) Incorrect





configured;


found or
node ID/





Attributes


opened/
(F5) Command





7 - Node


(F4) Incorrect
did not





Status and


node ID/
address





31 - Connection


(F5) Command
known node





Partner's


did not
attributes/





System


address
(F6)





Management


known
Unknown





Permissions;


node
reason]





referenced


attributes/





configuration


(F6)





file


Unknown








reason]”








Command








log entry


33e
Fail to
3 - Configured
Source of

3 - Configured
Reply:
Failure -
Command



Operate

command;


“Command
[(F1) Permissions
log entry





Attributes


failed -
do not





7 - Node


[(F1) Permissions
include this





Status and


do
command/





31 - Connection


not include
(F2) This





Partner's


this
command is





System


command/
not allowed





Management


(F2) This
from current





Permissions


command
state]








is not








allowed








from








current








state]”








Command








log entry


33f
Fail to Halt
3 - Configured
Source of

3 - Configured
Reply:
Failure - (F1)
Command



Operations

command,


“Command
Permissions
log entry





Attributes


failed -
do not





7 - Node


(F1)
include this





Status and


Permissions
command





31 - Connection


do not





Partner's


include this





System


command”





Management


Command





Permissions


log entry


33g
Fail to Run
3 - Configured
Filename

3 - Configured
Reply:
Failure -
Command



Node

parameter;


“Command
[(F1)) File
log entry



Executable

Source


failed -
could not be





of


[(F1)) File
found/(F2)





command;


could not
Node





Attributes


be found/
executable is





7 - Node


(F2) Node
already





Status and


executable
running]





31 - Connection


is already





Partner's


running]”





System


Command





Management


log entry





Permissions


33h
Fail to
3 - Configured
Source of

3 - Configured
Reply:
Failure - [(F1)
Command



Terminate

command;


“Command
Lacking
log entry



Node

Attributes


failed -
permission to





7 - Node


[(F1)
make this





Status and


Lacking
command/





31 -


permission
(F3)





Connection


to make
Unknown





Partner's


this
reason]





System


command/





Management


(F3)





Permissions


Unknown








reason]”








Command








log entry


33i
Halt
3 - Configured
Source of

3 - Configured
Reply:
Success -
Command



Operations

command;


“Command
(S1)
log entry





Attributes


succeeded -





7 - Node


(S1)”





Status and


Command





31 - Connection


log entry





Partner's





System





Management





Permissions


34
Connection
3 - Configured
Attributes
7 - Node
4 - Connected &
Test log
Success -
Test log



Test

7 - Node
Status =
Configured
entry
(S1).
entry



Passed

Status,
“4” (state


Set of





52 - Transactive
4 -


connections





Neighbor
Connected &


is complete





ID,
Configured)


and





53 - System



connected





Manager





ID, 2 -





Asset ID,





48 - Local





Information





ID,





32 - Connection





Status


42
Configuration
4 -
Attributes
7 - Node
2 - Under
Test log
Failure -
Test log



Test
Connected &
7 - Node
Status =
Local
entry
[(F1) The
entry



Failed
Configured
Status,
“2” (state
Control

transactive





49 - List of
2 -


node is not





Transactive
Under


configured/





Neighbors,
Local


(F2) Not all





50 - List
Control)


transactive





of System



neighbors





Managers,



have been





51 - List



Listed/





of Assets,



(F3) Not all





38 - List



system





of Local



managers





Information,



have been





52 -



Listed/





Transactive



(F4) Not all





Neighbor



assets have





ID, 2 -



been Listed/





Asset ID,



(F5) Not all





53 -



transactive





System



neighbors





Manager



have become





ID, 48 -



configured/





Local



(F6) Not all





Information



system





ID, 32 -



managers





Connection



have become





Status



configured/









(F7) Not all









assets have









become









configured/









(F8) Not all









local









information









sources have









been Listed/









(F9) Not all









information









sourcess









have become









configured/









(F10) Unknown









reasons]


43
Connection
4 - Connected &
Attributes
7 - Node
3 - Configured
Test log
Test failed -
Test log



Test Failed
Configured
7 - Node
Status =

entry
[(F2) Not all
entry





Status,
“3” (state


transactive





52 - Transactive
3 - Configured)


neighbors are





Neighbor



connected/





ID,



(F3) Not all





53 - System



system





Manager



managers are





ID, 2 -



connected/





Asset ID,



(F4) Not all





48 - Local



assets are





Information



connected/





ID,



(F5) Not all





32 - Connection



local





Status



information









sources are









Connected/









(F6) Unknown









reason]


44a
Configuration
4 -
Attributes

4 -
Test log
Pass
Test log



Test
Connected &
7 - Node

Connected &
entry
condition
entry



Passed
Configured
Status,

Configured

(S2). See test



(condition

49 - List of



logic.



(S2)

Transactive



Transactive





Neighbors,



node





50 - List



configuration





of System



is complete





Managers,



and internally





51 - List



consistent.





of Assets,





38 - List





of Local





Information,





52 -





Transactive





Neighbor





ID, 2 -





Asset ID,





53 -





System





Manager





ID, 48 -





Local





Information





ID, 32 -





Connection





Status


44b
Configure
4 -
Source of
Node
4 -
Reply:
Success -
Command



(Node
Connected &
command;
attributes
Connected &
“Command
(S1)
log entry



Attributes)
Configured
Command-
in the
Configured
succeeded -
See





line
following

(S1)”
command





parameters;
set may

Command
logic





List of
be set or

log entry





node
modified





attributes
(e.g.,





that may
“configured”):





be
{3,





configured;
4, 8, 9,





Attributes
16, 21,





7 - Node
22, 34,





Status and
38, 39,





31 - Connection
40, 41,





Partner's
42, 43,





System
44, 45,





Management
46, 47,





Permissions;
49, 50 or





Referenced
51}





configuration





file





Filename


44c
Connection
4 -
Attributes

4 - Connected &
Test log
Success -
Test log



Test
Connected &
7 - Node

Configured
entry
(S1)
entry



Passed
Configured
Status,



All





52 - Transactive



connections





Neighbor



are complete





ID,



and





53 - System



connected.





Manager





ID, 2 -





Asset ID,





48 - Local





Information





ID,





32 - Connection





Status


44d
Fail to
4 - Connected &
Source of

4 - Connected &
Reply:
Failure - [(F1)
Command



Configure
Configured
command;

Configured
“Command
Permissions
log entry



(Node

Command-


failed -
do not



Attributes)

line


[(F1)
include this





parameters;


Permissions
command/





List of


do not
(F3) File





node


include this
cannot be





attributes


command/
found or





that may


(F3) File
opened/





be


cannot be
(F4) Incorrect





configured;


found or
node ID/





Attributes


opened/
(F5) Command





7 - Node


(F4) Incorrect
did not





Status and


node ID/
address





31 - Connection


(F5) Command
known node





Partner's


did not
attributes/





System


address
(F6)





Management


known
Unknown





Permissions;


node
reason]





referenced


attributes/





configuration


(F6)





file


Unknown








reason]”








Command








log entry


44e
Fail to
4 - Connected &
Source of

4 - Connected &
Reply:
Failure -
Command



Operate
Configured
command;

Configured
“Command
[(F1) Permissions
log entry





Attributes


failed -
do not





7 - Node


[(F1) Permissions
include this





Status and


do
command/





31 - Connection


not include
(F3) Unknown





Partner's


this
reason]





System


command/





Management


(F3) Unknown





Permissions


reason]”








Command








log entry


44f
Fail to Halt
4 - Connected &
Source of

4 - Connected &
Reply:
Failure - (F1)
Command



Operations
Configured
command,

Configured
“Command
Permissions
log entry





Attributes


failed -
do not





7 - Node


(F1)
include this





Status and


Permissions
command





31 - Connection


do not





Partner's


include this





System


command.”





Management


Command





Permissions


log entry


44g
Fail to Run
4 -
Filename

4 -
Reply:
Failure - [(F1)
Command



Node
Connected &
parameter;

Connected &
“Command
File could not
log entry



Executable
Configured
Source

Configured
failed -
be found/





of


[(F1) File
(F2) Node





command;


could not
executable is





Attributes


be found/
already





7 - Node


(F2) Node
running]





Status and


executable





31 - Connection


is already





Partner's


running]”





System


Command





Management


log entry





Permissions


44h
Fail to
4 -
Source of

4 -
Reply:
Failure - [(F1)
Command



Terminate
Connected &
command;

Connected &
“Command
Lacking
log entry



Node
Configured
Attributes

Configured
failed -
permission to





7 - Node


[(F1)
make this





Status and


Lacking
command/





31 -


permission
(F2)





Connection


to make
Command





Partner's


this
not accepted





System


command/
in present





Management


(F2)
transactive





Permissions


Command
node state]”








not








accepted in








present








transactive








node








state]”








Command








log entry


44i
Halt
4 -
Source of

4 -
Reply:
Success -
Command



Operations
Connected &
command,

Connected &
“Command
(S1)
log entry




Configured
Attributes

Configured
succeeded -





7 - Node


(S1)”





Status and


Command





31 - Connection


log entry





Partner's





System





Management





Permissions


45
Operate
4 - Connected &
Source of
7 - Node
5 - Operational
Reply:
Success -
Command




Configured
command;
Status =

“Command
(S1)
log entry





Attributes
“5” (state

succeeded -





7 - Node
5 -

(S1)”





Status and
Operational)

Action:





31 - Connection


Transactive





Partner's


node





System


begins





Management


interacting





Permissions


with








transactive








control and








coordination








system








Command








log entry


53
Connection
5 - Operational
Attributes
7 - Node
3 - Configured
Test log
Test failed -
Test log



Test Failed

7 - Node
Status =

entry
[(F2) Not all
entry





Status,
“3” (state


transactive





52 - Transactive
3 - Configured)


neighbors are





Neighbor



Connected/





ID,



(F3) Not all





53 - System



system





Manager



managers are





ID, 2 -



Connected/





Asset ID,



(F4) Not all





48 - Local



assets are





Information



Connected/





ID,



(F5) Not all





32 - Connection



local





Status



information









sources are









Connected/









(F6) Unknown









reason]


54a
Handle
5 - Operational
Diagnostic
7 - Node
4 - Connected &
Notifications
Non-
Event log



Fatal

recognition
Status =
Configured
TBD
recoverable
entry



Operational

of Fatal
“4” (state

Event log
error during



Event

Operational
4 -

entry
transactive





Event
Connected &


node





Details
Configured)


operations





TBD


54b
Halt
5 - Operational
Source of
7 - Node
4 - Connected &
Reply:
Success -
Command



Operations

command;
Status =
Configured
“Command
(S2)
log entry





Attributes
“4” (state

succeeded -





7 - Node
4 -

(S2)”





Status and
Connected &

Action: The





31 - Connection
Configured)

transactive





Partner's


node halts





System


its





Management


interactions





Permissions


with the








transactive








control and








coordination








system








Command








log entry


55a
Configuration
5 - Operational
Attributes

5 - Operational
Test log
Pass
Test log



Test

7 - Node


entry
condition
entry



Passed

Status,



(S1). See test



(condition

49 - List of



logic.



(S1)

Transactive



Transactive





Neighbors,



node





50 - List



configuration





of System



is complete





Managers,



and internally





51 - List



consistent





of Assets,





38 - List





of Local





Information,





52 -





Transactive





Neighbor





ID, 2 -





Asset ID,





53 -





System





Manager





ID, 48 -





Local





Information





ID, 32 -





Connection





Status


55b
Connection
5 - Operational
Attributes

5 - Operational
Test log
Success -
Test log



Test

7 - Node


entry
(S1)
entry



Passed

Status,



All





52 - Transactive



connections





Neighbor



are complete





ID,



and





53 - System



connected.





Manager





ID, 2 -





Asset ID,





48 - Local





Information





ID,





32 - Connection





Status


55c
Fail to
5 - Operational
Source of

5 - Operational
Reply:
Failure - [(F1)
Command



Configure

command;


“Command
Permissions
log entry



(Node

Command-


failed -
do not



Attributes)

line


[(F1)
include this





parameters;


Permissions
command/





List of


do not
(F2) Configure





node


include this
command





attributes


command/
not allowed





that may


(F2) Configure
from





be


command
Operational





configured;


not allowed
state]





Attributes


from





7 - Node


Operational





Status and


state]”





31 - Connection


Command





Partner's


log entry





System





Management





Permissions;





Referenced





configuration





file





Filename


55d
Fail to Halt
5 - Operational
Source of

5 - Operational
Reply:
Failure - (F1)
Command



Operations

command,


“Command
Permissions
log entry





Attributes


failed -
do not





7 - Node


(F1)
include this





Status and


Permissions
command





31 - Connection


do not





Partner's


include this





System


command”





Management


Command





Permissions


log entry


55e
Fail to Run
5 - Operational
Filename

5 - Operational
Reply:
Failure - [(F1)
Command



Node

parameter;


“Command
File could not
log entry



Executable

Source


failed -
be found/





of


[(F1) File
(F2) Node





command;


could not
executable is





Attributes


be found/
already





7 - Node


(F2) Node
running]





Status and


executable





31 - Connection


is already





Partner's


running]”





System


Command





Management


log entry





Permissions


55f
Fail to
5 - Operational
Source of

5 - Operational
Reply:
Failure - [(F1)
Command



Terminate

command;


“Command
Lacking
log entry



Node

Attributes


failed -
permission to





7 - Node


[(F1)
make this





Status and


Lacking
command/





31 -


permission
(F2]





Connection


to make
Command





Partner's


this
not accepted





System


command/
in present





Management


(F2]
transactive





Permissions


Command
node state]








not








accepted in








present








transactive








node








state]”








Command








log entry


55h
Operate
5 - Operational
Source of

5 - Operational
Reply:
Success -
Command





command;


“Command
(S1)
log entry





Attributes


succeeded -





7 - Node


(S1)”





Status and


Command





31 - Connection


log entry





Partner's





System





Management





Permissions









6.1.9 Connection Attributes

Connection attributes have been identified and are ascribable in common to the four types of connections. This set of attributes refers to a single connection between this transactive node and a transactive neighbor, system manager, asset system, or source of local information. The connection attributes are indispensible for keeping track of the state of any type of connection. It is never adequate to reference these attributes apart from a specific example of attribute 27—Connection ID.


Connection attributes are important for navigating the connection state transition diagram 3000 in FIG. 30. The attribute 32—Connection Status should be known and managed for each connection. Attribute 7—Node Status has been shown to be a logical combination of multiple individual Connection Statuses.


Refer to Table 11 for the anticipated ways in which the connection attributes may be affected by the commands and events of the connection state model.


In the connection state model (see FIG. 30), a connection moves between its states by undergoing Configuration Tests, accepting Connect and Disconnect commands, and experiencing some events like Loss of Connection. Important connection attribute 32—Connection Status keeps track of these state changes. For example, a local information connection transitions into state Connection Status “2” (connection state 2—Configured) if connection attribute 32—Connection Status and the local information attribute 48—Connection Status have been configured. (The sets of attributes that should be configured before a connection may enter connection state 2—Configured are indicated conveniently by asterisks in FIG. 28.)









TABLE 10







Dictionary of Connection Attributes that should be applied to each


Connection














Attribute







No.
Name
Description
Role
Type
Format
Range of values





32
Connection
Indicates the
Affected by
Integer
Example: “2”
1 -Listed,



Status*
state of the
Connect( )


2 - Configured,




connection
command.


3 - Connected,




between this
A transactive


4 - Lost




transactive
node


Connection




node and a
conducts a







connection.
Connection








Test based








on the








Connection








Statuses of








its








Connection





29
Connection
An indicator
May be used
Character
Example:
“RL”—Responsive



Partner
of type of
to indicate
string
“SM”
Load



Type*
connection
applicable







partner from
interactions


“OL”—Other




a list of
and


Local




allowed
permissions.


Condition




partner types
For example,


Input




to include at
transactive


“OS”—Owner




least
neighbors


or




transactive
expect to


Subsystem




neighbors,
receive and


“RR”—Responsive




owner.
supply


Rsource





transactive








signals.


“SM”—System





System


Manager





managers


“TN”—Transactive





should be


Neighbor





granted some








system








management








permissions.





17
Connection
Optional
Each
List of
Detail1,
A list of



Details
additional
connection
alphanumeric
detail2, . . .
necessary




details about
method used
is strings

details should




the
in attribute


be created for




connection
33 - Connection


each




method
on Method


connection




stated in
should


method of




attribute
prescribe a


attribute 33. For




33 - Connection
set of details


example,




on Method
that should


Internet (IP




for a
be provided


address of this




connection.
by this


transactive





attribute.


node, IP








address of








connection








partner,








encryption level,








. . . )


28
Connection's
The locations
Support
Most likely
(latitude,
0-360



Geographical
of connection
future GIS
a pair of
longitude) As
degrees;



Location
partners
system
real
for attribute
0-2 * pi radians




should be
representations
numbers
#4.





provided to

representing
Geographical





identify map

angular
Location,





locations to

latitude and
angular





which this

longitude.
latitude and





transactive


longitude are





node has


the default





established


units.





connections.


Standard





This attribute


GIS





is optional for


representation





each


formats





connection.


should be








adapted if








such








standards








can be








identified.



30
Entities
For each
Eventually,
List of
Use
If null, only the



Permitted
specified
the
alphanumeric
guidance
local transactive



to Modify
connection, a
transactive
identifiers,
provided with
node system



this
list of those
nodes will
one for
1 - Node ID
manager may



Connection
entities that
operate with
each entity
and
modify the




are permitted
considerable
that will be
28 - Connection
specified




to initiate,
autonomy
granted this
ID. Use
connection.




modify, or
and should
permission
formats





disconnect
clearly
for this
found in





the
specify
connection.
transactive





connection
which, if any

control and





and its
connection

coordination





attributes.
partners may

system





This list may
modify

topology





narrow the
connections.

maps.





permissions
The







granted to a
Demonstration







connection
has many







partner by
instances







attribute
where a utility







31 - Connection
owner should







Partner
be granted







Permissions.
permissions








to modify a








transactive








node's








connections.





31
Connection
The general
This attribute
List of
List of
Entries selected



Partner's
permissions
allows
system
allowed
from



System
granted to
system
management
system
{Configure([All,



Management
connection
management
commands
management
1, 2, . . . ]),



Permissions
partners to
responsibilities
that will be
commands
Connect,




issue system
to be
accepted
{command1,
Disconnect,




management
assigned to
from a
command2,
Operate, Run




commands at
one or more
connection
. . . }. If the list
Node




this
of the
partner at
includes
Executable,




transactive
connection
this
command
Stop, Terminate




node, plus
partners at
transactive
Configure( ),
Node}




the
this
node, plus
the list of
If null, then only




transactive
transactive
list of
modifiable
this transactive




node
node.
transactive
attributes
node's system




attributes
Assigned
node
should be
manager may




that may be
among
attributes
listed as
issue system




modified by
Connection
that may be
parameters
management




the
Table
modified by
of this
commands.




connection
attributes.
this
command by





partner
See
connection
number.





during
Connection
partner.






configuration.
Table.







These








permissions








may be








restricted








further by








attribute








30 - Entities








Permitted to








Modify this








Connection.






33
Connection
Optional
Specify the
Single
Example:
Ethernet,



Method
indication of
method of
character
“Internet”
Internet,




the media
connection.
string

Wireless




and protocol
Each such


Zigbee ®,




used in a
method may


Wireless other,




connection.
then have


Power Line





specific


Carrier





details to be








listed in








attribute








34 - Connection








Details.





54
Connection
The period of
This is the
Character
Recommend
The



Timeout
time that a
amount of
string
“dd:hh:mm”.
Demonstration



Period
given
time that
representation
Should
should use




connection
should
of a
emulate UTC
values longer




will remain in
elapse before
single time
standard
than 5 minutes




its Lost
a connection
duration
format that is
“00:00:05” or




Connection
in its Lost

used
shorter than 4




state before
Connection

frequently in
days “04:00:00”.




it will
state will

state model.
Default value: 1




terminate the
automatically


hour:




connection,
transition


“00:01:00”.




which could
back into its







threaten the
Configured







Operational
state. This







status of this
duration may







transactive
be quite long







node.
if this








transactive








node and its








algorithms








have been








designed








tolerant of








poor








connectivity.








This timeout








period is to








be








individually








configured for








each








connection.





55
Loss of
A list of times
By keeping
List of UTC
See UTC
Allow for cyclic



Connection
at which
track of when
times.
standard
buffer of 64



on Event
Loss of
Loss of


values.



Buffer
Connection
Connection


Need not be




Events have
Events occur,


initialized.




occurred for
a transactive







a given
node can







connection.
take








exceptional








actions








based on the








frequency








with which








the events








have








occurred.





56
Allowed
The
Criteria
Two
Example: (5,
Default (6, 48),



Frequency
frequency
placed on the
integers.
24), meaning
meaning six



of Loss
with which
members of

5 times in an
times in an



of
Loss of
55 - Loss of

hour, or 24
hour, or 48



Connection
Connection
Connection

times in a
times in during



Events
Events will
Event Buffer.

day
a day. Integers




be tolerated
The


should be less




before the
connection


than the buffer




connection
should be


length of




will be
severed if


55 - Loss of




severed.
these


Connection




There is a
frequencies


Event Buffer.




criterion for
are







events per
exceeded,







hour and
which would







another for
indicate a







events per
problem with







day.
the








connection.
















TABLE 11







The Ways Connection Attributes May be Affected by Connection State


Model Commands and Events





















Loss of
Re-Establish
Terminate




Configure
Configuration
Connect
Disconnect
Connection
Connection
Connection


Attribute #
Attribute Name
Command
Test**
Command
Command
Event
Event
Event





32
Connection Status*
+0
C + 0
C0
C0
C00
C00
C00


29
Connection Partner Type*
+0

C

(C)




30
Entities Permitted to
C + 0

C







Modify this Connection









31
Connection Partner's
C + 0

C
C






System Management










Permissions









17
Connection Details
+0

(C)

(C)
(C)
(C)


28
Connection's Geographical
+0









Location









33
Connection Method
+0

(C)
(C)
(C)
(C)
(C)


54
Connection Timeout Period
+0



C
C
C


55
Loss of Connection
+0



C + 0





Event Buffer









56
Allowed Frequency of
+0



C





Loss of Connection










Events





*The Connection Status should be configured before a connection can enter its 2 - Configured state.


**The connection Configuration Test additionally should check one or more attributes of the connection partner type.






6.1.10 Transactive Neighbor Connection Attributes

In certain embodiments, transactive node define at least one connection to a transactive neighbor. The connection may be observed and maintained using the union of connection attributes and transactive node attributes (see FIG. 28).


At least for some of the connections that are being made to transactive neighbors, it may be desired that experimenters and testing entities have the means to redirect the inputs received from the transactive neighbors so that these inputs may be received instead from selected alternative sources of such information. It is likewise important that one may redirect the output from these connection partners to one or more alternative locations. For the special type of connection partners called transactive neighbors, the means to redirect inputs and outputs has been accomplished with attributes 10-13, which attributes define the sources and targets of transactive signals. The sources and targets are not necessarily the transactive neighbor itself. Using these attributes, simulations and “what-if” scenarios may be designed and tested in the production or test system environments. (So far, attributes #10-13 only apply to transactive neighbors and their connections. It is conceivable that the attributes could be generalized and renamed to apply to any connection type, not only transactive neighbors.)









TABLE 12







Dictionary of Transactive Neighbor Attributes














Attribute







No.
Name
Description
Role
Type
Format
Range of values





52
Transactive
The
This asset
Single character
Example #1:
See system



Neighbor
identifier to
should be
string
“UT06”, which is the
topology.



ID*
be used for
repeated for

Demonstration's
Naming practice




one
each

identifier for the
should be the




transactive
member of

Avista utility.
same here and for




neighbor
49 - List of


attribute 49 - List




with which
Transactive


of Transactive




this
Neighbors


Neighbors.




transactive
to







node will
instantiate







exchange
the







electrical
transactive







energy and
neighbors







therefore
that this







will
transactive







exchange
node







transactive
expects to







signals.
interact








with. This








transactive








neighbor








enters its








Listed state








after this








attribute has








been








configured.





10
Receive TIS
The
This
Single, short
Use guidance
Source should be



Source*
Connection
attribute
alphanumeric
provided with
a known source




ID of a
permits
identifier for each
1 - Node ID and
within present




source from
alternative
transactive
28 - Connection ID.
transactive control




which a
TIS
neighbor.
Use formats found
and coordination




transactive
examples to

in transactive
system.




neighbor's
be received

control and





TIS should
at this

coordination system





be
transactive

topology maps.





received.
node from







The source
alternative







is not
sources to







necessarily
facilitate







the
testing and







transactive
simulation.







neighbor








itself.






11
Receive
The
This
Single, short
Use guidance
Source should be



TFS
Connection
attribute
alphanumeric
provided with
a known source



Source*
ID of a
permits
identifier for each
1 - Node ID and
within present




source from
alternative
transactive
28 - Connection ID.
transactive control




which a
TFS
neighbor
Use formats found
and coordination




transactive
examples to

in transactive
system.




neighbor's
be received

control and





TFS should
at this

coordination system





be
transactive

topology maps.





received.
node to







The source
facilitate







is not the
testing and







transactive
simulation.







neighbor








itself.






12
Send TIS
The
This
List of one or
Use guidance
Target should be



Targets*
Connection
attribute
many single
provided with
known location




ID of at
permits this
short
1 - Node ID and
within present




least one
transactive
alphanumeric
28 - Connection ID.
transactive control




target
node's TIS
identifiers for
Use formats found
and coordination




location to
to be sent to
each transactive
in transactive
system.




which this
one or more
neighbor
control and





transactive
places to

coordination system





node's TIS
facilitate

topology maps.





should be
testing and







sent. The
simulation.







target








location is








not








necessarily








that of the








transactive








neighbor








itself.






13
Send TFS
The
This
List of one or
Use guidance
Target should be



Targets*
Connection
attribute
many single
provided with
known location




ID of at
permits this
short
1 - Node ID and
within present




least one
transactive
alphanumeric
28 - Connection ID.
transactive control




target
node's TFS
identifiers for
Use formats found
and coordination




location to
for this
each transactive
in transactive
system.




which this
transactive
neighbor
control and





transactive
neighbor to

coordination system





node's
be sent to

topology maps.





calculated
one or more







TFS with
places to







this
facilitate







transactive
testing and







neighbor
simulation.







should be








sent. The








target








location is








not








necessarily








that of the








transactive








neighbor








itself.






23
Received
Contains at
Each
List of TIS
According to
See range



TIS Buffer
least the
transactive

transactive signal
attributes of TIS




most recent
neighbor's

format as defined





TIS
TIS is used

by approved XML





messages
within the

schema for the TIS.





received
toolkit







from each
framework







transactive
algorithms.







neighbor.
To be








stored to








the Input








Transactive








Signal








Buffer of the








toolkit








framework.





24
Received
Contains at
Each
List of TFS
According to
See range



TFS Buffer
least the
transactive

transactive signal
attributes of the




most recent
neighbor's

format as defined
TFS




TFS
TFS is used

by approved XML





messages
within the

schema for the





received
toolkit

TFS.





from each
framework







transactive
algorithms.







neighbor.
To be








stored to








the Input








Transactive








Signal








Buffer of the








toolkit








framework.





59
TIS Sent
Flag that is
This flag
Boolean
Boolean logic.
0 - default value -



Flag
set if a TIS
may be
condition flag:

cleared - no TIS




has been
used in
0 - cleared

has been




transmitted
conjunction
1 - set

transmitted to this




to this
with the


transactive




transactive
watchdog


neighbor yet




neighbor
timer. The


during the current




connection
actions


update interval.




by this
taken upon


1 - set - a TIS




transactive
a watchdog


has been




node during
timer event


transmitted to this




the current
may


transactive




update
desirably


neighbor during




interval.
have the


the current update




The flag is
transactive


interval.




cleared at
node keep







the
track of to







beginning
which







of each
transactive







update
neighbor







interval.
transactive








signals








have been








transmitted








and not.





60
TFS Sent
Flag that is
This flag
Boolean
Boolean logic.
0 - default value -



Flag
set if a TFS
may be
condition flag:

cleared - no




has been
used in
set/cleared.

TFS has been




transmitted
conjunction


transmitted to this




to this
with the


transactive




transactive
watchdog


neighbor yet




neighbor by
timer. The


during the current




this
actions


update interval.




transactive
taken upon


1 - set - a TFS




node during
a watchdog


has been




the current
timer event


transmitted to this




update
may


transactive




interval.
desirably


neighbor during




The flag is
have the


the current update




cleared at
transactive


interval.




the
node keep







beginning
track of to







of each
which







update
transactive







interval.
neighbor








transactive








signals








have been








transmitted








and not.





*This attributes should be configured to pass a connection Configuration Test.













TABLE 13







The Ways Transactive Neighbor Attributes May be Affected by Connection


State Model Commands and Events





















Loss of
Re-Establish
Terminate




Configure
Configuration
Connect
Disconnect
Connection
Connection
Connection


Attribute #
Attribute Name
Command
Test**
Command
Command
Event
Event
Event





52
Transactive Neighbor
(C) + 0
C
(C)
(C)
(C)
(C)
(C)



ID*









10
Receive TIS Source*
+0
C
(C)
(C)
(C)
(C)
(C)


11
Receive TFS Source*
+0
C
(C)
C)
(C)
(C)
(C)


12
Sent TIS Targets*
+0
C
(C)
(C)
(C)
(C)
(C)


13
Send TFS Targets*
+0
C
(C)
(C)
(C)
(C)
(C)


23
Received TIS Buffer
+0








24
Received TFS Buffer
+0





*These attributes should be configured before a transactive neighbor connection can enter its 2 - Configured state.


**The connection Configuration Test additionally should check that 32 - Connection Status has been configured.






6.1.11 System Manager Connection Attributes

In certain embodiments, a single attribute can define a connection to a system manager.









TABLE 14







Ways in which System Manager Connection Attributes may be affected by


Connection Commands and Events





















Loss of
Re-Establish
Terminate




Configure
Configuration
Connect
Disconnect
Connection
Connection
Connection


Attribute #
Attribute Name
Command
Test**
Command
Command
Event
Event
Event





52
System Manager
(C) + 0
C
(C)
(C)
(C)
(C)
(C)



ID*





*The Connection Status should be configured before a connection can enter its 2 - Configured state.


**The connection Configuration Test additionally should check one or more attributes of the connection partner type.






Note that in certain implementations, transactive nodes establish and maintain a connection to the global system manager. Therefore, attribute 52 System Manager ID includes the ID of this global system manager for the transactive nodes.









TABLE 15







Dictionary of System Manager Connection Attributes














Attribute




Range of


No.
Name
Description
Role
Type
Format
values





52
System
The identifier
This attribute
Single
Example #1:
See system



Manager
for one system
instantiates a
character
“EI01” to
topology.



ID*
manager. This
system manager
strings
represent the
Naming




entity will be
from those that

system
practice




granted
appear in 50 - List

manager, from
should be




permissions by
of System

which system
the same




this transactive
Managers. A system

management
here and for




node to make
manager for which

command will
attribute




some system
this attribute has

likely be
50 - List of




management
been configured will

received.
System




commands.
enter its Listed state.


Managers.





A system manager








is not a transactive








neighbor, but a








transactive neighbor








may be granted








permissions to act








as a system








manager.








This transactive








node may instantiate








multiple connections








to system








managers. The








Demonstration, for








example, will have








some central system








management








(“EI01”), but this








transactive node








may also grant








system








administration rights








to the utility that








“owns” this








transactive node.









6.1.12 Asset Connection Attributes

This group of Asset attributes are meaningful only in respect to a given connection to an asset, which can be an energy resource, an incentive, or a load. Each resource or incentive has a corresponding toolkit resource and incentive function that defines how its behavior and effects may be modeled or predicted for the formulation of the transactive signals according to the toolkit framework. Each load similarly should have a corresponding toolkit load function that describes its effect on the formulation of the TFS. Often these “assets” will, in fact, be rather complex systems of assets.


An asset connection may list a set of local information connections that should be established via its 38—List of Local Information. Each member of this list creates an expectation that a local information connection will become established.


An asset connection should have its 2—Asset ID, 6—Toolkit Function, and 6—Asset Type configured before it is able to enter into the connection state 2—Configured









TABLE 16







Dictionary of Asset Connection Attributes














Attribute




Range of


No.
Name
Description
Role
Type
Format
values
















2
Asset ID*
This attribute
Each
Character
Recommend
The




identifies the
resource,
string
format “XX-
Demonstration




resources,
incentive, or

#” for each
has already




incentives,
load should be

asset, where
specified




and loads
identified

“XX” is a 2-
identifiers for




associated
along with its

letter
responsive




with this
toolkit

acronym for
asset systems




transactive
function,

the owner of
(most of which




control node.
status,

this
are loads)





predicted/

transactive
according to





scheduled

node, and “#’
this





engagement,

is an integer
convention.





etc.

number that
Loads = [0-999]







ensures that
Resources =







the identifier
[1000-1999]







is unique.
Incentives =








[2000-2999]


6
Toolkit
An
States the
List of
{filename1,
Valid



Function
identification
specific toolkit
Alphanumeric
#.##;
filenames are



ID*
of the
function and
modules or
filename2,
to be used.




specific
version that is
filenames and
#.##, . . . }
“#.##” is major




toolkit
being applied
the present

and minor




function and
at this
version of

version




version-the
transactive
these

numbers using




functional
node for each
modules.

digits 0-9.




algorithms
resource,







used at this
incentive, or







transactive
load.







node to
A toolkit







process the
function







TIS, TFS,
should be







local
named for







information,
each







and to
resource,







control
incentive, and







associated
load for which







assets.
predictive








behavior is








being modeled








by a toolkit








function.





25
Asset
Enables a
This feature
List of
See 2 -
Should refer to



Output
control
may facilitate
alphanumeric
Asset ID.
valid resource



Targets*
output to a
using the
identifiers

or load entity




resource or
installed


ID from the




load to
transactive


2 - Asset IDs




become
control and


that are being




redirected to
coordination


used.




one or more
system for







target
simulation of







locations.
asset







The target
responses







locations do
under







not
alternative







necessarily
scenarios and







include the
during testing.







resource or
If targets do







load itself.
not include the








asset system,








the asset








should not








respond.








Should be








configured for








a successful








connection








Configuration








Test.





36
Asset Type
Declaration
May be useful
Single
Example:
“Resource”—describes




of asset type
for
alphanumeric
“Resource”
a




at least from
categorization
string

generator




among
of asset


resource at




“Resource,”
connections.


this transactive




“Incentive,”
Range of


node.




and “Load.”
values may be


“Incentive”—describes





expanded.


an





See the toolkit


incentive that





framework to


is not a





understand


resource.





the roles of


“Load”—describes





toolkit


an





functions.


elastic or








inelastic load








at this








transactive








node.


38
List of Local
A list of the
An asset's
List of
See 48 -
Should



Information
sources of
predicted
character
Local
correspond to



Connections
local
behavior is
strings
Information
valid 48 -




information
modeled by a

ID.
Local




that will be
toolkit


Information ID.




called upon
function,







to help
which in turn







predict the
may call upon







behavior of
sources of







this asset.
local








information. A








connection








listed in this








attribute








creates an








expectation








that this








transactive








node will








establish and








manage the








connection.









To support future simulations and testing, the connection state model includes an ability to redirect the output of these asset connections. Some of the assets will be responsive to the transactive control and coordination system and an output “control” signal is sent to these asset systems by this transactive node. Attribute 25—Asset Output Targets allows the targets of these “control” signals to be sent to the asset system, to another entity, or to both the asset system the other entity.


List the local information inputs that are anticipated by an asset system and the toolkit function that predicts its behaviors. These streams of input information that are at time referred to as “other local conditions” should additionally become listed as attributes 48—Local Information ID so that the continuity of the data stream may be monitored and so the input can become redirected, thus allowing alternative scenarios to be simulated with alternative input information.


Table 17 lists the asset attributes and indicates how these attributes may be affected by the system management commands and events that are part of the connection state model.









TABLE 17







The Ways Asset Attributes May be Affected by Connection State Model


Commands and Events





















Loss of
Re-Establish
Terminate




Configure
Configuration
Connect
Disconnect
Connection
Connection
Connection


Attribute #
Attribute Name
Command
Test**
Command
Command
Event
Event
Event


















2
Asset ID*
C + 0
C
(C)
(C)
(C)
(C)
(C)


6
Toolkit Function*
+0
C







25
Asset Output Targets*
(C) + 0
C
(C)
(C)
(C)
(C)
(C)


36
Asset Type
+0
(C)







38
List of Local Information
(C) + 0
C
(C)
(C)
(C)
(C)
(C)



Connections





*These attributes should be configured before an asset connection can enter its 2 - Configured state.


**The connection Configuration Test additionally should check that 32 - Connection Status has been configured.






The Assets in the Asset Table of Table 16 are closely aligned with several of the interim data storage areas (“buffers”) that have been defined in the toolkit framework and with appear also in the state mode. For an asset connection there should be corresponding entries in one or more of the buffer (storage) areas that have been defined in the toolkit framework:

    • Resource entries necessitate updating one record in attribute 34—Resource Schedule and Cost Buffer during each iteration at the update frequency. (An exception may occur because an option has been provided for resource schedules to be entered without corresponding toolkit functions. This might be selected for some resources that are dispatched entirely unaffected by transactive control.) For a resource, this entry will state at least an energy parameter and average power produced by the corresponding resource for each interval start time.
    • Incentive entries, like resources, also necessitate updating one record in attribute 34—Resource Schedule and Cost Buffer during each iteration at the update frequency. That entry will include entries from among a paired set of capacity factor and capacity, an infrastructure parameter, and another costs parameter.
    • Load entries necessitate one record be made in each attribute 45—Inelastic Load Prediction Buffer and 46—Elastic Load Prediction Buffer each iteration. The entries in those buffer (storage) locations predict load and, for responsive assets, the predicted level of engagement of responsive asset systems.


6.1.13 Local Information Connection Attributes








TABLE 18







Dictionary of Local Information Connection Attributes














Attribute




Range of


No.
Name
Description
Role
Type
Format
values





48
Local
Unique
This ID should
Single
Recommend “XX-
Should match



Information
identifier to
be listed in a
character
OLC-3###”,
formats and



ID*
keep track of
record of the
string.
where XX is an
entries in




the local
Connections

acronym for the
38 - List of




information
Table.

node owner,
Local




that are used
Once clearly

“3###” is a
Information




by this
identified, this

number from
Connections




transactive
input may

3000 to 3999.





node.
then be

Example: “AV-





“Local
supplied by

OLC-3001”





Information”
alternative







has been
sources via







referred to as
the attribute







“Other Local
26 - Local







Conditions” in
Information







the toolkit
Source.







framework








and in other








sections.






26
Local
One source of
Enables an
Character
Example 1:
Alternative 1:



Information
Local
alternative
string.
“AV3015”
ID of other



Source*
Information
source of

Example 2: “EI01”
local




will normally
other local

Example 3:
condition




be the actual
conditions to

“OLCFile01.exe”
provider from




source of the
be used to


Other Local




data. This
facilitate


Condition




attribute
testing and


Table.




allows that the
simulation.


Alternative 2:




input data may



Valid ID from




be received



among




from



Connection




alternative



Table records




sources.



Alternative 3:








Valid








filename in








known








directory.









A transactive node may possess many assets, and each asset may invoke multiple input information streams. Therefore, the local information connections should be carefully defined in the connection state model, and two attributes have been grouped as local information connection attributes.


A local information connection is an input that is invoked by and used by a toolkit function. Experimenters and testing personnel may wish to intentionally insert other alternative input information into the toolkit functions via this local information to simulate alternative scenarios that would be unlikely to occur under normal operations. Attribute 48 has been provided for this purpose, with which the source of the local information may be received from either the normal information provider or from an alternative source like an input file. Table 19 lists which of the state model's commands and events are expected to modify the two Other Local Condition Attributes.









TABLE 19







Ways in Which Local Information Connection Attributes May be Affected by


Commands and Events in this State Model





















Loss of
Re-Establish
Terminate




Configure
Configuration
Connect
Disconnect
Connection
Connection
Connection


Attribute #
Attribute Name
Command
Test**
Command
Command
Event
Event
Event





48
Local Information ID*
C + 0
C
(C)
(C)
(C)
(C)
(C)


26
Local Information
+0
C
(C)
(C)
(C)
(C)
(C)



Source*





*These attributes should be configured before a local information connection can enter its 2 - Configured state.


**The connection Configuration Test additionally should check that 32 - Connection Status has been configured.






6.1.14 Functions and Events of the Connection State Model

Configure( ) (Connection Attributes) Command—the same flexible command that was applied to the transactive node may also be used for configuring the connections that a transactive node manages. Only the new parameters that should be used for connections will be presented; most parameters that were used for the transactive node state model will not be repeated. This command is used with connection attributes by first referring to the respective connection identifier (e.g., contents of attributes 52, 2, 53, or 48) and setting or modifying that connection's remaining attributes.


Command Parameters

    • ConfigureFile=(Filename)—If a file is named using this parameter, a command script will be read from Filename found in a known file directory. It is recommended that the Filename should contain scripted parameters as would be used an in-line command.
    • Any combination of the following comma-separated, in-line command parameters may be used and in any order:
    • TransactiveNeighbor=(52—Transactive Neighbor ID)—If the Transactive Neighbor ID does not match an existing one, configure a new Transactive Neighbor ID. The commands that follow this command in the sequence of command parameters are assumed to refer to this transactive neighbor connection. This command parameter may be used again to reference another transactive neighbor connection.
      • TransactiveNeighborDelete—Remove the record for the most recently referenced Transactive Neighbor ID.
      • TransactiveNeighborAttribute=attribute #, attribute value 1[[, attribute value 2], . . . ]—This parameter may be used to initialize or change the contents of any transactive neighbor connection attribute except attributes 52—Transactive Neighbor ID and 32—Connection Status.
    • SystemManager=(53—System Manager ID)—If the System Manager ID does not match an existing one, configure a new System Manager ID. The commands that follow this command in the sequence of command parameters are assumed to refer to this system manager connection. This command parameter may be used again to reference another system manager connection.
      • SystemManagerDelete—Remove the record for the most recently referenced System Manager ID.
      • SystemManagerAttribute=attribute #, attribute value 1[[, attribute value 2], . . . ]—This parameter may be used to initialize or change the contents of any system manager connection attribute except attributes 53—System Manager ID and 32—Connection Status.
    • Asset=(2—Asset ID)—If the Asset ID does not match an existing one, configure a new Asset ID. the commands that follow this command in the sequence of command parameters are assumed to refer to this asset connection. This command parameter may be used again to reference another asset connection.
      • AssetDelete—Remove the record for the most recently referenced
      • Asset ID.
    • AssetAttribute=attribute #, attribute value 1[[, attribute value 2], . . . ]—This parameter may be used to initialize or change the contents of any asset connection attribute except attributes 2—Asset ID and 32—Connection Status.
    • Locallnformation=(48—Local Information ID)—If the Local Information ID does not match an existing one, configure a new Local Information ID. The commands that follow this command in the sequence of command parameters are assumed to refer to this local information connection. This command parameter may be used again to reference another local information connection.
      • LocalInformationDelete—Remove the record for the most recently referenced Local Information ID.
      • LocalInformationAttribute=attribute #, attribute value 1[[, attribute value 2], . . . ]—This parameter may be used to initialize or change the contents of any local information connection attribute except attributes 48—Local Information ID and 32—Connection Status.


Command Logic

    • If the entity that made this command is not the local system manager and if the entity has not been explicitly given permission to make this system management command among the commands in its 31—Connection Partner's System Management Permissions, then reply
      • “Command failed—(F1) Permissions do not include this command”
    • From transactive node part of state model, which addressed the Configure function, if attribute 7—Node Status=“5” (state 5—Operational), then reply
      • “Command failed—(F2) Configure command not allowed from Operational state.”
    • If 32—Connection Status is “3” (connection state 3—Connected) or “4” (connection state 4—Lost Connection), from which configuration of a connection is not be permitted, then reply
      • “Command failed—(F12) Configure command not allowed from connected connection states.”
    • If Filename cannot be found, reply
      • “Command failed—(F3) File cannot be found or opened”
    • Failure conditions F4 (Incorrect node ID) and F5 (Command did not address known node attributes) do not apply during configuration of connections but should be reserved nonetheless.
    • If the entity making this system management command attempts to change a given connection's attributes, but the entity is not listed among this connection's 30—Entities Permitted to Modify this Connection (applies to any of the types of connections), then reply
      • “Command failed—(F7) Entity making command does not have permission to configure this connection.”
    • If the transactive neighbor connection attribute number does not match a known transactive neighbor connection attribute number (e.g., is not a member of {10, 11, 12, 13, 17, 23, 24, 28, 29, 30, 31, 33}), or if no 52—Transactive Neighbor ID has been stated as a parameter before this command attempts to configure its attributes, then reply
      • “Command failed—(F8) Command did not address known transactive neighbor connection attributes”
    • If the system manager connection attribute number does not match a known system manager connection attribute number (e.g., is not a member of {17, 28, 29, 30, 31, and 33}), or if no 53—System Manager ID has been stated as a parameter before this command attempts to configure its attributes, then reply
      • “Command failed—(F9) Command did not address known system manager connection attributes”
    • If the asset connection attribute number does not match a known asset connection attribute number (e.g., is not a member of {6, 17, 25, 28, 29, 30, 31, 33, 36, and 38}), or if no 2—Asset ID has been stated as a parameter before this command attempts to configure its attributes, then reply
      • “Command failed—(F10) Command did not address known asset connection attributes”
    • If the local information connection attribute number does not match a known local information connection attribute number (e.g., is not a member of {17, 26, 28, 29, 30, 31, and 33}), or if no 48—Local Information ID has been stated as a parameter before a command attempts to configure its attributes, then reply
      • “Command failed—(F11) Command did not address known local information connection attributes”
    • If the command cannot be completed for any other reason, reply
      • “Command failed—(F6) Unknown reason”
    • Otherwise,
      • Reply, “Command succeeded—(S1)”
      • Finalize any changes to connection attributes that were specified in the file or in-line command.
      • Run a Connection Configuration Test on this connection.
      • Run a transactive node Configuration Test on this transactive node.


Connection Configuration Test( )—a simple test of a given connection's attributes to determine if the connection may transition into or remain in its 2—Configured state. A connection in either its 3—Connected or 4—Lost Connection state has, by definition passed its Connection Configuration Test. If a connection passes its Connection Configuration Test, it should be in state 2—Configured; if it fails, it should be in state 1—Listed.


A Connection Configuration Test is not a system command. It should be initiated by the logic of the transactive node and by the transactive node itself. It should be run for a given connection anytime that the Configure( ) command has run successfully and might have therefore modified the configuration of the connection.


Test Parameters

    • All=test each connection according to its connection type
    • TransactiveNeighbor=(52—Transactive Neighbor ID)—conduct the test on this transactive neighbor connection.
    • SystemManager=(53—System Manager ID)—conduct the test on this system manager connection.
    • Asset=(2—Asset ID)—conduct the test on this asset connection.
    • LocalInformation=(48—Local Information ID)—conduct the test on this local information connection.


Test Logic

    • If upon checking attribute 32—Connection Status for a connection, this connection is found to be in either state “3” (3—Connected) or “4” (4—Lost Connection), then
      • Test passed—(S1) The Connected and Lost Connection states, by definition, pass the Connection Configuration Test
    • For each configured 52—Transactive Neighbor ID, if any of the attributes 10—Receive TIS Source, 11—Receive TFS Source, 12—Send TIS Targets, 13—Send TFS Targets, 32—Connection Status, or 29—Connection Partner Type have not been configured, then
      • Test failed—(F1) Transactive neighbor connection is not configured
      • Set attribute 32—Connection Status=“1” (connection state 1—Listed) for this connection.
    • For each configured 53—System Manager ID, if either of the attributes 32—Connection Status or 29—Connection Partner Type have not been configured, then
      • Test failed—(F2) System manager connection is not configured
      • Set attribute 32—Connection Status=“1” (connection state 1—Listed) for this connection.
    • For each configured 2—Asset ID, if any of the attributes 6—Toolkit Function, 25—Asset Output Targets, 32—Connection Status, or 29—Connection Partner Type have not been configured, then
      • Test failed—(F3) Asset connection is not configured
      • Set 32—Connection Status=“1” (connection state 1—Listed) for this connection.
    • For each configured 48—Local Information ID, if any of the attributes 26—Local Information Source, 32—Connection Status, or 29—Connection Partner Type have not been configured, then
      • Test failed—(F4) Local information connection is not configured
      • Set 32—Connection Status=“1” (connection state 1—Listed) for this connection.
    • Otherwise
      • Test passed—(S2)
      • Set 32—Connection Status=“2” (connection state 2—Configured) for this connection.


        Connect( )Command—directs a configured connections to be completed between this transactive node and one of its connection partners.
    • Command Parameters
      • Connection=([All/Connection ID])—identifies one connection that is to be completed from this transactive node to a configured connection with a transactive neighbor, system manager, asset, or local information source. If the parameter “All” is used, the transactive node should attempt to apply the command logic sequentially to every configured connection (e.g., every connection for which a 52—Transactive Neighbor ID, 53—System Manger ID, 2—Asset ID, or 48—Local Information ID has been configured).
    • Command Logic
      • If the entity that made this command is not the local system manager and if the entity has not been explicitly given permission to make this system management command, among the commands in its 31—Connection Partner's System Management Permissions, then reply
        • “Command failed—(F1) Permissions do not include this command.”
      • If the Connection ID parameter of this command cannot be recognized from among the sets of configured 52—Transactive Neighbor ID, 52—System Manager ID, 2—Asset ID, or 48—Local Information ID at this transactive node, then reply
        • “Command failed—(F2) Connection ID was not recognized from configured connections.”
      • If the entity making this command is not among the 30—Entities Permitted to modify this Connection for the referenced connection, then reply
        • “Command failed—(F3) Entity does not have permission to change this connection.”
      • If upon review of its 32—Connection Status, the referenced connection is determined to be in its 3—Connected state, then reply
        • “Command succeeded—(S1) Connection was already completed.”
      • If upon review of its 32—Connection Status, the referenced connection is determined to be in its 1—Listed state, then reply
        • “Command failed—(F4) Connection cannot be completed from present connection state.”
      • If the given connection cannot be completed for any other reason, reply
        • “Command failed—(F5) Unknown reason”
        • If 32—Connection Status=“3” (connection status 3—Connected), then set 32—Connection Status=“2” (connection state 2—Configured) for the referenced connection.
    • Otherwise,
      • Reply, “Command succeeded—(S2)”
      • Complete the referenced connection
      • Set 32—Connection Status=“3” (connection state 3—Connected) for the referenced connection.


        Disconnect( ) Command—system management command by which a transactive node is asked to disconnect a connection between this transactive node and one of its connection partners.
    • Command Parameters
      • Connection=([All/Connection ID])—identifies one connection that is to be disconnected between this transactive node and a transactive neighbor, system manager, asset, or local information source. If the parameter “All” is used, the transactive node should attempt to apply the command logic sequentially to every configured connection (e.g., every connection for which a 52—Transactive Neighbor ID, 53—System Manger ID, 2—Asset ID, or 48—Local Information ID has been configured).
    • Command Logic
      • If the entity that made this command is not the local system manager and if the entity has not been explicitly given permission to make this system management command among the commands in its 31—Connection Partner's System Management Permissions, then reply
        • “Command failed—(F1) Permissions do not include this command.”
      • If the Connection ID parameter of this command cannot be recognized from among the sets of configured 52—Transactive Neighbor ID, 52—System Manager ID, 2—Asset ID, or 48—Local Information ID at this transactive node, then reply
        • “Command failed—(F2) Connection ID was not recognized from configured connections.”
      • If the entity making this command is not among the 30—Entities Permitted to modify this Connection for the referenced connection, then reply
        • “Command failed—(F3) Entity does not have permission to change this connection.”
      • If upon review of its 32—Connection Status, the referenced connection is determined to be in either its 2—Configured or 1—Listed state, then reply
        • “Command succeeded—(S1) Connection was already disconnected.”
      • If the given connection cannot be completed for any other reason, reply
        • “Command failed—(F4) Unknown reason”
      • Otherwise,
        • Reply, “Command succeeded—(S2)”
        • Disconnect the referenced connection
        • Set 32—Connection Status=“2” (connection state 2—Configured) for the referenced connection.


Loss of Connection Event( )—a diagnostic process at this transactive node observes the health and activity of each connection. If the connection should fail, the diagnostic process initiates a Loss of Connection Event. This event transitions the respective connection into a temporary Lost Connection state, from which the ramifications of the event may be addressed and handled. This transactive node is permitted to remain in its Operational state in the meantime, according to the logic of the present state model.

    • Event Parameters—None.
    • Said “diagnostic process” should apply to a connection that is in either its 3—Connected or 4—Lost Connection states. The means by which a connection may be monitored may involve one or more of these suggested mechanisms:
      • Observation of interactions with connection partners that occur or fail to occur at times that such interactions were anticipated
      • Occasional “pings” of connection partners to determine whether they remain communicative
      • A “heartbeat” mechanism that ensures connection partners that a connection remains active. (A “heartbeat” between transactive neighbors should be bidirectional because both transactive neighbors will share this to monitor the connection. Other connection partners may not be transactive nodes, in which case the heartbeat may be unidirectional to satisfy the transactive node)
    • Event Handler Logic
      • This logic applies to a connection that is in its 3—Connected state.
      • If a connection is no longer working based on findings from the diagnostic process,
        • Set 32—Connection Status=“4” (connection state 4—Lost Connection) for this connection.
      • Add a record of the UTC standard time at which the event occurred into the 55—Lost Connection Event Buffer.
      • Start a timer to keep track of how long this connection remains in its Lost Connection state.


Re-Establish Connection Event( )—a diagnostic process recognizes that a connection has become restored for a connection that was in its Lost Connection state. The connection reverts to its Connected state.

    • Event Parameters—None.
    • This event handler should use the same diagnostic process that was described above for the Loss of Connection Event.
    • Event Handler Logic
      • This logic applies only to a connection that is in its temporary Lost Connection state.
      • If prior to the occurrence of a Terminate Connection Event®, this transactive node recognizes that a lost connection has become restored, then
        • Set 32—Connection Status=“3” (connection state 3—Connected) for the respective connection
        • Stop the Loss of Connection Event timer.
        • Re-commence interactions with the respective connection partner via this connection.


Terminate Connection Event( )

    • Event Parameters—None.
    • This event handler should use the same diagnostic process that was described above for the Loss of Connection Event and Re-Establish Connection Event.
    • Event Handler Logic
      • This logic applies to a connection that is in its Lost Connection state.
      • If the Loss of Connection Event timer exceeds 54—Connection Timeout Period for this connection, then
        • Set 32—Connection Status=“2” (connection state 2—Configured) for this connection
        • Issue alert, “(A1)—Terminate Connection Event occurred by timeout for connection [Connection ID].”
      • If upon reviewing the contents of the 55—Loss of Connection Event Buffer it is observed that the numbers of Loss of Connection Events in the last hour has exceeded the criteria in 56—Allowed Frequency of Loss of Connection Events, then
        • Set 32—Connection Status=“2” (connection state 2—Configured) for this connection
        • Issue alert, “(A2)—Terminate Connection Event—Too many hourly events for connection [Connection ID].”
      • If upon reviewing the contents of the 55—Loss of Connection Event Buffer the numbers of Loss of Connection Events in the last 24 hours has exceeded the criteria in 56—Allowed Frequency of Loss of Connection Events, then
        • Set 32—Connection Status=“2” (connection state 2—Configured) for this connection
        • Issue alert, “(A3)—Terminate Connection Event—Too many daily events for connection [Connection ID].”


6.1.15 Connection State Transition Table

Table 20 is the state transition table for the four types of connections that are to be managed by a transactive node. Refer to the diagrammatic representation of the connection state transitions in FIG. 30 that should represent these same state transitions.









TABLE 20







State Transition Table for Connections of Four Types












Acts Upon
Producing

Info.
















Internal
Current

To Set
Next

On the
Gathered &


Row
Function
State
Using Input
Attributes
State
Output
Condition
Recorded





11a
Connection
1 - Listed
Connection

1 - Listed
Connection
Test failed -
Connection



Configuration

attributes 2 -


event log
[(F1) Transactive
event log



Test

Asset ID,


entry
neighbor
entry



Failed

10 -



connection






Receive



is not






TIS



configured/






Source, 11 -



(F2) System






Receive



manager






TFS



connection






Source, 12 -



is not






Sent TIS



configured/






Targets, 13 -



(F3) Asset






Send



connection






TFS



is not






Targets, 25 -



configured/






Asset



(F4) Local






Output



information






Targets, 26 -



connection






Local



is not






Information



configured]






Source, 32 -










Connection










Status, 29 -










Connection










Partner










Type, 48 -










Local










Information










ID, 52 -










Transactive










Neighbor










ID, and 53 -










System










Manager










ID







11b
Configure
1 - Listed
Source of
Nearly
1 - Listed
Reply:
Success -
Connection





command;
any

“Command
(S1)
command





command
connection

Succeeded -

log entry





parameters;
attribute

(S1)”







Filename;
may be

Action: Run







lists of
configured.

Connection







configurable
See

Configuration







attributes
the

Test







(see
command

Action: Run







command
definition

Configuration







definition),
for

Test







connection
details.

Connection







attributes
Lists of

command







2 - Asset
configurable

log entry







ID, 30 -
attributes









Entities
may be









Permitted
found in









to Modify
the









this
command









Connection,
definition.









31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







11c
Disconnect
1 - Listed
Source of

1 - Listed
Reply:
Success -
Connection





command;


“Command
(S1)
command





command


succeeded -
Connection
log entry





parameters;


(S1)
already






connection


Connection
disconnected






attributes


already







2 - Asset


disconnected”







ID,


Connection







30 - Entities


command







Permitted


log entry







to Modify










this










Connection,










31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







11d
Fail to
1 - Listed
Source of

1 - Listed
Reply:
Command
Connection



Configure

command;


“Command
failed -
command





command


failed -
[(F1) Permissions
log entry





parameters;


[(F1) Permissions
do






Filename;


do
not include






lists of


not include
this






configurable


this
command/






attributes


command/
(F2)






(see


(F2)
Configure






command


Configure
command






definition),


command
not allowed






connection


not allowed
from






attributes


from
Operational






2 - Asset


Operational
state/






ID, 30 -


state/
(F3) File






Entities


(F3) File
cannot be






Permitted


cannot be
found or






to Modify


found or
opened/






this


opened/
(F7) Entity






Connection,


(F7) Entity
making






31 - Connection


making
command






Partner's


command
does not






System


does not
have






Management


have
permission






Permissions,


permission
to configure






32 - Connection


to configure
this






Status,


this
connection/






48 - Local


connection/
(F8) Command






Information


(F8) Command
did not






ID,


did not
address






52 - Transactive


address
known






Neighbor


known
transactive






ID,


transactive
neighbor






53 - System


neighbor
connection






Manager


connection
attributes/






ID


attributes/
(F9)









(F9)
Command









Command
did not









did not
address









address
known









known
system









system
manager









manager
connection









connection
attributes/









attributes/
(F10) Command









(F10) Command
did









did
not address









not address
known









known
asset









asset
connection









connection
attributes/









attributes/
(F11) Command









(F11) Command
did









did
not address









not address
known local









known local
information









information
connection









connection
attributes/









attributes/
(F6)









(F6)
Unknown









Unknown
reason]









reason]”










Connection










command










log entry




11e
Fail to
1 - Listed
Source of

1 - Listed
Reply:
Failure -
Connection



Connect

command;


“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F4) Connection






Information


connection/
cannot be






ID,


(F4) Connection
completed






52 - Transactive


cannot be
from






Neighbor


completed
present






ID,


from
connection






53 - System


present
state]






Manager


connection







ID


state]”










Connection










command










log entry




11f
Fail to
1 - Listed
Source of

1 - Listed
Reply:
Failure -
Connection



Disconnect

command;


“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F4) Unknown






Information


connection/
reason]






ID,


(F4) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID







12
Connection
1 - Listed
Connection
32 -
2 - Configured
Connection
Test
Connection



Configuration

attributes 2 -
Connection

event log
passed -
event log



Test

Asset ID,
Status =

entry
(S2)
entry



Passed

10 -
“2”


Normal






Receive
(connection


pass






TIS
state


condition






Source, 11 -
2 - Configured)









Receive










TFS










Source, 12 -










Sent TIS










Targets, 13 -










Send










TFS










Targets, 25 -










Asset










Output










Targets, 26 -










Local










Information










Source, 32 -










Connection










Status, 29 -










Connection










Partner










Type, 48 -










Local










Information










ID, 52 -










Transactive










Neighbor










ID, and 53 -










System










Manager










ID







21
Connection
2 - Configured
Connection

1 - Listed
Connection
Test failed -
Connection



Configuration

attributes 2 -


event log
[(F1) Transactive
event log



Test

Asset ID,


entry
neighbor
entry



Failed

10 -



connection






Receive



is not






TIS



configured/






Source, 11 -



(F2) System






Receive



manager






TFS



connection






Source, 12 -



is not






Sent TIS



configured/






Targets, 13 -



(F3) Asset






Send



connection






TFS



is not






Targets, 25 -



configured/






Asset



(F4) Local






Output



information






Targets, 26 -



connection






Local



is not






Information



configured]






Source, 32 -










Connection










Status, 29 -










Connection










Partner










Type, 48 -










Local










Information










ID, 52 -










Transactive










Neighbor










ID, and 53 -










System










Manager










ID







22a
Configure
2 - Configured
Source of
Nearly
2 - Configured
Reply:
Success -
Connection





command;
any

“Command
(S1)
command





command
connection

Succeeded -

log entry





parameters;
attribute

(S1)”







Filename;
may be

Action: Run







lists of
configured.

Connection







configurable
See

Configuration







attributes
the

Test







(see
command

Action: Run







command
definition

Configuration







definition),
for

Test







connection
details.

Connection







attributes
Lists of

command







2 - Asset
configurable

log entry







ID, 30 -
attributes









Entities
may be









Permitted
found in









to Modify
the









this
command









Connection,
definition.









31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







22b
Connection
2 - Configured
Connection

2 - Configured
Connection
Test
Connection



Configuration

attributes 2 -


event log
passed -
event log



Test

Asset ID,


entry
(S2)
entry



Passed

10 -



Normal






Receive



pass






TIS



condition






Source, 11 -










Receive










TFS










Source, 12 -










Sent TIS










Targets, 13 -










Send










TFS










Targets, 25 -










Asset










Output










Targets, 26 -










Local










Information










Source, 32 -










Connection










Status, 29 -










Connection










Partner










Type, 48 -










Local










Information










ID, 52 -










Transactive










Neighbor










ID, and 53 -










System










Manager










ID







22c
Disconnect
2 - Configured
Source of

2 - Configured
Reply:
Success -
Connection





command;


“Command
(S1)
command





command


succeeded -
Connection
log entry





parameters;


(S1)
already






connection


Connection
disconnected






attributes


already







2 - Asset


disconnected”







ID,


Connection







30 - Entities


command







Permitted


log entry







to Modify










this










Connection,










31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







22d
Fail to
2 - Configured
Source of

2 - Configured
Reply:
Command
Connection



Configure

command;


“Command
failed -
command





command


failed -
[(F1) Permissions
log entry





parameters;


[(F1) Permissions
do






Filename;


do
not include






lists of


not include
this






configurable


this
command/






attributes


command/
(F2)






(see


(F2)
Configure






command


Configure
command






definition),


command
not allowed






connection


not allowed
from






attributes


from
Operational






2 - Asset


Operational
state/






ID, 30 -


state/
(F3) File






Entities


(F3) File
cannot be






Permitted


cannot be
found or






to Modify


found or
opened/






this


opened/
(F7) Entity






Connection,


(F7) Entity
making






31 - Connection


making
command






Partner's


command
does not






System


does not
have






Management


have
permission






Permissions,


permission
to configure






32 - Connection


to configure
this






Status,


this
connection/






48 - Local


connection/
(F8) Command






Information


(F8) Command
did not






ID,


did not
address






52 - Transactive


address
known






Neighbor


known
transactive






ID,


transactive
neighbor






53 - System


neighbor
connection






Manager


connection
attributes/






ID


attributes/
(F9)









(F9)
Command









Command
did not









did not
address









address
known









known
system









system
manager









manager
connection









connection
attributes/









attributes/
(F10) Command









(F10) Command
did









did
not address









not address
known









known
asset









asset
connection









connection
attributes/









attributes/
(F11) Command









(F11) Command
did









did
not address









not address
known local









known local
information









information
connection









connection
attributes/









attributes/
(F6)









(F6)
Unknown









Unknown
reason]









reason]”










Connection










command










log entry




22e
Fail to
2 - Configured
Source of

2 - Configured
Reply:
Failure -
Connection



Connect

command;


“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F5) Unknown






Information


connection/
reason]






ID,


(F5) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID







22f
Fail to
2 - Configured
Source of

2 - Configured
Reply:
Failure -
Connection



Disconnect

command;


“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F4) Unknown






Information


connection/
reason]






ID,


(F4) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID







23
Connect
2 - Configured
Source of
32 -
3 - Connected
Reply:
Command
Connection





command;
Connection

“Command
succeeded -
command





command
Status =

succeeded -
(S2)
log entry





parameters;
“3”

(S2)”
Normal






connection
(connection

Connection
completion






attributes
state

command







2 - Asset
3 -

log entry







ID,
Connected)









30 - Entities










Permitted










to Modify










this










Connection,










31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







32
Disconnect
3 - Connected
Source of
32 -
2 - Configured
Reply:
Success -
Connection





command;
Connection

“Command
(S2)
command





command
Status =

succeeded -
Normal
log entry





parameters;
“2”

(S2)”
completion






connection
(connection

Action:







attributes
state

Sever







2 - Asset
2 - Configured)

connection







ID,


to this







30 - Entities


communication







Permitted


partner







to Modify


Connection







this


command







Connection,


log entry







31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







33a
Connection
3 - Connected
Connection

3 - Connected
Connection
Test
Connection



Configuration

attributes 2 -


event log
passed -
event log



Test

Asset ID,


entry
(S1)
entry



Passed

10 -



Connection






Receive



already






TIS



completed






Source, 11 -










Receive










TFS










Source, 12 -










Sent TIS










Targets, 13 -










Send










TFS










Targets, 25 -










Asset










Output










Targets, 26 -










Local










Information










Source, 32 -










Connection










Status, 29 -










Connection










Partner










Type, 48 -










Local










Information










ID, 52 -










Transactive










Neighbor










ID, and 53 -










System










Manager










ID







33b
Connect
3 - Connected
Source of

3 - Connected
Reply:
Command
Connection





command;


“Command
succeeded -
command





command


succeeded -
(S1)
log entry





parameters;


(S1)
Connection






connection


Connection
already






attributes


already
made






2 - Asset


made”







ID,


Connection







30 - Entities


command







Permitted


log entry







to Modify










this










Connection,










31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







33c
Fail to
3 - Connected
Source of

3 - Connected
Reply:
Command
Connection



Configure

command;


“Command
failed -
command





command


failed -
[(F1) Permissions
log entry





parameters;


[(F1) Permissions
do






Filename;


do
not include






lists of


not include
this






configurable


this
command/






attributes


command/
(F2)






(see


(F2)
Configure






command


Configure
command






definition),


command
not allowed






connection


not allowed
from






attributes


from
Operational






2 - Asset


Operational
state/






ID, 30 -


state/
(F12) Configure






Entities


(F12) Configure
command






Permitted


command
not allowed






to Modify


not allowed
from






this


from
connected






Connection,


connected
connection






31 - Connection


connection
states]






Partner's


states]”







System


Connection







Management


command







Permissions,


log entry







32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







33d
Fail to
3 - Connected
Source of

3 - Connected
Reply:
Failure -
Connection



Connect

command;


“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F5) Unknown






Information


connection/
reason]






ID,


(F5) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID







33e
Fail to
3 - Connected
Source of

3 - Connected
Reply:
Failure -
Connection



Disconnect

command;


“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F4) Unknown






Information


connection/
reason]






ID,


(F4) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID







34
Loss of
3 - Connected
Diagnostic
32 -
4 - Lost
Connection
Diagnostic
Connection



Connection

system
Connection
Connection
event log
system
event log



Event

information
Status =

entry
detects that a
entry





from the
“4”


connection






system that
(connection


to a






oversees
state


connection






connections;
4 - Lost


partner is






identity
Connection),


dead while






of affected
and


that






connection;
55 -


connection






and
Loss of


is in its






connection
Connection


Connected






attributes
Event


state






18 - Time,
Buffer









32 -










Connection










Status







42a
Terminate
4 - Lost
Diagnostic
32 -
2 - Configured
“Alert -
[(A1) Terminate
Connection



Connection
Connection
system
Connection

[(A1) Terminate
Connection
event log



Event

information
Status =

Connection
Event
entry





from the
“2”

Event
occurred by






system that
(connection

occurred by
timeout for






oversees
state

timeout for
connection






connections;
2 - Configured)

connection
[Connection






identity


[Connection
ID]/






of affected


ID]/
(A2) Terminate






connection;


(A2) Terminate
Connection






and


Connection
Event -






connection


Event -
Too many






attributes


Too many
hourly






18 - Time,


hourly
events for






32 - Connection


events for
connection






Status,


connection
[Connection






54 - Connection


[Connection
ID]/






Timeout


ID]/
(A3) Terminate






Period,


(A3) Terminate
Connection






55 - Loss


Connection
Event -






of


Event -
Too many






Connection


Too many
daily






Event


daily
events for






Buffer,


events for
connection






56 - Allowed


connection
[Connection






Frequency


[Connection
ID]]






of Loss of


ID]]”







Connection


Connection







Events


event log










entry




42b
Disconnect
4 - Lost
Source of
32 -
2 - Configured
Reply:
Success -
Connection




Connection
command;
Connection

“Command
(S2)
command





command
Status =

succeeded -
Normal
log entry





parameters;
“2”

(S2)”
completion






connection
(connection

Action:







attributes
state

Sever







2 - Asset
2 - Configured)

connection







ID,


to this







30 - Entities


communication







Permitted


partner







to Modify


Connection







this


command







Connection,


log entry







31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







43a
Connect
4 - Lost
Source of
32 -
3 - Connected
Reply:
Command
Connection




Connection
command;
Connection

“Command
succeeded -
command





command
Status =

succeeded -
(S2)
log entry





parameters;
“3”

(S2)”
Normal






connection
(connection

Connection
completion






attributes
state

command







2 - Asset
3 -

log entry







ID,
Connected)









30 - Entities










Permitted










to Modify










this










Connection,










31 - Connection










Partner's










System










Management










Permissions,










32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







43b
Re-
4 - Lost
Diagnostic
32 -
3 - Connected
Action: Re-
Diagnostic
Connection



Establish
Connection
system
Connection

establish
system
event log



Connection

information
Status =

interface to
detects that
entry



Event

from the
“3”

respective
a broken






system that
(connection

connection
connection






oversees
state

partner.
to a






connections;
3 -

Connection
connection






identity
Connected)

event log
partner has






of affected


entry
become re-






connection;



established






and



while that






connection



connection






attributes



is in its Lost






18 - Time,



Connection






32 - Connection



state






Status, and










54 - Connection










Timeout










Period







44a
Connection
4 - Lost
Connection

4 - Lost
Connection
Test
Connection



Configuration
Connection
attributes 2 -

Connection
event log
passed -
event log



Test

Asset ID,


entry
(S1)
entry



Passed

10 -



Connection






Receive



already






TIS



completed






Source, 11 -










Receive










TFS










Source, 12 -










Sent TIS










Targets, 13 -










Send










TFS










Targets, 25 -










Asset










Output










Targets, 26 -










Local










Information










Source, 32 -










Connection










Status, 29 -










Connection










Partner










Type, 48 -










Local










Information










ID, 52 -










Transactive










Neighbor










ID, and 53 -










System










Manager










ID







44b
Fail to
4 - Lost
Source of

4 - Lost
Reply:
Command
Connection



Configure
Connection
command;

Connection
“Command
failed -
command





command


failed -
[(F1) Permissions
log entry





parameters;


[(F1) Permissions
do






Filename;


do
not include






lists of


not include
this






configurable


this
command/






attributes


command/
(F2)






(see


(F2)
Configure






command


Configure
command






definition),


command
not allowed






connection


not allowed
from






attributes


from
Operational






2 - Asset


Operational
state/






ID, 30 -


state/
(F12) Configure






Entities


(F12) Configure
command






Permitted


command
not allowed






to Modify


not allowed
from






this


from
connected






Connection,


connected
connection






31 - Connection


connection
states]






Partner's


states]”







System


Connection







Management


command







Permissions,


log entry







32 - Connection










Status,










48 - Local










Information










ID,










52 - Transactive










Neighbor










ID,










53 - System










Manager










ID







44c
Fail to
4 - Lost
Source of

4 - Lost
Reply:
Failure -
Connection



Connect
Connection
command;

Connection
“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F5) Unknown






Information


connection/
reason]






ID,


(F5) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID







44d
Fail to
4 - Lost
Source of

4 - Lost
Reply:
Failure -
Connection



Disconnect
Connection
command;

Connection
“Command
[(F1) Permissions
command





command


failed -
do
log entry





parameters;


[(F1) Permissions
not include






connection


do
this






attributes


not include
command/






2 - Asset


this
(F2) Connection






ID,


command/
ID






30 - Entities


(F2) Connection
was not






Permitted


ID
recognized






to Modify


was not
from






this


recognized
configured






Connection,


from
connections/






31 - Connection


configured
(F3) Entity






Partner's


connections/
does not






System


(F3) Entity
have






Management


does not
permission






Permissions,


have
to change






32 - Connection


permission
this






Status,


to change
connection/






48 - Local


this
(F4) Unknown






Information


connection/
reason]






ID,


(F4) Unknown







52 - Transactive


reason]”







Neighbor


Connection







ID,


command







53 - System


log entry







Manager










ID









6.1.16 Log Entries

The state transition tables in this section have consistently indicated outputs to a log table. It will be good practice to create a log entry record for each command and event that is encountered by the transactive node and its connections. Instead of defining each log entry at the point that it was introduced in the state transition tables, it may be preferred to establish practices for the contents of these records based on their types and by whether they affect the transactive state model or that of the transactive node's connections:

    • 1. Command log entry—to be recorded each time a transactive node system management command is received and responded.
      • {Source of the command, time received, command ID, command parameters, 5—Node Version, 7—Node Status after the command, completion condition}
    • 2. Connection command log entry—to be recorded each time a connection system management command is received and responded.
      • {Source of the command, time received, command ID, target connection ID, 32—Connection Status after the command, completion condition}
    • 3. Event log entry—to be recorded each time a transactive node event occurs and is responded to.
      • {Event time, event ID, 5—Node Version, 7—Node Status after the event, completion condition}
    • 4. Connection event log entry—to be recorded each time a connection event occurs and is responded to.
      • {Event time, event ID, target connection ID, 32—Connection Status after the event, completion condition}
    • 5. Test log entry—to be recorded each time a transactive node test occurs and is responded to.
      • {Test time, test ID, 5—Node Version, 7—Node Status after the test, completion condition}
    • 6. Connection test log entry—to be recorded each time a connection test occurs and is responded to.
      • {Test time, test ID, target connection ID, 32—Connection Status after the test, completion condition


6.1.17 Operational Sub-States Table

The table below represents that state transitions of a transactive node that has been configured, connected and is now in the overall operational state and status. Note that there is no start or final state in this table. All states may be intermediary. Refer to the toolkit framework for the algorithmic framework facilitated by this part of the state model.









TABLE 21







State Transition Model for Transactive Nodes within an Operational State

















Acts





Info.
















Upon
By

Producing

Gathered
















Internal
Current
Setting
Using
Next

On the
and


Row
Function
State
Attributes
Inputs
State
Output
Condition
Recorded





A1
Receive
Operational
7
TIS
TIS

U
1, 7. 18,



TIS
(Listening)

Message
Received


Received










TIS










message


A2
Formula
Operational
7
Attribute
TIS
Stop
TIS
1, 7. 18,



te TIS
(Listening)

23 (TIS
Processed
TIS
Timer >
Processed






Buffer)

Timer,
TIS
TIS








Outgoing
Timer
message








TIS
Max or









Message(s)
TIS










received










from all










inputs



A3
Receive
Operational
7
TFS
TFS

U
1, 7, 18



TFS
(Listening)

Message
Received





A4
TFS
Operational
7
Attribute
TFS
Stop
TFS
(1), (7),




(Listening)

24 (TFS
Processed
TFS
Timer >
(18),






Buffer)

Timer,
TFS
Processed








Outgoing
Timer
TFS








TFS
Max or
message








Messages
TFS










received










from all










inputs.



A5
Update
TIS
7, 23
TIS
Operational
Start
No TIS
(1), (7),



TIS
Received

Message
(Listening)
TIS
Receive
(18), 23



Buffer




Timer
Error,










and Start










TIS










Timer if it










is not










already










running.



A6
Handle
TIS
7
TIS
Operational
Non-
TIS
(1), (7),



Non-
Received

Message
(Listening)
fatal TIS
Receive
(18)



fatal TIS




Receive
Error




Receive




Error





Error









A6a
Handle
TIS
7
TIS
Stopped
Fatal
Fatal TIS
(1), (7),



Fatal
Received

Message

TIS
Receive
(18)



TIS




Receive
Error




Receive




Error





Error









A7
Send
TIS
7
Outgoing
Operational
TIS
Send TIS
(1), (7),



TIS
Processed

TIS
(Listening)
Message(s)
if and
(18), Sent






Messages

to each
only if a
TIS








neighbor
TIS has
messages









not










already










been










sent










within the










Time










Interval



A7a
Send
Operational
7
Outgoing
Operational
TIS
Send TIS
(1), (7),



TIS
(Listening)

TIS
(Listening)
Receive
if and
(18), Sent






Messages

Error,
only if
TIS








TIS
any
messages








Message(s)
inputs









to each
from









neighbor
neighbors










have










not been










received










within the










time










interval



A7b
Handle
TIS
7
TIS
TIS
Recovery
Non-fatal
(1), (7),



non-
Processed

Processing
Processed

TIS
(18)



fatal TIS


Error


Processing
Received



processing





error
TIS



error






Message,










Generated










error


A7c
Handle
TIS
7
TIS
Stopped

Fatal TIS
(1), (7),



fatal TIS
Processed

Processing


Processing
(18)



processing


Error


Error
Received



error






TIS










Message,










Generated










error


A8
Update
TFS
7, 24
TFS
Operational
Start
No TFS
(1), (7),



TFS
Received

Message
(Listening)
TFS
Receive
(18), 24



Buffer




Timer
Error,










and Start










TFS










timer if it










is not










already










running



A9
Handle
TFS
7
TFS
Operational
Non-
TFS
(1), (7),



Non-
Received

Message
(Listening)
fatal
Receive
(18)



fatal




TFS
Error




TFS




Receive





Receive




Error





Error









A9a
Handle
TFS
7
TFS
Stopped
Fatal
Fatal
(1), (7),



Fatal
Received

Message

TFS
TFS
(18)



TFS




Receive
Receive




Receive




Error
Error




Error









A10
Send
TFS
7
Outgoing
Operational
TFS
Send
(1), (7),



TFS
Processed

TFS
(Listening)
Message(s)
TFS if
(18), Sent






Messages

to each
and only
TFS








neighbor
if a TFS
messages









has not










already










been










sent










within the










time










interval.



A10a
Send
Operational
7
Outgoing
Operational
TFS
Send
(1), (7),



TFS
(Listening)

TFS
(Listening)
Receive
TFS if
(18), Sent






Messages

Error,
and only
TFS








TFS
if any
messages








Message(s)
inputs









to each
from our









neighbor
neighbors










have










not been










received










within the










time










interval.



A11
Handle
TFS
7
TFS
TFS
Recovery
Non-fatal
(1), (7),



non-
Processed

Processing
Processed

TFS
(18)



fatal


Error


Processing
Received



TFS





error
TFS



processing






Message,



error






Generated










error


A11a
Handle
TFS
7
TFS
Stopped

Fatal
(1), (7),



fatal
Processed

Processing


TFS
(18)



TFS


Error


Processing
Received



processing





Error
TFS



error






Message,










Generated










error





(“U” = unconditional)






6.1.18 Transactive Control Signal Propagation

6.1.18.1 Problem Statement


Transactive control signals (transactive incentive signal and transactive feedback signal) carry information related to electrical power supply and demand over a wide area network. The signals traverse a network of transactive control nodes to elicit a desired control action from responsive assets in a timely manner. The end-to-end (from generation to end-user customer) transmission time should be less than 3 minutes assuming a transactive control hierarchy of 15 levels spanning a 1000 mile radius. This translates to roughly 12 seconds (180/15) per hop time budget including the link transit time. Note that the transactive incentive signals will start at the bulk generators and continue to end-user customers. The transactive feedback signal will start at the end-use customer and will travel through the transactive control hierarchy towards bulk generation. While the TIS and the TFS are decoupled temporally and loosely coupled functionally in the sense that a TFS generation does not have to get triggered by the arrival of a TIS, the two signals still influence each other since the computation of TIS and TFS considers the forecasted values for each signal.


The timing model can be purely clock-driven or more asynchronously event-driven. For example, in some embodiments, a set of neighboring transactive nodes are configured to exchange transactive values with one another until the transactive values converge with one another to an acceptable degree (e.g., within a designated percentage of one another (such as 5%, 2%, 1%, or any other desired degree of tolerance)). Further, in such even-driven systems, when a change occurs within a transactive node (e.g., due to a change in local conditions), the transactive node can be configured to transmit an updated set of transactive signals when its local transactive signals deviate from the previously transmitted signals by more than a relaxation criterion.


If the system becomes highly synchronized, bursts of signals might tax the system infrastructure. If the system becomes too loosely event-driven and asynchronous, it becomes more difficult to confirm that signals will have been conveyed. There is probably some flexibility allowable between these extremes, and the design in this appendix facilitates some flexibility. Regardless, the timing model should recognize that the “conversation” of these signals necessarily changes during the transition from one update interval to the next because the set of future intervals change during this transition.



FIG. 31 is a diagram 3100 showing TIS and TFS generation being decoupled. The processing of TIS and TFS inputs is performed in reference to the basic 5-minute interval structure that is UTC referenced.


6.1.18.2 Transactive Node Object Model Attributes Summary


A set of ten (and in some embodiments, mandatory), configurable attributes B1—B10 are defined below in Table 22.


6.1.18.3 One Exemplary Approach






    • 1. Transactive control nodes of the Demonstration use time synchronization with a tolerance of 200 ms. This is readily achievable using either NTP or SNTP. The synchronization is useful to align transactive signal intervals as well as ease of correlation of data collection and event logs.

    • 2. Each transactive control node has two transactive signal timers: TIS_TIMER and TFS_TIMER. These timers are started upon receipt of a TIS or TFS respectively and impose a delay to allow for arrival of more signals before processing occurs (12 second default value).

    • 3. Each transactive control node has two “hold-down” timers: TIS_HOLD_DOWN_TIMER and TFS_HOLD_DOWN_TIMER. These timers lock out additional processing to prevent race conditions in the mesh segment of a network of transactive control nodes. (30 second default value). The value should be >=TIS_TIMER and TFS_TIMER respectively.

    • 4. Each transactive control node has a transactive signal watchdog timer (WATCHDOG_TIMER), which is configured to fire off every T_period (300 default value) seconds. It is desirable that the WATCHDOG_TIMER be less than or equal to the value of the smallest interval (currently 300 seconds) used in the communication of the transactive signals.

    • 5. Upon startup, a transactive control node starts the transactive signal watchdog timer. It is recommended that the watchdog timer be aligned with the transactive signal update intervals. For example, if the transactive signal intervals are {6:00, 6:05, 6:10, . . . } then the watchdog timer is recommended to also be started at 6:00 and fire-off every 300 seconds.

    • 6. When the transactive signal watchdog timer expires, if WATCHDOG_TIMER_SIGNAL_GEN_ALWAYS_ON configuration variable is set to TRUE then the node will send TIS and TFS packets to neighboring transactive control nodes. If WATCHDOG_TIMER_SIGNAL_GEN_ALWAYS_ON is set to FALSE and if no signal driven events have taken place in the last interval then the node sends TIS and TFS packets to neighboring transactive control nodes connected to this node. Then, the node restarts the global timer.

    • 7. When the node receives a TIS packet, it starts the TIS_TIMER (if it is not already started), and stores the TIS packet in the local TIS store. The TIS_TIMER represents a transactive signal collection period to allow the transactive control node to receive all possible signals from its neighbors. (Each transactive node typically knows how many transactive neighbors it has and therefore how many transactive signals it should expect to receive. In deeper topologies, the TIS_TIMER and TFS_TIMER will unlikely achieve the desired effect of collecting all signals prior to calculation because signal path lengths will be dissimilar for various signals that are to be received.)

    • 8. When the node receives a TFS packet, it starts the TFS_TIMER (if it is not already started), stores the TFS packet in the local TFS store. The TFS_TIMER represents a transactive signal collection period to allow the transactive control node to receive all possible signals from its neighbors.

    • 9. When the TIS_TIMER expires, the node performs the transactive control computation using the most recent TIS and TFS information stored in its TIS and TFS stores. (Received TIS and TFS signals will often contribute only a small influence to the newly calculated TIS and TFS at a transactive node.)

    • 10. When TFS_TIMER expires, the node starts performs the transactive control computation using the most recent TIS and TFS information stored in its TIS and TFS stores.

    • 11. When the node finishes TIS signal computation, it clears the store and sends a TIS packet to its neighbors (In simulations, the processing is represented with a delay of 12 seconds). The TIS_HOLD_DOWN_TIMER is started. No TIS may be sent again until it expires.

    • 12. When the node finishes the TFS signal computation, it clears the cache and sends a TFS packet to its neighbors (In simulations, the processing is represented with a delay of 12 seconds). The TFS_HOLD_DOWN_TIMER is started. No TFS may be sent again until it expires.

    • 13. Since the transactive control is a distributed system, there will be times when transactive control signals arrive during the hold-down timer or outside the TIS/TFS timer data collection periods. TIS and TFS signals also may arrive at different parts of the time interval. When a new transactive control signal is received and the corresponding transactive control signal computation is performed, one may find that the resulting TIS/TFS values show no significant changes to the previously sent values in the same “interval.” In this case, the transactive control node is recommended to omit or delay the transmission of a new TIS/TFS value. This added feature allows further reductions of both communications chatter and computational cycles. This behavior is controlled by means of two configuration variables:
      • TIS_SIGNAL_SUPPRESSIFNOCHANGE and
      • TFS_SIGNAL_SUPPRESS_IF_NO_CHANGE. If either one of these variables are set to TRUE, then the node will be perform the check for no change of the corresponding TIS or TFS signals and suppress transmission.

    • 14. One of the primary inputs to the transactive control node is the local conditions input. This section encourages inclusion of triggers for computation and transmission of TIS/TFS based on changes in the local conditions. The criteria for incorporation of local conditions will be decided at a later time.





The timers and the operation for an example TIS embodiment are illustrated in diagram 3200 of FIG. 32. The TFS is handled in a similar manner.


In summary, the following desired behavior is expressed in pseudo code format.


Upon node startup:

    • Start WATCHDOG_TIMER


Upon receiving a TIS:

    • if (TIS_TIMER is not running) && (TIS_HOLD_DOWN_TIMER is not running) && (!TIS_IN_CALCULATION) {Start TIS_TIMER}
    • Store received TIS


Upon receiving a TFS:

    • if (TFS_TIMER is not running) && (TFS_HOLD_DOWN_TIMER is not running) && (!TIS_IN_CALCULATION) {Start TFS_TIMER}
    • Store received TFS


Upon expiration of TIS_TIMER:

    • Stop and clear TIS_TIMER
    • Set TIS_IN_CALCULATION==true)
    • Compute TIS using most recent stored TIS and TFS.
    • If (TIS_SIGNAL_SUPPRESS_IF_NO_CHANGE==FALSE) {Send TIS} else {check for change in values of computed TIS with the previously sent TIS. If change {Send TIS} else {do nothing}
    • Set TIS_IN_CALCULATION==false)
    • If (TIS is sent) {Start TIS_HOLD_DOWN_TIMER}


Upon expiration of TFS_TIMER:

    • Stop and clear TFS_TIMER
    • Set TFS_IN_CALCULATION==true)
    • Compute TFS using most recent stored TIS and TFS.
    • If (TFS_SIGNAL_SUPPRESS_IF_NO_CHANGE==FALSE) {Send TFS} else {check for change in values of computed TFS with the previously sent TFS. If change {Send TFS} else {do nothing}}
    • Set TFS_IN_CALCULATION==false)
    • If (TFS is sent) {Start TFS_HOLD_DOWN_TIMER}


Upon expiration of TIS_HOLD_DOWN_TIMER:

    • Stop and clear TIS_HOLD_DOWN_TIMER
    • If (no new TIS) {do nothing}
    • If (new TIS)
      • Set TIS_IN_CALCULATION==true)
      • Compute TIS using most recent stored TIS and TFS.
      • If (TIS_SIGNAL_SUPPRESS_IF_NO_CHANGE==FALSE) {Send TIS} else {check for change in values of computed TIS with the previously sent TIS. If change {Send TIS} else {do nothing} }
      • Set TIS_IN_CALCULATION==false)
      • If (TIS is sent) {Start TIS_HOLD_DOWN_TIMER}



FIG. 33 is a diagram 3300 illustrating an example where a perpetual exchange of signals might become sustained between two transactive node neighbors.


Upon expiration of TFS_HOLD_DOWN_TIMER:

    • Stop and clear TFS_HOLD_DOWN_TIMER
    • If (no new TFS) {do nothing}
    • If (new TFS)
      • Set TFS_IN_CALCULATION==true)
      • Compute TFS using most recent stored TIS and TFS.
      • If (TFS_SIGNAL_SUPPRESS_IF_NO_CHANGE==FALSE) {Send TFS} else {check for change in values of computed TIS with the previously sent TFS}
      • Set TFS_IN_CALCULATION==false)
      • If change {Send TFS} else {do nothing}
      • If (TFS is sent) {Start TFS_HOLD_DOWN_TIMER}


Upon expiration of the WATCHDOG_TIMER:

    • If (WATCHDOG_TIMER_SIGNAL_GEN_ALWAYS_ON==TRUE) {
      • If (local_conditions_change==TRUE)∥(TIS/TFS is not computed in this period) {
        • Recompute TIS/TFS}
      • Send TIS; Send TFS; Start TIS_HOLD_DOWN_TIMER; Start TFS_HOLD_DOWN_TIMER}
    • If (WATCHDOG_TIMER_SIGNAL_GEN_ALWAYS_ON==FALSE) {
      • If (local_conditions_change==FALSE) && (we sent TIS/TFS in the last transactive signal interval) {
        • Do nothing}
      • Else {
        • Recompute TIS/TFS
        • Send TIS; Send TFS; Start TIS_HOLD_DOWN_TIMER; Start TFS_HOLD_DOWN_TIMER}}









TABLE 22







Dictionary of Exemplary Timing Attributes Recommended at a Transactive


Node to Facilitate Exchange of Transactive Signals between Transactive Neighbors



















Range of


No.
Attribute Name
Description
Role
Type
Format
values





B1
TIS_TIMER
Started upon
Allows for arrival
Single real

The value 0




receipt of the
of more TIS
number.

(zero)




first TIS in
signals before


disables the




the current
processing


TIS_TIMER.




update
occurs. Helps


Default




interval (See
retard


value: 12 s.




9-Update
successive







Frequency).
transmissions of








TIS signals.





B2
TFS_TIMER
Started upon
Allows for arrival
Single real

The value 0




receipt of the
of more TFS
number.

(zero)




first TFS in
signals before


disables the




the current
processing


TFS_TIMER.




update
occurs. Helps


Default




interval (See
retard


value: 12 s.




9-Update
successive







Frequency).
transmissions of








TFS signals.





B3
TIS_IN_
If set,
Certain actions
Binary

0-Not busy



CALCULATION
indicates that
are to be
condition

calculating




the
prevented
flag.

TIS.




transactive
during this time
Dimensionless.

1-Busy




node is
to avoid


calculating




engaged in
corrupting


TIS.




recalculating
calculated







its TIS value.
signals.





B4
TFS_IN_
If set,
Certain actions
Binary

0-Not busy



CALCULATION
indicates that
are to be
condition

calculating




the
prevented
flag.

TFS.




transactive
during this time
Dimensionless.

1-Busy




node is
to avoid


calculating




engaged in
corrupting


TFS.




recalculating
calculated







its TFS
signals.







values.






B5
TIS_HOLD_
Started upon
Used to
Single real

Use of 0



DOWN_TIMER
sending a
suppress
number.

(zero) as the




TIS.
transmission of
Units: s.

value




Successive
excessive TIS


disables this




TIS may not
messages.


timer.




be



Default: 30 s.




transmitted



Timer




by this



duration




transactive



should be




node until



shorter than




after this



the update




timer has



interval




expired.



indicated by








9-Update








Frequency








attribute.


B6
TFS_HOLD_
Started upon
Used to
Single real

Use of 0



DOWN_TIMER
sending a
suppress
number.

(zero) as the




TFS.
transmission of
Units: s.

value




Successive
excessive TFS


disables this




TFS may not
messages.


timer.




be



Default: 30 s.




transmitted



Timer




by this



duration




transactive



should be




node until



shorter than




after this



the update




timer has



interval




expired.



indicated by








9-Update








Frequency








attribute.


B7
WATCHDOG_
An event
Actions, like the
Single real

Use of 0



TIMER
occurs at this
transmission of
number.

(zero) as the




interval
transactive
Units: s.

value




duration and
signals and the


disables this




is aligned
sending of asset


timer (e.g.,




with the
control


no action




transitions
recommendations


may be




from one
to asset


induced by a




update
systems, may


watchdog-




interval into
be configured to


timer event.




the next.
occur each time


If assigned a




(In some
the watchdog


non-zero




embodiments,
timer expires.


value, this




the
During testing,


duration




watchdog
the watchdog


should be




time is
timer duration


longer than




aligned with
may be


any of the




the update
shortened to


attributes B1-




interval, but
speed the rate


TIS Timer,




that need not
at which


B2-TFS




be the case
observations


Timer, B5-




in general. If
may be taken


TIS Hold




the watchdog
and thereby


Down Timer,




timer is
facilitate testing


or B6-TFS




further
of a transactive


Hold Down




specified to
node.


Timer. (If this




occur n



is not the




seconds



case, then




(e.g., 15



watchdog




seconds)



timer events




prior to the



will occur




start of the



prior to




next update



calculating




interval, it



and




can be more



transmitting




useful to



transactive




induce



signals, and




transmission



watchdog




of transactive



event




signals and



induced




asset control



actions may




actions that



accumulate.)




are relevant



Default




for the



value: Set




pending



equal to the




update



duration of




interval.)



the update








interval,








which is








300 s for the








Demonstration.


B8
WATCHDOG_
This attribute
If set true, this
Logical
Logic
0-False-



TIMER_
specifies
attribute will
condition

transactive



SIGNAL_GEN_
whether
cause
flag: true/

signals are



ALWAYS_ON
transactive
transactive
false.

sent when




signals are to
signals to be


the watchdog




be
transmitted upon


timer




transmitted
the occurrence


duration




or not when
of a watchdog


expires only




a watchdog
timer event; if


if




timer event
set false, only


corresponding




occurs.
the


type of





corresponding


transactive





transactive


signal was





signals that


not sent





were not sent by


during the





this transactive


expiring





node during the


watchdog





expiring


timer





watchdog time


duration.





interval are to be


1-True-





transmitted.


the default





See transactive


condition-





neighbor


transmit TIS





connection


and TFS





attributes 59-


transactive





TIS Sent Flag


signals upon





and 60-TFS


the





Sent Flag


expiration of





attributes.


the watchdog








timer








regardless of








whether any








transactive








signals were








transmitted








during the








watchdog








timer








duration that








is expiring.


B9
TIS_SIGNAL_
This attribute
This attribute
Logical
Logic.
0-False-



SUPPRESS_IF_
controls TIS
and the related
condition

the



NO_CHANGE
generation. If
attribute B10
flag: true/

differences




this attribute
can reduce the
false.

between




is set true,
numbers of


newly




the
redundant


calculated




transactive
transactive


and prior




control node
signals


transmitted




will compare
transmitted by


TIS signals




computed
this transactive


are not




signal values
node. There is


relevant.




to the
little value in


1-True-




respective
sending


default value-




previous
transactive


the




corresponding
signals that are


difference




transactive
virtually identical


between a




signal sent
to ones that


newly




and will not
have already


calculated




send another
been sent.


and prior




TIS if the
This attribute


transmitted




values show
works in


TIS should be




no significant
conjunction with


compared,




changes.
attributes C1-


and the




Default value
C4 (see


newly




is true.
Appendix C


calculated





concerning the


TIS will be





relaxation stop


transmitted





criterion) and


only if the





attribute B8. (In


difference





some


was found to





embodiments, if


be significant.





B9 or B10 are


See





true, the


Appendix C





respective


and





transactive


attributes C1-





signals will not


C4 for a





be sent unless


metric of





they are


significance.





significantly








different from








the last ones








sent, regardless








of the condition








of flag B8.)





B10
TFS_SIGNAL_
This attribute
This attribute
Logical
Logic.
0-False-



SUPPRESS_IF_
controls TFS
and the related
condition

the



NO_CHANGE
generation. If
attribute B9 can
flag: true/

differences




this attribute
reduce the
false.

between




is set true,
numbers of


newly




the
redundant


calculated




transactive
transactive


and prior




control node
signals


transmitted




will compare
transmitted by


TFS signals




computed
this transactive


are not




signal values
node. There is


relevant.




to the
little value in


1-True-




respective
sending


default value-




previous
transactive


the




corresponding
signals that are


difference




transactive
virtually identical


between a




signal sent
to ones that


newly




and will not
have already


calculated




send another
been sent.


and prior




TFS if the
This attribute


transmitted




values show
works in


TFS should




no significant
conjunction with


be




changes.
attributes C1-


compared,




Default value
C4 (see


and the




is true.
Appendix C


newly





concerning the


calculated





relaxation stop


TFS will be





criterion) and


transmitted





attribute B8.


only if the








difference








was found to








be








significant.








See








Appendix C








and








attributes C1-








C4 for a








metric of








significance.









6.1.19 Transactive Signal Relaxation Stop Criterion

6.1.19.1 Purpose


In certain embodiments, transactive nodes periodically send their transactive signals to their neighbors. The timing of this responsibility has recently been specified and will become included in reference code implementations of the transactive node model algorithm (TNMA). The timing specification references a relaxation stop criterion based upon changes observed between the present signal and the most recent prior signal that has been calculated and sent by this transactive node. If the signals are found to have not changed much, this transactive node should not send its calculated signal again during the present update interval.


The purpose of this section is to state the criterion by which a transactive node may discern whether it should continue to send out its calculated transactive signals or not during the present update interval.


6.1.19.2 Relaxation Stop Criterion


A relaxation stop criterion can be used under the following assumptions:

    • 1. Near-term predictions should be known with accuracy. Prediction inaccuracies and perturbations are somewhat more acceptable far into the future because one will have many opportunities to iterate and improve those distant predictions. Near-term predicted inaccuracies and events may necessitate additional iterations until the system relaxes to a steady, negotiated solution.
    • 2. A prediction error decreases inversely proportional to some constant to the power of the number of iterations. The constant represents the improvement expected from each iteration and will usually range from [1,2+). If the constant is set to the conservative value 1, one expects the error not at all to be improved by iteration. If the number is set to 2, one expects that each successive iteration should halve the error. It is conceivable that over-relaxation solutions could allow for constants larger than 2.
    • 3. The impact of an inaccurate prediction is roughly proportional to the predicted interval's duration.


For each future interval s, define error εs as the absolute difference between the present estimate of the value Vs(k) and the prior estimate of the value Vs(k−1).

εs=|Vs(k)−Vs(k−1)|(Eq. C1)


The criterion should be applied consistently to either the value itself or to a relative representation of the value, which further results in dividing the result in Eq. C1 by the absolute value of Vs(k).


Each error εs should be factored by a corresponding weighting factor Ws to account for the impacts of the duration of each future interval s and the number of iterations that may be reasonably performed on the prediction.










W
s

=


D
s


γ


(


t
s

-

t
0


)

/
D







(


Eq
.




C






2

)







In Eq. C2, Ds is the time duration of interval s, and γ is a constant [1,2+) that represents the effectiveness of each iteration, as was described in bullet #2 above. The term (ts−t0)/D represents the number of iterations that could reasonably be completed if iterations are conducted after every D constant time interval between the the start of the predicted interval ts and the present time t0. For example, the system can update its calculations every 5 minutes, so one might naturally expect over 12 opportunities for the solution to iteratively converge every hour.


The overall relaxation stop criterion may then be stated as a constant E that is proportional to the sum of all the weighting factors. The proportionality constant K represents a conservative “typical” error εs that would be deemed acceptable. Some trial and error may occur to select the proportionality constant K that will result in an acceptable number of iterations.


The time series has been iterated adequately when the weighted sum of errors are less than the constant E, in which case iterations should be halted. If, however, the weighted sum of errors is greater than or equal to the constant E, then additional iteration should be conducted until errors satisfy the criterion.









E
=


K




S










W
s





>
?





S











W
s

·

ɛ
s








(


Eq
.




C






3

)







The complete criterion is stated in Eq. C4.









E
=


K
·




s
=
0

S








D
s


γ


(


t
s

-

t
0


)

/
D







>
?






s
=
0


S














D
s

·

ɛ
s



γ


(


t
s

-

t
0


)

/
D









(


Eq
.




C






4

)







An example has been worked through in Appendix A using three different values of constant γ. The example uses a set of intervals from the Demonstration of the type that will be used for its transactive signals. The weighting factors for the series of intervals and at the three example values of constant γ have been plotted in graph 3400 of FIG. 34.


Large gamma (e.g. γ=2.0) is shown to discount the importance of error in future predictions more than small values of gamma (e.g., γ=1.0625). The jagged curve reflects that long interval durations are weighted more than short ones, which is relevant for the Demonstrations intervals that become successively longer after the 12th, 32nd, 50th, and 54th intervals. The impact of distant future weightings may become negligibly small.



FIG. 34 is a graph 3400 showing weighting factors for a set of Demonstration intervals (IST0=0:00) using three different values of constant γ.









TABLE 23







Example Weighting Factors Ws for a Sample Series of Intervals and for


Three Different Gamma Values











Sam-
Ds

ts-to



ple
(min-

(min-
Ws













(#)
utes)

utes)
γ = 2
γ = 1.25
γ = 1.0625
















0
5
1/0/00 0:00
0
5.00E+00
5.00E+00
5.00E+00


1
5
1/0/00 0:05
5
2.50E+00
4.00E+00
4.71E+00


2
5
1/0/00 0:10
10
1.25E+00
3.20E+00
4.43E+00


3
5
1/0/00 0:15
15
6.25E−01
2.56E+00
4.17E+00


4
5
1/0/00 0:20
20
3.13E−01
2.05E+00
3.92E+00


5
5
1/0/00 0:25
25
1.56E−01
1.64E+00
3.69E+00


6
5
1/0/00 0:30
30
7.81E−02
1.31E+00
3.48E+00


7
5
1/0/00 0:35
35
3.91E−02
1.05E+00
3.27E+00


8
5
1/0/00 0:40
40
1.95E−02
8.39E−01
3.08E+00


9
5
1/0/00 0:45
45
9.77E−03
6.71E−01
2.90E+00


10
5
1/0/00 0:50
50
4.88E−03
5.37E−01
2.73E+00


11
5
1/0/00 0:55
55
2.44E−03
4.29E−01
2.57E+00


12
15
1/0/00 1:00
60
3.66E−03
1.03E+00
7.25E+00


13
15
1/0/00 1:15
75
4.58E−04
5.28E−01
6.04E+00


14
15
1/0/00 1:30
90
5.72E−05
2.70E−01
5.04E+00


15
15
1/0/00 1:45
105
7.15E−06
1.38E−01
4.20E+00


16
15
1/0/00 2:00
120
8.94E−07
7.08E−02
3.50E+00


17
15
1/0/00 2:15
135
1.12E−07
3.63E−02
2.92E+00


18
15
1/0/00 2:30
150
1.40E−08
1.86E−02
2.43E+00


19
15
1/0/00 2:45
165
1.75E−09
9.51E−03
2.03E+00


20
15
1/0/00 3:00
180
2.18E−10
4.87E−03
1.69E+00


21
15
1/0/00 3:15
195
2.73E−11
2.49E−03
1.41E+00


22
15
1/0/00 3:30
210
3.41E−12
1.28E−03
1.18E+00


23
15
1/0/00 3:45
225
4.26E−13
6.53E−04
9.80E−01


24
15
1/0/00 4:00
240
5.33E−14
3.35E−04
8.17E−01


25
15
1/0/00 4:15
255
6.66E−15
1.71E−04
6.81E−01


26
15
1/0/00 4:30
270
8.33E−16
8.77E−05
5.68E−01


27
15
1/0/00 4:45
285
1.04E−16
4.49E−05
4.74E−01


28
15
1/0/00 5:00
300
1.30E−17
2.30E−05
3.95E−01


29
15
1/0/00 5:15
315
1.63E−18
1.18E−05
3.29E−01


30
15
1/0/00 5:30
330
2.03E−19
6.03E−06
2.74E−01


31
15
1/0/00 5:45
345
2.54E−20
3.09E−06
2.29E−01


32
60
1/0/00 6:00
360
1.27E−20
6.32E−06
7.63E−01


33
60
1/0/00 7:00
420
3.10E−24
4.34E−07
3.69E−01


34
60
1/0/00 8:00
480
7.57E−28
2.98E−08
1.78E−01


35
60
1/0/00 9:00
540
1.85E−31
2.05E−09
8.60E−02


36
60
1/0/00 10:00
600
4.51E−35
1.41E−10
4.16E−02


37
60
1/0/00 11:00
660
1.10E−38
9.68E−12
2.01E−02


38
60
1/0/00 12:00
720
2.69E−42
6.65E−13
9.70E−03


39
60
1/0/00 13:00
780
6.57E−46
4.57E−14
4.69E−03


40
60
1/0/00 14:00
840
1.60E−49
3.14E−15
2.26E−03


41
60
1/0/00 15:00
900
3.92E−53
2.16E−16
1.09E−03


42
60
1/0/00 16:00
960
9.56E−57
1.48E−17
5.28E−04


43
60
1/0/00 17:00
1020
2.33E−60
1.02E−18
2.55E−04


44
60
1/0/00 18:00
1080
5.70E−64
7.01E−20
1.23E−04


45
60
1/0/00 19:00
1140
1.39E−67
4.82E−21
5.96E−05


46
60
1/0/00 20:00
1200
3.40E−71
3.31E−22
2.88E−05


47
60
1/0/00 21:00
1260
8.29E−75
2.27E−23
1.39E−05


48
60
1/0/00 22:00
1320
2.02E−78
1.56E−24
6.72E−06


49
60
1/0/00 23:00
1380
4.94E−82
1.07E−25
3.25E−06


50
360
1/1/00 0:00
1440
7.24E−85
4.43E−26
9.41E−06


51
360
1/1/00 6:00
1800
1.53E−106
4.66E−33
1.20E−07


52
360
1/1/00 12:00
2160
3.25E−128
4.91E−40
1.52E−09


53
360
1/1/00 18:00
2520
6.87E−150
5.17E−47
1.93E−11


54
1440
1/2/00 0:00
2880
5.82E−171
2.18E−53
9.84E−13


55
1440
1/3/00 0:00
4320
1.17E−257
2.68E−81
2.57E−20


56
1440
1/4/00 0:00
5760

3.30E−109
6.72E−28










6.1.19.3 Additional Transactive Node Attributes where a Relaxation Stop Criterion is Employed


Table 24 specifies four additional transactive node attributes that can be used if a transactive node is to employ the relaxation stop criterion as it has been introduced in this appendix. These attributes can be assumed to be assignable at the transactive-node level. It is conceivable that this criterion (or another) and its attributes may in the future be configured differently for each transactive neighbor connection.









TABLE 24







Dictionary of the Relaxation Stop Criterion Attributes that may be


Configured at a Transactive Node



















Range of


No.
Attribute Name
Description
Role
Type
Format
values





C1
Relaxation
This is one of
This
Single real

Typically, [0,



Stop Criterion
the two
parameter
number.

1).



Proportionality
parameters
represents a
This

Default



Threshold-
that determine
maximum
parameter's

value:



TIS
whether a
allowed
units of

0.0005.




calculated
average
measure are

Set to 0.0




Output TIS
absolute
effectively the

for




time series
difference
same as for

maximum




has
between
the Output

iterations.




adequately
consecutively
TIS: $/kWh.

Set to 1 to




relaxed to a
calculated


practically




steady
Output TIS


eliminate




solution at this
members


iterations




transactive
TISn.


altogether.




node.
The


Empirically




This
magnitudes of


set this




parameter is
attributes C1


parameter's




the
and C3


value to




proportionality
together


achieve the




constant K
affect how


desired




that is shown
similar Output


numbers of




in Eq. C4.
TIS time


Output TIS





series should


being





be for us to


transmitted





stop iterating


from this





and again


transactive





transmitting


node.





the Output








TIS. The








magnitude of








this








parameter








affects how








many times








an Output TIS








will be sent to








transactive








neighbors by








this








transactive








node.





C2
Relaxation
This is one of
This
Single real

Typically, [0,



Stop Criterion
the two
parameter
number.

100,000).



Proportionality
parameters
represents a
This

Default



Threshold-
that determine
maximum
parameter's

value: 100.



TFS
whether a
allowed
units of

Set to 0.0




calculated
average
measure are

for




Output TFS
absolute
effectively the

maximum




time series
difference
same as for

iterations.




has
between
an Output

Set to




adequately
consecutively
TFS: Average

100,000 to




relaxed to a
calculated
kW.

practically




steady
Output TFS


eliminate




solution at this
members


iterations




transactive
TFSn.


altogether.




node.
The


Empirically




This
magnitudes of


set this




parameter is
attributes C2


parameter's




the
and C4


value to




proportionality
together


achieve the




constant K
affect how


desired




that is shown
similar Output


numbers of




in Eq. C4.
TFS time


Output TFS





series should


being





be for us to


transmitted





stop iterating


from this





and again


transactive





transmitting


node.





the Output








TFS. The








magnitude of








this








parameter








affects how








many times








an Output








TFS will be








sent to








transactive








neighbors by








this








transactive








node.





C3
Relaxation
This is one of
This
Single real

Range: [1,



Stop Criterion
the two
parameter
number.

2).



Gamma
parameters
represents
This

Default: 1.0



Parameter-
that determine
the relative
parameter is

Empirically



TIS
whether a
impact of a
dimensionless.

set this




calculated
sample's


parameter's




Output TIS
duration and


value to




time series
a sample's


achieve the




has
distance into


desired




adequately
the future as


numbers of




relaxed to a
successive


Output TIS




steady
Output TIS


being




solution at this
values are


transmitted




transactive
being


from this




node.
compared.


transactive




This
The


node.




parameter is
magnitudes of







the constant Y
attributes C1







that is shown
and C3







in Eq. C4.
together








affect how








similar Output








TIS time








series should








be for us to








stop iterating








and again








transmitting








the Output








TIS. The








magnitude of








this








parameter








affects how








many times








an Output TIS








will be sent to








transactive








neighbors by








this








transactive








node.





C4
Relaxation
This is one of
This
Single real

Range: [1,



Stop Criterion
the two
parameter
number.

2).



Gamma
parameters
represents
This

Default: 1.0



Parameter-
that determine
the relative
parameter is

Empirically



TFS
whether a
impact of a
dimensionless.

set this




calculated
sample's


parameter's




Output TFS
duration and


value to




time series
a sample's


achieve the




has
distance into


desired




adequately
the future as


numbers of




relaxed to a
successive


Output TIS




steady
Output TFS


being




solution at this
values are


transmitted




transactive
being


from this




node.
compared.


transactive




This
The


node.




parameter is
magnitudes of







the constant Y
attributes C2







that is shown
and C4







in Eq. C4.
together








affect how








similar Output








TIS time








series should








be for us to








stop iterating








and again








transmitting








the Output








TIS. The








magnitude of








this








parameter








affects how








many times








an Output TIS








will be sent to








transactive








neighbors by








this








transactive








node.









6.2 Appendix B—Transactive Node Toolkit Framework

6.2.1 Terms


This section will sometimes make reference to the following terms, whose nonlimiting definitions are also given below. These definitions do not necessarily apply in all instances and may vary depending on the context.
















elastic load

Within the toolkit framework, the change in electrical load that




is expected as responsive asset systems respond to the




transactive incentive signal (TIS). Within the toolkit framework,




information about elastic load will be stored into and available




from the Toolkit Response Function Output Parameter




Buffer.


inelastic load

Electrical load that is not responsive to the transactive incentive




signal (TIS) at a transactive node. In certain implementations, it




is recommended that inelastic load should also include the




predicted load from responsive asset systems if they were to




not respond to the TIS. Within the toolkit framework,




information about inelastic load will be stored into and available




from the Inelastic Load Prediction Buffer.


input transactive
input
A transactive feedback signal (TFS) that has been received


feedback signal
TFS
from a transactive neighbor as an input to the set of




calculations that is to be conducted at a transactive node at the




updated frequency.


input transactive
input
A transactive incentive signal (TIS) that has been received from


incentive signal
TIS
a transactive neighbor as in input to the set of calculations that




is to be conducted at a transactive node at the update




frequency.


interval start
IST
An attribute of transactive signals. The series of future times


time

that define the starting times of members of set of future time




intervals. The duration of each interval is defined by the time




between two consecutive interval start times.


other local
OLC
A broad set of information and data that will be inputs into the


conditions

many functions and processes that is to be performed at




transactive nodes. This set excludes transactive signals.


output
output
A transactive feedback signal (TFS) object output from the


transactive
TFS
calculations that are to be conducted at a transactive node at


feedback signal

the update interval. A transactive node prepares an output TFS




that predicts the average power to be exchanged with a




transactive neighbor into the future.


output
output
A transactive incentive signal (TIS) object output from the


transactive
TIS
calculations that are to be conducted at a transactive node at


incentive signal

the update interval.


responsive asset

A system within the control of a transactive node that will


system

change its consumption or generation in response to the




transactive node's transactive incentive signal (TIS) and other




local conditions.


toolkit

The toolkit framework, toolkit function libraries, the set of toolkit




functions, and/or associated documentation.


toolkit

The general functionality and responsibilities at any transactive


framework

node. The flow in which high-level and more specific toolkit




functions are coordinated and accomplished.


toolkit function

An individual functional capability that may be implemented at a




transactive node. There are two main types of toolkit




functions-incentive and response.


toolkit function

A set of toolkit functions available to implementers.


library

Implementers select toolkit functions from this library that can




be instantiated and interoperably applied at their transactive




node.


toolkit load

A toolkit function inserted into the toolkit framework process


function

8. Calculate Toolkit Resource and Incentive Function that




calculates energy and energy cost for a resource and other




cost components and incentives that will be used in the




formulation of the transactive incentive signal.


toolkit resource

A toolkit function inserted into the toolkit framework process


and incentive

6. Calculate Toolkit Load Function that calculates the


function

predicted inelastic load and changes in elastic load




components of the entire load at a transactive node.


transactive
TC
A negotiated form of power grid control that uses price-like


control

incentive and feedback signals.


transactive
TCS
A distributed system that employs transactive control and


control and

coordination.


coordination




system




transactive
TFS
One of the major transactive signals employed by


feedback signal

embodiments of a transactive control and coordination system.




A transactive node's reporting of the expected average power




to be transferred between two transactive neighbors during




intervals over the next several days.


transactive
TIS
One of the major transactive signals employed by


incentive signal

embodiments of a transactive control and coordination system.




A transactive node's reporting of the anticipated delivered cost




of electrical power at its location at intervals over the next




several days.


transactive
TS
Either the transactive incentive signal (TIS) or transactive


signal

feedback signal (TFS).


transactive

Transactive nodes that exchange electrical energy between


neighbors

them and therefore also exchange transactive signals.


transactive node
TN
A defined location of the transactive control and coordination




system that has agreed to exchange transactive incentive




signals (TIS) and transactive feedback signals (TFS) with its




transactive neighbors.


transactive node
TNMA
A module of software where the functionality of transactive


model algorithm

control is created for a transactive node. The Demonstration




chooses to apply this term to software modules that serve this




function.


transactive node

A formal construct possessing attributes that may be used to


object

define the state of a transactive node and the transition




between those states.


Transactive
TNOM
The model of the states of the transactive node object and the


node object

functions by which it moves from one state to another. The


model

TNOM includes the model of a transactive node object's




configuration.


update

Reciprocal of the update interval. The update frequency should


frequency

be made configurable to support future implementations and




testing.


update interval

Relatively short time interval between consecutive updates of




the TIS and TFS at each transactive node.









6.2.2 Introduction

A transactive node represents a predetermined component or region within an electric power grid at which electrical energy may be generated, consumed, imported, or exported. In principle, the transactive node construct will be scalable and similarly applicable to from small, end-use equipment (e.g., a distribution transformer, residential thermostats) to large regions (e.g., the boundary of an electric utility). A transactive node includes an agent of sorts (e.g., a computer and its software applications) that orchestrates each transactive node's responsibilities to:

  • 1. economically balance energy
  • 2. incentivize energy consumption or generation
  • 3. activate its own responsive generation and load resources
  • 4. exchange both transactive incentive signals (TIS) and transactive feedback signals (TFS) with each of its neighboring transactive nodes.


The two transactive signals—the transactive incentive signal (TIS) and transactive feedback signal (TFS)—reveal the predicted local delivered cost of electric energy and the predicted use of a TN to exchange electrical energy with its neighbors, given the value of the TIS and other predicted local conditions. (While this document refers often to pairs of TIS and TFS signals, the two signals need not necessarily always be received and sent together and simultaneously. Instead, the signals can be decoupled so that they may be sent and received separately.)


These functional behaviors should be designed into the transactive control and coordination system. Depending on its complexity, memberships, and location in its power grid, a transactive node may assume all, some, or practically none of the responsibilities to be described in this document. The toolkit function library construct is one way to organize and teach the responsibilities of a TN to those who would wish to define a transactive node and have their transactive node enter into an existing transactive control and coordination system. The toolkit library should not only hasten the adoption and implementation of transactive control, but it should also standardize implementations of transactive control so that the building blocks components will be more interoperable. The toolkit library should be available to implementers who may choose from and learn from others' experiences and practices. The template for toolkit library functions anticipates providing reference implementation code with which implementers may jump start their instantiation of similar functions.


The functional responsibilities of a transactive node will be described at two levels of the toolkit

  • 1. Toolkit framework—the high-level computational structure that provides basic transactive control functionality of transactive nodes and that calls upon specific toolkit library functions to enact the functionality of specific incentives and assets.
  • 2. Toolkit library functions—the specific functions that account for resource, enact incentives and plan asset responses at transactive nodes where these specific functions have been implemented and are relevant. Applicable toolkit library functions are called upon and acted upon within the toolkit framework.


6.2.3 Toolkit Framework

The toolkit framework is a high-level structure for the inputs, functions, processes, and outputs that define transactive control functionality at a transactive node. The toolkit framework will probably be found to encompass the high-level functional responsibilities of the transactive node model algorithm (TNMA) module.


(This document primarily addresses the algorithmic functionality of a transactive node and its responsibilities toward management of electrical energy. This document may facilitate, but does not intend to specify, functionality toward system management, timing, and data collection that are better addressed within the transactive node's object model.)



FIG. 35 is a flowchart 3500 that shows the flow of information during each update interval (e.g., 5-minute update interval) at the rate of the update frequency. This is a functional flow, not necessarily a recommendation for how a developer will construct the software program. The blocks in this diagram represent functions and processes. The distinction between “functions” and “processes” may be somewhat subjective, but a process will have been defined to have multiple sub-functions and/or sub-processes. Blocks of FIG. 35 shown with bold outlines are processes, known to be composed of at least two sub-functions or processes.


The flow of information in FIG. 35 is indicated by solid arrows. Information is processed predominantly downward through the diagram, which makes the diagram useful for understanding functional, sequential interdependencies. Other logical flow control and dependencies are shown by dashed arrows.


Information buffers appear in several of the information flow paths. These buffers are available to be mined by data collection processes and might be made accessible to the system management level. (These buffers, if defined as part of a standard transactive node definition, can be used as a point of observability for testing. In addition, the option of preloading the buffers may be useful for testing (especially if only the 5-minute update frequency is available).) The buffers also provide recent information that may be used if any prior function or process should fail to promptly complete its responsibilities or provide its output information. The flow in this diagram has been greatly simplified by the assumption that any buffered historical information is available to be used by any other function or process at this transactive node.


As part of its data collection design for transactive data, a number of buffers can be used. For example, in the illustrated embodiment in FIG. 35, five buffers are identified, the contents of which compose a sufficient snapshot of the calculations that have been completed by the toolkit framework and its toolkit functions at a transactive node. The five buffers are those into which calculation products are to be sent: Resource Schedule and Cost Buffer, Output TIS Buffer, Output TFS Buffer, Inelastic Load Prediction Buffer, and Elastic Load Prediction Buffer. The freshest, unique buffer records from these five buffers are specified to be collected after any transactive signal has been calculated and sent to a transactive neighbor. The sampling of these five buffers is sufficient in the sense that the outputs from each toolkit resource and incentive function and each toolkit load function are revealed, the TIS and TFS transactive signals that have been transmitted from this transactive node are revealed, and the magnitudes of transactive signals that have been received may be inferred, if not perfectly known. Alternatively, signal timing and data collection can be initiated by changes that have been detected, not by rigid timers.


The following processes and functions are referenced in FIG. 35 and will be described in the next sections. Defined functions, processes, and specially defined inputs and outputs of the functions and processes will be shown in bold font in this document.

  • 1. Receive Transactive Signals
  • 1.1. Read TIS and TFS from Transactive neighbor
  • 1.2. Check Authentication and Security
  • 1.2.1. Interact with System Management (Security)
  • 1.3. Check Validity of Transactive Signals
  • 1.3.1. Interact with System Management (Validity)
  • 1.4. Update Input Transactive Signal Buffer for this Transactive neighbor
  • 2. Calculate New Transactive Signal Intervals
  • 2.1. Read Present Time
  • 2.2. Calculate First Interval Start Time IST0
  • 2.3. Calculate 5-Minute Interval Start Times
  • 2.4. Calculate 15-Minute Interval Start Times
  • 2.5. Calculate 1-Hour Interval Start Times
  • 2.6. Calculate 6-Hour Interval Start Times
  • 2.7. Calculate 1-Day Interval Start Times
  • 2.8. Calculate Interval Durations from Interval Start Times
  • 3. Formulate TIS
  • 3.1. Refresh Default Output TIS
  • 3.2. Calculate Total Costs of Non-Transactive Energy Generation and Imports
  • 3.3. Calculate Total Cost of Energy Imported from Transactive nodes
  • 3.4. Calculate Total Capacity Cost/Incentives
  • 3.5. Calculate Total Infrastructure Cost/Incentive
  • 3.6. Calculate Total Other Cost/Incentive
  • 3.7. Calculate Output TIS
  • 3.8. Calibrate/Normalize TIS
  • 3.9. Interpolate Intervals Service Functions
  • 4. Formulate TFS
  • 4.1. Interpolate Intervals Service Functions
  • 4.2. Predict Net Resource Surplus or Shortage
  • 4.3. Disaggregate Net Resource Surplus or Shortage
  • 4.4. Refresh Default Output TFS
  • 5. Sum Total Predicted Load
  • 5.1. Interpolate Intervals Service Functions
  • 5.2. Sum Inelastic Load
  • 5.3. Sum Change in Elastic Load
  • 5.4. Sum Total Inelastic and Change in Elastic Load
  • 5.5. Refresh Predicted Total Inelastic and Elastic Load
  • 6. Calculate Applicable Toolkit Load Functions
  • 6.1. Interpolate Intervals Service Functions
  • 6.2m Toolkit Load Function
  • 6.3 Refresh Predicted Inelastic and Elastic Loads
  • 7. Send Transactive Signals (Defined only functionally at a high level)
  • 8. Calculate Applicable Toolkit Resource and Incentive Functions
  • 9. Control Responsive Asset Systems (Defined only functionally at a high level)
  • 10. Sum Total Predicted Resources
  • 10.1. Interpolate Intervals Service Functions
  • 10.2. Sum Total Predicted Resource
  • 10.3. Refresh Predicted Total Resource
  • 11. Control Responsive Resource


The next sections will describe examples of the functions in the above list. The sections below are demarcated by the function numbers set forth in the list above, and are not to be confused with the section numbering used outside of this appendix.


1. Receive Transactive Signals


Purpose:—Transactive signals are signals to be communicated between transactive nodes in a transactive control and coordination system. It is through transactive signals that transactive nodes share their temporal and locational costs and thirsts for electrical energy.


Transactive incentive signals (TIS) and transactive feedback signals (TFS) should be received from the transactive node neighbors at the update frequency, which happens to be once every 5 minutes for the Demonstration.


This function includes technical validation of received signals to ensure that they were properly formed and that their values are within acceptable norms. Validation is not yet a high priority, and validation processes probably do not need to be standardized across all transactive nodes. If an invalid signal is detected, it should be flagged. Additional actions may be taken to notify or alert targeted system operators and reduce the impacts from potentially misleading signals.


Applicability: This function should be completed by a transactive node at least once during an update interval. If this function fails, functions and processes of the toolkit framework that use an input transactive signal should revert to buffered historical signals.


Sub-Functions and Sub-Processes: The following sub-functions are iteratively completed until the input transactive signals from transactive neighbors have been received.


1.1 Read TIS and TFS from a Transactive neighbor—Function by which the TIS and TFS from a transactive neighbor is to be received. Most generally, the implementation details by which this sub-function is to be accomplished should be negotiated by pairs of transactive neighbors that will exchange transactive signals.


1.2 Check Authentication and Security—Functional block (or blocks) for signals like transactive signals that are to be conveyed through the transactive control and coordination system. The actual functional implementation details for security functions may differ from one implementation to another, but general descriptions for this block should be documented if they are applicable to any transactive node.


1.2.1 Interact with System Management (Security)—Actions that are to be taken if Check Authentication and Security function fails to authenticate a transactive signal or detects an insecurity. The input transactive signals are terminated if they cannot be authenticated or if security violations are suspected. Actions may include notifications and alerts that are to be conveyed by the system management layer. Specific actions of this function may differ by implementation.


1.3 Check Validity of Transactive Signals—Functional block (or blocks) by which the structure or contents of a transactive signal may be tested against expected and reasonable structure and content. Examples of checks on the structure of the signals could include verification of adherence to an XML schema, an expected number of future intervals, or the ordering of a series within the signal. An example of a content check would be verification that a signal's values are between stated maximum and minimum values.


1.3.1 Interact with System Management (Validity)—Actions that are to be taken if the Check Validity function fails validate transactive signals. The input transactive signals are terminated and not used or stored if they cannot be validated. Actions may include notifications and alerts that are to be conveyed by the system management layer. Specific actions of this function may differ by implementation. General functional aspects for this function that should apply to transactive nodes should be documented and implemented. More sophisticated actions may be taken, including reducing the Quality attribute of signals that have questionable validity.


1.4 Update Input Transactive Signal Buffer for this Transactive neighbor—Received transactive signals are saved into the Input Transactive Signal Buffer. The buffer may be as simple as a running (or circular) list of transactive signal pairs that have been received from transactive neighbors. The most recently received pairs or transactive signals from each transactive neighbor are most relevant within this buffered data. A much longer buffered history may be used at transactive nodes that use trending to predict transactive neighbors' responses (e.g., elasticity) or to improve the accuracy of their transactive signal predictions over time.


Inputs:

    • Input TIS from a transactive neighbor
    • Input TFS from a transactive neighbor
    • List of transactive neighbors from which transactive signals are expected to be received as should be known by the transactive node object and available from the Node State and Status Buffer. This information in the Node State and Status Buffer can be part of the transactive node configuration and state available within the transactive node object model, not temporary “buffer” information as the name might imply.


      Outputs:
    • Buffered copies of Input TIS and TFS.
    • Copies of Input TIS and TFS pairs conveyed to a data archive by the data collection system layer.
    • System management notifications and alerts upon failed security or validation checks, if such system management functions have been defined and if this transactive node is obligated to interact with a system manager.


      Dependencies:
    • Outputs of this function are used by Resource Schedules and Cost BUffer.
    • Outputs of this function are used by Formulate TIS.
    • Times at which this transactive node is eligible to receive transactive signals may be managed or limited by the current state of the transactive node object, which status is assumed to be known and available from a Node State and Status Buffer.
    • A set of transactive neighbors should be available from attributes of the transactive node object, which are assumed to be known and available from a Node State and Status Buffer.


      Notes:
    • The TIS and TFS are state objects of the Project-Level Infrastructure (PLI) transactive control and coordination system. This process expects and checks that transactive signals are being received with the specified content and structure, which may be further enforced through the use of, for example, accepted XML schema.
    • Considerable tolerance should be built into this function to coordinate with neighboring transactive nodes and their readiness to release their transactive signals. The function should be tolerant for when transactive signals are not received, or are not received early enough to influence the present update iteration.
    • When an incomplete set of transactive signals is received by a transactive node, the transactive node should rely upon buffered historical information from previous iterations. Unless the power grid's predicted future has changed dramatically, the buffered signals will remain good predictions until input transactive signals are received.
    • A Node State and Status Buffer has been established within the toolkit framework to ensure that it has information it may used concerning timing, transactive neighbors, and other status information concerning activities of the transactive node object.
    • This function interacts with cyber security subsystems. It is assumed here that authentication and other cyber-security tests have been conducted during signal transport or upon signal receipt.
    • This function potentially interacts with system management if invalid signals are detected or if notifications or alerts should be conveyed through the system for any reason concerning signals that have been, or should have been, received.
    • This function potentially depends upon assumptions and functionality within the state transition diagrams of the transactive node state, which design is presently incomplete. It has been assumed that the transactive node state diagram has provided states where toolkit framework functionality may (or may not) be conducted. Otherwise, it has been assumed that that design of the transactive node state transitions does not encroach on the functional responsibilities of the toolkit framework.



FIG. 36 is a flowchart 3600 illustrating an exemplary receive transactive incentive signal process.


2. Calculate New Transactive Signal Intervals


Purpose: Calculate the new interval start time (IST) time series that are attributes of the two transactive signal object types that are to be formulated and conveyed throughout the transactive control and coordination system. See SubAppendix A: Interval Start Time Series Definition for details about an example IST time series and how the series is calculated.


Applicability: This function should be completed by transactive nodes at the update frequency. In particular implementations, an update frequency of once every 5 minutes is used, though other intervals can be used.


Sub-Functions and Sub-Processes: The sub-function steps will be described along with this introduction to the sub-functions. Refer to SubAppendix A for additional details and examples.


2.1 Read Present Time—the present time is locally maintained at each transactive node and should be read near the beginning of each iteration. The present time and representations of time are to be maintained using the UTS standard.


2.2 Calculate First Interval Start Time IST0—to calculate IST0, round the present time up to the nearest 5-minute interval.


2.3 Calculate 5-Minute Intervals Start Times—to calculate IST2 through IST11, add 5 minutes to the prior IST.


2.4 Calculate 15-Minute Interval Start Times—to calculate IST12, add 15 minutes to the prior IST11, and round down to a 15-minute interval. To calculate the remaining 15-minute intervals IST13 through IST31, add 15 minutes to the prior IST.


2.5 Calculate 1-Hour Interval Start Times—to calculate IST32, add 1 hour to the prior IST31, and round down to a 1-hour interval. To calculate the remaining 1-hour intervals IST33 through IST49, add 1 hour to the prior IST.


2.6 Calculate 6-Hour Interval Start Times—to calculate IST50, add 6 hours to the prior IST49, and round down to a 6-hour interval. To calculate the remaining 6-hour intervals IST51 through IST53, add 6 hours to the prior IST.


2.7 Calculate 1-Day Interval Start Times—to calculate IST54, add 1 day to the prior IST53, and round down to a 1-day interval. To calculate the remaining 1-day interval IST55, add 1 day to the prior IST54. In certain embodiments, a final IST56 can be appended that will unambiguously define the duration of the final interval. (The final IST does not define a new interval, it simply states the end of the last interval.)


2.8 Calculate Interval Durations from Interval Start Times—the function by which IST interval durations may be discerned from an IST time series is as follows:


2.8.1 Calculate Δt0-Subtract IST1-IST0 to learn the duration of interval to that starts at IST0.


2.8.2 Tentatively Assign Remaining Δtn—successively subtract ISTn-ISTn−1 to tentatively assign durations Δtn. The duration of Δt55 has been made unambiguous by appending IST56, which is the end of the last interval.


2.8.3 Perform Checks—certain checks may be possible on the structure of the tentative set of IST intervals. In this formulation, both the IST times and interval durations should increase or stay the same as one progresses through the series. The tentative set of intervals should be corrected if it does not pass these local checks. The system management layer may be employed to flag, alert, or announce failed checks, but it is the each local node's responsibility alone to produce and use a correct and accurate set of IST intervals.


Inputs:

    • Present time (determines the first interval start time IST0 for the new output transactive signals)


      Outputs:
    • IST time series—Series of interval start times {IST0, IST1, . . . , ISTN} to be used in output TIS and output TFS stored into and available from the Current IST Series Buffer
    • Series of IST interval durations {Δt0, Δt1, . . . , ΔtN} that correspond to the N+1 members of the IST series stored into and available from the Current IST Series Buffer.


      Function/Process: The process steps were described above as the sub-functions were being introduced. Refer to SubAppendix A for further details, pseudo code, and examples.


      Dependencies:
    • The function's output is used by process 3. Formulate TIS
    • The function's output is used by process 4. Formulate TFS


      Notes:
    • The need for synchronicity is low or does not exist in a transactive control and coordination system. Therefore, local time should be accurate only to within several tens of seconds. This goal should not be particularly challenging to meet. Regardless, the Demonstration has imposed requirements for and means to achieve impressive synchronicity across its system.
    • The IST series is an attribute of both the TIS and TFS state objects.
    • While the current interval start time (IST) time and interval series are most relevant to the formulation of transactive signals, many toolkit framework and toolkit library functions use access to the current IST time and interval series. The Current IST Series Buffer construct was created to make this accessibility explicit within the toolkit framework.



FIG. 37 is a flowchart 3700 for an exemplary calculate new transactive signal intervals process.


3. Formulate TIS


Purpose: Process by which the TIS, one of the two transactive signals, is to be formulated at a transactive node. From its predecessors, this process receives parametric information that is used to determine how energy, capacity, infrastructure, and other influences are to be valued during formulation of the output TIS at this transactive node.


Applicability: This process should be completed at the update frequency by transactive nodes. Some of the sub-functions and sub-processes within this process may be trivial or empty at transactive nodes where the sub-functions or sub-processes are not needed.


Sub-Functions and Sub-processes:


3.1 Refresh Default Output TIS—simply retrieve the most recent output TIS from the Output TIS Buffer at this transactive node and refresh its time intervals by submitting it to function 3.10 Interpolate Intervals Service Functions. The resulting output TIS then returned to the Output TIS Buffer to be used by default if for any reason this transactive node does not compute a more current output TIS by the time it is used. This sub-function should be completed early during each duration. This potentially creates a race condition in software unless the update status of the buffer is maintained. Thus, in some embodiments, this should be used as a default value


3.2 Calculate Total Cost of Non-transactive Energy Generation and Imports—for each IST interval, sum the cost of imported and generated energy from sources that are not transactive neighbors at this transactive node. Examples include the costs of energy that is imported into the region from Canada, California, or other entities that are not participating in transactive control. Another example would be bulk generation from a gas generator that is dispatched in ways that are not affected by the region's transactive control and coordination system. The data that feed into this function will come from resource schedules and Incentive Toolkit Functions that are employed at this transactive node. This function becomes trivial and should not be used at transactive nodes that have neither non-transactive imports nor bulk generation.


The output from this function is the sum of products of pairs of energy costs Cε,o,n (units: cost per energy) and average generated or imported power {circumflex over (P)}G,a,n (units: average power), weighted by the corresponding IST interval duration Δtn (units: time).












a
=
1

A









C

E
,
a
,
n


·


P
^


G
,
a
,
n


·
Δ







t
n






(

Sub


-


Function





3.2

)








3.3 Calculate Total Cost of Energy Imported from Transactive nodes—for each IST interval, sum the cost of energy that is predicted to be imported from transactive neighbors. At times when energy is to be imported from transactive neighbors, the TIS & TFS from those transactive neighbors should be treated as special cases of imported energy and treated similarly to non-transactive imported energy (e.g., they result in (CE, PG) pairs). The cost of energy from a transactive neighbor is that neighbor's TIS. The predicted energy to be imported from that neighbor is the neighbor's TFS at the boundary between that and this transactive node. Exported energy to transactive neighbors should be disregarded in the calculation of the TIS. (In some embodiments, information about exported energy is found in the Resource Schedules and Cost Buffer. In such embodiments, Functions 3.2 and 3.3 can filter the buffer contents to address only imported energy, in which case the Resource Schedules and Cost Buffer is a complete rich source of information for data collection concerning the outputs of Toolkit Resource and Incentive Functions that are being employed at this transactive node.) It is conceivable that a transactive node could import no energy from its transactive neighbors, but the TFS shared with the neighbors should be checked nonetheless. (The prediction of energy to be exchanged to or from a transactive neighbor can be predicted by both neighbors, by one of the neighbors, or some other combination.)


As for sub-function 3.2, the output from this function will continue the sum of products of pairs of energy costs Cε,a,n (TIS) (units: cost per energy) and average generated or imported power {circumflex over (P)}G,a,n (TFS) (units: average power), weighted by the corresponding IST interval duration Δtn (units: time).












a
=
1

A









C

E
,
a
,
n


·


P
^


G
,
a
,
n


·
Δ







t
n






(

Sub


-


Function





3.3

)








3.4 Calculate Total Capacity Cost/Incentive—for each IST interval, sum the costs that are functions of a capacity. Constraints and demand charges are examples. These are expected to be very non-linear, but they will nonetheless be represented by a capacity cost and the capacity to which they apply. This function may be trivial or empty at transactive nodes where no capacity costs or incentives are to be included in the output TIS.


The output from this sub-function is the sum of products of pairs of capacity costs CC,b,n (units: cost per power capacity) and average power capacity {circumflex over (P)}C,b,n (units: average power) for each respective IST interval n.












b
=
1

B








C

C
,
b
,
n


·


P
^


C
,
b
,
n







(

Sub


-


Function





3.4

)








3.5 Calculate Total Infrastructure Cost/Incentive—for each IST interval, sum the infrastructure (e.g., time-based) costs that should be applied during the interval. This function may be trivial or empty at transactive nodes where no infrastructure costs or incentives are to be included in the output TIS.


The output from this sub-function is the sum of products of pairs of infrastructure costs (units: cost per time) and the respective interval duration Δtn (units: time).












c
=
1

C









C

I
,
c
,

.
n



·
Δ







t
n






(

Sub


-


Function





3.5

)








3.6 Calculate Total Other Cost/Incentive—for each IST interval, sum those influences that cannot be described by the energy, capacity, and infrastructure functions. (Other Cost/Incentive functions are desirably used infrequently for influences that cannot be described with the other functions. The representation of cost by this function should still be a defensible cost of delivered energy and will be subject to comparison against other cost accountings over relatively long time periods.) This function may be trivial or empty at transactive nodes where no other costs or incentives are to be included in the Output TIS.


The output from this sub-function is the sum of “Other” costs CO,d,n (units: cost).












d
=
1

D







C

O
,
d
,
n






(

Sub


-


Function





3.6

)








3.7 Calculate Output TIS—a simple parametric function that combines outputs from above functions to complete calculation of the Output TIS for this transactive node. The sums completed by five other sub-functions appear in this sub-function. Details about this function are expanded upon in the Section 3.7 Details about the Calculate Output TIS Function.










TIS
n

=









a
=
1

A









C

E
,
a
,
n


·


P
^


G
,
a
,
n


·
Δ







t
n



+




b
=
1

B








C

C
,
b
,
n


·


P
^


C
,
b
,
n




+










c
=
1

C









C

I
,
c
,

.
n



·
Δ







t
n



+




d
=
1

D







C

O
,
d
,
n











a
=
1

A










P
^


G
,
a
,
n


·
Δ







t
n








(

Sub


-


Function





3.7

)








3.8 Calibrate/Normalize TIS—algorithm by which the output TIS are to be compared against and perhaps made to track other cost accounting methods. If the calculation of a TIS is meaningful as the delivered cost of electrical energy, it should track other reasonable accountings of the delivered cost of electrical energy over relatively long periods of time. In some embodiments, this is a general requirement on the TIS. This general requirement may be enforced by a bias input that will force the TIS to track other less dynamic accountings and thereby correct the TIS.


3.9 Interpolate Intervals Service Functions—parse energy and costs from coarse intervals into multiple sub-intervals. This function is necessary because the set of IST intervals to be used by the output TIS will have divided some prior intervals into sub-intervals. This function is a service function that is called as often as it is desired. The objects TIS and TFS may simply be replicated for each sub-interval. (While many complex methods may evolve to interpolate and assign costs and average power to sub-intervals, in cetain embodiments of the disclosed technology, the cost and average power from an interval are assigned to its sub-intervals.)


Inputs:

    • Energy cost, scheduled/committed non-transactive energy pairings for each non-transactive generation or import resource at a time interval

      (IST*n,Δt*n,(CE,1,n,{circumflex over (P)}G,1,n),(CE,2,n,{circumflex over (P)}G,2,n), . . . ,(CE,a,n,{circumflex over (P)}G,a,n), . . . ,(CE,A,n,{circumflex over (P)}G,A,n)),

      where n is a time interval of the TIS numbered from 0 to 55; ISTn is interval start time n in a series of interval start times; Δtn is the duration of interval n; CE,a,n is the energy cost term (e.g., units $/kWh, like the TIS) of the scheduled generation or import resource a for IST interval n, and {circumflex over (P)}G,a,n is the average generated or imported power from generation or import resource a during time interval n. Its units are the same as for TFS (e.g., average power). (The asterisk indicates that this series of Interval Start Times and durations will likely differ from those that have been calculated to be used with the Output TIS and Output TFS. The function 3.10 Interpolate Intervals Service will sort this out for the inputs into the other sub-functions. See, e.g., Figure C-4.)
    • Input TIS and input TFS pairings from each transactive node neighbor for each time interval

      (IST*n,Δt*n,(TIS1,n,TFS1,n),(TIS2,n,TFS2,n), . . . ,(TISj,n—,TFSj,n), . . . ,(TISJ,n,TFSJ,n)),

      where TISj,n and TFSj,n are the input transactive signals from transactive node neighbor j during time interval n. This input should be considered a special case of the input described in the preceding bullet. (At times that energy is predicted to be imported from a transactive neighbor, the corresponding TIS and TFS are special cases of CE,a,n and PG,a,n and will be treated very much the same.)
    • Interval start time series

      {IST0,IST1, . . . ,ISTN}
      and interval duration series
      t0,Δt1, . . . ,ΔtN}

      to be used for Output TIS and Output TFS. (These notations do not have asterisks because they are are final intervals to be used in the output transactive signals after this iteration.) In FIG. 4, the Interval Start Time Series is shown as an input to the function 3.10 Interpolate Intervals Service, which have the responsibility to resolve any discrepancies between various representations of intervals.
    • Energy term(s) CE from applicable incentive toolkit functions, if any. (Energy terms CE have the same usage and interpretation regardless of whether they are used inside or outside a Toolkit Incentive Function. This term accounts for costs that are roughly proportional to an amount of energy that is being generated or imported into a transactive node's boundary.) The format should be identical to that stated above for non-transactive energy pairings.
    • Average Power terms(s) {circumflex over (P)}G from applicable incentive toolkit functions, if any. (The average power terms are used similarly regardless of whether they are used in or outside a Toolkit Incentive Function. These terms are an accounting of the average power that is either generated within our imported into a transactive node boundary.) The format should be identical to that stated above for non-transactive energy pairings.
    • Capacity term(s) CC from applicable Incentive toolkit functions, if any, applicable at each IST interval

      (IST*n,Δt*n,(CC,1,n,{circumflex over (P)}C,1,n)(CC,2,n,{circumflex over (P)}C,2,n), . . . ,(CC,b,n,{circumflex over (P)}C,b,n), . . . ,(CC,B,n,{circumflex over (P)}C,B,n)),

      where CC,b,n is the cost to be applied to capacity cost item b paired with the capacity {circumflex over (P)}C,b,n to which it applies, and {circumflex over (P)}C,b,n is the average power capacity for capacity cost item b to be multiplied by capacity cost CC,b,n for IST interval n.
    • Infrastructure term(s) Cl from applicable incentive toolkit functions, if any

      (IST*n,Δt*n,Cl,1,n,Cl,2,n, . . . ,Cl,c,n, . . . ,Cl,C,n),

      where Cl,c,n is the infrastructure term c for the IST interval n.
    • Other term(s) CO from applicable Incentive toolkit functions, if any, for each IST interval

      (IST*n,Δt*n,CO,1,n,CO,2,n, . . . ,Cl,d,n, . . . ,Cl,D,n),

      where CO,d,n is the “Other” influence term d for IST interval n.
    • Exemplary alternative cost accounting(s) for use by function 3.9 Calibrate/Normalize TIS. Examples include wholesale energy costs for the same energy or utility expenses.


      Interim Calculation Products:
    • Total Cost of Non-transactive Energy Imports
    • Total Cost of Non-transactive Energy Generation
    • Total Cost of Energy Imported from Transactive neighbors
    • Total Capacity Cost/Incentive
    • Total Infrastructure Cost/Incentive
    • Total Other Cost/Incentive
    • Total Cost
    • Total Energy Imported or Generated
    • Additionally, interim calculations may be used to represent prior interval information in terms of the new IST time series and interval durations that are to be used by the Output TIS.


      Outputs:
    • New “Updated” Output TIS at this transactive node.


      Function/Process: Each of the sub-functions/sub-processes should be defined, but sub-function 3.8 Calculate Output TIS defines the parametric calculation of the output TIS from the energy, capacity, infrastructure, and other parameters and how the parameters are to be applied. The implementer who understands sub-function 3.8 Calculate Output TIS will have the insight to formulate toolkit functions and will have considerable flexibility in the way such toolkit functions are formulated.


      Dependencies:
    • Uses input of new IST time series from process 2. Calculate New Transactive Signal Intervals
    • Uses input of TIS and TFS from at least one transactive neighbor via process 1. Receive Transactive Signals
    • Process inputs may come from Calculate Applicable Toolkit Incentive Functions
    • Process inputs may come from Resource Schedules and Cost Buffer.
    • Output TIS from this process is used by process 7. Send Transactive Signals.
    • Output TIS from this process may be used by Calculate Applicable Toolkit Response Functions dP(TIS,OLC) if this transactive node owns responsive assets.


Notes:

    • Each transactive node produces one and only one TIS for itself for each 5-minute update iteration.
    • The TIS itself is a time series that expresses the delivered cost of energy into the future about 3 days, or so, as is defined by the IST time series.



FIG. 38 is a flowchart 3800 illustrating an exemplary formulate TIS process.


Details about the Function 3.7 Calculate Output TIS


Purpose: Describes the final parametric calculation of the output TIS. This sub-function consists of a simply stated function of the sum products of other sub-functions 3.2 through 3.7. This sub-function creates a level of standardization that will help ensure that the TIS at distributed points in a transactive control and coordination system are defensible representations of the “delivered cost of energy.”


Applicability: A sub-function of 3. Formulate TIS Process that should be calculated at the update frequency at transactive nodes.


Sub-Functions and Sub-processes: None. This is a simple arithmetic function of sums that have been calculated by sub-functions 3.2 through 3.7.


Inputs:

    • Summed cost of energy terms












a
=
1

A









C

E
,
a
,
n


·


P
^


G
,
a
,
n


·
Δ







t
n






(

Sub


-


Functions





3.2





and





3.3

)








from sub-functions 3.2 Calculate Total Cost of Non-Transactive Energy Generation and Imports and 3.3 Calculate Total Cost of Energy Imported from Transactive nodes

    • Summed cost of capacity terms












b
=
1

B








C

C
,
b
,
n


·


P
^


C
,
b
,
n







(

Sub


-


Function





3.4

)








from sub-function 3.4 Calculate Total Capacity Cost/Incentive

    • Summed cost of infrastructure terms












c
=
1

C









C

I
,
c
,

.
n



·
Δ







t
n






(

Sub


-


Function





3.5

)








from sub-function 3.5 Calculate Total Infrastructure Cost/Incentive

    • Summed other costs












d
=
1

D







C

O
,
d
,
n






(

Sub


-


Function





3.6

)








from sub-function 3.6 Calculate Total Other Cost/Incentive

    • Summed energy












a
=
1

A










P
^


G
,
a
,
n


·
Δ







t
n






(

Function





10

)








that is predicted to be imported and/or generated at this transactive node as has been calculated in function 10. Sum Total Predicted Resource.


Outputs:

    • One current output TIS time series for this transactive node


      Function/Process:


This sub-function simply adds the individual cost summations from sub-functions 3.2, 3.3, 3.4, 3.5, and 3.6 and divides that sum by the total energy that is imported into or generated within the boundaries of this transactive node as was summed by sub-function 3.7:



















a
=
1

A









C

E
,
a
,
n


·


P
^


G
,
a
,
n


·
Δ







t
n



+




b
=
1

B








C

C
,
b
,
n


·


P
^


C
,
b
,
n




+










c
=
1

C









C

I
,
c
,

.
n



·
Δ







t
n



+




d
=
1

D







C

O
,
d
,
n











a
=
1

A










P
^


G
,
a
,
n


·
Δ







t
n




,




or







TIS
=






energy





cost

+

capacity





cost

+







infrastructure





cost

+

other





costs





Energy






(

Sub


-


Function





3.7

)







The function shown above for interval n should be performed for all intervals that are to be used by the Demonstration for its transactive signals.


Dependencies:






    • Will use sub-function 3.10 Interpolate Intervals Service Functions to convert intervals of inputs into those of the updated IST time series that is to be used by the output TIS.

    • The output TIS produced by this sub-function is one of the two transactive signals that function 7. Send Transactive Signals will act upon and send.


      Notes:

    • This function assumes that intervals have been aligned and modified to be consistent with the new IST intervals that were determined by process 2. Calculate New Transactive Signal Intervals. If that is not the case, the sub-function 3.10 Interpolate Intervals Service Functions should be applied until inputs to this sub-function have been stated in terms of the IST intervals for which the output TIS will be produced.

    • If properly formulated, the units of TIS will be cost per energy. Dimensional unit analysis is a candidate component for conformance testing to be performed on any implementation that follows this toolkit framework.


      4. Formulate TFS


      Purpose: Formulate one current transactive feedback signal (TFS) for the electrical interface between this transactive node and each of its transactive neighbors.


      Applicability: This process should be completed at the update frequency by transactive nodes.


      Sub-Functions and Sub-Processes:


      4.1 Interpolate Intervals Service Functions—function, or set of functions, by which the inputs to this process may be restated using the current interval start time (IST) series. If input time series are found to use dated time intervals or any other representation of future intervals other than the current IST series, this function should be called until the dissimilarities are resolved. This function should also be called early during an update interval iteration to create updated, default versions of a recent prior transactive feedback signals (TFS) that may be used if, for any reason, this transactive node fails to formulate a TFS by the time it is used.


      4.2 Predict Net Resource Surplus or Shortage—take the difference between total resource from A resources and total load supplied by this transactive node to determine the net surplus or shortage for each future interval n. The net surplus or shortage is the average power over an interval that should be sent to or received from transactive neighbors during that interval—an imbalance anticipated to occur at this transactive node. Therefore, the net surplus or shortage should equal the sum of all changes to the TFS for each interval at this transactive node.




























TFS
n


=





a
=
1

A








P
^


G
,
a
,
n



-




L
^

n







(

Sub


-


Function





4.2

)







Total average load at each interval Σ{circumflex over (L)}n is a calculated input that should be retrievable from the Predicted Inelastic and Elastic Load Buffer. The total resource









a
=
1

A








P
^


G
,
a
,
n







is a calculation available from the Total Predicted Resource Buffer, a product of 10. Sum Total Predicted Resource. (Desirably, there is a connection between this calculated imbalance and resource planning.)


4.3 Disaggregate Net Resource Surplus or Shortage—allocate the net resource surplus or shortage among this transactive node's transactive neighbors by formulating or modifying the TFS for each such interface. The newly formatted TFS are then stored into the Output TFS Buffer.


Today, this prediction would rely on centralized power-flow solvers. In a fully distributed system, however, new prediction tools can be used.


This transactive node object should supply to this sub-function the current list of transactive neighbors for which TFS should be calculated. It may also provide simple ratios or detailed topological information that can be used eventually to predict load flow between this transactive node and its transactive neighbors, e.g., TFS series. Current information about the transactive node object is assumed to be available from a Node State and Status Buffer.


4.4 Refresh Default Output TFS—early during each IST update interval, this process should refresh the last calculated versions of TFS found in the Output TFS Buffer and restate them using the current IST series. Thereafter, the restated, refreshed TFS may be returned to the buffer and used as default values if, for any reason, this transactive node should fail to formulate the current TFS by the time they are used.


Inputs:

    • Predicted total load supplied Σ{circumflex over (L)}n at each future interval n of the current IST series from the Predicted Inelastic and Elastic Load Buffer
    • Predicted total resource









a
=
1

A








P
^


G
,
a
,
n








    •  at each future interval n of the current IST series.





(This is now calculated by a sub-function of this process, but it can be made available from a common buffer of the toolkit framework.) This input should be available from the Total Predicted Resource Buffer.

    • Information from this transactive node object concerning its transactive neighbors that should expect to receive a TFS from this transactive node, available from the Node State and Status Buffer.
    • Information from this transactive node's object that will be used to allocate, or disaggregate, the net surplus or shortage among the TFS that are to be stated form each transactive neighbor, available from the Node State and Status Buffer.
    • The current IST series available from the Current IST Series Buffer.


      Outputs:
    • One output TFS for each transactive neighbor stored into and available from the Output TFS Buffer.


      Function/Process: Refer to the descriptions of the sub-functions above as the sub-functions were being introduced.


      Dependencies:
    • This process formulates one of two transactive signal types that should be available from the Output TFS Buffer to be conveyed by this transactive node to its transactive neighbors at the update frequency by 7. Send Transactive Signals.
    • This process expects that the current IST series will have been created by 2. Calculate New Transactive Signal Intervals and available from the Current IST Series Buffer.
    • This process expects that the current sum total load will have been calculated by function 5. Sum Total Predicted Load and available from the Predicted Inelastic and Elastic Load Buffer.
    • This process expects that the total predicted resource will have been calculated by function 10. Sum total Predicted Resource.


      Notes:
    • The TFS is indeed a feedback signal, but the transactive control and coordination system is not a closed-loop feedback control system in the classical sense. First, the magnitude of resource from responsive asset systems is too small for us to expect closed-loop control. Second, the TIS is decidedly grounded as a meaningful delivered cost of energy, not free to represent large incentive swings as could a local marginal price. There is weak or no integral control in the system.
    • The transactive feedback signal (TFS) may not be as dynamic and useful as the transactive incentive signal (TIS) will be. The TFS will be affected by a relatively small fraction of responsive asset systems at places throughout the transactive control and coordination system. Transmission and generation entities are unengaged by the project's scale and are therefore unresponsive to changes that will be observed in the TFS.



FIG. 39 is a flowchart 3900 of an exemplary formulate TFS process


5. Sum Total Predicted Load


Purpose: Process to add the total inelastic (non-transactive) and elastic (transactive) electrical load components being supplied within the boundaries of this transactive node. (In the illustrated embodiment, electrical energy that is to be exported outside the boundaries of a transactive node is not part of this sum.)


Applicability: This function applies to transactive nodes and should be updated at the update frequency, however, this process becomes trivial for transactive nodes that supply no elastic electric load, no inelastic electric load, or neither elastic nor inelastic electric load within the boundaries of the transactive node.


Sub-Functions and Sub-Processes:


5.1 Interpolate Intervals Service Functions—suite of functions that may be called upon should any inputs to this function note yet exist using the current set of interval start times that should be available from the Current IST Series Buffer.


5.2 Sum Inelastic Load—sums the entries in the Inelastic Load Prediction Buffer that are relevant to the current update interval iteration.


The Inelastic Load Prediction Buffer may (or may not) have a multiplicity of relevant entries that should be summed. For example the buffer might possess a bulk load prediction that is simply based on historical trends over the past week, the inelastic prediction for a large water heater responsive asset system, and the inelastic prediction for a voltage-response asset. (In certain embodiments, care should be taken not to double count any of the load as this sum is taken.) For each of this component addends k, the buffer should possess a relatively current entry Linelastic,k. Each entry should state average load (unit: average power) to be consumed (or generated) by it during each of a series of intervals.


If an entry from the buffer is found to have intervals other than those in the current IST series, function 5.1 Interpolate Interval Service Functions should be called upon to resolve the discrepancy and restate the entry contents using the current IST interval set.


Ideally, all current, relevant contents of the buffer will be evident from the entries' interval start time IST0 time. Preferably, the buffer contents that are to found and summed by this sub-function for each iteration should be attributes of this transactive node, knowable from the contents of the Node State and Status Buffer.


The output product of this sub-function is a single time series ΣLinelastic,n that has summed components k.


5.3 Sum Change in Elastic Load—sums the entries in the Toolkit Response Function Output Buffer that are relevant to the current update interval iteration. If toolkit functions have been employed for responsive asset systems at this transactive node, one or more entries will be found in the buffer to be summed in this sub-function. Note that only the change in elastic load is to be found in the buffer and summed for each interval start time interval by this sub-function. For each of this component addends j, the buffer should possess a relatively current entry ΔLelastic,j. Each entry should state the change in average load (unit: average power) it predicted to be consumed (or generated) by it during each of a series of intervals.


If an entry from the buffer is found to have intervals other than those in the current IST series, function 5.1 Interpolate Interval Service Functions should be called upon to resolve the discrepancy and restate the entry contents using the current IST interval set.


As was the case for sub-function 5.3 above, the contents of the buffer that are to found and summed by this sub-function for each iteration should be an attribute of this transactive node, knowable from the contents of the Node State and Status Buffer.


The output product from this sub-function is a single time series Eelestic,n that has summed components j.


5.4 Sum Total Inelastic and Change in Elastic Load—function by which total inelastic load predictions and predicted changes in elastic load are finally summed to calculate a total to be placed into the Predicted Total Inelastic and Elastic Load Buffer. This function completes the simple arithmetic sum

ΣLtotal,n=ΣLinelastic,n+ΣΔLelestic,n  (Function 5.)

where ΣLtotal,n is the sum of total inelastic load ΣLinelastic,n and total change in elastic load ΣΔLelastic,n for IST interval n at this transactive node.


5.5 Refresh Predicted Total Inelastic and Elastic Load—succeeding calculations will expect that the predicted total inelastic and elastic load will be available according to current IST intervals. Therefore, early in each update interval interation, the most current representation of that sum should be located within the Predicted Total Inelastic and Elastic Load Buffer and subjected to function 5.1 Interpolate Intervals Service Functions to recast the buffer contents into a default buffer entry that uses the current set of interval start times (IST). If for any reason this transactive node fails to later update its prediction of the sum into the buffer, the default value may be used instead.


Inputs:

    • Set of predicted inelastic load {Linelastic,1, Linealstic,2, . . . , Linelastic,k, . . . , Linelastic,K} for each of the K components of total inelastic load, each of which predicts average load (units: average power) for interval start time interval n. This set of entries should be found from within the Inelastic Load Prediction Buffer.
    • Set of predicted changes to a—astic load {ΔLelastic,1, ΔLealstic,2, . . . ΔLelastic,j, . . . ΔLelastic,J} for each of the J components of total change in elastic load, each of which predicts change in average load (units: average power) for interval start time interval n. This set of entries should be found from within the Toolkit Response Function Output Buffer.
    • Current interval start time (IST) series from the Current IST Series Buffer
    • List of those members of the Inelastic Load Prediction Buffer, if any, which are expected to be found and used by this process, which list should be obtained from attributes of this transactive node found in the Node State and Status Buffer.
    • List of those members of the Toolkit Response Function Output Buffer, if any, which are expected to be found and used by this process, which list should be obtained from attributes of this transactive node found in the Node State and Status Buffer.


      Outputs:
    • Total predicted load Ltotal,n for each of the current IST intervals to be stored into the Predicted Inelastic and Elastic Load Buffer.


      Function/Process: The steps of this process were stated above with the introductions of sub-functions. Overall, the process completes the simple arithmetic sum

      ΣLtotal,n=ΣLinelastic,n+ΣΔLelestic,n  (Function 5)

      where ΣLtotal,n is the sum of total inelastic load ΣLinelastic,n and total change in elastic load ΣΔLelastic,n for IST interval n at this transactive node.


      Dependencies:
    • Should call upon current inelastic load predictions from the Inelastic Load Prediction Buffer having been updated frequently by process 6. Predict Applicable Inelastic Load using Trends/Models.
    • For those transactive nodes that have responsive asset systems and therefore employ toolkit functions, this function expects that current predictions of changes in elastic load are available from the Toolkit Response Function Output Parameter Buffer having been updated frequently by process Calculate Applicable Toolkit Response Function(s).
    • The output from this function is an input to process 4. Formulate TFS.


      Notes:
    • If the prediction of current total elastic and inelastic load components cannot be calculated promptly by the time they are used by the transactive node, prior calculations from the Predicted Inelastic and Elastic Load Buffer should be used by process 4. Formulation TFS.
    • It would be ideal if inputs into and outputs from this function were properly formatted using the current interval start time series (IST) that should exist in the Current IST Series Buffer. Keeping the current outputs of functions and processes aligned with the current IST series will greatly simplify later successive calculations. If that cannot beS accomplished, interpolation service functions should be called upon.
    • Implementers might choose to have this process additionally interact with the system management layer. If, for example, this transactive node fails to update its load predictions and therefore uses default, buffered estimates, such events might be counted and/or flagged to initiate notifications or alerts. Such a capability would be nice to have, but it is probably not an essential part of the toolkit framework. System management for this process would serve business entities that are relevant to the “generic” system implementation.



FIG. 40 is a flowchart 4000 of an exemplary sum total predicted load process.


6. Calculate Applicable Toolkit Load Functions


Purpose: This process block represents from zero to many specific toolkit library functions that may be incorporated into the toolkit framework here. The toolkit functions that become instantiated at this location should represent and predict elastic and inelastic loads and should result in a reasonably complete and accurate prediction of the entire load that is supplied within the boundaries of this transactive node during each IST interval.


Most generally, these toolkit functions may be characterized by their inputs and outputs and by their generalized functional responsibilities within the toolkit framework. A template is developed for the specification of toolkit functions (see SubAppendix B). Owners of transactive nodes, who represent the unique perspective under which this transactive node should be managed, should select and/or help create specific toolkit function(s) that model the responsive asset systems and inelastic loads that they have or plan to implement. See Table 25 for an example list of toolkit load functions.


Modular toolkit functions may be implemented and shared via combinations of their functional descriptions, pseudo code implementations, and reference code, all of which are recommended components of the recommended toolkit function template.


The location of this block within the toolkit framework is intended for toolkit functions that predict the behaviors of two different types of loads:

    • responsive asset system—an elastic load m for which its toolkit function predicts both its inelastic load component Lm and a change in elastic load ΔLm using the current output TIS and often other local conditions as inputs.
    • inelastic load—other inelastic load component for which its toolkit function predicts only its inelastic load component Lm.


Of interest are those responsive asset systems that can be applied to the transactive control and coordination system. (In certain embodiments, responsive asset systems have been defined to be applied within reliability or conservation and efficiency test cases as well. Not all responsive asset systems are being used in the transactive control and coordination system test cases.) A toolkit function should be defined for each unique implementation of each major type of responsive asset system. Each toolkit function should first calculate the inelastic load Lm, which predicts when and how much energy the responsive asset system would consume if it were not influenced by the output TIS. The prediction of inelastic load component is placed into the Inelastic Load Prediction Buffer. The toolkit function should then predict the change in elastic load ΔLm that is caused by the condition of the output TIS. The prediction of elastic load component is placed into the Elastic Load Prediction Buffer. It is acceptable that the elastic load components may be zero during intervals when the responsive asset system is not predicted to be engaged by the output TIS.


Another output from a toolkit function should be a representation of the planned control action by which the responsive asset system will be induced to change its energy consumption in light of the state of the output TIS for each interval. For example, some responsive asset systems may be either active or curtailed (e.g., populations of water heaters), in which case a binary indicator might be used for each interval. Other systems are able to enter any of multiple discrete levels of response (e.g., GE smart appliances), in which case one of several discrete levels should be specified for each interval. Still other systems may provide a continuum of possible responses and use a representation of percentage. (An interesting example of this continuum of responses will occur where customers are provided a means to view the output TIS itself on an in-home display and respond correspondingly with a continuum of behavioral responses.) Eventually, as time marches toward the interval of interest and the interval becomes that of IST0, the responsive asset system should be expected to take the predicted, prescribed action. The implementations of responsive asset systems will be diverse, but it is in the representation of these predicted, planned control actions where standardization may be particularly useful.


An example would probably be useful concerning the portion of predicted load that should be included in this process from elastic loads, including responsive asset systems. Electrical consumption by a set of electric water heaters may be predicted quite well from measured trends and models of the water heaters and their owners' behaviors. The input information or parameters that influence such trends and models might include time of day, day of week, occupancy, outdoor temperature, and average outdoor temperature, for examples. In the toolkit framework, these pieces of information or parameters are referred to as other local conditions that should be available inputs if the transactive node is to accurately predict the load consumed by the water heaters. These predictions are to be completed within this process 6. Predict Applicable Toolkit Load Functions. The predicted load should be recorded for each such system in the Inelastic Load Prediction Buffer. If upon receipt of the current output TIS the water heaters would reduce their load, the change (e.g., only the change) would be predicted in a parallel calculation path and would be stored into the Elastic Load Prediction Buffer.


Toolkit functions can used to describe behaviors of individual devices. But the responsive asset systems of the Demonstration are primarily used for populations of devices. It is the statistical behavior of the populations, not individual devices that should be predicted.


Inelastic load components are similarly incorporated via their toolkit functions; however, no elastic load component should be created by these functions. Candidate inelastic load predictions might include feeders of residential customers, where the load of the population could be predicted from the time of day, average home square footage, average house age, outdoor temperature, and perhaps still other local conditions.


Regardless of whether a given toolkit function describes an elastic or an inelastic load, a load should never appear on both the resource and load sides of the toolkit framework formulation for any single interval n. Responsive asset systems may be either electrical loads or resources. Regardless, the toolkit functions whose influence is to be inserted at this location will affect the formulation of the TFS but will not directly influence the formulation of the output TIS. Responsive asset systems that should affect the delivered cost of energy (e.g., the TIS) at this transactive node should be inserted at location 8. Calculate Applicable Toolkit Resource Functions instead.


Using the above-stated criterion, the average power from a customer's renewable generator should probably be treated as a “negative” load (e.g., its toolkit function should be incorporated here) if it will never result in net metering. But if the utility at any time pays the customer net-metering payments for surplus energy that is produced by the resource, the resource should be included instead among resources, not loads, so that the net-metering charges may influence the formulation of the TIS (e.g., a toolkit function should be included for this system in the process 8. Calculate Applicable Toolkit Resource Functions).


Using the same reasoning, the present process should not predict bulk generation resources that are scheduled at this transactive node because costs should almost certainly be applied to the energy from such bulk resources.


The influences of elastic and inelastic load components should never be double counted. The influence of a load should appear only once if an accurate prediction of total load is to be formulated by this transactive node.


Toolkit functions may include learning algorithms and other means to improve the accuracy of their load predictions over time, but such complexities should be weighed against the Demonstration's desire to create and teach and implement these toolkit functions with its participants and within a tight development schedule.


See Table 25 for a list of example toolkit load functions.


Applicability: Any toolkit functions to be called upon in this process block should be called at the update frequency. It is conceivable but unlikely that a transactive node may have neither inelastic nor elastic load components that necessitate any toolkit functions be called within this process block.


Sub-Functions and Sub-processes:


6.1 Interpolate Intervals Service Functions—a suite of service functions that may be called upon as they are desired to restate dated time series in terms of the current IST intervals. (These functions might be defined and used throughout the entire toolkit framework instead of uniquely defined for each process, as has been shown here.)


6.2m Toolkit Load Function—from zero to many individual toolkit functions from a toolkit function library that predict inelastic load and change in elastic load for each interval of the current IST series. Enough such toolkit functions should be incorporated and called upon to predict the entire load at this transactive node. Individual toolkit functions may be created or selected from a toolkit function library predict the behaviors of a responsive asset system; the behaviors of a group of inelastic loads; generation from small distributed generation resources that do not directly influence the formulation of the TIS; or large nebulous groups of ill-defined loads that can only be characterized by their historical trends.


It should be assumed that the list of M relevant toolkit functions are identified and known by this transactive node object and is available from the Node State and Status Buffer. Furthermore, the buffer should identify the sets of other local conditions inputs expected to be available to the M toolkit functions from the Toolkit Load Function Input Buffer.


A toolkit function should output its prediction of inelastic load into the Inelastic Load Prediction Buffer for the load being described and for a current IST interval. (The inputs expected by toolkit functions will be varied and may be dynamic.) If the function models and helps control responsive, elastic loads, the function should also create and output the planned control for the responsive load. A standardized advisory control signal to be sent to the responsive asset systems has been formulated and is available in SubAppendix C.


6.3 Refresh Predicted Inelastic Elastic Loads—early each update interval iteration, the most current contents of the Inelastic Load Prediction Buffer and Elastic Load Prediction Buffer should be retrieved by this sub-function and restated using 6.1 Interpolate Intervals Service Functions in terms of the current IST interval set. These updated buffer contents are then available to be used by default should this transactive node fail for any reason to calculate its load for the current iteration.


Inputs:

    • current IST interval series that is available from the Current ISTSeries Buffer
    • current output TIS (units of “value” attribute: cost per energy) from the Output TIS Buffer
    • other local conditions (OLC) (units: various) as might be prescribed by specific toolkit functions and available from the Toolkit Load Function Input Buffer
    • list of M toolkit functions that should be called at this transactive node and the list of other local conditions data inputs that will be used by the toolkit functions as should be known by this transactive node object and available from the Node State and Status Buffer.


      Outputs:
    • Inelastic load predictions Lm (units: average power) for each IST interval stored into the Inelastic Load Prediction Buffer
    • Elastic load predictions ΔLm (units: change in average power) for each IST interval stored into the Elastic Load Prediction Buffer
    • Predicted control actions for responsive asset systems for each IST interval stored into the Elastic Load Prediction Buffer. (recommendation for units: {allowed: “0”; curtailed: “−1”}; {generation level L: “L”; . . . , generation level 2: “2”; generation level 1: “1”; off: “0”; load reduction level −1: “−1”; load reduction level −2: “−2”; . . . }; {continuum from full generation: “100”; off: “0”; full load reduction: “−100})


      Function/Process: Sub-functions 6.1 and 6.3 were described as they were being introduced in the text above. This document has stated functional responsibilities and an input/output model for the multiplicity of toolkit functions 6.2m Toolkit Load Function that are to be called upon during this process. Each toolkit function should use the provided template and should describe for itself what it is meant to accomplish within the functional responsibilities, inputs, and outputs that have been generally described here.


      Dependencies:
    • The current TIS should have been calculated by 3. Formulate TIS and available from the Output TIS Buffer.
    • Various current other local conditions should be available from the Toolkit Load Function Input Buffer. The list of relevant other local conditions should be known to the transactive node object and available from the Node State and Status Buffer. Note that the other local conditions might themselves use management of other data collection and maintenance systems and processes.
    • A list of functions 6.2m Toolkit Load Functions should be unambiguously named and known to this transactive node object available from the Node State and Status Buffer.
    • Process 2. Calculate New Transactive Signal Intervals should have run recently to provide to this process current IST intervals available from the Current IST Series Buffer.
    • This process inserts up to M entries into each the Inelastic Load Prediction Buffer and Elastic Load Prediction Buffer, one for each toolkit function that is called. The contents of these buffers should be current and available to be summed by process 5. Sum Total Predicted Load.


      Notes:
    • No load or resource should appear on both the load and resource sides of the toolkit formulation for any given IST interval.
    • The sum of the inelastic load stored into the Inelastic Load Prediction Buffer and change in elastic load stored into the Toolkit Response Function Output Buffer for a give toolkit function should closely predict the actual load, providing the TIS and other local condictions (OLC) remain about the same until the corresponding ISTn interval becomes IST0.
    • It is hoped but not required that model-based predictions of both the inelastic-load and change in elastic-load components may improve over time as more sophisticated toolkit functions use historical feedback to improve their algorithms.
    • Implementers are encouraged to use this process and its toolkit functions for model-based load predictions, regardless of whether they describe elastic load.









TABLE 25







Example Resource, Incentive and Load Toolkit Functions








Resource or Incentive
Load





1.0 Imported Electrical Energy
1.0 Bulk Inelastic Load


1.1 Non-Transactive Imported
1.1 Bulk Commercial Load


Energy
1.2 Bulk Industrial Load


1.2 Transactive Imported
1.3 Bulk Residential Load


Energy
1.4 Small Wind Generator Negative Load


2.0 Renewable Energy
1.5 Small-Scale Distributed Generator Negative Load


Resource
1.6 Small-Scale Solar Generator Negative Load


2.1 Wind Energy
2.0 General Event-Driven Demand Response


2.2 Solar Energy
2.1 Commercial Event-Driven Demand Response


2.3 Hydropower
2.2 Event Driven Distribution System Voltage Control


3.0 Fossil Generation
2.4 Residential Event-Driven Demand Response


4.0 General Infrastructure
2.5 Non-Renewable Distributed Generation Event-Driven


Cost
Demand Response


5.0 System Constraints
3.0 General Time-of-Use Demand Response


5.1 Transmission Flowgate
3.1 Battery Storage--Time-of-Use


5.2 Equipment and Line
3.2 Commercial Time-of-Use Demand Response


Constraints
3.4 Residential Time-of-Use Demand Response


6.0 System Energy Losses
3.5 Time-of-Use Distribution System Voltage Control


6.1 Transmission Losses
3.6 Time-of-Use Electric Vehicle Charging


6.2. Distribution Losses
4.0 General Real-Time Continuum Demand Response


7.0 Demand Charges
4.1 Battery Storage--Real-Time


7.1 BPA Demand Charges
4.2 Commercial Real-Time Demand Response


8.0 Market Impacts
4.3 Real-Time Distribution System Voltage Control


8.1 Spot Market Impacts
4.5 Residential Real-Time Demand Response



5.0 General Manual or Behavioral Demand Response



5.1 Residential Behavioral Response to Portals or In-Home



Displays



5.2 Residential Behavioral Response--No Portals or In-



Home Display



5.3 Manual Commercial Demand Response



5.4 Manual Non-Renewable Distributed Energy Resources



Demand Response










FIG. 40 is a flowchart 4000 of an exemplary “calculate applicable toolkit load functions” process.


7. Send Transactive Signals


Purpose: Method by which output transactive signals are conveyed from this transactive node to each one of its transactive neighbors. Most generally, there will be no single approach to completing this process because transactive is tied to no single communication technology, medium, or protocol. Transactive neighbor pairs should negotiate and agree upon these details. On the other hand, the Demonstration has elected to convey transactive signals almost exclusively via secure Internet.


Applicability: An process that should be completed at the update frequency by a transactive node.


Sub-Functions and Sub-processes: The following high-level responsibilities should be addressed, regardless of the platforms on which it is designed:

    • Format transactive signals according to published recommendations, including published XML schema.
    • Coordinate timing with transactive node object states during each update interval and iteration—Compare and coordinate Transactive neighbor list with transactive node object state.


      Inputs:
    • One output TIS series from process 3. Formulate TIS
    • One output TFS series for each transactive neighbor from process 4. Formulate TFS


      Putouts:
    • Paired couples of output TIS and output TFS sent to each transactive neighbor.


      Dependencies:
    • Receives current output TIS from Output TIS Buffer


      Notes:
    • This process or function is trivial from a functional perspective, but it is useful from a system interoperability perspective. Transactive nodes that employ unlike software and computational architectures should still be able to send and receive these signals from their transactive neighbors.


This function or process is also useful from a cyber-security perspective. Both the senders and recipients of transactive signals should be satisfied that their systems will remain safe from attack.



FIG. 43 is a flowchart 4300 of an exemplary “send transactive signals” process.


8. Calculate Applicable Toolkit Resource and Incentive Functions


Purpose: A multiplicity of toolkit functions may be applied at this location within the toolkit framework to address resources and incentives. Toolkit functions should be created or selected from a toolkit library to represent the energy resources and incentives that are be applied at this transactive node during each IST interval. The costs that are calculated by the toolkit functions in turn may incentivize or disincentivize consumption and generation of electricity through their effects on the transactive incentive signal.


See Table 25 for a list of example toolkit resource and incentive functions. Refer to SubAppendix B for a template that may be used to specify additional toolkit resource and incentive functions as they are developed.


Applicability: A transactive node should calculate at least one toolkit function at the update frequency.


Sub-Functions and Sub-processes:


8.1 Interpolate Intervals Service Functions—a suite of service functions that can accept stale, dated data and restate the data in terms of the current IST interval series. (These functions might be defined and used throughout the entire toolkit framework instead of uniquely defined for each process, as has been shown here.)


8.2 Refresh Predicted Resources and Incentives—Early during each update interval, this sub-function retrieves the most recent entries from the Resource Schedules and Cost Buffer and restates the records in terms of the current IST series. If for any reason this transactive node fails to complete the present process by the time its outputs are used, the restated records may be used as default records.


8.3 Assign Energy Cost and Average Power—a sub-function of a toolkit resource and incentive function in which cost CE,a,n (units: cost per energy) is assigned to each component a of energy {circumflex over (P)}G,a,n (units: average power) that is either imported into or generated within the boundaries of this transactive node. In particular embodiments, one responsibility of a toolkit resource and incentive function is to calculate and report one of each of these two quantities for each current IST interval n. Either of the calculated quantities may be zero. The calculated values will differ depending on selected toolkit function and the resource or effect that is being modeled by the selected toolkit function.


Example energy costs and energies that that should be captured using this sub-function include

    • The cost of energy from traditional bulk generation
    • The cost of energy from renewable energy resources like wind. (Wind energy is desirably incentivized by applying its costs to its infrastructure and not to the energy that is produced. Thereby, it causes a downward influence on the delivered cost of energy at the time and near where wind blows.)
    • For non-transactive neighbors, the cost of energy that applies to any energy that is imported into the boundary of this transactive node. (Note that if energy is exported rather than imported during an IST interval n, it is not counted among resources, so either or both the energy terms for this sub-function should be set to zero.)
    • For transactive neighbors, the cost of delivered energy (e.g., the TIS) that applies to imported energy (e.g., the TFS). (This is a special case where the input TIS and input TFS are read from the Input Transactive Signal Buffer. A simple toolkit function should be created to complete this task.)


The values CE,a,n should be defensible representations of the delivered costs of energy {circumflex over (P)}G,a,n.


The sum of {circumflex over (P)}G,a,n should represent the energy that is generated within or imported into this transactive node during IST interval n.


This sub-function may call upon various defined other local conditions that should be available as inputs from the Resource and incentive Input Buffer. The list of other local conditions that are expected by a give toolkit function should be known by the transactive node object and available from the Node State and Status Buffer.


Refer to sub-function 3.7 Calculate Output TIS to fully understand how the two outputs from the present sub-function will become incorporated into the formulation of TIS within the toolkit framework.


8.4 Assign Capacity Cost and Capacity—a sub-function of a toolkit resource and incentive function in which cost Cc,b,n (units: cost per power) is assigned to capacity limitations and costs that are triggered by capacities. The sub-function also captures the capacity {circumflex over (P)}C,b,n (units: average power) to which the cost applies. In certain embodiments, one responsibility of a toolkit resource and incentive function is to calculate one of each of these two quantities for each current IST interval n. Either of the calculated quantities may be zero. The calculated values will differ depending on selected toolkit function and the resource or effect that is being modeled by the selected toolkit function.


Example capacity costs that should be included through this sub-function include

    • Costs that should be applied as equipment like power lines become constrained
    • Imposed demand charges that become applied to the owners of this transactive node.


Cost CC,b,n should be defensible as cost that will be incurred upon a corresponding capacity {circumflex over (P)}C,b,n that is predicted to occur during IST interval n.


This sub-function may call upon various defined other local conditions that should be available as inputs from the Resource and incentive Input Buffer. The list of other local conditions that are expected by a give toolkit function should be known by the transactive node object and available from the Node State and Status Buffer.


Refer to sub-function 3.7 Calculate Output TIS to fully understand how the two outputs from the present sub-function will become incorporated into the formulation of TIS within the toolkit framework.


8.5 Assign Infrastructure Cost—a sub-function of a toolkit resource and incentive function in which cost Cl,c,n (units: cost per time) is assigned to the provision of infrastructure at this transactive node, which costs are usually spread over quite long periods of time. In certain embodiments, one responsibility of toolkit resource and incentive function is to calculate and report one infrastructure cost output for each current IST interval n. Its value may be zero. The calculated value will differ depending on selected toolkit function and the resource or effect that is being modeled by the selected toolkit function.


Example infrastructure costs that may be used through this sub-function include

    • Initial purchase costs for equipment
    • Initial installation costs
    • Maintenance costs.


Refer to sub-function 3.7 Calculate Output TIS to fully understand how the output from the present sub-function will become incorporated into the formulation of TIS within the toolkit framework.


8.6 Assign Other Costs—a sub-function of a toolkit resource and incentive function in which other costs (units: cost) that cannot be represented by the other sub-functions are applied at this transactive node. In certain embodiments, one responsibility of a toolkit resource and incentive function is to calculate and report one such other cost output for each current IST interval n. Its value may be zero. The calculated value will differ depending on selected toolkit function and the resource or effect that is being modeled by the selected toolkit function.


This sub-function should not be used to bypass the other three sub-functions 8.3, 8.4, and 8.5. The other cost that is assigned by this sub-function should be a defensible component of the delivered cost of energy (e.g., the TIS) that will be formulated by process 3. Formulate TIS.


Refer to sub-function 3.7 Calculate Output TIS to fully understand how the output from the present sub-function will become incorporated into the formulation of TIS within the toolkit framework.


Inputs:






    • Current Input TIS and TFS should have been received in process 1. Receive Transactive Signals and should be available from the Input Transactive Signal Buffer. These inputs will be treated the same as other energy terms.

    • Current other local conditions data that has been specified for by the set of toolkit functions that are being applied at this transactive node.

    • The list of toolkit functions that are to be applied in this process, which list should be known to this transactive node object and available from the Node State and Status Buffer.

    • The list of other local conditions data records that are expected by the set of toolkit functions that are employed in this process block, which list should be known by this transactive node object and available from the Node State and Status Buffer.


      Outputs:

    • One paired energy cost and energy (CE,a, {circumflex over (P)}G,a) series record placed into and available from the Resource Schedules and Cost Buffer for each of the toolkit functions that is applied within this process. (There are A non-zero of these records used to represent imported and generated energy.)

    • One paired capacity cost and capacity (CC,b, {circumflex over (P)}C,b) series record placed into and available from the Resource Schedules and Cost Buffer for each of the toolkit functions that is applied within this process. (There are B non-zero of these records where capacity costs are relevant.)

    • One infrastructure cost Cl,c series record placed into and available from the Resource Schedules and Cost Buffer for each of the toolkit functions that is applied within this process. (There are C non-zero of these records where infrastructure costs are relevant.)

    • One other cost CO,d series record placed into and available from the Resource





Schedules and Cost Buffer for each of the toolkit functions that is applied within this process. (There are D non-zero of these records where other costs are relevant.)


Function/Process: The sub-functions were described above as they were being introduced. Sub-functions 8.3, 8.4, 8.5, and 8.6 are components of toolkit functions and may not be generically defined except through the characterization of their inputs and outputs.


Dependencies:

    • This process should find current current input transactive signals from process 1. Receive Transactive Signals from within the Input Transactive Signal Buffer.
    • This process expects current and relevant other local conditions are available from the Resource and Incentive Input Buffer. The list of example other local conditions records is known to this transactive node object and available from the Node State and Status Buffer.
    • This process expects that the relevant list of toolkit functions will be known to the transactive node object and available from the Node State and Status Buffer. The modular toolkit functions themselves should be available at the transactive node.
    • This process expects that the current IST series will have been calculated by process 2. Calculate New Transactive Signal Intervals and will be available from the Current IST Series Buffer.
    • This process outputs to the Resource Schedules and Cost Buffer that are used for processes 10. Sum Total Predicted Resource and by 3. Formulate TIS.


      Notes:
    • A transactive node should instantiate at least one toolkit function that redefines current transactive signals as energy terms and places them into the Resource Schedules and Cost Buffer.
    • General guidance should be that a transactive control and coordination system can address economic decisions that interact with the system somewhat slower than the update frequency. There will occur an interim period where the Demonstration's system will accept but not influence resource decisions that presently involve markets and ancillary services that are not initially tied into the transactive control and coordination system. However, many such economic decisions may be addressed and perhaps optimized by a transactive control and coordination system as theories are developed to support doing so.
    • An alternative pathway has been provided for “Scheduled Resources” to become entered into the Resource Schedules and Cost Buffer. It is preferred, however, that even non-transactive resources enter into the toolkit framework via a toolkit function and this process 8. Calculate Applicable Toolkit Resource and Incentive Functions. One of our most basis toolkit functions should be one that represents traditional, bulk generation.



FIG. 43 is a flowchart 5300 of an exemplary “calculate applicable toolkit resource and incentive functions” process.


9. Control Responsive Asset Systems


Purpose: Advise responsive asset systems of the actions that they should take during the present update interval in accordance with their planned responses for the current interval start time IST0.


Applicability: This process should be completed at the update frequency by a transactive node that has at least one responsive asset system installed and responsive to the transactive control and coordination system.


Some transactive node owners will impose constraints on the dynamics with which their responsive asset systems may act, in which case this process may be completed less frequently than the update frequency. For example, certain responsive asset systems may be engaged only at the top of an hour and may remain engaged for minimum durations after that. Still others should be scheduled some time prior and are therefore not responsive to the update frequency. (The capabilities of various responsive asset systems are desirably addressed in the selected toolkit library functions 6.2m Toolkit Load Function.)


Sub-Functions and Sub-Processes: None. This process may be only described at a functional level due to the diversity of the responsive asset system that is to be controlled. Most of the actual control activities take place within the responsive asset systems themselves and according to the preferred practices of this transactive node's owner.


Inputs:

    • Advisory signal for current interval start time IST0 that is available from the Elastic Load Prediction Buffer. Each of these inputs is expected to have one of three meanings depending upon the capabilities of the targeted responsive asset system—discrete binary, discrete multilevel, or continuous.


      Outputs:
    • The principal output actually occurs outside the transactive control and coordination system and outside this process but in the final control of the assets within the target responsive asset system.
    • The state or status of the responsive asset system may be updated to the Node State and Status Buffer. For example, this buffer may hold information about the availability of the system or the amount of load that is presently available to be controlled.


      Function/Process: The process by which the advisory output found within the Elastic Load Prediction Buffer is to be converted into control actions for the present update interval will be quite unique to the responsive asset system and will take place within the system according to practices of this transactive node's owner.


      Dependencies: If this transactive node possesses any responsive asset systems, then
    • This process expects to find a current advisory response for each respective responsive asset system having been predicted (planned) by its respective process 6. Calculate Applicable Toolkit Load Functions and available in the Elastic Load Prediction Buffer. Only the current interval start time IST0 is relevant to the actual, not the planned, control of a responsive asset system.


      Notes:
    • Note that the toolkit function that corresponds to a given responsive asset system should state the information about the system that should be maintained within the Node State and Status Buffer.
    • Responsive asset systems may be either energy loads or resources.
    • The transactive control and coordination system advises a responsive asset system via this process, but it never directly controls any responsive asset system. A responsive asset system is not part of the transactive control and coordination system.
    • Responsive asset systems are very diverse. Even similar asset systems use different approaches, practices, protocols, and standards. One might realize an opportunity for standardization in the three types of signals that will be used to advise control actions for responsive asset systems—discrete binary, discrete multilevel, and continuous.
    • For the Demonstration, responsive asset systems almost exclusively refer to populations of individual assets. The Demonstration's transactive control and coordination system therefore will provide an advisory “control” signal to the system, not to its individual assets. If use of transactive control and coordination systems continues, it is feasible that they will be extended down to individual assets. In principle, a transactive control and coordination system is very scalable.



FIG. 44 is a flowchart 5400 of an exemplary “control responsive asset systems” process.


10. Sum Total Predicted Resources


Purpose: Sum the total energy resources entering the boundaries of this transactive node. The transactive node that has A resources


The sum produced by this process is used for two purposes in the toolkit framework: First, it is the divisor in process 3. Formulate TIS. Second, during process 4. Formulate TFS it is compared against the total load that is calculated by process 5. Sum Total Predicted Load, resulting in the net surplus or shortage of energy that should be allocated among the TFS of of transactive neighbors.


Applicability: This process should be completed at the update frequency by a transactive node.


Sub-Functions and Sub-processes:


10.1 Interpolate Intervals Service Functions—a suite of service functions that may be called upon as they are desired to restate dated time series in terms of the current IST intervals. (These functions might be defined and used throughout the entire toolkit framework instead of uniquely defined for each process, as has been shown here.)


10.2 Sum Total Predicted Resource—sum of the A resources {circumflex over (P)}G,a,n (units: average power) for each IST interval n. This sub-function should find a current representation of each summand from within the Resource Schedules and Cost Buffer. The expected set of summands should be known to this transactive node object and available from the Node State and Status Buffer. The sum should include electrical energy that is either generated within or imported into the boundaries of this transactive node during each IST interval n. Each of the summands should be found paired with an energy cost parameter CE in the Resource Schedules and Cost Buffer.


Summands {circumflex over (P)}G,a,n should include and represent

    • The TFS (units: average power) of each transactive neighbor from which this transactive node will import energy during interval n.
    • The average energy generated during IST intervals n from any generator within the boundaries of this transactive node which may be expected to influence the formulation of the TIS. That is, its generated energy should be paid for and represented in the transactive control and coordination system. (This will include almost all generation resources. An exception will be generation by end-use customers that displaces their load but never should affect the cost energy in a way that would be evident outside the customer premises.)
    • Energy imported during IST intervals n from electrically connected neighbors who are not transactive neighbors.










Total





Predicted





Resource

=




a
=
1

A








P
^


G
,
a
,
n







Process





10







The output product from this sub-function is a single time series (units: average power) placed into the Total Predicted Resource Buffer each update interval.


10.3 Refresh Predicted Total Resource—early each update interval iteration, the most current contents of the Total Predicted Resource Buffer should be retrieved by this sub-function and restated using 10.1 Interpolate Intervals Service Functions in terms of the current IST interval set. These updated buffer contents are then available to be used by default should this transactive node fail for any reason to calculate total resource for the current iteration.


Inputs:

    • A multiplicity of resource components {circumflex over (P)}G,a,n (units: average energy) to be retrieved from the Resource Schedules and Cost Buffer.
    • The identifiers of A resource components known by this transactive node object and available from the Node State and Status Buffer.
    • Current interval start time (IST) series available from the Current IST Series Buffer.


      Outputs:
    • Sum of resources









a
=
1

A








P
^


G
,
a
,
n








    •  (units: average power) stored into the Total Predicted Resource Buffer. This output is a series of values, one for each IST interval.


      Function/Process: The purpose of this process is to perform a mathematical sum, which has been described above as the sub-functions were being introduced.


      Dependencies:

    • This process uses a current IST series to have been calculated by process 2. Calculate New Transactive Signal Intervals and available from the Current IST Series Buffer.

    • This process expects that current resource components {circumflex over (P)}G,a,n will have been placed into the Resource Schedules and Cost Buffer by process 8. Calculate Applicable Toolkit Resource and Incentive Functions. However, the sub-function 8.3 Refresh Predicted Resources and Incentives will have created a default set of inputs that may be used here if current inputs cannot be calculated.

    • The current output of this process is used by process 3. Formulate TIS and 4. Formulate TFS and is expected to be available from the Total Predicted Resource Buffer. However, some resiliency is provided by sub-function 10.3 Refresh Predicted Total Resource, which calculates a default current process output to be available from the Total Predicted Resource Buffer should this process fail to create a current output by the time it is used.


      Notes:

    • Refer to processes 3. Formulate TIS and 4. Formulate TFS that will give one a better sense of how the output of this process is to be used.

    • The general term PG,a,n has been introduced, in part, to deemphasize that there are multiple types of such terms, including even the TFS at time it describes imported energy. Altogether, these terms should include the energy that is generated or imported within this transactive node's boundary.





This process was originally considered as a sub-function within both processes 3 and 4. Because both processes performed the identical function, the function was elevated to a process at the toolkit-framework level so that the same sum may be used by both processes 3 and 4.



FIG. 45 is a flowchart 4500 of an exemplary “sum total predicted resources” process.


11. Control Responsive Resource


Purpose: Advise responsive resources of the actions that they should take during the present update interval in accordance with their planned responses for the current interval start time IST0.


Applicability: This process should be completed at the update frequency by a transactive node that has at least one responsive resource. This process will be used infrequently until resources like bulk generators become responsive to a dynamic transactive control and coordination system.


Some resource owners will impose constraints on the dynamics with which their resources may act, in which case this process may be completed less frequently than the update frequency.


Sub-Functions and Sub-Processes: None. This process may be only described at a functional level due to the diversity of the resources that are to be controlled. Most of the responsibilities to engage resources lie with the resource systems themselves and not with processes of the toolkit framework.


Inputs:

    • Resource plans as formulated by certain toolkit functions within the process 8. Calculate Applicable Toolkit Resource and Incentive Functions.


      Outputs:
    • The principal output actually occurs outside the resource system and outside this process but in the final control of the resource within the target resource system.
    • The state or status of the resource may be updated to the Node State and Status Buffer. For example, this buffer may hold information about the availability of the system or the amount of resource that is presently available to be controlled.


      Function/Process: The process by which the advisory output found within the Resource Schedules and Cost Buffer is to be converted into control actions for the present update interval will be quite unique to the responsive resource system and will take place within the system according to practices of the resource and transactive node owners.


      Dependencies: If this transactive node possesses any responsive resource systems, then
    • This process expects to find a current advisory response for each respective responsive resource system having been predicted (planned) by its respective process 8. Calculate Applicable Toolkit Resource and Incentive Functions and available in the Resource Schedules and Cost Buffer. Only the current interval start time IST0 is relevant to the actual, not the planned, control of a responsive resource system.


      Notes:
    • Note that the toolkit function that corresponds to a given responsive resource system should state the information about the system that should be maintained within the Node State and Status Buffer.
    • The transactive control and coordination system advises a responsive resource system via this process, but it never directly controls it. A responsive resource system is not part of the transactive control and coordination system.
    • Responsive resource systems are very diverse. Even similar systems use different approaches, practices, protocols, and standards. One might realize an opportunity for standardization in the three types of signals that will be used to advise control actions for responsive resource systems—discrete binary, discrete multilevel, and continuous.



FIG. 46 is a flowchart 4600 for an exemplary “control responsive resource” process.


6.2.4 SubAppendix A: Interval Start Time Series Definition

6.2.4.1 Purpose


This section recommends a specific set of 57 Interval Start Times (IST) for use in example embodiments of the disclosed technology, including the Demonstration. The intervals range in duration from 5 minutes to 1 day. In this embodiment, the 57 ISTs define 56 intervals of varying duration, though other numbers of IST and different durations can be used.


6.2.4.2 Series of 57 Interval Start Times Defined


The first interval in a set of Interval Start Times is IST0. While a transactive signal is being formulated, IST0 is the next future time at which the minute hand of a clock will be at one of the 12 major divisions of an hour (e.g., on the hour, 5 minutes after the hour, 10 minutes after the hour, etc.).


The series of time intervals to be used by transactive signals during the Demonstration are as defined in Table 26. This set of 56 intervals is easily specified, creates the same numbers of intervals, exhibits increasing coarseness into the future, and will align well with dynamic market signals that are up to 1 hour in duration. Note that a 57th IST (e.g., IST56) has been added to unambiguously define the duration of the final, 56th interval.


One variable-length interval resides at the boundary between sets of intervals having different durations. That is, there is a variable-length interval between 5- and 15-minute intervals, between 15-minute and 1-hour intervals, between 1- and 6-hour intervals, and between 6-hour and 1-day intervals. The duration of each variable-length interval varies between the durations of the two bounding intervals, inclusive. No intervals overlap in the resulting representation of the future.


Five-minute intervals are to be used 1 hour into the future; 15-minute intervals, 6 hours into the future; 1-hour intervals, 1 day into the future; 6-hour time intervals, 2 days into the future, and 1-day intervals, 3 to 4 days into the future.









TABLE 26







Example Interval Time Series for use with TIS and TFS









Duration
No. Intervals
Interval Start Times













5
minutes
12
IST0, IST0 + 0:05, . . . , IST10 + 0:05


15
minutes
20
Round(IST11 + 0:15)*, IST12 + 0:15, . . . ,





IST30 + 0:15


1
hour
18
Round(IST31 + 1:00)*, IST32 + 1:00, . . . ,





IST48 + 1:00


6
hours
 4
Round(IST49 + 6:00)*, IST50 + 6:00, . . . ,





IST52 + 6:00


1
day
 2
Round(IST53 + 1:00:00)*, IST54 + 1:00:00,





IST55 + 1:00:00


>3
days
56 intervals
57 interval start times (IST)





*This function “Round” indicates rounding down to the next 15-minute, 1-hour, 6-hour, or 1-day interval start time. Times are indicated as dd:hh:mm, e.g., days, hours, and minutes.






The intervals of several time series that adhere to this recommendation are shown in Table 27 for several example values of IST0.


6.2.4.3 Pseudo Code for Example IST Series


The following formula guides the calculation of the IST series according to the specification in Table 26. The interval start times use the notation

ISTn[ddn,hhn,mmn]  (A1)

where “dd” is days, “hh” is hours, and “mm” is minutes. The value n refers to the sequential, ordered number of the IST in its series. The total number of intervals in the series is N=56, where N is the last n.

IST≐{IST0,IST1,IST2, . . . ,ISTn, . . . ,ISTN}  (A2)


The following steps and pseudo code should help standardize calculation of the members of an IST time series. The function “truncate( )” indicates that the decimal parts of the result in the parentheses should be discarded.

  • (1) Calculate first element IST0:
  • Read present time t
  • Set IST0=t+0:05
  • Set mm0=5*truncate (mm0/5)
  • (2) Calculate the IST series for remaining 5-minute intervals:
  • For n=1 to 11
  • Set ISTn=ISTn−1+0:05
  • Next n
  • (3) Calculate the IST series for 15-minute intervals:
  • Set IST12=IST11+0:15
  • Set mm12=15*truncate(mm12/15)
  • For n=13 to 31
    • Set ISTn=ISTn−1+0:15
  • Next n
  • (4) Calculate the IST series for 1-hour intervals:
  • Set IST32=IST31+1:00
  • Set mm32=0
  • For n=33 to 49
    • ISTn=ISTn+1+1:00
    • Next n
  • (5) Calculate the IST series for 6-hour intervals:
  • Set IST50=IST49+6:00
  • Set hh50=6*truncate(hh50/6)
  • For n=51 to 53
    • ISTn=ISTn−1+6:00
  • Next n
  • (6) Calculate the IST series for 1-day intervals:
  • Set IST54=IST53+1:00:00
  • Set hh54=0
  • Set IST55=IST54+1:00:00
  • (7) Append the final IST that indicates the end of the last 1-day interval:
  • Set IST56=IST55+1:00:00


    6.2.4.4 Example IST Series


Table 27 lists the 57 IST time series elements for 13 example values of IST0. The number of intervals (56 for the Demonstration) and total described time duration, listed at the bottom of Table 27 for these examples, have been adopted as additional elements of the XML schema that has been designed for the Demonstration's transactive signals.









TABLE 27







Interval Start Times at Example Next Interval Start Times





















Interval
#
0:00
0:05
0:10
0:15
0:30
0:45
1:00
3:00
5:00
6:00
12:00
18:00
1:00:00
























5 min.
0
0:00
0:05
0:10
0:15
0:30
0:45
1:00
3:00
5:00
6:00
12:00
18:00
1:00:00



1
0:05
0:10
0:15
0:20
0:35
0:50
1:05
3:05
5:05
6:05
12:05
18:05
1:00:05



2
0:10
0:15
0:20
0:25
0:40
0:55
1:10
3:10
5:10
6:10
12:10
18:10
1:00:10



3
0:15
0:20
0:25
0:30
0:45
1:00
1:15
3:15
5:15
6:15
12:15
18:15
1:00:15



4
0:20
0:25
0:30
0:35
0:50
1:05
1:20
3:20
5:20
6:20
12:20
18:20
1:00:20



5
0:25
0:30
0:35
0:40
0:55
1:10
1:25
3:25
5:25
6:25
12:25
18:25
1:00:25



6
0:30
0:35
0:40
0:45
1:00
1:15
1:30
3:30
5:30
6:30
12:30
18:30
1:00:30



7
0:35
0:40
0:45
0:50
1:05
1:20
1:35
3:35
5:35
6:35
12:35
18:35
1:00:35



8
0:40
0:45
0:50
0:55
1:10
1:25
1:40
3:40
5:40
6:40
12:40
18:40
1:00:40



9
0:45
0:50
0:55
1:00
1:15
1:30
1:45
3:45
5:45
6:45
12:45
18:45
1:00:45



10
0:50
0:55
1:00
1:05
1:20
1:35
1:50
3:50
5:50
6:50
12:50
18:50
1:00:50



11
0:55
1:00
1:05
1:10
1:25
1:40
1:55
3:55
5:55
6:55
12:55
18:55
1:00:55


15-min.
12
1:00
1:15
1:15
1:15
1:30
1:45
2:00
4:00
6:00
7:00
13:00
19:00
1:01:00



13
1:15
1:30
1:30
1:30
1:45
2:00
2:15
4:15
6:15
7:15
13:15
19:15
1:01:15



14
1:30
1:45
1:45
1:45
2:00
2:15
2:30
4:30
6:30
7:30
13:30
19:30
1:01:30



15
1:45
2:00
2:00
2:00
2:15
2:30
2:45
4:45
6:45
7:45
13:45
19:45
1:01:45



16
2:00
2:15
2:15
2:15
2:30
2:45
3:00
5:00
7:00
8:00
14:00
20:00
1:02:00



17
2:15
2:30
2:30
2:30
2:45
3:00
3:15
5:15
7:15
8:15
14:15
20:15
1:02:15



18
2:30
2:45
2:45
2:45
3:00
3:15
3:30
5:30
7:30
8:30
14:30
20:30
1:02:30



19
2:45
3:00
3:00
3:00
3:15
3:30
3:45
5:45
7:45
8:45
14:45
20:45
1:02:45



20
3:00
3:15
3:15
3:15
3:30
3:45
4:00
6:00
8:00
9:00
15:00
21:00
1:03:00



21
3:15
3:30
3:30
3:30
3:45
4:00
4:15
6:15
8:15
9:15
15:15
21:15
1:03:15



22
3:30
3:45
3:45
3:45
4:00
4:15
4:30
6:30
8:30
9:30
15:30
21:30
1:03:30



23
3:45
4:00
4:00
4:00
4:15
4:30
4:45
6:45
8:45
9:45
15:45
21:45
1:03:45



24
4:00
4:15
4:15
4:15
4:30
4:45
5:00
7:00
9:00
10:00
16:00
22:00
1:04:00



25
4:15
4:30
4:30
4:30
4:45
5:00
5:15
7:15
9:15
10:15
16:15
22:15
1:04:15



26
4:30
4:45
4:45
4:45
5:00
5:15
5:30
7:30
9:30
10:30
16:30
22:30
1:04:30



27
4:45
5:00
5:00
5:00
5:15
5:30
5:45
7:45
9:45
10:45
16:45
22:45
1:04:45



28
5:00
5:15
5:15
5:15
5:30
5:45
6:00
8:00
10:00
11:00
17:00
23:00
1:05:00



29
5:15
5:30
5:30
5:30
5:45
6:00
6:15
8:15
10:15
11:15
17:15
23:15
1:05:15



30
5:30
5:45
5:45
5:45
6:00
6:15
6:30
8:30
10:30
11:30
17:30
23:30
1:05:30



31
5:45
6:00
6:00
6:00
6:15
6:30
6:45
8:45
10:45
11:45
17:45
23:45
1:05:45


1-hr.
32
6:00
7:00
7:00
7:00
7:00
7:00
7:00
9:00
11:00
12:00
18:00
1:00:00
1:06:00



33
7:00
8:00
8:00
8:00
8:00
8:00
8:00
10:00
12:00
13:00
19:00
1:01:00
1:07:00



34
8:00
9:00
9:00
9:00
9:00
9:00
9:00
11:00
13:00
14:00
20:00
1:02:00
1:08:00



35
9:00
10:00
10:00
10:00
10:00
10:00
10:00
12:00
14:00
15:00
21:00
1:03:00
1:09:00



36
10:00
11:00
11:00
11:00
11:00
11:00
11:00
13:00
15:00
16:00
22:00
1:04:00
1:10:00



37
11:00
12:00
12:00
12:00
12:00
12:00
12:00
14:00
16:00
17:00
23:00
1:05:00
1:11:00



38
12:00
13:00
13:00
13:00
13:00
13:00
13:00
15:00
17:00
18:00
1:00:00
1:06:00
1:12:00



39
13:00
14:00
14:00
14:00
14:00
14:00
14:00
16:00
18:00
19:00
1:01:00
1:07:00
1:13:00



40
14:00
15:00
15:00
15:00
15:00
15:00
15:00
17:00
19:00
20:00
1:02:00
1:08:00
1:14:00



41
15:00
16:00
16:00
16:00
16:00
16:00
16:00
18:00
20:00
21:00
1:03:00
1:09:00
1:15:00



42
16:00
17:00
17:00
17:00
17:00
17:00
17:00
19:00
21:00
22:00
1:04:00
1:10:00
1:16:00



43
17:00
18:00
18:00
18:00
18:00
18:00
18:00
20:00
22:00
23:00
1:05:00
1:11:00
1:17:00



44
18:00
19:00
19:00
19:00
19:00
19:00
19:00
21:00
23:00
1:00:00
1:06:00
1:12:00
1:18:00



45
19:00
20:00
20:00
20:00
20:00
20:00
20:00
22:00
1:00:00
1:01:00
1:07:00
1:13:00
1:19:00



46
20:00
21:00
21:00
21:00
21:00
21:00
21:00
23:00
1:01:00
1:02:00
1:08:00
1:14:00
1:20:00



47
21:00
22:00
22:00
22:00
22:00
22:00
22:00
1:00:00
1:02:00
1:03:00
1:09:00
1:15:00
1:21:00



48
22:00
23:00
23:00
23:00
23:00
23:00
23:00
1:01:00
1:03:00
1:04:00
1:10:00
1:16:00
1:22:00



49
23:00
1:00:00
1:00:00
1:00:00
1:00:00
1:00:00
1:00:00
1:02:00
1:04:00
1:05:00
1:11:00
1:17:00
1:23:00


6-hrs.
50
1:00:00
1:06:00
1:06:00
1:06:00
1:06:00
1:06:00
1:06:00
1:06:00
1:06:00
1:06:00
1:12:00
1:18:00
2:00:00



51
1:06:00
1:12:00
1:12:00
1:12:00
1:12:00
1:12:00
1:12:00
1:12:00
1:12:00
1:12:00
1:18:00
2:00:00
2:06:00



52
1:12:00
1:18:00
1:18:00
1:18:00
1:18:00
1:18:00
1:18:00
1:18:00
1:18:00
1:18:00
2:00:00
2:06:00
2:12:00



53
1:18:00
2:00:00
2:00:00
2:00:00
2:00:00
2:00:00
2:00:00
2:00:00
2:00:00
2:00:00
2:06:00
2:12:00
2:18:00


1-day
54
2:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00
3:00:00



55
3:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00
4:00:00



56
4:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00
5:00:00


Totals
56
4:00:00
4:23:55
4:23:50
4:23:45
4:23:30
4:2315
4:23:00
4:21:00
4:19:00
4:18:00
4:12:00
4:06:00
4:00:00





Note 1:


All times in this table are presented in the format dd:hh:mm, where “dd”, “hh,” and “mm” are days, hours, and minutes after time 00:00:00.


Note 2:


The row “Totals” is (1) the total number of intervals (not IST) being represented and (2) the total amount of time represented within the given time series.






6.2.5 SubAppendix C: Toolkit Function Specification Template

This example template can be completed for each toolkit function and can be posted to a common library. The following template items are used in this template:

    • Function Name
    • Function Version and Date
    • Description—narrative description of what is to be performed or accomplished by the function
    • Block Function Model—input parameters, output parameters, and actors
    • Pseudo Code Implementation—parametric mathematical model or function that explains how function is implemented within the toolkit framework. Reference implementations that instantiate this named toolkit function should accomplish the algorithm that is laid out by this pseudo code. If that is for any reason impossible, another toolkit function should be named and described.
    • Reference Implementation(s) Available—example implementation code that instantiates this function. The implementations should be referenced here in proper, complete citations.
    • Future Improvements—recommend any future improvements that have been identified for this function.


6.2.6 SubAppendix C: Standard Advisory Output Control Signal

Each toolkit function that models a system of responsive assets is responsible to advise the system of assets when and to what degree it should respond. Each such toolkit function should therefore calculate a time series that states a degree of response for each current interval start time (IST). The recommendation has been summarized in FIG. 101.


The following advisory signal format can be used as a standard for toolkit functions. This method accommodates advisory responses from binary (curtailed vs. normal) to several discrete levels (e.g., response level #1, response level #2, . . . ) to a continuum of possible responses (e.g., generate at 56% of nameplate capacity for the specified interval).


The advisory signal has been defined as a signed value to allow its application to responsive loads, responsive generation, and energy storage resources. Positive values are used when the recommended control action should increase the availability of energy by either increasing generation or by reducing load; a negative number is used when the recommended control actions should reduce generation or increase load.


The signal is quite intentionally defined in respect to a byte representation. The three most significant bits have been highlighted in FIG. 101 to emphasize that these bits fully represent the eight states of any asset system that has four levels of response available to it (the additional bit represents charge/discharge direction). These bits may therefore be used quite directly by simple assets or asset systems that possess limited computational capability.

  • 1. A signed byte value is assumed (e.g., a signed 8-bit representation [−127, 127]). (For symmetry, the value −128 has not assigned. In gate logic, the use of one's complement interpretation of negative numbers accomplishes this symmetry and may be advantageous especially for controlling very simple, small assets.)
  • 2. Positive values refer to generation [0,127]; negative values refer to load [−0, −127].
  • 3. The toolkit function is responsible to state a response level for each future interval, consistent with its modeled influences on transactive signals. If the asset system's number of available response levels is known with certainty at the time the toolkit function is selected, the toolkit function may prescribe a representation for each response level.
  • 4. The asset system, or alternatively “glue” code between the toolkit function and the asset system, is responsible to interpret the advisory signal. Interpretation of the advisory signal should be made by first dividing the respective generation or load range by the number of response levels that are available from the responsive asset system. Then the asset system may determine into which of its available levels the advisory signal belongs. If a continuum of available responses exists for this asset system, the full range of the continuum should be meaningfully applied to the full nameplate rating or total population, such that the signal range is applied to the entire available resource or load range.


Example #1

Suppose toolkit load function TKLF_1.4 has been selected to model the behavior of a set of wind turbines. The behaviors of these wind turbines are not elastic and would therefore not be expected to change their operations in respect to transactive control. This toolkit function should not calculate and send any advisory control signal to the set of wind turbines. The set of wind turbines should not expect to receive any advisory control signals.


Example #2

A toolkit load function is being designed to model a system of demand responsive water heaters. The system of water heaters should be curtailed as a group. One of the outputs from the toolkit load function is designed to be a time series of advisory signals selected from the domain {0, 127}, which members represent normal and curtailed operation, respectively, for this load. (In certain implementations, and as discussed herein, a series of 56 intervals can be used, where each interval is defined by its interval start time (IST). See, e.g., Subappendix A.) The selection of the extreme advisory signals for a load having only two levels is wise because the signals will prescribe a reasonable binary response regardless of the capabilities of the asset system to which the signal is sent. The curtailable water heater system looks for signals in the ranges [0,63] (normal operation) or [64, 127] (curtailed operation). The range [−0, −127] should be ignored (e.g., normal operation) by this responsive asset system because it can only curtail its load; it cannot increase its load in response to transactive control signals.


Example #3

A toolkit load function is created for a small residential battery storage system that has only three available response levels—fully charging, resting, and fully discharging. The function should state a time series of advisory signals to the battery system, perhaps specifying from among a set of three outputs in the set {−127, 0, 127}, which represent the three states fully charging, resting, and fully discharging, respectively. The battery system should be configured to expect one of three ranges of advisory signals [−127, −64] (charging), [−63, 63] (resting), or [64, 127] discharging.


Example #4

Another toolkit load function is created to model a battery storage storage system, but this function expects to be paired with a battery system that can operate through a continuum of responses from fully charging to fully discharging. The function creates advisory signals accordingly at any integer value in the range [−127, 127]. The battery system converts these numbers into percentages of its range of charge and discharge rates, which is done easily by dividing through by the integer 127. For example, the advisory signal value 26 is converted to 26/127, or 20.5% of its full available discharge rate.


Example #5

The small battery system of Example #3 is paired with the toolkit load function of Example #4. Even though the toolkit function calculates a continuum of responses, the battery system that has only three available response levels may nonetheless respond sensibly to the advisory signal that it receives. However, because the asset's responses do not match the responses that will have been modeled by the toolkit function, the toolkit function will not correctly predict the load (and generation) that will be supplied by this battery system.


6.2.7 SubAppendix D: Toolkit Functions

This subappendix lists and describes example toolkit functions that can be implemented in embodiments of the disclosed technology. Two types of toolkit functions have been defined:

  • (1) Resource and incentive toolkit functions—used to capture the influences of energy resources and other influences upon the transactive control and coordination system's incentive signal (e.g., the TIS)
  • (2) Load functions—used to capture the influence of both elastic (e.g., “responsive”) and inelastic loads on the transactive control and coordination system's feedback signal (e.g., the TFS).


SubAppendix B provides a template by which the toolkit functions themselves and specific reference implementations of the toolkit functions should be documented. Thereafter, these toolkit functions may be selected from a “library” of such available toolkit functions and applied at any applicable transactive nodes.


The outputs of toolkit functions constitute an interoperability boundary as the project strives to standardize the information that flows from the toolkit functions into the toolkit framework at many levels of an interoperability information stack.


6.2.8 Resource and Incentive Toolkit Functions

The example resource and incentive toolkit functions listed in Table 28 are defined and represent as instantiations of 8. Calculate Applicable Toolkit Resource and Incentive Functions within the toolkit framework. Toolkit functions having the same name and number should share a common purpose and same general approach and should promise the same set of outputs into the toolkit framework. Versioning may be used for variants of these functions that differ slightly in approach, in complexity, or by the nature of expected inputs.


In Table 28, an attempt was made to organize the functions by type and level. Following this enumeration, Function 1.1.1 would be a special implementation of Function 1.1, which is a special implementation of Function 1.0.


Each toolkit function should be defined by appropriate documentation following the template in SubAppendix B.









TABLE 28







List of Resource and Incentive Toolkit Functions











Name, No. &

Where




Version
Purpose
Applied
Inputs
Outputs





1.0 Imported






Electrical






Energy






1.1 Non-
Accommodate
Peripheral
Current IST
Time series of


Transactive
importation of
transactive
time series.
energy


Imported
electrical
nodes that are
Historical index
exchange PG


Energy
energy from
scheduled to at
price or cost
through this



outside this
times receive
information
corridor using



transactive
bulk electrical
about this
the current set



node from
energy from
exchange,
of IST



entities that are
outside the
which can
intervals.



not themselves
boundaries of
inform
Time series of



transactive
this transactive
simulation of
predicted cost



nodes-are not
control and
current energy
of energy



participants in
coordination
costs for this
through this



this transactive
system.
exchange of
corridor CE.



control and

energy.




coordination

Historical




system.

energy






exchanges for






this corridor.






Alternatively,






seasonally-






adjusted daily






and weekly






exchange






schedules from






which






simulations may






be informed and






improved.






Intertie






exchange






schedules (may






be estimated






from an






informed






simulation).






Price index that






represents the






current






delivered cost






of electrical






energy through






this exchange






corridor if such






current






information can






be obtained.






Day of week






and holiday






schedules.



1.2 Transactive
Converts
A transactive
Current IST
TIS restated


Imported
transactive
node should
time series.
as energy


Energy
signals from
restate the
Transactive
terms CE .



transactive
transactive
incentive
TFS restated



neighbors into
signals that it
signals (TIS)
as energy



framework
receives in
from each
terms PG for



parameter
terms of toolkit
transactive
the intervals



outputs that are
framework
neighbor.
during which



expected by the
parameters.
Transactive
the TFS



toolkit
This toolkit
feedback
represents



framework.
function is so
signals (TFS)
imported




basic that it
from each
energy.




may be treated
transactive





as part of the
neighbor.





toolkit






framework.




2.0 Renewable






Energy






Resource






2.1 Wind
Encourage use
Applicable to
Current IST
Predicted


Energy
of wind-farm-
energy
time series.
average wind



scale energy
produced by a
Historical wind
power PG



when and near
wind farm. May
farm power
using intervals



where it is
be applied to
output time
of the current



generated.
aggregated
series, which
IST time



The cost of
output from
may be used to
series.



supplying
multiple wind
tune and refine
Infrastructure



renewable
farms.
predictions.
cost time



energy is
Use this
Actual current
series CI using



applied as an
function at
wind farm
intervals of the



infrastructure
transactive
power output,
current IST



cost, not as an
nodes where
which may be
time series.



energy cost, in
owners own or
used to tune
(Infrastructure



order to
represent one
and refine
costs are not



encourage the
or more wind
predictions.
expected to be



consumption of
farms.
Predicted wind
especially



wind energy.
Transactive
speed and
dynamic, but it




nodes that
direction time
is specified as




have and
series.
a time series




represent wind
Predicted
for




farm energy
relative humidity
consistency.)




that is
time series.





produced
Predicted air





within their
density time





electrical
series.





boundaries.
Predicted






resource






availability






(accounts for






effects of






maintenance






and curtailment






shedding).






Function that






predicts wind






farm power






output from






these






conditions.






Estimated






amortized wind






farm






infrastructure






expense,






including






operational and






maintenance






expenses,






which estimates






will be used to






state the






infrastructure






parameter. If






the costs of






these specific






wind farms are






unavailable,






secondary






sources of such






estimates may






be used.






(Infrastructure






costs are






probably the






only costs that






will be used by






this function, so






in some






emobdiments,






the






infrastructure






cost can be






estimated from






the total, long-






term expense of






supplying wind






energy from the






resource. By






doing so, the






effective cost of






the wind energy






will be






incorporated






over time using






a meaningful






cost.)



2.2 Solar
Encourage use
Applicable to
Current IST
Predicted


Energy
of solar energy
medium- or
time series.
average solar



when and near
large-scale
Historical solar
power PG



where it is
solar
site power
using intervals



generated.
generation.
output time
of the current



The cost of
(Small solar
series, which
IST time



supplying
sites may be
may be used to
series.



renewable
better
tune and refine
Infrastructure



energy is
addressed as
predictions.
cost time



applied as an
negative load
Actual current
series CI using



infrastructure
toolkit
solar site power
intervals of the



cost, not as an
functions,
output, which
current IST



energy cost, in
especially if
may be used to
time series.



order to
such energy
tune and refine
(Infrastructure



encourage the
offsets and
predictions.
costs are not



consumption of
reduces load
Predicted solar
expected to be



solar energy.
at this
insolation time
especially




location.)
series.
dynamic, but it




Transactive
Predicted wind
is specified as




nodes where
speed and
a time series




owners own
direction time
for




medium- or
series.
consistency.)




large-scale
Predicted air





solar
density time





generation.
series (may or





Transactive
may not be





nodes that
used).





have and
Predicted





represent the
resource





energy from
availability,





solar sites
which accounts





within their
for maintenance





electrical
outages.





boundaries.
Function that






predicts solar






power from






these inputs.






Estimated






amortized solar






site






infrastructure






expense,






including






operational and






maintenance






expenses,






which estimates






will be used to






state the






infrastructure






parameter. If






the costs of






these specific






solar sites are






unavailable,






secondary






sources of such






estimates may






be used.






Infrastructure






costs are






probably the






only costs that






will be used by






this function, so






in some






embodiments,






the






infrastructure






cost should be






estimated from






the total, long-






term expense of






supplying solar






energy from the






resource. By






doing so, the






effective cost of






the solar energy






will be






incorporated






over time using






a meaningful






cost.



2.3
TBD, based on
Transactive
Current IST
Predicted


Hydropower
input expected
nodes that own
time series.
average



from a
or represent
Scheduled
hydropower PG



hydropower
hydropower
hydropower
time series



working group
generation.
generation
using the



that has been
Transactive
production
intervals of the



asked to
nodes that
targets
current IST



formulate this
have or
Actual
time series



function.
represent
hydropower
Predicted



Perhaps,
hydropower
generation, if
infrastructure



encourage use
generation
available.
cost time



of hydroelectric
within their
Day of week
series CI using



energy when
electrical
and holidays.
intervals of the



and near where
boundaries.

current interval



it is generated.


start time (IST)



This function


series.



should at least


(Infrastructure



represent


costs are not



federal


expected to be



hydropower of


especially



the region but


dynamic, but it



should strive to


is specified as



represent all


a time series



regional


for



hydropower.


consistency.)


3.0 Fossil
Represent
Transactive
Current IST
Predicted


Generation
effect of fossil-
nodes that own
time series.
average



fuel generation
or represent
Predicted cost
generated



on electrical
fossil
of fuel, which
power PG time



energy cost.
generation.
may be either
series using




May be used
constant or a
the intervals of




for aggregated
dynamic time
the current IST




sets of fossil
series,
time series.




generation
depending on
Corresponding




resources.
the fuel.
predicted




Should apply
Generator
energy costs




to fossil
dispatch
of generated




generation
schedule(s).
power CE




within the
Fuel heating
using the




electrical
value (probably
intervals of the




boundary of a
a constant).
current IST




transactive
Plant efficiency
time series.




node.
(probably a
Predicted





constant, but
infrastructure





may be a
cost CI time





function of
series using





generated
the intervals of





power and other
the current IST





inputs).
time series.





Outdoor
(Infrastructure





temperature
cost is not





time series.
expected to be





Input feed
especially





temperature
dynamic, but it





time series.
is specified as





Representative
a time series





amortized
for





infrastructure
consistency.)





cost. (In some






cases, the






infrastructure






costs will be






stated as






functions of






many variables,






including local






costs of money,






taxes,






regulations,






etc.)






Function by






which inputs are






used to predict






power output.






Day of week






and holidays.



4.0 General
Represent bulk
Almost every
TBD. Estimate
Infrastructure


Infrastructure
influence of
transactive
of present
cost time


Cost
infrastructure
node could use
infrastructure
series CI.



investments on
this function.
value amortized




delivered cost

over an




of electrical

applicable




energy where it

horizon.




might be

Calculation




impracticable to

should include




track individual

effects of local




infrastructure

influences like a




components.

utility's normal






estimate of






useful






equipment






lifetime.






Estimates






should be






calibrated






against known






ways in which






long-term






infrastructure






costs are






addressed.



5.0 System






Constraints






5.1
Discourage
Transmission
Predicted
Capacity cost


Transmission
consumption
zone
flowgate power.
CC and


Flowgate
downstream
transactive
Formula by
corresponding



from, and
nodes on
which flowgate
flowgate



encourage
either side of a
power will affect
capacity PC.



consumption
flowgate.
TIS each




upstream from,

transactive




a flowgate

node.




transmission

Additional




constraint.

inputs may be




Costs should be

considered for




grounded

future versions,




somehow in

but the initial




actual costs

version should




that would be

be kept very




incurred if

simple.




flowgate






constraints






were to be






violated.





5.2 Equipment
Discourage
Transactive
Predicted
Predicted


and Line
consumption of
nodes that are
capacity to
capacity cost


Constraints
energy
in a position to
which this
time series CC



downstream
mitigate their
function applies.
and



from
constraints by
Function which
corresponding



constrained
increasing the
estimates the
capacity time



distribution
delivered cost
cost impacts of
series PC.



equipment,
of energy to
exceeding the




including
downstream
capacity




distribution
transactive
constraint.




lines.
nodes.






Intended to be






used where






constraints






may be






correlated to






specific






equipment.






Does not apply






to transmission






flowgates.




6.0 System






Energy






Losses






6.1
Incorporate the
Presently a low
Function by
Lost energy


Transmission
effect of line
priority.
which TFS and
term of type


Losses
losses on cost
Intended for
non-transactive
PG.



of delivered
application in
imported and




energy in
transmission
exported power




transmission
zones.
indicate long-




zones
May be
distance





defined and
transmission





applied for
losses across a





major
transmission





transmission
zone.





across
Representative





transmission
fraction of





zone
transmitted





transactive
power to be





nodes.
lost, which may






be applied as a






representative






resistance at a






stated






transmission






voltage.



6.2 Distribution
Incorporate the
Presently a low
Function by
Lost energy


Losses
effect of line
priority.
which TFS and
term of type



losses on cost
Intended for
non-transactive
PG.



of delivered
application in
imported and




energy in
the topology at
exported power




distribution and
locations other
can be used to




other locations
than
define energy




where specific
transmission
losses in




lossy
zones.
specific




equipment can
Applied where
equipment or




be identified.
losses may be
systems.




Reflects that
attributed to





the value of
specific





dissipated
equipment or





energy is lost.
systems.




7.0 Demand






Charges






7.1 BPA
Utility
Subproject
Predicted
Capacity time


Demand
transactive
transactive
capacity to
series PC that


Charges
node takes
nodes where
which demand
causes the



steps to
owners are
charges may
demand



manage peak
utilities that are
apply.
charges.



loads that may
subject to
Historical utility
Capacity cost



incur demand
demand
load during the
time series CC



charges.
charges from
current month,
that



Help a utility
BPA.
including prior
corresponds to



reduce its

peak hour.
the capacities.



monthly peak.

Function by
(The





which cost
capacities





impact of
may, or may





capacity may be
not, also be





predicted.
TFS values,





Day of week
depending on





and holidays.
the boundaries






of a given






transactive






node.)


7.2 Seattle City
This function
UW's
SCL peak
Average power


Light Demand
predicts the
transactive
demand rate
capacity P_C


Charges
impact of
node.
[$/kW]
as defined by



demand

SCL off-peak
the



charges that the

demand rate
Transactive



Seattle City

[$/kW]
Node



Light (SCL) will

Transactive
Framework



apply to the

Feedback
[kW].



University of

Signal (TFS)
Capacity cost



Washington

[kW]
C_C as



(UW)

Interval Start
defined by the





Times (ISTs)
Transactive





A scaling factor
Node





K by which the
Framework





effect of the
[$/kW].





demand






charges may be






scaled.



8.0 Market






Impacts






8.1 Spot
Utility
Subproject
TBD.
TBD.


Market Impacts
transactive
transactive
Perhaps,
Perhaps,



node takes
nodes where
predicted
capacity time



steps to
owners are
capacity to
series PC that



mitigate
utilities that are
which spot
causes the



(optimize) the
subject to the
market impacts
spot market



predicted
impacts of spot
may apply.
impacts and



impacts that it
market trading.

capacity cost



will likely incur


time series CC



on spot


that



markets.


corresponds to






the capacities.






This function






might use






other cost time






series CO if it






cannot be






stated in terms






of energy,






capacity, or






infrastructure.









6.2.9 Load Toolkit Functions

Load toolkit functions are instantiated as 6. Calculate Applicable Toolkit Load Functions within the toolkit framework. The load being described by these functions may be either elastic (responsive to the TIS) or inelastic (not responsive to the TIS). These functions should not have direct influence and effect on the calculation of TIS as this transactive node; functions that will affect the formulation of TIS should be stated as resource or incentive toolkit functions.


The Demonstration attempts to define and use a minimum adequate set of load toolkit functions. Therefore, implementers should select and apply the most general function that can describe the expected behaviors. In Table 29, an attempt was made to organize the functions by type and level. Following this enumeration, Function 1.1.1 would be a special implementation of Function 1.1, which is a special implementation of Function 1.0. Function 1.0 is more general that is the Function 1.1 under it.


The most general functions have been stated as

  • 1. Bulk inelastic load—large sets of load that is not affected by the TIS
  • 2. General event-driven demand response (DR)—sets of asset systems that are infrequently affected by the TIS. These asset systems are affected in a binary, on/off way or occasionally provide a limited number of discrete response levels. Specific examples may include distribution voltage control, water heater programs, smart appliance programs, and distributed generation.
  • 3. General time-of-use (TOU) DR—sets of asset system that are affected by the TIS according to a daily cycle. These asset systems are affected in a binary, on/off way or occasionally provide a limited number of discrete response levels. Examples may include distribution voltage control, water heater programs, smart appliance programs, and battery storage.


General real-time (RT) DR—sets of asset systems that are affected by the TIS and employ a continuum of possible responses. Examples may include energy portals and battery storage.









TABLE 29







List of Load Toolkit Functions











Name, No. &

Where




Version
Purpose
Applied
Inputs
Outputs





1.0 Bulk
Predict bulk,
Transactive
Current IST time
Predicted


Inelastic
undifferentiated
nodes where
series.
inelastic load


Load
inelastic
it is preferred
(LI_01) Historical
for each



load in the
to predict
load for this
current IST



most general
undifferentiated
modeled
interval.



sense.
bulk load.
population





Places where
(LI_02) Present





specific
load (average





models to
power) for this





predict the
population of





behaviors of
inelastic load





differentiated
(LI_03)





load
Predicted





components
outdoor





are not
temperature time





possessed.
series





Nearly every
(LI_04)





subproject
Predicted





could use this
insolation time





function.
series






(LI_05)






Predicted wind






speed and






direction time






series






(LI_06)






Weekday,






weekend day,






and holiday






indicator






(LI_08) Typical






seasonally-






adjusted daily






load profile






(LI_07) Average






daily load (a






constant for the






prediction






horizon)



1.1 Bulk
Predict the
Transactive
Current IST time
Predicted


Commercial
load of bulk
nodes that
series.
inelastic load


Load
inelastic
represent
(LI_01) Historical
for each



commercial
inelastic
load
current IST



load. May be
electrical load
(LI_02) Actual
interval.



used to
from
measured load




represent
aggregated
(LI_03)




sets of
commercial
Predicted




aggregated
loads.
outdoor




commercial
Most
temperature time




loads, even
subproject
series




ones with
transactive
(LI_04)




diverse
nodes will use
Predicted




membership.
this function.
insolation time




Does not

series




model

(LI_05)




underlying

Predicted wind




commercial

speed and




buildings and

direction time




processes.

series




This model

(LI_06) Day of




does not

week and




include

holidays




elastic

(LI_07) Average




behaviors

daily load




that would

(constant during




be expected

the prediction




to respond to

horizon)




a TIS.

(LI_08) Typical






daily load profile



1.2 Bulk
Predict the
Transactive
Current IST time
Predicted


Industrial
load of bulk
nodes that
series.
inelastic load


Load
industrial
represent
(LI_01) Historical
for each



load types.
electrical load
load
current IST



Does not
from
(LI_02) Actual
interval.



model
aggregated
measured load




underlying
industrial
(LI_03)




industrial
loads. This
Predicted




processes.
function does
outdoor





not require
temperature time





underlying
series





industrial
(LI_04)





processes to
Predicted





be understood
insolation time





and modeled.
series





May be
(LI_05)





applied to
Predicted wind





multiple
speed and





aggregated
direction time





industrial
series





loads.
(LI_06) Day of





Many
week and





subproject
holidays





transactive
(LI_07) Average





nodes that
daily load (a





include
constant during





industrial
the prediction





loads may
horizon)





choose to use
(LI_08) Typical





this function.
daily load profile






(LI_09)






Fractional






representation of






common






commercial






building types



1.3 Bulk
Predict the
Transactive
Current IST time
Predicted


Residential
load of bulk
nodes that
series.
inelastic load


Load
residential
wish to
(LI_01) Historical
for each



load type.
represent
load
current IST



Predict load
electrical load
(LI_02) Actual
interval.



of residential
for groups of
measured load




feeders or
residences
(LI_03)




groups of
like those on
Predicted




residential
residential
outdoor




feeders.
feeders.
temperature time




Does not
Applied to
series




necessarily
residential
(LI_04)




model
loads that are
Predicted




individual
not
insolation time




residences
responsive to
series




or the
the TIS (e.g.,
(LI_05)




underlying
inelastic
Predicted wind




behaviors of
residential
speed and




homes and
populations).
direction time




their
Individual
series




occupants.
residences
(LI_06) Day of




Models
and
week and




inelastic
underlying
holidays




residential
resident
(LI_10) Number




load only.
behaviors are
of single- and





not modeled.
multiple-family





Almost every
units





subproject






transactive






node is






expected to






use this






function for its






residential






customers






who do not






respond






elastically.




1.4 Small
Predict the
Locations that
Current IST time
Time series


Wind
“negawatts”
host relatively
series.
output power


Generator
to be
small wind
(LI_11) Historical
for each IST


Negative
produced by
generators or
power
interval. This is


Load
small wind
wind sites that
production time
an inelastic



energy
primarily
series
load



resources.
offset a larger
(LI_12)
component



This function
electrical load.
Predicted wind
because it is



is preferred

speed and
not a function



where a

direction time
of the TIS.



relatively

series for a
No control



small

representative
output is sent



amount of

tower height
to renewable



wind

(LI_13) Historical
generators.



renewable

wind speed and
Renewable



generation

direction at a
generators are



offsets load

representative
not responsive



at a location.

tower height
to the



If the energy

near the wind
transactive



from a wind

generation
control and



energy

(LI_14)
coordination



resource

Measured wind
system.



should affect

speed and




TIS at this

direction at a




and

representative




electrically

tower height




downstream

near the




locations, the

generation site




energy from

(LI_15) Historical




this resource

relative humidity




should be

time series




incorporated

(LI_16)




with a

Predicted




resource and

relative humidity




incentive

time series




toolkit

(LI_17) Historical




function

air density time




instead (See

series




Table 28:).

(LI_18)






Predicted air






density time






series






(LI_X) Effective






total cross-






sectional area






(LI_X) Wind






conversion






efficiency curve






(LI_19) Season,






or day of year






(LI_20) Total






nameplate or






“typical” power






capacity






(LI_X) Predicted






resource






availability



1.5 Small-
Predict and
Locations that
Current IST time
Time series


Scale
represent
host relatively
series.
output power


Distributed
“negawatts”
small fossil
(LI_01) Historical
for each IST


Generator
load from
fuel
power
interval.


Negative
one or more
generators
production
Distributed


Load
relatively
that are not
(IL_X) Resource
generators of



small
influenced in
schedule
this toolkit



distributed
their operation
(LI_20)
function are



generators
by the TIS.
Nameplate or
not responsive



that

target power
to the



consume

production
transactive



hydrocarbon

magnitude.
control and



fuels at this

(LI_6) Day of
coordination



location.

week and
system, but



These

holidays
they may



generators

(LI_IX) Predicted
respond to



are not

resource
other purposes



influenced by

availability
and objectives



the TIS.


of their owners



If the


(e, g., periodic



influence of


maintenance



a distributed


schedules,



generator


feedstock



should


availability). No



directly affect


control output



the TIS at a


is sent to these



transactive


distributed



node, select


generators.



an






appropriate






source and






incentive






toolkit






function from






Table 28:.





1.6 Small-
Predict the
Locations that
Current IST time
Time series


Scale Solar
“negawatts”
host relatively
series.
average output


Generator
to be
small solar
(LI_01) Historical
power for each


Negative
produced by
generators
power
IST interval.


Load
small solar
that primarily
production
No control



energy
offset a larger
(LI_??) Historical
output is sent



resources.
electrical load.
insolation time
to renewable



This function

series
generators.



is preferred

(LI_04)
Renewable



where a

Predicted
generators are



relatively

insolation time
not responsive



small

series
to the



amount of

(LI_??) Historical
transactive



solar

wind speed and
control and



renewable

direction time
coordination



generation

series
system.



offsets load

(LI_05)




at a location.

Predicted wind




If the energy

speed and




from a solar

direction time




energy

series.




resource

(LI_15) Historical




should affect

relative humidity




TIS at this

time series




and

(LI_16)




electrically

Predicted




downstream

relative humidity




locations, the

time series.




energy from

(LI_17) Historical




this resource

air density time




should be

series




incorporated

(LI_18)




with a

Predicted air




resource and

density time




incentive

series




toolkit

(LI_19) Monthly




function

typical energy




instead (See

(LI_20) Total




Table 29).

nameplate or






“typical” power






capacity






(LI_??)






Predicted






resource






availability






(LI_??) Solar






Conversion






Efficiency Curve



2.0 General
Most general
Applicable to
Current IST time
Predicted


Event-Driven
function for
many
series.
inelastic load


Demand
predicting
responsive
Recent history
at for each IST


Response
the
asset systems
(e.g., 1 day to 1
interval.



behaviors of
that conduct
week) of TIS that
Predicted



responsive
traditional
may be used if
change in



load assets
demand
relative TIS is to
elastic load for



that only
response
be tracked in a
each IST



infrequently
several times
statistical sense.
interval.



respond.
a month.
(LI_01) Historical




When these
Response
load time series




assets
may
(LI_02) Actual




respond they
additionally
measured load




change
define a
TIS time series.




between a
“critical”
(LI_??) Device




very limited
response
count




number of
level for
(LI_06) Day of




available
extreme
week and




response
conditions.
holidays




levels.

(LI_08) Daily




It is

load profile




postulated

(L1_28) Minimum




that this

event duration




function can

(LI_29)




be designed

Promised event




flexibly to

count or




respond to

frequency that




absolute or

has been




relative TIS

negotiated with




as desired

customers.




by the

(LI_30)




application.

Limitations on






event duration






that have been






promised to






customers.



2.1
Represent
Asset
Current IST time
Predicted


Commercial
especially
systems such
series.
inelastic load


Event-Driven
the change
as
See 1.1 Bulk
at for each IST


Demand
in elastic
thermostats,
Commercial
interval.


Response
response
water heaters,
Loads. The
Predicted



from
and HVACs.
inputs that have
change in



commercial

been defined for
elastic load for



entities that

function 1.1 Bulk
each IST



are

Commercial
interval.



performing

Loads are again
Predicted time



lighting,

used to predict
series of



space

the inelastic load
output advisory



conditioning,

component of
control signals.



or other

the commercial
See



control of

load to be
SubAppendix



commercial

modeled by this
C. (Default



buildings.

function.
expects two





Additionally, the
load levels





following inputs
specified by





may be used to
the domain {0,





model the
127}). The set





change in elastic
of output





load:
signals may be





TIS time series.
parametrically





Recent history
modified based





(e.g., 1 day to 1
on the number





week) of TIS that
of available





may be used if
response





relative TIS is to
levels, a static





be tracked in a
input.





statistical sense.






(LI_??) Device






Count






(LI_29)






Promised event






count or






frequency that






has been






negotiated with






customers.






(LI_30)






Limitations on






event duration






that have been






promised to






customers.






(LI_31)






Representative






unit changes in






power that will






occur at






prescribed






response levels.






(LI_??) Number






of response






levels available






from asset






system.



2.2 Event-
To be used
Many
Current IST time
Predicted


Driven
where
subproject
series.
inelastic load


Distribution
subprojects
locations of
(LI_01) Historical
at for each IST


System
of the
the
load
interval.


Voltage
Demonstration
Demonstration
TIS time series.
Predicted


Control
have
that
(LI_32) Present
change in



offered to
implement
actual voltage
elastic load for



modulate
conservation
regulation level
each IST



distribution
voltage
Current IST time
interval.



system
regulation
series
Predicted time



voltage in
(CVR) or
(LI_35)
series of



response to
voltage
Implementer's
output advisory



relatively
optimization
criteria
control signals.



extreme
and have
concerning how
See



conditions of
offered to
often and how
SubAppendix



the TIS. This
make system
long voltage may
C. (Default



function
voltage
be affected at
expects two



should
responsive to
each level. Note
load levels



include the
the TIS.
that this input
specified by



option where

may probably be
the domain {0,



the degree of

adequately
127}). The set



voltage

represented by
of output



change is

input types
signals may be



affected by

LI_29 and LI_30.
parametrically



feedback

(LI_36) Day-long
modified based



from

hourly time
on the number



measurements

series of relative
of available



of voltage

fractions of load
response



at various

that are constant
levels, a static



feeder

impedance,
input.



locations.

constant current,




Regardless,

and constant




utilities

power,




should keep

respectively




customer

(LI_??) Number




voltage

of response




within

levels available




accepted

from asset




ranges.

system.



2.4

Asset
See 1.3 Bulk
Predicted


Residential

systems.
Residential
inelastic load


Event-Driven


Load. The
at for each IST


Demand


inelastic
interval.


Response


residential load
Predicted





component may
change in





use the same
elastic load for





inputs as were
each IST





used for function
interval





1.3 Bulk
Predicted time





Residential
series of





Load.
output advisory





The following
control signals.





additional inputs
See





may be used to
SubAppendix





predict changes
C. (Default





in the elastic
expects two





load component:
load levels





TIS time series
specified by





Current IST time
the domain {0,





series
127}). The set





(LI_20) Total
of output





nameplate or
signals may be





“typical” power
parametrically





capability (of
modified based





devices to be
on the number





curtailed)
of available





(LI_??) Hourly
response





curtailable power
levels, a static





(LI_??) Device
input.





count






(LI_28) Minimum






Event Duration






(LI_29)






Promised Event






Count or






Frequency






(LI_30)






Limitations on






Curtailment






Event Duration






(LI_31)






Representative






Changes in






Power at






Prescribed






Response






Levels






(LI_??) Actual






Number of






Times that






Actuation has






Already






Occurred in






each Relevant






Time Period






(LI_??) Actual






duration that






actuation has






already occurred






in each relevant






time period






(LI_??) Number






of response






levels available






from asset






system.



2.5 Non-

Asset
(LI_01) Historical
Predicted


Renewable

systems.
Load or
inelastic load


Distributed


Generation
at for each IST


Generation


(LI_02) Actual
interval.


Event-Driven


Measured Load
Predicted


Demand


or Generation
change in


Response


(LI_06) Day of
elastic load for





Week and
each IST





Holiday
interval





(LI_07) Average
Predicted time





Daily Load or
series of





Generation
output advisory





(LI_08) Daily
control signals.





Load or
See





Generation
SubAppendix





Profile
C. (Default





(LI_19) Monthly
expects two





Typical Energy
load levels





(LI_??)
specified by





Resource
the domain {0,





Schedule
127}). The set





TIS time series
of output





(LI_??) Device
signals may be





Count
parametrically





(LI_20) Total
modified based





nameplate or
on the number





“typical” power
of available





capability (of
response





devices to be
levels, a static





curtailed)
input.





(LI_??) Hourly






curtailable power






(LI_??) Device






count






(LI_28) Minimum






Event Duration






(LI_29)






Promised Event






Count or






Frequency






(LI_30)






Limitations on






Curtailment






Event Duration






(LI_31)






Representative






Changes in






Power at






Prescribed






Response






Levels






(LI_??) Actual






Number of






Times that






Actuation has






Already






Occurred in






each Relevant






Time Period






(LI_??) Actual






duration that






actuation has






already occurred






in each relevant






time period






(LI_??) Number






of response






levels available






from asset






system.



3.0 General
Most general
Applicable at
See function 1.0
Predicted


Time-of-Use
function for
locations that
Bulk Inelastic
inelastic load


Demand
predicting
host simple
Load. The inputs
at for each IST


Response
responsive
DR systems
from 1.0 Bulk
interval.



load
that should
Inelastic Load
Predicted



behaviors of
respond daily.
are also useful
change in



groups of

by this function
elastic load for



devices that

for predicting the
each IST



respond to

inelastic load
interval.



diurnal

component.
Predicted time



variability in

Additionally, the
series of



the TIS (e.g.,

following inputs
output advisory



respond to

will be useful for
control signals.



one or more

the prediction of
See



daily

changes in
SubAppendix



intervals)

elastic load
C. (Default





component:
expects two





TIS time series
load levels





(LI_??) Device
specified by





Count
the domain {0,





(LI_28) Minimum
127}). The set





Event Duration
of output





(LI_29)
signals may be





Promised Event
parametrically





Count or
modified based





Frequency
on the number





(LI_30)
of available





Limitations on
response





Curtailment
levels, a static





Event Duration
input.





(LI_31)






Representative






Changes in






Power at






Prescribed






Response






Levels






(LI_??) Actual






Number of






Times that






Actuation has






Already






Occurred in






each Relevant






Time Period






(LI_??) Actual






duration that






actuation has






already occurred






in each relevant






time period






(LI_??) Hourly






Unit Expected






Change in






Power at Event






Levels






(LI_??) Number






of response






levels available






from asset






system.



3.1 Battery
Represent
Locations that
(LI_01) Historical
Predicted


Storage-
behaviors of
host usually
Load or
inelastic load


Time-of-Use
battery
small battery
Generation
at for each IST



storage
systems
(LI_02) Actual
interval. This



systems that
controlled
Measured Load
will normally



are engaged
simply on a
or Generation
be zero,



with a daily
diurnal
(LI_20) Total
assuming that



pattern,
pattern.
Nameplate or
the battery



usually to
Presently, no
“Typical” Power
charges and



mitigate daily
transactive
Capacity
discharges



peak. Battery
nodes claim
(LI_??) Device
only for



is fully
to be applying
Count
economic



charging,
battery
(LI_28) Minimum
reasons and



fully
systems in
Event Duration
according to



discharging,
this way.
(LI_29)
the condition of



or resting.

Promised
the TIS signal.





Maximum Event
Predicted





Count or
change in





Frequency
elastic load for





(LI_30)
each IST





Limitations on
interval.





Maximum Event
Predicted time





Duration
series of





(LI_31)
output advisory





Representative
control signals.





Changes in
See





Power at
SubAppendix





Prescribed
C. (Default





Response
expects three





Levels
load levels





(LI_??) Actual
specified by





Number of
the domain {−127,





Times that
0, 127}).





Actuation has
The set of





Already
output signals





Occurred in
may be





each Relevant
parametrically





Time Period
modified based





(LI_??) Actual
on the number





duration that
of available





actuation has
response





already occurred
levels, a static





in each relevant
input.





time period






(LI_41)






Predicted






Resource






Fractional






Availability






Current IST time






series.






TIS time series.






(LI_??) Battery






state of charge.






(LI_??) Useful






Energy Storage






Capacity






(LI_??) Number






of response






levels available






from asset






system.



3.2
Represent
Transactive
See 1.1 Bulk
Predicted


Commercial
effects of
nodes that
Commercial
inelastic load


Time-of-Use
predominantly
offer
Loads. This
at for each IST


Demand
commercial
commercial
function may use
interval.


Response
lighting and
system
the same inputs
Predicted



space
responses for
as function 1.1.
change in



conditioning
addressing
Bulk Commercial
elastic load for



programs
daily peak.
Loads as it
each IST



that respond

predicts the
interval.



to one or

inelastic
Predicted time



several daily

component of its
series of



peak

load.
output advisory



periods.

These additional
control signals.





inputs may be
See





used to calculate
SubAppendix





the change in
C. (Default





the elastic
expects two





component of
load levels





this function's
specified by





load:
the domain {0,





TIS time series.
127}). The set





(LI_??) Device
of output





Count
signals may be





(LI_28) Minimum
parametrically





Event Duration
modified based





(LI_29)
on the number





Promised Event
of available





Count or
response





Frequency
levels, a static





(LI_30)
input.





Limitations on






Curtailment






Event Duration






(LI_31)






Representative






Changes in






Power at






Prescribed






Response






Levels






(LI_??) Actual






Number of






Times that






Actuation has






Already






Occurred in






each Relevant






Time Period






(LI_??) Actual






duration that






actuation has






already occurred






in each relevant






time period






(LI_??) Hourly






Unit Expected






Change in






Power at Event






Levels






(LI_??) Number






of response






levels available






from asset






system.



3.4
Predict and
Applied where
See 1.3 Bulk
Predicted


Residential
represent
programmable,
Residential
inelastic load


Time-of-Use
response
communicating
Load. This
at for each IST


Demand
from
thermostats;
function may use
interval.


Response
automated
smart
the same inputs
Predicted



residential
appliances,
as for 1.3 Bulk
change in



demand-
demand-
Residential Load
elastic load for



response
response
to predict the
each IST



systems of
switch units,
inelastic
interval.



many types
or other
component of its
Predicted time



that will
assets are
load.
series of



respond
installed in
The following
output advisory



approximately
residences
additional inputs
control signals.



daily to
and where
may be used to
See



help mitigate
programs are
predict the
SubAppendix



peak
designed to
change in elastic
C. (Default



conditions.
have these
load:
expects two



This function
systems
TIS time series.
load levels



applied to
respond to
(LI_??) Device
specified by



automated
daily peak
Count
the domain {0,



responses
periods.
(LI_28) Minimum
127}). The set



and may
Asset
Event Duration
of output



accommodate
systems such
(LI_29)
signals may be



customer
as water
Promised Event
parametrically



opt-out.
heater control,
Count or
modified based




thermostat
Frequency
on the number




load control.
(LI_30)
of available





Limitations on
response





Curtailment
levels, a static





Event Duration
input.





(LI_31)






Representative






Changes in






Power at






Prescribed






Response






Levels






(LI_??) Actual






Number of






Times that






Actuation has






Already






Occurred in






each Relevant






Time Period






(LI_??) Actual






duration that






actuation has






already occurred






in each relevant






time period






(LI_??) Hourly






Unit Expected






Change in






Power at Event






Levels






(LI_??) Number






of response






levels available






from asset






system.



3.5 Time-of-
Similar to
Applicable
Current IST time
Predicted


Use
toolkit
where voltage
series.
inelastic load


Distribution
function 2.2,
is controlled
Historical power
at for each IST


System
except
at two or more
consumption
interval.


Voltage
voltage may
levels
TIS time series.
Predicted


Control
be controlled
according to
TIS threshold(s),
change in



according to
the value of
which may
elastic load for



daily on- and
the TIS and
further be
each IST



off-peak
other inputs
parametrically
interval.



periods.
and where
affected.
Predicted time




responses of
(LI_??) Number
series of




the asset
of response
output advisory




have been
levels available
control signals.




designed to
from asset
See




occur
system.
SubAppendix




according to

C. (Default




daily on-and

expects two




off-peak

load levels




periods.

specified by






the domain {0,






127}). The set






of output






signals may be






parametrically






modified based






on the number






of available






response






levels, a static






input.


3.6 Time-of-

Asset
See 3.1 Battery
Predicted


Use Electric

systems such
Storage-Time-
inelastic load


Vehicle

as vehicle
of-Use. This
at for each IST


Charging

charging.
function is
interval.





expected to use
Predicted





the same inputs
change in





as does 3.1
elastic load for





Battery
each IST





Storage-Time-
interval





of-Use.
Predicted time





Additionally,
series of





these inputs may
output advisory





be used
control signals.





because of the
See





special
SubAppendix





characteristics of
C. (Default





electric vehicles:
expects two





(LI_??) Time at
load levels





Which Energy
specified by





Storage Should
the domain {0,





be Fully
127}). The set





Charged
of output





(LI_??) Number
signals may be





of response
parametrically





levels available
modified based





from asset
on the number





system.
of available






response






levels, a static






input.


3.7 Non-
This function
Asset
Maximum
Predicted


Renewable
predicts the
systems.
allowed rate of
inelastic load


Distributed
response

change in
(generation)


Generation
from a non-

generated power
from this asset


Time-of-Use
renewable

Number of
system


Demand
distributed

response levels
Predicted


Response
generator

to be prescribed
average



demand-

for this asset
change in



response

system
elastic load for



system that

Typical fraction
each IST



will respond

of time that each
interval



approximately

response level/
Predicted time



daily to

should be active
series of



help mitigate

during a day
output advisory



peak

Minimum time
control signals.



conditions

duration for
See



that are

which an event
SubAppendix



evident in an

level/should
C. (Default



incentive

remain in force
expects two



signal.

for this day type
load levels





after it has
specified by





become initiated
the domain {0,





Maximum total
127}). The set





event duration
of output





permitted per
signals may be





day type and per
parametrically





event allowed for
modified based





each event
on the number





level/
of available





Limitations on
response





the minimum
levels, a static





number of TOU
input.





events that may






be called during






the three major






day types for






each response






level/






Limitations on






the maximum






number of TOU






events that may






be called during






the three major






day types for






each response






level/






Recent history of






TIS






Current TIS for






future IST






intervals






Typical baseline






power that is






generated during






UTC hour h of a






weekday day






type by this






distributed






generation






resource






Typical baseline






power that is






generated during






hour h of a






weekend day by






this distributed






generation






resource






Change in






generation that






may be






anticipated at






each of the L






response levels



4.0 General
Most general
Applicable at
Current IST time
Predicted


Real-time
function for
locations that
series.
inelastic load


Continuum
predicting
host simple
Historical power
at for each IST


Demand
responsive
RT systems.
consumption
interval.


Response
load

TIS time series.
Predicted



behaviors of

Parametric
change in



groups of

algorithm by
elastic load for



devices that

which change in
each IST



respond

elastic load may
interval.



according to

be predicted.
Predicted time



a continuum


series of



of possible


output advisory



responses.


control signals.






See






SubAppendix






C. (Default






expects a






continuum of






advisory levels






[0, 127]).


4.1 Battery
Predict and
Applicable to
Current IST time
Predicted


Storage-
represent the
battery
series.
inelastic load


Real-Time
response
storage
Historical power
at for each IST



and
systems that
consumption,
interval.



condition of
respond very
generation
Predicted



a battery
dynamically to
patterns
change in



system is
the TIS and
TIS time series.
elastic load for



highly
other local
Parametric
each IST



responsive
conditions
algorithm by
interval.



to the
and provide
which change in
Predicted time



dynamic
also a
elastic load may
series of



changes in
continuum of
be predicted.
output advisory



the TIS and
charge and
State of charge.
control signals.



that
discharge
Limitations on
See



responds
levels.
maximum
SubAppendix



using a
Asset
charge and
C. (Default



continuum of
systems such
discharge levels.
expects a



charge and
as Demand

continuum of



discharge
Shifters and

advisory levels



levels.
distribution

[−127, 127]).




batteries.




4.2
Predict and
Mostly
Current IST time
Predicted


Commercial
represent
applicable to
series.
inelastic load


Real-Time
dynamic
commercial
Historical power
at for each IST


Demand
commercial
space heating
consumption
interval.


Response
demand-
but may be
TIS time series
Predicted



response
applicable to
Parametric
change in



systems that
other
algorithm by
elastic load for



observe the
commercial
which change in
each IST



full dynamics
devices that
elastic load may
interval.



of the TIS
observe the
be predicted
Predicted time



(and other
full dynamics

series of



information)
of the TIS

output advisory



and
(and other

control signals.



dynamically
information)

See



respond
and respond

SubAppendix



using a
with a

C. (Default



continuum of
continuum of

expects a



possible
possible

continuum of



control
control

advisory levels



outcomes.
outcomes

[0, 127]).




(e.g.,






temperature






settings).




4.3 Real-

Asset

Predicted


Time

systems.

inelastic load


Distribution



at for each IST


System



interval.


Voltage



Predicted


Control



change in






elastic load for






each IST






interval






Predicted time






series of






output advisory






control signals.






See






SubAppendix






C. (Default






expects a






continuum of






advisory levels






[0, 127]).


4.5
Predict and
Applicable
Current IST time
Predicted


Residential
represent
where
series.
inelastic load


Real-Time
responses
residential
Historical power
at for each IST


Demand
from the
customers
consumption
interval.


Response
most
possess
TIS time series
Predicted



dynamic of
space
Parametric
change in



residential
conditioning
algorithm by
elastic load for



demand-
systems that
which change in
each IST



response
observe the
elastic load may
interval.



system that
dynamics of
be predicted
Predicted time



observe the
the TIS and
Day and time of
series of



dynamics of
provide a
day
output advisory



the TIS (and
continuum of

control signals.



other
responses.

See



information)
Asset

SubAppendix



and
systems.

C. (Default



automatically


expects a



respond with


continuum of



any of a


advisory levels



continuum of


[0, 127]).



possible






responses.





5.0 General


(LI_??) Number
Predicted


Manual or


of response
inelastic load


Behavioral


levels available
at for each IST


Demand


from asset
interval.


Response


system.
Predicted






change in






elastic load for






each IST






interval.






Predicted time






series of






output advisory






control signals.






See






SubAppendix






C. (Default






expects a






continuum of






advisory levels






[0, 127]).


5.1
Special case
Applicable
Current IST time
Predicted


Residential
of toolkit load
where
series.
inelastic load


Behavioral
function 5.0
residential
Prediction of the
at for each IST


Response to
where the
customers
inelastic load
interval.


Portals or In-
means of
have been
output may use
Predicted


Home
conveying
provided in-
the same inputs
change in


Displays
demand-
home displays
as were
elastic load for



response
or portals that
described for
each IST



information
display the
function 1.0 Bulk
interval.



or requests
TIS.
Inelastic Load.
Variant #1-



to residents
Asset
Refer to that
continuum:



is either an
systems.
function. Where
Current TIS



in-home

the load is
signal is



display or

predominantly
relayed to the



energy

residential,
portal or in-



portal. An

commercial, or
home display.



energy portal

industrial, the
Variant #2-



or in-home-

designer should
discrete levels:



display is a

refer to the
Predicted time



dedicated

respective
series of



piece of

functions 1.1,
output advisory



equipment

1.2 or 1.3.
control signals



for the

The following
are sent to in-



conveyance

additional inputs
home display



of demand-

are used to
or portal that



response

predict the
convey



information

change in elastic
discrete



or advice.

load:
response



The

TIS time series.
levels for



actuation of

(LI_??) Number
events or time



energy

of response
of use periods.



responses is

levels available
See



not

from asset
SubAppendix



automated

system.
C. (Default



by this


expects two



function, but


load levels



the means


specified by



by which the


the domain {0,



customer is


127}). The set



informed or


of output



advised


signals may be



should be


parametrically



automated.


modified based






on the number






of available






response






levels, a static






input.


5.2
Predict and
Locations
Current IST time
Predicted


Residential
represent
where
series.
inelastic load


Behavioral
elastic
humans are
(LI_??) Number
at for each IST


Response -
response
informed
of response
interval.


No Portals or
from assets
about extreme
levels available
Predicted


In-Home
that both use
power grid
from asset
change in


Displays
human
events and
system.
elastic load for



decisions
are invited to

each IST



and action
take actions

interval.



but do not
that would

Variant #1-



use energy
mitigate the

continuum:



portals or in-
events.

Current TIS



home


signal is



displays to


relayed to the



convey


portal or in-



demand-


home display.



response


Variant #2-



information


discrete levels:



or requests.


Predicted time






series of






output advisory






control signals






are sent to in-






home display






or portal that






convey






discrete






response






levels for






events or time






of use periods.






See






SubAppendix






C. (Default






expects two






load levels






specified by






the domain {0,






127}). The set






of output






signals may be






parametrically






modified based






on the number






of available






response






levels, a static






input.


5.3 Manual

Asset
(LI_??) Number
Predicted


Commercial

Systems.
of response
inelastic load


Demand


levels available
at for each IST


Response


from asset
interval.





system.
Predicted






change in






elastic load for






each IST






interval.






Predicted time






series of






output advisory






control signals.






See






SubAppendix






C. (Default






expects two






load levels






specified by






the domain {0,






127}). The set






of output






signals may be






parametrically






modified based






on the number






of available






response






levels, a static






input.


5.4 Manual
Predictive
Asset
Current IST time
Predicted


Non-
advisory
systems.
series.
inelastic load


Renewable
signals

TIS time series.
(generation) at


Distributed
should be

(LI_37)
for each IST


Energy
formulated

Frequency or
interval.


Resources
and

number of times
Predicted


Demand
conveyed to

that the DER
change in


Response
operations

may be
elastic load



personnel at

actuated. Note:
(generation)



Lower Valley

this input should
for each IST



and

be replaced by
interval.



University of

more general
Variant #1-



Washington.

LI_29.
continuum:



The

(LI_29)
Current TIS



operations

Promised event
signal is



people will

count or
relayed to the



then

frequency that
portal or in-



manually

have been
home display.



schedule

negotiated with
Variant #2-



and/or

customer
discrete levels:



control their

(LI_??) Number
Predicted time



distributed

of times that
series of



generation

actuation has
output advisory



Resources

already occurred
control signals



correspondingly.

in each relevant
are sent to in-





time period.
home display





(LI_??) Actual
or portal that





duration that
convey





actuation has
discrete





already occurred
response





in each relevant
levels for





time period.
events or time-





Note: Should
of-use periods.





replace this input
See





with more
SubAppendix





general LI_30.
C. (Default





(LI_30)
expects two





Limitations on
load levels





curtailment
specified by





event duration
the domain {0,





that have been
127}). The set





promised to
of output





customer
signals may be





Note: this input
parametrically





should be
modified based





replaced by the
on the number





more general
of available





LI_30.
response





Note: This
levels, a static





should be
input.





replaced by






LI_20, which






shares the same






meaning.






(LI_20) Total






Nameplate or






“Typical” Power






Capacity.






(LI_41)






Limitations on






operator ability






to receive and






schedule






responses.






(LI_??) Number






of response






levels available






from asset






system.









6.3 Appendix C—Collected Set of Example Toolkit Functions

This section introduces a variety of exemplary load and incentive functions, any one or more of which can be used in embodiments of the disclosed technology (e.g., in a toolkit library). The functions described below should not be construed as limiting in any way, and are example implementations of functions that can be used in a transactive control and coordination system. Further, the equations, tables, and subappendices in the function descriptions below will have their own independent numbering and labeling conventions. Still further, in some instances, some information may be omitted from certain functions but could be implemented by those skilled in the art.


6.3.1 Bulk Inelastic Load—N-Day Moving Window (Function 1.01)

Description:


The following is the foundation of an alternative toolkit function to 1.0 Bulk Inelastic Load. However, this functional specification can be implemented with initial measurements over only two prior days, expects less mathematical knowledge by implementers, is easily documented down to requisite steps, and, for these reasons, may be more amenable to implementation by some utility implementers.


The basic approach is as follows: For a given circuit location, pairs of electrical load and ambient temperature are measured each hour. Data from the same hour-of-day and from a comparable day type, for a window of a chosen number of days, are used to compute the coefficients of a linear model. This model is then used to predict electrical load at this location for the same future day type and hour-of-day based on the forecasted ambient temperature for the future hour.


Block Input/Output Function Model:


Inputs:






    • {Pd,h, Td,h}—[kW, ° C.]—paired measurements of actual electrical power (load) and ambient temperature for a given day d of a given type (weekday or weekend/holiday) and hour h of the day at a circuit location. h=0, 1, . . . , 23. These measurements taken each hour allow the recursive model to become updated for the respective day type and hour-of-day.

    • N—[dimensionless]—number of days in the moving window that will be used in the model formulation. Default: 10 (e.g., about two weeks of weekdays or about a month of weekend/holiday days).

    • Tf_d,h—[° C.]—forecasted temperature for a given future hour-of-day h for a least the next four days (e.g., the predicted time horizon of the transactive signals). This forecasted temperature is the input to the model by which electrical power load may be predicted for a given hour-of-day and day type.


      Interim Calculation Products:

    • a0_h, a1_h—[kW,kW/° C.]—a set of coefficients that model a best-fit prediction of electrical power from a forecasted ambient temperature for a given hour-of-day on a given type of day.

    • A00_h, A01_h, A11_h, b0_h, b1_h—set of five unique vector and matrix elements that should be stored for each hour-of-day for each day type. These elements are updated each time a new pair of load and temperature measurements become available for the respective hour-of-day and day type.

    • {circumflex over (P)}d,h—[kW]—predicted load for each future hour for the next four days. These are the outputs from the linear model for the respective future hour-of-day and day type, given the forecasted ambient temperature for that future hour.


      Outputs:

    • Linelastic_n—[kW]—predicted load corresponding to the nth interval. This is the hourly predicted load {circumflex over (P)}d,h allocated accordingly to each nth interval.


      Pseudo Code Implementation:

    • 1. For d available measurements, calculate A00_h, A01_h, A11_h, b0_h, and b1_h. At startup, two measurements (e.g., d=2) may be adequate. More prior measurements are preferred and may be used. It should be pointed out that singularity is unavoidable when d=1; the determinant of matrix A, as derived in Appendix A, is zero.














h

,





A

00

_h


=

min


(

d
,
N

)









A

01

_h


=




i
=

max


(

1
,

d
-
N
+
1


)



d



T

i
,
h










A

11

_h


=




i
=

max


(

1
,

d
-
N
+
1


)



d



T

i
,
h

2









b

0

_h


=




i
=

max


(

1
,

d
-
N
+
1


)



d



P

i
,
h










b

1

_h


=




i
=

max


(

1
,

d
-
N
+
1


)



d



(


P

i
,
h


·

T

i
,
h



)






,

d

2





(
1
)









    • Note that singularity will still occur for d>1 if Ti,h are identical for a given h.

    • This example method uses at most N×24×2 data points, which are stored for each day type.

    • At the implementer's discretion, equation 2 may be employed instead of equation 1. Equation 2 modestly reduces computations. However, equation 2 uses additional data that is stored (e.g., N×24×7 compared to N×24×2).














h

,





A

00

_h


=

min


(

d
,
N

)









A

01

_h


=

{






A

01

_h

*

+

T

d
,
h



,





if





d


N








A

01

_h

*

-

T


d
-
N

,
h


+

T

d
,
h


+

T

d
,
h



,



otherwise











A

11

_h


=

{






A

01

_h

*

+

T

d
,
h



,





if





d


N








A

11

_h

*

-

T


d
-
N

,
h

2

+

T

d
,
h

2


,



otherwise











b

0

_h


=

{






b

0

_h

*

+

P

d
,
h



,





if





d


N








b

0

_h

*

-

P


d
-
N

,
h


+

P

d
,
h



,



otherwise











b

1

_h


=

{






b

1

_h

*

+


P

d
,
h


·

T

d
,
h




,





if





d


N








b

1

_h

*

-


P


d
-
N

,
h


·

T


d
-
N

,
h



+


P

d
,
h


·

T

d
,
h




,



otherwise












(
2
)











      • A*01, A*11, b*0, and b*1 are A01, A11, b0, and b1 from the preceding iteration, respectively.



    • 2. After matrix and vector elements have been calculated by either equation 1 or equation 2, calculate the coefficients for the linear model using equation 3.














h

,





a

0

_h


=




A

11

_h




b

0

_h



-


A

01

_h




b

1

_h







A

00

_h




A

11

_h



-

A

01

_h

2










a

1

_h


=




A

00

_h




b

1

_h



-


A

01

_h




b

0

_h







A

00

_h




A

11

_h



-

A

02

_h

2











(
3
)









    • 3. Generate P for the upcoming four days using the linear model in equation 4:

      for D={d+1,d+2,d+3,d+4}, and ∀h,{circumflex over (P)}D,h=a0_h+a1_h·Tƒ_D,h  (4)

    • The hourly standard deviation σh, which is potentially a useful indicator of the accuracy of and one's confidence in the hourly prediction {circumflex over (P)}D,h, may be computed as follows:














h

,









σ
h

=





1

min


(

d
,
N

)








i
=

max


(

1
,

d
-
N
+
1


)



d




(


P

i
,
k


-


P
^


i
,
h



)

2










=





1

min


(

d
,
N

)








i
=

max


(

1
,

d
-
N
+
1


)



d




(


P

i
,
h


-

(


a

0

_h


+


a

1

_h


·

T

i
,
h




)


)

2












(
5
)









    • 4. Generate Linelastic_n by allocating {circumflex over (P)}D,h to each nth interval:














n

,






L
inelastic_n

=

{






P
^


D
,
h


,





if





n


h









P
^


D
,
h


,

_





if





h


n










(
6
)












      • {circumflex over (P)}D,h is the average of all {circumflex over (P)}D,h corresponding to all hours h lying within n.



    • Make this Linelastic,n prediction available as an output of this function into the transactive node's algorithmic toolkit framework.

    • 5. Each time a successive measurement pair becomes available, repeat starting from step 1 above.


      Subappendix A: Additional Details about the Formulation





This formulation is based on a first-order polynomial (linear) model of power P as a function of temperature T, as shown in equation A1. This model's coefficients a0, and a1 are determined via a least-squares error fit to pairs of measured power and temperature. The coefficients may be used thereafter to predict power given forecasted temperatures.

{circumflex over (P)}=a0+a1·T


The optimal coefficients are determined by minimization of the cost function J shown in equation A2. This wisely chosen cost function happens to be the statistical variance of the difference between actual measured electrical load and load that is modeled by the linear model during N days of a given type (weekdays, or weekends/holidays). The standard deviation is the square root of the variance. The variance and standard deviation are potentially useful indicators of the accuracy of and one's confidence in the predictions that result from this function.









J
=


1
N






i
=
1

N




(


P
i

-


P
^

i


)

2







(
A2
)







The optimal coefficients are found by setting the partial derivatives of the cost function with respect to the two coefficients to zero, as shown in equation A3.










[






J




a
0










J




a
1






]

=


[





-

2
N







i
=
1

N



(


P
i

-

a
0

-


a
1

·

T
i



)









-

2
N







i
=
1

N



(



P
i

·

T
i


-


a
0

·

T
i


-


a
1

·

T
i
2



)






]

=
0





(
A3
)







Equation A3 can be written in matrix form, as in equation A4.











[



N






i
=
1

N



T
i










i
=
1

N



T
i








i
=
1

N



T
i
2





]



[




a
0






a
1




]


=

[







i
=
1

N



P
i










i
=
1

N



(


P
i

·

T
i


)





]





(
A4
)







The matrix is seen to be identical to its transpose. The simplified representation given in equation A5 will prove useful in referring to the various vector and matrix elements of equation A4.











[




A
00




A
01






A
01




A
11




]



[




a
0






a
1




]


=

[




b
0






b
1




]





(
A5
)







This is in the form Ax=b, the solution of which can be found by x=A−1b, as long as matrix A is invertible or nonsingular. Formulas exist for the inversion of a 2×2 matrix, so each coefficient may be explicitly solved for as in equation A6. This explicit representation is advantageous because it alleviates any expectation that the computational infrastructure being relied upon to conduct this function necessarily possesses any matrix solvers.











a
0

=




A
11



b
0


-


A
01



b
1






A
00



A
11


-

A
01
2











a
1

=




A
00



b
1


-


A
01



b
0






A
00



A
11


-

A
01
2








(
A6
)







This method should not require a large set of training data, but some startup issues may be encountered. There is no reasonable way to predict electrical load before any comparable measurement has been made. The coefficients cannot be uniquely determined until at least two non-identical temperature measurements have been taken for a given hour of the day.


Subappendix B: Example


In this example, real power (load) P and temperature T measurements during fourteen weekdays—given in Table 30 and Table 31, respectively—are used to compute {circumflex over (P)}, following the procedure outlined in in the Pseudo Code Implementation section. N=10. The resulting {circumflex over (P)} is given in Table 32, and plotted along with ±1 standard deviation (e.g. ±√{square root over (J)}) and P in the set 4700 of graphs shown in FIG. 47. Notice that the “NaN” (not a number) entries on day 3 are due to the singularity of matrix A caused by the identical temperature points at the corresponding hours on days 1 and 2. FIG. 48 through FIG. 50 comprise sets 4800, 4900, 5000 of graphs that show the linear least-squares error fit for each hour of the day, for days 4, 12, and 14, respectively, given the measured data.









TABLE 30







Power P Measurements in kW











d
























1
2
3
4
5
6
7
8
9
10
11
12
13
14





h
0
126630
126380
123750
119310
108010
 91850
101540
 99580
110370
118090
111810
108690
 94420
 99760



1
128540
127530
126080
119370
106720
 90490
101250
 99270
110440
115540
112920
107110
 92590
 99970



2
130030
132390
128840
118230
107120
 90680
102500
 99460
112350
115970
114350
106530
 92940
101600



3
132300
134530
129970
119680
109430
 92310
104400
100900
116400
117040
118210
108160
 93430
103750



4
136720
137780
131020
120650
110730
 93910
105960
102830
120110
117440
121380
108240
 95000
106250



5
141660
143280
135970
122840
113740
 96180
110190
107220
126350
120040
127690
112090
 99450
111410



6
151840
151040
144810
131840
121820
105230
119760
117030
135810
127720
135390
120230
108640
120590



7
164120
161680
157710
142160
132860
114240
130250
129380
146520
138180
145470
129690
116230
131540



8
166680
162390
158210
142940
134880
116610
131660
126770
151070
140760
150230
130020
115310
131170



9
158610
156650
150760
137720
132790
116310
126940
121170
146550
138550
145140
127470
112020
121080



10
150280
145960
144010
131050
130430
107040
119110
113870
137590
135270
135700
123850
107310
114660



11
140770
138850
138650
120960
124670
100140
114120
107110
128370
128050
128430
120340
104290
108770



12
132130
130430
134000
110740
120430
 96160
111270
101900
120040
116560
122470
115930
103010
105390



13
125840
125450
131130
105590
115060
 96720
103900
 97780
113440
109900
115470
114020
103600
103400



14
120530
119940
130460
102400
114400
 93370
102900
 94950
110830
106170
114590
114710
105380
101570



15
118960
117000
129940
102900
111120
 94600
101420
 92960
109080
102160
117490
116450
106720
102620



16
116740
116360
131310
103930
111810
 94570
102470
 94420
109880
102600
118930
117110
110980
103650



17
123890
121190
135200
107620
117810
102710
108120
 99210
115810
108130
125210
119550
114430
111170



18
137920
135820
141200
118540
125000
110720
119310
111320
128410
120590
131300
126230
121330
118390



19
142510
139340
141880
122890
123340
114190
121300
118170
132660
124750
133520
126760
121940
123540



20
142980
138900
139110
122620
119860
114130
118760
119720
134420
126250
128930
122130
116690
122810



21
142550
137650
135470
122060
117290
111990
115170
117520
131880
124860
125790
116520
111650
120670



22
136270
133130
130030
117390
112710
107870
109270
114110
128100
121910
120550
107950
110480
114810



23
129740
126930
121660
112760
106290
103520
102800
111150
121650
117880
111880
 99490
100620
107230
















TABLE 31







Temperature T Measurements in ° C.









d






















1
2
3
4
5
6
7
8
9
10
11
12
13
14

























h
0
−21.00
−22.00
−21.00
−14.00
−14.00
−4.00
−12.00
−10.00
−16.00
−17.00
−22.00
−7.00
3.00
−3.00



1
−22.00
−22.00
−21.00
−14.00
−13.00
−4.00
−11.00
−9.00
−17.00
−14.00
−21.00
−7.00
3.00
−4.00



2
−22.00
−23.00
−21.00
−13.00
−13.00
−4.00
−12.00
−9.00
−17.00
−14.00
−21.00
−6.00
2.00
−6.00



3
−23.00
−23.00
−19.00
−12.00
−12.00
−4.00
−13.00
−8.00
−23.00
−12.00
−21.00
−7.00
3.00
−6.00



4
−22.00
−22.00
−20.00
−12.00
−10.00
−5.00
−11.00
−8.00
−20.00
−11.00
−21.00
−6.00
2.00
−6.00



5
−23.00
−24.00
−20.00
−12.00
−10.00
−5.00
−10.00
−8.00
−22.00
−11.00
−19.00
−6.00
3.00
−7.00



6
−23.00
−24.00
−20.00
−12.00
−11.00
−8.00
−9.00
−8.00
−23.00
−11.00
−19.00
−5.00
3.00
−7.00



7
−24.00
−23.00
−20.00
−11.00
−10.00
−7.00
−8.00
−9.00
−22.00
−11.00
−19.00
−4.00
3.00
−7.00



8
−23.00
−22.00
−18.00
−10.00
−9.00
−9.00
−8.00
−13.00
−22.00
−11.00
−21.00
−4.00
3.00
−7.00



9
−19.00
−19.00
−16.00
−9.00
−9.00
−8.00
−8.00
−12.00
−20.00
−10.00
−18.00
−3.00
3.00
−6.00



10
−17.00
−16.00
−14.00
−8.00
−8.00
−7.00
−7.00
−9.00
−16.00
−8.00
−16.00
−2.00
4.00
−5.00



11
−16.00
−14.00
−13.00
−4.00
−8.00
−5.00
−2.00
−9.00
−15.00
−8.00
−13.00
−2.00
1.00
−5.00



12
−13.00
−13.00
−11.00
−4.00
−7.00
−3.00
−2.00
−6.00
−13.00
−8.00
−9.00
−2.00
3.00
−5.00



13
−12.00
−11.00
−10.00
−4.00
−6.00
−2.00
−1.00
−6.00
−12.00
−5.00
−7.00
−2.00
2.00
−4.00



14
−11.00
−8.00
−9.00
−4.00
−6.00
−1.00
−2.00
−4.00
−11.00
−4.00
−5.00
−1.00
2.00
−4.00



15
−11.00
−7.00
−9.00
−4.00
−5.00
−1.00
−2.00
−4.00
−10.00
−4.00
−6.00
−1.00
3.00
−4.00



16
−12.00
−7.00
−9.00
−5.00
−4.00
1.00
−3.00
−5.00
−7.00
−5.00
−6.00
−1.00
3.00
−3.00



17
−11.00
−8.00
−9.00
−3.00
−3.00
−1.00
−3.00
−6.00
−9.00
−4.00
−6.00
0.00
3.00
−4.00



18
−16.00
−9.00
−9.00
−8.00
−4.00
−2.00
−4.00
−7.00
−11.00
−13.00
−6.00
−1.00
3.00
−5.00



19
−18.00
−12.00
−11.00
−8.00
−4.00
−2.00
−7.00
−13.00
−16.00
−11.00
−6.00
0.00
3.00
−6.00



20
−19.00
−19.00
−12.00
−11.00
−5.00
−5.00
−6.00
−12.00
−16.00
−19.00
−6.00
0.00
3.00
−6.00



21
−19.00
−19.00
−12.00
−12.00
−5.00
−5.00
−6.00
−10.00
−16.00
−20.00
−7.00
1.00
0.00
−7.00



22
−21.00
−19.00
−15.00
−13.00
−4.00
−11.00
−10.00
−12.00
−18.00
−18.00
−7.00
2.00
−3.00
−7.00



23
−18.00
−19.00
−14.00
−15.00
−4.00
−11.00
−11.00
−17.00
−17.00
−20.00
−6.00
2.00
−3.00
−7.00
















TABLE 32







Predicted Load {circumflex over (P)} in kW









d






















1
2
3
4
5
6
7
8
9
10
11
12
13
14

























h
0


126630
116860
119280
97461
108369
103079
114703
116243
126716
97364
87557
98185



1


NaN
112395
118233
95376
106179
100882
117808
110548
125738
97212
84840
98109



2


127670
114445
118140
94987
109251
101292
119049
111531
127500
95262
86552
100584



3


NaN
123941
120102
101061
114440
101943
134691
109605
126623
101920
90763
102800



4


NaN
106100
116988
103511
112066
103657
132651
110065
132656
101073
90988
104233



5


136800
121254
119314
106297
112426
107226
140265
113660
131096
104291
91067
109562



6


154240
131262
130109
119518
115470
114200
151411
121797
139185
110797
101535
118367



7


154360
143738
140592
130533
125652
129383
161018
133619
151356
119835
111943
128784



8


145230
145832
141494
138080
128147
141862
163310
134415
157896
121255
114016
129418



9


NaN
134730
137518
133002
126763
138324
159603
130209
150645
116328
112387
125733



10


137320
131948
131114
128706
120439
126313
147527
121093
145033
109665
106991
120504



11


137890
131747
128323
121719
105742
125792
137670
120420
131670
109383
108827
115807



12


NaN
143520
119083
110190
100484
115130
132834
117456
119772
103365
97644
111728



13


125060
145988
112810
102765
96465
113238
128199
107849
112711
101571
97728
107297



14


120137
126527
111990
97488
98285
106113
128043
104100
106987
97088
95781
106263



15


117980
119517
109447
99199
99613
106146
123478
103701
108810
95299
92736
105769



16


116512
122828
108659
101560
105818
109718
112495
107500
109352
95750
92437
106631



17


122090
126991
109571
109435
111212
118081
122865
110506
114634
101191
102691
111875



18


135820
138594
125970
123013
120876
126128
131917
134944
121585
117003
117667
121233



19


138812
139867
123367
120126
126652
137312
138238
129727
122264
118178
120110
123841



20


NaN
138849
120765
120152
119458
129805
135371
140289
118805
114907
116592
121461



21


NaN
135470
117430
117330
116924
123902
134394
141283
117843
110225
114585
118739



22


126850
127799
102646
120991
116588
118679
128845
128699
109237
101337
110449
113300



23


140980
123450
94357
115177
112747
121624
119604
124703
103275
98270
104107
106232









6.3.2 Bulk Inelastic Load—Recursive—Recursive Algorithm (Function 1.01a)

Description:


The following is the foundation of an alternative to the Bulk Inelastic Load toolkit functions 1.0 and 1.01. However, this functional specification can be implemented with measurements over only two prior days, expects less mathematical knowledge by implementers, is easily documented down to requisite steps, and for, these reasons, may be more amenable to implementation by some utility implementers. Furthermore, unlike tookit function 1.01 that uses a moving window of a chosen number of days, this function 1.01a is formulated as a purely recursive algorithm.


The basic approach is as follows: For a given circuit location, pairs of electrical load and ambient temperature are measured each hour. Data from the same hour-of-day and from a comparable day type are used to recursively update the coefficients of a linear model. This model is then used to predict electrical load at this location for the same future day type and hour-of-day based on the forecasted ambient temperature for the future hour.


Block Input/Output Function Model:


Inputs:






    • {Pf, Td,h}—[kW, ° C.]—paired measurements of actual electrical power (load) and ambient temperature for a given day d of a given type (weekday or weekend/holiday) and hour h of the day at a circuit location. h=0, 1, . . . , 23. These measurements taken each hour allow the recursive model to become updated for the respective day type and hour-of-day.

    • N—[dimensionless]—number used in the recursive algorithm. The selected value of N should be greater than 2. Default: 10 (e.g., about two weeks of weekdays or about a month of weekend/holiday days).

    • Tf_d,h—[° C.]—forecasted temperature for a given future hour-of-day h for a least the next four days (e.g., the predicted time horizon of the transactive signals). This forecasted temperature is the input to the model by which electrical power load may be predicted for a given hour-of-day and day type.


      Interim Calculation Products:

    • a0_h,a1_h—[kW, kW/° C.]—a set of coefficients that model a best-fit prediction of electrical power from a forecasted ambient temperature for a given hour-of-day on a given type of day.

    • A01_h, A11_h, b0_h, b1_h—set of four unique vector and matrix elements that should be stored for each hour-of-day for each day type. These elements are updated each time a new pair of load and temperature measurements become available for the respective hour-of-day and day type.

    • {circumflex over (P)}d,h—[kW]—predicted load for each future hour for the next four days. These are the outputs from the linear model for the respective future hour-of-day and day type, given the forecasted ambient temperature for that future hour.


      Outputs:

    • Linelastic_n—[kW]—predicted load corresponding to the nth interval. This is the hourly predicted load {circumflex over (P)}d,h allocated accordingly to each nth interval.


      Pseudo Code Implementation:

    • 1. For the number m of available startup measurements, calculate the initial A01_h, A11_h, b0_h, and b1_h. At startup, two unique measurements (e.g., m=2) may be adequate. More prior measurements are preferred and may be used. It should be pointed out that singularity is unavoidable when m=1; the determinant of matrix A, as derived in Appendix A, is zero.














h

,





A

01

_h


=


1
m






i
=
1

m



T

i
,
h











A

11

_h


=


1
m






i
=
1

m



T

i
,
h

2










b

0

_h


=


1
m






i
=
1

m



P

i
,
h











b

1

_h


=


1
m






i
=
1

m



(


P

i
,
h


·

T

i
,
h



)







,

m

2





(
1
)









    • 2. Each time a successive measurement pair becomes available for day d, A01_h, A11_h, b0_h, and b1_h should be recursively updated as in equation 2.














h

,





A

01

_h


=




(

N
-
1

)

·

A

01

_h

*


+

T

d
,
h



N








A

11

_h


=




(

N
-
1

)

·

A

11

_h

*


+

T

d
,
h

2


N








b

0

_h


=




(

N
-
1

)

·

b

0

_h

*


+

P

d
,
h



N








b

1

_h


=




(

N
-
1

)

·

b

1

_h

*


+


P

d
,
h


·

T

d
,
h




N









(
2
)











      • A*01, A*11, b*0, and b*1 are A01, A11, b0, and b1 from the preceding iteration, respectively.



    • 3. Calculate the coefficients for the linear model using the equation 3.














h

,





a

0

_h


=




A

11

_h




b

0

_h



-


A

01

_h




b

1

_h






A

11

_h


-

A

01

_h

2










a

1

_h


=



b

1

_h


-


A

01

_h




b

0

_h






A

11

_h


-

A

01

_h

2











(
3
)









    • 4. Generate {circumflex over (P)} for the upcoming four days using the linear model in equation 4:

      for D={d+1,d+2,d+3,d+4}, and ∀h,{circumflex over (P)}D,h=a0_h+a1_h·Tƒ_D,h  (4)

    • If the d measurement pairs are stored and accessible, the hourly standard deviation σd, which is potentially a useful indicator of the accuracy of and one's confidence in the hourly prediction {circumflex over (P)}D,h, may be computed as follows:














h

,









σ
h

=





1
d






i
=
1

d




(


P

i
,
h


-


P
^


i
,
h



)

2










=





1
d






i
=
1

d




(


P

i
,
j


-

(


a

0

_h


+


a

1

_h


·

T

i
,
h




)


)

2












(
5
)









    • 5. Generate Linelastic_n by allocating {circumflex over (P)}D,h to each nth interval:














n

,






L
inelastic_n

=

{





P
^


D
,
h






if





n


h








P
^


D
,
h


_





if





h


n










(
6
)












      • {circumflex over (P)}D,h is the average of all {circumflex over (P)}D h corresponding to all hours h lying within n.



    • Make this Linelastic_n prediction available as an output of this function into the transactive node's algorithmic toolkit framework.

    • 6. Repeat starting from step 2 above.


      Subappendix A: Additional Details about the Formulation





This formulation is based on a first-order polynomial (linear) model of power {circumflex over (P)} as a function of temperature T, as shown in equation A1. This model's coefficients a0, and a1 are determined via a least-squares error fit to pairs of measured power and temperature. The coefficients may be used thereafter to predict power given forecasted temperatures.

{circumflex over (P)}=a0+a1·T  (A1)


The optimal coefficients are determined by minimization of the cost function J shown in equation A2. This wisely chosen cost function happens to be the statistical variance of the difference between actual measured electrical load and load that is modeled by the linear model during N days of a given type (weekdays, or weekends/holidays). The standard deviation is the square root of the variance. The variance and standard deviation are potentially useful indicators of the accuracy of and one's confidence in the predictions that result from this function.









J
=


1
N






i
=
1

N








(


P
i

-


P
^

i


)

2







(
A2
)







The optimal coefficients are found by setting the partial derivatives of the cost function with respect to the two coefficients to zero, as shown in equation A3.










[






J




a
0










J




a
1






]

=


[





-

2
N







i
=
1

N







(


P
i

-

a
0

-


a
1

·

T
i



)









-

2
N







i
=
1

N







(



P
i

·

T
i


-


a
0

·

T
i


-


a
1

·

T
i
2



)






]

=
0





(
A3
)







Equation A3 can be written in matrix form, as in equation A4.











[



1




1
N






i
=
1

N







T
i









1
N






i
=
1

N







T
i







1
N






i
=
1

N







T
i
2






]



[




a
0






a
1




]


=

[





1
N






i
=
1

N







P
i









1
N






i
=
1

N







(


P
i

·

T
i


)






]





(
A4
)







The matrix is seen to be identical to its transpose. The simplified representation given in equation A5 will prove useful in referring to the various vector and matrix elements of equation A4.











[



1



A
01






A
01




A
11




]



[




a
0






a
1




]


=

[




b
0






b
1




]





(
A5
)







This is in the form Ax=b, the solution of which can be found by x=A−1b, as long as matrix A is invertible or nonsingular. Formulas exist for the inversion of a 2×2 matrix, so each coefficient may be explicitly solved for as in equation A6. This explicit representation is advantageous because it alleviates any expectation that the computational infrastructure being relied upon to conduct this function necessarily possesses any matrix solvers.











a
0

=




A
11



b
0


-


A
01



b
1





A
11

-

A
01
2











a
1

=



b
1

-


A
01



b
0





A
11

-

A
01
2








(
A6
)







This method should not require a large set of training data, but some startup issues may be encountered. There is no reasonable way to predict electrical load before any comparable measurement has been made. If used non-recursively according to the formulation so far, the coefficients cannot be uniquely determined until at least two non-identical measurement pairs have been taken. Exceptions would be used to apply the method until N>2.


After two non-identical measurements, the problem becomes over-determined, and the power of least-squares error fit comes into play. The question then becomes how many samples N to maintain and use. If a moving window is used, then one should store a cache of N data pairs. Furthermore, the cache should be maintained for all of the more than 24×2 sets of hours and day types that are to be modeled. The moving window approach may not be especially efficient from a computational and storage standpoint and should be avoided. A recursive approach is preferred.


In a recursive formulation, one can keep a cache of only the four most recently calculated unique vector and matrix elements (A01, A11, b0, and b1) for each day type and its hours. Each of these elements is presumed to have already been influenced by at least N prior measurements. When a new measurement pair (PN+1, TN+1) becomes available for this hour and hour type, one may recursively update elements as exemplified in A7 for vector element b1. The effect of this recursive formula is that the old vector element is replaced by a new term that is a weighted sum of the old element and a new term that uses the new measurements. If N is large, the new measurements have less impact than they would if N were small.










b
1

=





(

N
-
1

)

·

1
N







i
=
1

N







(


P
i

·

T
i


)



+


P

N
+
1


·

T

N
+
1




N





(
A7
)







Equation A8 more simply and generally shows how the old vector element b*1 becomes replaced by the new one b1. The two weighting factors are (N−1)/N and 1/N, which sums to unity.










b
1

=




(

N
-
1

)

·

b
1
*


+


P

N
+
1


·

T

N
+
1




N





(
A8
)







Nothing prevents the application of recursive formulas of the type exemplified by A7 and A8 after the elements have been initialized. The first predictions may be wild and unreliable until more measurements can become incorporated into the model.


Subappendix B: Example


In this example, real power (load) P and temperature T measurements during fourteen weekdays—given in Table 33 and Table 34, respectively—are used to compute {circumflex over (P)}, following the procedure outlined in the Pseudo Code Implementation section. The resulting P{circumflex over ( )} is given in Table 35, and plotted along with ±1 standard deviation (e.g. ±√{square root over (J)}) and P in the set 5100 of graphs in FIG. 51. Notice that the “NaN” (not a number) entries on day 3 are due to the singularity of matrix A caused by the identical temperature points at the corresponding hours on days 1 and 2. FIG. 52 through FIG. 54 are sets 5200, 5300, 5400 of graphs that show the linear least-squares error fit for each hour of the day, for days 4, 12, and 14, respectively, given the measured data.









TABLE 33







Power P Measurements in kW









D






















1
2
3
4
5
6
7
8
9
10
11
12
13
14

























h
0
126630
126380
123750
119310
108010
91850
101540
99580
110370
118090
111810
108690
94420
99760



1
128540
127530
126080
119370
106720
90490
101250
99270
110440
115540
112920
107110
92590
99970



2
130030
132390
128840
118230
107120
90680
102500
99460
112350
115970
114350
106530
92940
101600



3
132300
134530
129970
119680
109430
92310
104400
100900
116400
117040
118210
108160
93430
103750



4
136720
137780
131020
120650
110730
93910
105960
102830
120110
117440
121380
108240
95000
106250



5
141660
143280
135970
122840
113740
96180
110190
107220
126350
120040
127690
112090
99450
111410



6
151840
151040
144810
131840
121820
105230
119760
117030
135810
127720
135390
120230
108640
120590



7
164120
161680
157710
142160
132860
114240
130250
129380
146520
138180
145470
129690
116230
131540



8
166680
162390
158210
142940
134880
116610
131660
126770
151070
140760
150230
130020
115310
131170



9
158610
156650
150760
137720
132790
116310
126940
121170
146550
138550
145140
127470
112020
121080



10
150280
145960
144010
131050
130430
107040
119110
113870
137590
135270
135700
123850
107310
114660



11
140770
138850
138650
120960
124670
100140
114120
107110
128370
128050
128430
120340
104290
108770



12
132130
130430
134000
110740
120430
96160
111270
101900
120040
116560
122470
115930
103010
105390



13
125840
125450
131130
105590
115060
96720
103900
97780
113440
109900
115470
114020
103600
103400



14
120530
119940
130460
102400
114400
93370
102900
94950
110830
106170
114590
114710
105380
101570



15
118960
117000
129940
102900
111120
94600
101420
92960
109080
102160
117490
116450
106720
102620



16
116740
116360
131310
103930
111810
94570
102470
94420
109880
102600
118930
117110
110980
103650



17
123890
121190
135200
107620
117810
102710
108120
99210
115810
108130
125210
119550
114430
111170



18
137920
135820
141200
118540
125000
110720
119310
111320
128410
120590
131300
126230
121330
118390



19
142510
139340
141880
122890
123340
114190
121300
118170
132660
124750
133520
126760
121940
123540



20
142980
138900
139110
122620
119860
114130
118760
119720
134420
126250
128930
122130
116690
122810



21
142550
137650
135470
122060
117290
111990
115170
117520
131880
124860
125790
116520
111650
120670



22
136270
133130
130030
117390
112710
107870
109270
114110
128100
121910
120550
107950
110480
114810



23
129740
126930
121660
112760
106290
103520
102800
111150
121650
117880
111880
99490
100620
107230
















TABLE 34







Temperature T Measurements in ° C.









d






















1
2
3
4
5
6
7
8
9
10
11
12
13
14

























h
0
−21.00
−22.00
−21.00
−14.00
−14.00
−4.00
−12.00
−10.00
−16.00
−17.00
−22.00
−7.00
3.00
−3.00



1
−22.00
−22.00
−21.00
−14.00
−13.00
−4.00
−11.00
−9.00
−17.00
−14.00
−21.00
−7.00
3.00
−4.00



2
−22.00
−23.00
−21.00
−13.00
−13.00
−4.00
−12.00
−9.00
−17.00
−14.00
−21.00
−6.00
2.00
−6.00



3
−23.00
−23.00
−19.00
−12.00
−12.00
−4.00
−13.00
−8.00
−23.00
−12.00
−21.00
−7.00
3.00
−6.00



4
−22.00
−22.00
−20.00
−12.00
−10.00
−5.00
−11.00
−8.00
−20.00
−11.00
−21.00
−6.00
2.00
−6.00



5
−23.00
−24.00
−20.00
−12.00
−10.00
−5.00
−10.00
−8.00
−22.00
−11.00
−19.00
−6.00
3.00
−7.00



6
−23.00
−24.00
−20.00
−12.00
−11.00
−8.00
−9.00
−8.00
−23.00
−11.00
−19.00
−5.00
3.00
−7.00



7
−24.00
−23.00
−20.00
−11.00
−10.00
−7.00
−8.00
−9.00
−22.00
−11.00
−19.00
−4.00
3.00
−7.00



8
−23.00
−22.00
−18.00
−10.00
−9.00
−9.00
−8.00
−13.00
−22.00
−11.00
−21.00
−4.00
3.00
−7.00



9
−19.00
−19.00
−16.00
−9.00
−9.00
−8.00
−8.00
−12.00
−20.00
−10.00
−18.00
−3.00
3.00
−6.00



10
−17.00
−16.00
−14.00
−8.00
−8.00
−7.00
−7.00
−9.00
−16.00
−8.00
−16.00
−2.00
4.00
−5.00



11
−16.00
−14.00
−13.00
−4.00
−8.00
−5.00
−2.00
−9.00
−15.00
−8.00
−13.00
−2.00
1.00
−5.00



12
−13.00
−13.00
−11.00
−4.00
−7.00
−3.00
−2.00
−6.00
−13.00
−8.00
−9.00
−2.00
3.00
−5.00



13
−12.00
−11.00
−10.00
−4.00
−6.00
−2.00
−1.00
−6.00
−12.00
−5.00
−7.00
−2.00
2.00
−4.00



14
−11.00
−8.00
−9.00
−4.00
−6.00
−1.00
−2.00
−4.00
−11.00
−4.00
−5.00
−1.00
2.00
−4.00



15
−11.00
−7.00
−9.00
−4.00
−5.00
−1.00
−2.00
−4.00
−10.00
−4.00
−6.00
−1.00
3.00
−4.00



16
−12.00
−7.00
−9.00
−5.00
−4.00
1.00
−3.00
−5.00
−7.00
−5.00
−6.00
−1.00
3.00
−3.00



17
−11.00
−8.00
−9.00
−3.00
−3.00
−1.00
−3.00
−6.00
−9.00
−4.00
−6.00
0.00
3.00
−4.00



18
−16.00
−9.00
−9.00
−8.00
−4.00
−2.00
−4.00
−7.00
−11.00
−13.00
−6.00
−1.00
3.00
−5.00



19
−18.00
−12.00
−11.00
−8.00
−4.00
−2.00
−7.00
−13.00
−16.00
−11.00
−6.00
0.00
3.00
−6.00



20
−19.00
−19.00
−12.00
−11.00
−5.00
−5.00
−6.00
−12.00
−16.00
−19.00
−6.00
0.00
3.00
−6.00



21
−19.00
−19.00
−12.00
−12.00
−5.00
−5.00
−6.00
−10.00
−16.00
−20.00
−7.00
1.00
0.00
−7.00



22
−21.00
−19.00
−15.00
−13.00
−4.00
−11.00
−10.00
−12.00
−18.00
−18.00
−7.00
2.00
−3.00
−7.00



23
−18.00
−19.00
−14.00
−15.00
−4.00
−11.00
−11.00
−17.00
−17.00
−20.00
−6.00
2.00
−3.00
−7.00
















TABLE 35







Predicted Load {circumflex over (P)} in kW









d






















1
2
3
4
5
6
7
8
9
10
11
12
13
14

























h
0


126630
124191
119498
96626
108269
102805
114650
116329
127101
96474
85579
98352



1


NaN
112395
118196
94929
105910
100573
117443
110287
125689
96505
83045
98352



2


127670
112362
117984
94487
108956
100904
118733
111250
127527
94263
84303
101254



3


NaN
123941
120116
101062
113747
101384
133700
109346
127434
101173
86802
103607



4


NaN
106100
116809
103093
111749
103192
132447
109778
133525
100222
87433
104971



5


136800
121561
119302
106235
112052
106958
139419
113423
131534
103789
88863
110968



6


154240
134747
130419
119543
115100
114163
150572
121766
139918
109873
98412
119912



7


154360
142393
140515
130391
125117
129120
159899
133373
151689
118670
109277
130146



8


145230
143146
141225
137822
127300
141211
163014
133587
158918
118595
109151
130867



9


NaN
134730
137507
132860
126121
137835
160160
129541
152236
113491
107649
127317



10


137320
127838
130750
128511
119661
125622
146717
120059
145536
107769
103493
122319



11


137890
130499
128391
121910
105218
125576
138497
120412
132764
107940
107169
117351



12


NaN
143520
118649
110789
100537
114747
131530
117284
119690
102612
97249
114317



13


125060
137416
112662
104182
97282
112642
126957
107679
112801
101343
97428
110096



14


120137
121422
113458
103761
100347
106438
124786
104472
107208
98929
98885
109909



15


117980
116726
111867
105021
102011
106541
120376
104146
108635
97775
97505
109736



16


116512
118213
112656
108185
106796
109286
111196
107311
108670
100318
100467
109828



17


122090
119859
111253
111212
111197
116548
121170
110107
114007
102980
105753
115742



18


135820
136638
129992
126212
123068
126902
131885
134883
122509
117508
116577
125388



19


138812
138298
127833
122911
127317
136713
139585
130864
122535
117216
118237
127802



20


NaN
138849
120367
120023
119184
129288
135266
140450
118000
113418
114014
124063



21


NaN
135470
116724
117127
116668
123607
134221
141567
117392
107961
113130
121303



22


126850
126981
103428
121141
116431
118619
129812
129610
107833
98446
109999
115050



23


140980
124582
95629
115900
113221
123598
122204
128027
101939
95493
103983
108230









6.3.3 Transactive Imported Energy (Function 1.2)

Description:


Converts transactive signals from transactive neighbors into framework parameter outputs that are expected by the toolkit framework.


Application: A transactive node typically should restate the transactive signals that it receives in terms of toolkit framework parameters.


This toolkit function is so basic that it may be treated as part of the toolkit framework.


Block Input/Output Function Model:


Inputs: Current IST time series.


Transactive incentive signals (TIS) from each transactive neighbor.


Transactive feedback signals (TFS) from each transactive neighbor.


Outputs: TIS restated as energy terms CE.


TFS restated as energy terms PG for the intervals during which the TFS represents imported energy.


6.3.4 Small Wind Generator Negative Load (Function 1.4)

Description:


This function is to predict the power to be produced by small wind energy resources. This function is preferred where a relatively small amount of wind renewable generation offsets load at a location.


If the energy from a wind energy resource should directly affect the transactive incentive signal (TIS) at this location and electrically downstream locations, the energy from this resource should be incorporated with the Wind Energy resource and incentive toolkit function instead.


This function applies to locations that host relatively small wind generators or wind sites that primarily offset a larger electrical load.


Block Input/Output Function Model:


Inputs:






    • {uk}—[m/s]—Time series of predicted wind speed for a future interval k, for the upcoming four days (time horizon of transactive signals), based on wind speed data recorded at a height h, at or close to the location under consideration. Although granular data is desired, this function is formulated to work with any available data interval.

    • h—[m]—Height at which wind speed is predicted.

    • ψ—[unitless]—Wind turbine manufacturer and model information to be chosen from this preliminary text enumeration:
      • Honeywell WT6500
      • Windspire 1.2
      • Home Energy Americas V200
      • Skystream
      • Bergey Excel 10
      • Urban Green Energy UGE-4K
      • Tangarie Gale 10
      • WePower Falcon 5.5
      • Wing-Power Prototype





This enumeration should be augmented whenever a new wind turbine is to be considered.

    • m—[count]—Number of wind turbines.
    • hhub—[m]—wind turbines' representative hub height.
    • Kn—[unitless]—Time series availability fraction, e.g. fraction of turbines or wind site that is predicted to be online during each nth IST interval, where n=0, 1, . . . , 55. Wind generation may be limited or entirely unavailable due to maintenance schedules and other reasons.


      Interim Calculation Products:
    • {Uhub,1}—[m/s]—Time series of predicted wind speed for a future interval k at the wind turbines' representative hub height hhub.


      Output:
    • {Ln}—[m/s]—Time series of average power to be produced by wind turbine(s) for each future nth IST interval.


      Pseudo Code Implementation:
    • 1. Restate inputs in the units specified in previous section, if necessary.
    • 2. Compute {uhub,k}:
    • Based on the wind profile power law relationship (Elliot 1986):











k

,


u

hub
,
k


=



(


h
hub

h

)

α

·

u
k







(
1
)











      • α—[unitless]—An empirically derived constant for the location of the wind turbine(s). If empirical derivation is not possible, 1/7 may be used as an approximation.







The implementer may choose to use a different approach/relationship, if deemed more appropriate/accurate.

    • 3. Generate {Ln}:
    • For the given ψ input, generate {Lk} by looking up, from Table 36, an Lk corresponding to each uhUb,k:









TABLE 36







Lookup table for wind turbine power output at a given wind speed









L [kW]



















ome Energy

Bergey
Urban Green

WePower
Wing-


u
Honeywell
Windspire
Americas
Skystream
Excel
Energy UGE-
Tangarie
Falcon
Power


[m/s]
WT6500
1.2
V200
3.7
10
4K
Gale 10
5.5
Prototype



















1.0
0.009
0
0
0
0.020
0
0
0
0


1.5
0.015
0
0
0
0.030
0
0
0
0


2.0
0.025
0
0
0
0.080
0
0.333
0
0


2.5
0.038
0
0
0
0.105
0.041
0.617
0
0


3.0
0.048
0
0.005
0
0.159
0.082
0.833
0.066
0.029


3.5
0.074
0
0.014
0.024
0.254
0.123
1.167
0.166
0.072


4.0
0.103
0.030
0.025
0.072
0.382
0.185
1.417
0.298
0.130


4.5
0.128
0.065
0.040
0.144
0.636
0.247
1.667
0.464
0.202


5.0
0.171
0.115
0.059
0.220
0.891
0.309
2.167
0.633
0.276


5.5
0.209
0.160
0.082
0.336
1.209
0.391
2.667
0.895
0.391


6.0
0.251
0.220
0.100
0.456
1.527
0.514
3.083
1.127
0.492


6.5
0.285
0.283
0.122
0.600
2.036
0.658
3.583
1.358
0.593


7.0
0.333
0.350
0.145
0.744
2.482
0.823
4.167
1.590
0.694


7.5
0.392
0.425
0.178
0.936
2.991
0.988
4.833
1.855
0.809


8.0
0.457
0.525
0.225
1.104
3.627
1.193
5.500
2.087
0.911


8.5
0.500
0.610
0.285
1.320
4.391
1.440
6.167
2.319
1.012


9.0
0.583
0.750
0.372
1.542
5.218
1.708
6.833
2.584
1.128


9.5
0.651
0.880
0.460
1.780
6.109
2.058
7.667
2.916
1.272


10.0
0.714
1.025
0.552
2.000
6.936
2.366
8.417
3.346
1.460


10.5
0.793
1.138
0.642
2.136
7.891
2.675
9.250
3.877
1.692


11.0
0.888
1.188
0.733
2.254
8.909
3.086
10.000
4.340
1.894


11.5
0.981
1.200
0.822
2.325
10.055
3.601
11.000
4.771
2.082


12.0
1.069
1.200
0.900
2.372
10.945
4.012
12.000
5.102
2.226


12.5
1.172
1.175
1.005
2.396
11.709
4.074
13.083
5.300
2.313


13.0
1.250
1.138
1.100
2.410
12.091
4.000
14.167
5.400
2.356


13.5
1.357
1.000
1.214
2.410
12.345
4.000
15.167
5.500
2.400


14.0
1.466
0.300
1.325
2.396
12.473
4.000
16.417
5.500
2.400









The information in Table 36 is plotted in graph 5500 of FIG. 55. Table 36 is based on information available in the datasheets or brochures of these wind turbines. The powers given for 32 m/s are to be used for speeds beyond 32 m/s. The datasheet of this wind turbine claims that it does not have a cut-out wind speed. Therefore, the power output has been extrapolated beyond 20 m/s. However, the extrapolated data should be replaced if more accurate data is available. This wind turbine has a cut-out speed of 30 m/s, but power output data between 20 and 30 m/s is missing in its datasheet. This data has been extrapolated here, but should be replaced if more accurate data is available. No cut-out speed information is given in the datasheet of this wind turbine. It is assumed that there is no cut-out speed and the power output has been extrapolated beyond 14 m/s. This data has been extrapolated here, but should be replaced if more accurate data is available. There is no datasheet for this prototype wind turbine. Given its similarities with the WePower Falcon 5.5, its power versus wind speed data is assumed to be a scaled version of the Falcon 5.5. However, this data should be replaced by either empirical data or such data from a different source.

    • Allocate {Lk} to each nth interval, scale by m, and multiply by K to generate {Ln}:











n

,


L
n

=

{





m
·

K
n

·

L
k


,





if





n






k







m
·

K
n

·


L
k

_


,





if





k


n










(
2
)












      • Lk —[kW]—weighted-average of all Lk within n.



    • Make this {Ln} prediction available as an output of this function into the transactive node's algorithmic toolkit framework.





6.3.5 Small-Scale Solar Generator Negative Load (Function 1.6)

Description:


This function is to predict the power to be produced by small solar energy resources. This function is preferred where a relatively small amount of solar renewable generation offsets load at a location.


If the energy from a solar energy resource should directly affect the transactive incentive signal (TIS) at this location and electrically downstream locations, the energy from this resource should be incorporated with the Solar Energy resource and incentive toolkit function instead.


This function applies to locations that host relatively small solar generators or solar sites that primarily offset a larger electrical load.


Block Input/Output Function Model:


Inputs:






    • {GTIk}—[kW/m2]—Time series of predicted Global Tilted Irradiance (GTI) for a future interval k, for the upcoming four days (time horizon of transactive signals), based on solar irradiance data recorded at or close to the location under consideration. (GTI=DNI·cos(θi)+DIF·(1−β/180°), where DNI is the Direct Normal Irradiance, DIF the Diffuse Horizontal Irradiance, β the inclination angle of the tilted plate, and θi the angle between DNI and the normal of the tilted plate. DNI and DIF are the actual data measured at the location under consideration. Furthermore, cos(θi)=cos β·cos Z+sin β·sin Z·cos(θ−ψ), where θ and Z are the sun's azimuth and zenith, respectively. Note that there are known equations to compute θ and Z throughout the day, every day, at a given latitude.) Although granular data is desired, this function is formulated to work with any available data interval. The GTI represents the effective irradiance normal to a tilted surface. For a fixed flat-plate photovoltaic (PV) collector, the computation of GTI is, therefore, dependent on its inclination angle β and azimuth ψ, as defined below. Note also that GTI may not be shared amongst solar generators unless they have the same inclination and azimuth. For a solar-tracking collector or concentrating collector, the computation of GTI should assume that the normal of the solar collector is in line with the Direct Normal Irradiance (DNI).

    • β—[°]—Inclination angle of the fixed flat-plate PV collector. This is 0° for systems laying horizontal to the ground. This is not required for solar-tracking collectors, including concentrating collectors.

    • ψ—[°]—Azimuth of the fixed flat-plate PV collector. This is 180° for systems facing due south. This is not required for solar-tracking collectors, including concentrating collectors.

    • A—[m2]—Effective surface area of the solar collector.

    • η—[%]—Overall conversion efficiency of the solar energy resource, e.g. from the incident solar power (e.g., GTI·A) to the usable alternating current (AC) power. This should be the product of the efficiencies of the solar collector and its power converter, and, if possible, should include conduction losses. The implementer may choose to model this overall efficiency as a function of power. While the efficiency of the solar collector may be constant at different power levels, the efficiency of the power converter varies. The efficiency versus power curve of the converter is sometimes published in its datasheet. Conduction losses also vary with power, but may be harder to quantify and model.

    • m—[count]—Number of such solar energy resources that is being modeled by this function.

    • Kn—[unitless]—Time series availability fraction, e.g. fraction of solar energy resources or solar site that is predicted to be online during each nth IST interval, where n=0, 1, . . . , 55. Solar generation may be—imited or entirely unavailable due to maintenance schedules and other reasons.


      Interim Calculation Product:

    • {Lk}—[kW]—Time series of average power to be produced by one solar energy resource for each future interval k.


      Output:

    • {Ln}—[kW]—Time series of average power to be produced by the solar energy resource(s) for each future nth interval.


      Pseudo Code Implementation:

    • 1. Restate inputs in the units specified in previous section, if necessary.

    • 2. Generate {Lk}:
      • For each future interval k, compute the average power {Lk} to be produced by one solar energy resource:

        k,Lk=GTIk·A·η  (2)

    • 3. Generate {Ln}:

    • Allocate {Lk} to each nth interval, scale by m, and multiply by Kn to generate {Ln}:














n

,


L
n

=

{





m
·

K
n

·

L
k


,





if





n






k







m
·

K
n

·

L
k


,





if





k


n










(
3
)












      • Lk —[kW]—weighted-average of all Lk within n.



    • Make this {Ln} prediction available as an output of this function into the transactive node's algorithmic toolkit framework.





6.3.6 General Event-Driven Demand (Function 2.0)

Description:


This is a very general function for predicting the behaviors of responsive load assets that only infrequently respond to events that may be identified from an incentive signal. When these assets respond, they transition to a limited number of available response levels. This general function may serve as a template for functions that are more narrowly targeted to specific responsive asset systems. This function has been written at such a high level that it will not likely be referenced and used for any asset system. But this function description will be valuable guidance to those who design more specific functions for more specific asset systems.


This function can respond to absolute or relative TIS as desired by an application.


This function applies to many responsive asset systems that conduct traditional demand response several times a month. Response may additionally define a “critical” response level for extreme conditions.


Block Input/Output Function Model:


Inputs:


Current IST time series.


TIS time series. Recent history (e.g., 1 day to 1 week) of TIS that may be used if relative TIS is to be tracked in a statistical sense.


Numbers of assets in this asset system population that may be used to scale this function.


Typical daily or weekly inelastic load profile for the asset systems that are being predicted by this function. This profile is a starting point for predicting the inelastic load component.


Outputs:


Predicted inelastic load at for each IST interval.


Predicted change in elastic load for each IST interval.


Predicted advisory control signal for this asset system.


Pseudo Code Implementation:


Inelastic load component. This algorithm will not predict an inelastic load component. Inelastic load components are better addressed by inelastic load functions that have been defined.


Elastic load component.


This algorithm will calculate (1) predicted change in electrical load in response to the incentive signal (e.g., the asset's elasticity), (2) “events” during which an asset is predicted to respond, and (3) the predicted advisory control signal that will be sent to this elastic asset system.


Predicted Change in Electrical Load in Response to the Incentive Signal.


To predict a change in energy that can result from this asset system during events, this function should model the consumption (or generation) of energy by this asset system. At least two approaches can be accommodated: (1) An explicit time-series load shape may be used to represent the responsive load (or generation) from this asset system. Alternatively, (2) A dynamic model of this asset system may be simulated to predict the effect that an event will have on the asset system. These approaches will be compared by discussing how each one could be used to predict the change in electrical load that could be had from a set of residential tank water heaters.


Explicit Time-series Load Shape.


The average electrical load consumed during each hour of a day by a residential 40-gallon tank electric water heater may be obtained. In some cases, regional and seasonal variations may be found. See (Hammerstrom 2007, FIG. 4.18) for example. The load curves represent the average power that is expected to be consumed by an electric water heater at any time of the day. In many cases, splines will allow such load curves to be very efficiently stored and reproduced. The number of water heaters in the asset system population is a scaling factor that may be used to predict the entire consumption by this population of water heaters. If an event were to occur and cause this population of water heaters to become curtailed, the change in energy consumption by these water heaters would be predicted well by knowing the number of water heaters, the representative load curve for a single water heater, and the time and duration of the event.


Dynamic Asset System Model.


The same population of electric water heaters may be more rigorously modeled using a physics-based model of a water heater. In this case, one could input typical residential hot water consumption instead of an electrical load curve. As water is consumed, hot water leaves the water tank, cold water enters the water tank, and the temperature of the water in the tank decreases. The modeled thermostat turns on the electrical heating element and heats the water at a rate that is determined by the power rating of a heating element. If the model being used is accurate, the resulting electrical load curve would also be accurate on a “typical” day.


However, if a curtailment is predicted, the response of the dynamic water heater model can predict secondary effects that could not have been modeled otherwise. After a period of electrical curtailment, the water in the tank will have become relatively cold. When the curtailment period ends, additional energy is then used to reheat the cool, stored water to the desired temperature. A rebound effect is thereby predicted at the conclusion of the curtailment event.


Events during which this Asset is Predicted to Respond.


The capabilities and availability of the modeled asset system determine a set of incentive thresholds that should be managed by this function. A threshold may be a function of time. An asset system that has only two modes of operation (e.g., normal and curtailed) will define only one threshold. Generally, an asset system that has m modes of operation should define m−1 thresholds. The resulting thresholds, in turn, define m−1 levels of response for an asset system. (The “Normal” mode of operation is indeed a mode of operation, but it is usually not considered a response level.) “Events” occur any time that the predicted incentive signal exceeds a defined threshold to invoke one of the levels of response that is a feature of this asset system.


The availability of asset systems that are responsive either on an event-based or time-of-use basis may be predicted if limitations on the numbers and durations of events are stated. For example, a utility might have contracted with its customers that a responsive asset will not become curtailed by the utility more often than four times per calendar month and that none of these curtailments will not endure for more than 2 hours.


Over time, statistical distributions and correlations emerge from the dynamic behaviors of the incentive signal. This function may incorporate the behaviors of past historical incentive signals and the predicted incentive signals as these statistics are being compiled. This function may thereafter refer to such statistics to evaluate and predict where a threshold should be placed to initiate just fewer than the allowed number of events and just less than the allowed duration of events. Automated event-driven demand response will be attempting to identify events within monthlong durations, so these functions should use the actual incentive signal (not its statistical average), or it should track the statistical average of the incentive signal quite slowly in comparison with that duration.


Predicted Advisory Control Signal.


Once events have been predicted, the predicted advisory control signal may be stated, aligned in time with the predicted events, according to the standardized method described in the appendix entitled “Standard Advisory Output Control Signal”. In the referenced method, the capabilities of this asset system and, in some cases, the severity of an event determine which integer member of a signed byte signal will be sent to the asset system. (The domain of relevant advisory control signals will be relatively small for functions that are formulated for specific asset systems.)


6.3.7 Incentive Function—Wind Energy (Function 2.1)

Description:


This function addresses wind power generation and is to be applied at transactive nodes which have and represent wind farm energy that is produced within or near their electrical boundaries to encourage the use of wind energy when and near where it is generated. This function is applicable to energy produced by a wind farm or may be applied to aggregated output from multiple wind farms.


The cost of supplying the wind energy generated is applied as an infrastructure cost, in units of cost per time, consistent with the Transactive Node Framework. For simplicity, the infrastructure cost will use the $2155/kW capacity-weighted average installed cost for a wind farm. The infrastructure cost of a wind farm can thus be estimated if its capacity is known. This cost shall then be spread over the lifetime Tof the wind farm.


Note that this calculation typically yields an infrastructure cost near $0.010/kW/h ($10/MW/h) if a 25-year lifetime is assumed. It is permissible for the implementer of this function to assume that T=2.19×105 hours (25 years) if better estimates are unavailable for the lifetime of the wind farm installation.


After a wind farm exceeds its planned lifetime, a decision should be made. Thereafter, the infrastructure cost may be (a) zeroed out, (b) replaced by ongoing maintenance costs, or (c) continued as before as an ongoing replacement cost. This function should be revisited and refined when this situation will be encountered.


This function should also predict the electrical power that will be produced by the wind resource during each future interval. An explicit algorithm could be created to convert predicted weather conditions (like wind speed and direction) into electrical power output. This function will assume that experts satisfy this goal by predicting electrical power output from meteorological data that is available to them.


Block Input/Output Function Model:


Inputs:




  • P—Wind farm capacity/power rating.

  • T—Lifetime of wind farm.

  • ISTn—Present time series interval start times used by an example toolkit framework, where n=0, 1, . . . , 56. (There is no prediction to correspond with ISTn for n=56. This last IST is simply used to make it clear when the final interval concludes.)



Meteorological data—Predicted wind speed, wind direction, relative humidity and perhaps other weather data that experts may use to predict electrical power production for wind farms.


Outputs:


Cl,n—Time series of infrastructure cost terms expected by the Transactive Node Framework (unit: $/h); series members correspond to ISTn. Infrastructure costs are not expected to be dynamic, but it is specified as a time series for consistency with the Transactive Node Framework.


PG,n—Time series of predicted electrical power generated by wind farm (unit: average kW); series members correspond to ISTn.


CE,n—Time series of energy cost terms (unit: cost per energy). Since the cost of supplying the wind energy generated is applied purely as an infrastructure cost, these energy cost terms should simply be set to zero. Note that these terms go in pair with the PG,n terms and are used by the Transactive Node Framework.


Pseudo Code Implementation:






    • 1. If necessary, restate Pin kW and Tin h (hour).

    • 2. Compute the infrastructure cost Cl,n corresponding to ISTn for n, as in equation (1).














C

I
,
n


=



(

$2155


/


kW

)

×
P

T


,


for





n

=
0

,
1
,





,
55




(
1
)









    • 3. Predict the average wind electrical power output PG,n that will be generated during each future interval corresponding to ISTn for n.

    • 4. Output CE,n=0, for n=0, 1, . . . , 55.





6.3.8 Incentive Function—Solar Energy (Function 2.2)

Description:


This function addresses solar power generation and is to be applied at transactive nodes which have and represent solar farm energy that is produced within or near their electrical boundaries to encourage the use of solar energy when and near where it is generated. This function is applicable to energy produced by a solar farm or may be applied to aggregated output from multiple solar farms.


The cost of supplying the solar energy generated is applied as an infrastructure cost, in units of cost per time, consistent with the Transactive Node Framework. For simplicity, the infrastructure cost will use the $7.5/W capacity-weighted average installed cost for a solar farm. The infrastructure cost of a solar farm can thus be estimated if its capacity is known. This cost shall then be spread over the lifetime Tof the solar farm.


Note that this calculation typically yields an infrastructure cost near $0.034/kW/h ($34/MW/h) if a 25-year lifetime is assumed. It is permissible for the implementer of this function to assume that T=2.19×105 hours (25 years) if better estimates are unavailable for the lifetime of the solar farm installation.


After a solar farm exceeds its planned lifetime, a decision should be made. Thereafter, the infrastructure cost may be (a) zeroed out, (b) replaced by ongoing maintenance costs, or (c) continued as before as an ongoing replacement cost. This function should be revisited and refined when this situation will be encountered.


This function should also predict the electrical power that will be produced by the solar resource during each future interval. An explicit algorithm could be created to convert predicted weather conditions (like solar irradiance and temperature) into electrical power output. This function will assume that experts satisfy this goal by predicting electrical power output from meteorological data that is available to them.


Block Input/Output Function Model:


Inputs:




  • P—Solar farm capacity/power rating.

  • T—Lifetime of solar farm.

  • ISTn—Present time series interval start times used by the toolkit framework, where n=0, 1, . . . , 56. (There is no prediction to correspond with ISTn for n=56. This last IST is simply used to make it clear when the final interval concludes.)



Meteorological data—Solar irradiance, temperature, and perhaps other weather data that experts may use to predict electrical power production for solar farms.


Outputs:




  • Cl,n—Time series of infrastructure cost terms expected by the Transactive Node Framework (unit: $/h); series members correspond to ISTn. Infrastructure costs are not expected to be dynamic, but it is specified as a time series for consistency with the Transactive Node Framework.

  • PG,n—Time series of predicted electrical power generated by solar site (unit: average kW); series members correspond to ISTn.

  • CE,n—Time series of energy cost terms (unit: cost per energy). Since the cost of supplying the solar energy generated is applied purely as an infrastructure cost, these energy cost terms should simply be set to zero. Note that these terms go in pair with the PG,n terms and are used by the Transactive Node Framework.


    Pseudo Code Implementation:
    • 1. If necessary, restate P in W and T in h (hour).
    • 2. Compute the infrastructure cost (units: $/h) corresponding to ISTn for n, as in equation (1).












C

I
,
n


=



(

$7

.5


/


W

)

×
P

T


,


for





n

=
0

,
1
,





,
55




(
1
)









    • 3. Predict the average solar electrical power output PG,n that will be generated during each future interval corresponding to ISTn for n.

    • 4. Output CE,n=0, for n=0, 1, . . . , 55.





6.3.9 Incentive Function—Hydropower (Function 2.3)

Description:


This function is to predict the amount and cost of hydroelectric energy when and near where it is generated. It should at least represent federal hydropower of the region, but should strive to represent all regional hydropower. This function applies to transactive nodes that own or represent hydropower generation within their electrical boundaries. At least transmission zones 4, 5, 6, 7, 8, 10, 11, 12, and 14 are within the Columbia River Basin and would be expected to host federal hydropower. Based on the predicted generated powers of non-hydro sources at a transactive node and their associated costs of energy, and historical electricity market prices, this function predicts the weighted-average cost of energy of hydropower generation.


Block Input/Output Function Model:


Inputs:






    • {Ps,t}, t=t0, t0+1 hour, . . . , t0+i, . . . , t0+l, . . . —[kW]—Aggregated hourly scheduled hydropower generation (both must-run and flexible), at the transactive node at which this function is being implemented, for each hour of at least the next four days (e.g., the predicted time horizon of the transactive signals). Where this input cannot be known, trends may be used.

    • {Cm,h,d}, h=00:00, 01:00, . . . , 23:00; d=−1, −2, . . . , −7—[$/kWh]—Historical electricity market price trading for every hour starting at h of the day d, for the past 7 days. (A trend based on the electricity market price for the past 7 days is more likely to represent the expected market price for the next four days.) The Dow Jones Mid-Columbia Electricity Price Indexes is an example of a source for such information.

    • {Kh,s}, h=00:00, 01:00, . . . , 23:00, s=four seasons of the year—[unitless]— fraction/percentage of total scheduled hydropower generation, representing an estimate for flexible hydropower generation during every hour starting at h of a given season s.

    • Cmustrun—[$/kWh]—cost of energy for must-run hydropower generation. This cost may have to be updated yearly, seasonally, or at some shorter interval. (This cost of energy for must-run hydropower generation is an estimate obtained from a hypothetical supply stack provided by BPA and included in Subappendix A.)


      Interim Calculation Products:

    • {Ctrend,h}, h=00:00, 01:00, . . . , 23:00—[$/kWh]—Trended electricity market price by hour starting at h of the day.

    • {Cflexible,n}, n=0, 1, . . . , 55—[$/kWh]—cost of energy for flexible hydropower generation, corresponding to the nth interval.


      Outputs:

    • {PG,n}—[kW]—Total hydropower generation, corresponding to the nth interval

    • {CE,n}—[$/kWh]—Weighted-average cost of energy for hydropower, corresponding to the nth interval.


      Pseudo Code Implementation:

    • 1. Restate inputs in the units specified in previous section, if necessary.

    • 2. Generate PG,n:
      • Allocate of the scheduled hydropower generation to each nth interval.














n

,


P

G
,
n


=

{





P

s
,


t
0

+
i



,





if





n



[


(


t
0

+
i
+
1

)

-

(


t
0

+
i

)


]









1


(


t
0

+
I

)

-

(


t
0

+
i

)








t
=


t
0

+
i




t
0

+
I
-
1








P

s
,
t




,





if




[


(


t
0

+
I

)

-

(


t
0

+
i

)


]


n










(
1
)











      • Make this PG,n prediction available as an output of this function into the transactive node's algorithmic toolkit framework.



    • 3. Calculate or update the trend for hour-by-hour electricity market price that may be used to predict Cflexible if better predictions are not known. For each hour starting at h of the day, calculate the average electricity market price for the past 7 days. If an implementer possesses better means to make these predictions, then such predictions should replace this trend information as it becomes available.














h

,


C

trend
,
h


=


1
7






d
=

-
7



-
1








C

m
,
h
,
d









(
2
)











      • Successive daily updates may be accomplished as follows:
















h

,


C

trend
,
h


=


1
7



(


7
·

C

trend
,
h
,
old



-

C

m
,
h
,

-
8



+

C

m
,
h
,

-
1




)







(
3
)













        • Ctrend,h,old—[$/kWh]—Prior value of Ctrend,h that will become displaced by this update.





    • 4. Cflexible usually hovers around the electricity market price. Therefore, it can be predicted by allocating the electricity market price trend to each nth interval:














n

,


C

flexible
,
n


=

{






C

trend
,

h
i



,

_





if





n



(


h

i
+
1


-

h
i


)








C

trend
,
h


,





if




[


(


t
0

+
I

)

-

(


t
0

+
i

)


]


n










(
4
)











      • Ctrend,h—[$/kWh]—Average of all Ctrend,h between t0+i and t0+l (exclusive).



    • 5. Generate CE,n:
      • Allocate Kh,s to each nth interval. Table 37 below is a lookup table from which Kh,s is picked for a given hour h in a season s.














n

,


K
n

=

{






K


h
i

,
s


_

,





if





n



(


h

i
+
1


-

h
i


)








K

h
,
s


,





if




[


(


t
0

+
I

)

-

(


t
0

+
i

)


]


n










(
5
)














        • Kh,s —[unitless]—Average of all Kh,s between t0+i and t0+l (exclusive).
















TABLE 37







Lookup table for Kh, s










S













Mar. 21 to
June 21 to
Sep. 21 to
Dec. 21 to



June 20
Sep. 20
Dec. 20
Mar. 20


h
(Spring)
(Summer)
(Fall)
(Winter)





00:00
10%
10%
10%
10%


01:00
 0%
 0%
 0%
 0%


02:00
 0%
 0%
 0%
 0%


03:00
 0%
 0%
 0%
 0%


04:00
 0%
 0%
 0%
 0%


05:00
 5%
10%
20%
 5%


06:00
10%
20%
20%
 5%


07:00
15%
20%
30%
 5%


08:00
15%
25%
30%
10%


09:00
15%
25%
40%
15%


10:00
15%
25%
40%
20%


11:00
15%
25%
40%
25%


12:00
15%
25%
40%
30%


13:00
15%
25%
40%
35%


14:00
15%
20%
40%
35%


15:00
15%
10%
40%
35%


16:00
15%
 5%
40%
30%


17:00
15%
 5%
40%
20%


18:00
15%
 5%
40%
20%


19:00
15%
10%
40%
20%


20:00
15%
15%
30%
20%


21:00
15%
20%
20%
20%


22:00
10%
20%
20%
10%


23:00
 5%
10%
10%
10%













      • Flexible hydropower is traded hourly on the electricity market by BPA and non-BPA stakeholders. The cost of flexible hydropower varies not only hourly, but also seasonally and during short-term events like a heat wave during winter. The cost of flexible hydropower usually hovers around the current electricity market price. Further, the values for Kh,s given in the above table are based on the expert opinion of BPA's hydropower subject matter expert, and not actual historical hydropower data.

      • Compute CE,n as follows:

        n,CE,n=(1−KnCmustrun+Kn·Cflexible,n  (6)

      • Make this CE,n prediction available as an output of this function into the transactive node's algorithmic toolkit framework.


        Subappendix A: Hypothetical Supply Stack








FIG. 56 is a graph 5600 of a hypothetical supply stack.


Subappendix B: Derivation of CE,n










TIS
n

=








C

mustrun
,
n


·

P

mustrun
,
n


·
Δ







t
n


+









C

flexible
,
n


·

P

flexible
,
n


·
Δ







t
n


+

all





other





costs









P

mustrun
,
n


·
Δ







t
n


+



P

flexible
,
n


·
Δ







t
n


+

all





other





energies







(

B

.1

)









TIS
n


=








C

mustrun
,
n


·

(

1
-

K
n


)

·

P

G
,
n


·
Δ







t
n


+









C

flexible
,
n


·

K
n

·

P

G
,
n


·
Δ







t
n


+

all





other





costs












(

1
-

K
n


)

·

P

G
,
n


·
Δ







t
n


+









K
n

·

P

G
,
n


·
Δ







t
n


+

all





other





energies










(

B

.2

)









TIS
n


=






(



(

1
-

K
n


)

·

C

mustrun
,
n



+


K
n

·

C

flexible
,
n




)

·

P

G
,
n


·







Δ






t
n


+

all





other





costs









P

G
,
n


·
Δ







t
n


+

all





other





energies







(

B

.3

)









TIS
n


=





C

E
,
n


·

P

G
,
n


·
Δ







t
n


+

all





other





costs






P

G
,
n


·
Δ







t
n


+

all





other





energies







(

B

.4

)









C

E
,
n



=



(

1
-

K
n


)

·

C

mustrun
,
n



+


K
n

·

C

flexible
,
n








(

B

.5

)








Subappendix C: Examples of CE,n

    • Let Cmustrun=$0.0035/kWh as shown in Appendix A.
    • In these examples, the sample shown in diagram 5700 of FIG. 57, which shows Dow Jones Mid-C Hourly Index is used for Ctrend,h:
      • Note that, although not explicitly written in Figure C1, the price is in terms of $/MWh.









TABLE 38







Trended electricity market price by the hour










h
Ctrend, h [$/kWh]






 0:00
0.02083



 1:00
0.02330



 2:00
0.02231



 3:00
0.02272



 4:00
0.02773



 5:00
0.03443



 6:00
0.03356



 7:00
0.03489



 8:00
0.03493



 9:00
0.03583



10:00
0.03276



11:00
0.03276



12:00
0.02859



13:00
0.02859



14:00
0.03010



15:00
0.02507



16:00
0.02228



17:00
0.02762



18:00
0.02898



19:00
0.03047



20:00
0.02603



21:00
0.02071



22:00
0.02945



23:00
0.02097











    • Allocate the Ctrend,h values in Table 38 to each nth interval to obtain Cflexible,n, and the Kh,s values to obtain Kn for each season. Then compute GE,n for each season using equation (6). The outcome is given below in Table 39 and plotted in FIG. 58.












TABLE 39







Examples of the overall cost of energy for hydropower for each season












Δtn
Cflexible,n
Kn
CE,n [$/kWh]

















n
[h]
[$/kWh]
Spring
Summer
Fall
Winter
Spring
Summer
Fall
Winter




















0
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


1
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


2
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


3
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


4
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


5
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


6
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


7
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


8
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


9
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


10
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


11
1/12
0.0208
10%
10%
10%
10%
0.0052
0.0052
0.0052
0.0052


12
¼
0.0233
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


13
¼
0.0233
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


14
¼
0.0233
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


15
¼
0.0233
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


16
¼
0.0223
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


17
¼
0.0223
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


18
¼
0.0223
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


19
¼
0.0223
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


20
¼
0.0227
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


21
¼
0.0227
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


22
¼
0.0227
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


23
¼
0.0227
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


24
¼
0.0277
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


25
¼
0.0277
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


26
¼
0.0277
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


27
¼
0.0277
0%
0%
0%
0%
0.0035
0.0035
0.0035
0.0035


28
¼
0.0344
5%
10%
20%
5%
0.0050
0.0066
0.0097
0.0050


29
¼
0.0344
5%
10%
20%
5%
0.0050
0.0066
0.0097
0.0050


30
¼
0.0344
5%
10%
20%
5%
0.0050
0.0066
0.0097
0.0050


31
¼
0.0344
5%
10%
20%
5%
0.0050
0.0066
0.0097
0.0050


32
1
0.0336
10%
20%
20%
5%
0.0065
0.0095
0.0095
0.0050


33
1
0.0349
15%
20%
30%
5%
0.0082
0.0098
0.0129
0.0051


34
1
0.0349
15%
25%
30%
10%
0.0082
0.0114
0.0129
0.0066


35
1
0.0358
15%
25%
40%
15%
0.0083
0.0116
0.0164
0.0083


36
1
0.0328
15%
25%
40%
20%
0.0079
0.0108
0.0152
0.0094


37
1
0.0328
15%
25%
40%
25%
0.0079
0.0108
0.0152
0.0108


38
1
0.0286
15%
25%
40%
30%
0.0073
0.0098
0.0135
0.0110


39
1
0.0286
15%
25%
40%
35%
0.0073
0.0098
0.0135
0.0123


40
1
0.0301
15%
20%
40%
35%
0.0075
0.0088
0.0141
0.0128


41
1
0.0251
15%
10%
40%
35%
0.0067
0.0057
0.0121
0.0110


42
1
0.0223
15%
5%
40%
30%
0.0063
0.0044
0.0110
0.0091


43
1
0.0276
15%
5%
40%
20%
0.0071
0.0047
0.0131
0.0083


44
1
0.0290
15%
5%
40%
20%
0.0073
0.0048
0.0137
0.0086


45
1
0.0305
15%
10%
40%
20%
0.0075
0.0062
0.0143
0.0089


46
1
0.0260
15%
15%
30%
20%
0.0069
0.0069
0.0103
0.0080


47
1
0.0207
15%
20%
20%
20%
0.0061
0.0069
0.0069
0.0069


48
1
0.0295
10%
20%
20%
10%
0.0061
0.0087
0.0087
0.0061


49
1
0.0210
5%
10%
10%
10%
0.0044
0.0052
0.0052
0.0052


50
6
0.0252
3%
3%
5%
3%
0.0040
0.0042
0.0046
0.0040


51
6
0.0341
14%
23%
33%
13%
0.0078
0.0106
0.0137
0.0076


52
6
0.0270
15%
15%
40%
31%
0.0070
0.0070
0.0129
0.0108


53
6
0.0261
13%
13%
27%
17%
0.0063
0.0065
0.0095
0.0073


54
24
0.0281
11%
14%
26%
16%
0.0062
0.0069
0.0100
0.0074


55
24
0.0281
11%
14%
26%
16%
0.0062
0.0069
0.0100
0.0074










FIG. 58 is a plot 5800 of examplary overall cost of energy for hydropower for each season.


6.3.10 Load Function—Residential Event-Driven Demand Response (Function 2.4)

Description:


This toolkit function addresses systems of residential demand-response equipment that will be expected to respond relatively infrequently (e.g., perhaps several times per month) to events that will be indicated via the transactive control and coordination system's incentive signal (TIS).


This toolkit function addresses systems that control any combination of (1) residential space heating, (2) residential electric tank water heaters, or (3) smart appliances. Two or more different types of equipment from this list may be grouped into a single asset system and may consequently be described by a single instantiation of this toolkit function. This function allows for multiple response levels. A single asset system uses one single set of thresholds and response levels. If different sets of thresholds (e.g., different demand-response events) should be defined for different types or populations of equipment, then additional functions should be instantiated for each such type or population.


Refer to toolkit load function 2.0 General Event-Driven Demand Response for general guidance and principles that were used during the formulation of this function. The section Pseudo Code Implementation below (and the detailed pseudo code in Subappendix F) lays out the specific calculation strategy and steps of this function.


Block Input/Output Function Model


Inputs:






    • KL—[dimensionless count]—number of response levels to be prescribed for this asset system. For example, an asset system that simply curtails its loads has one response level (e.g., “curtailed”).

    • Dmin,L—[time: minutes]—minimum time duration for which an event level L should remain in force after it has become initiated. This duration is also the width of a time window that will be used for evaluating the magnitude of an event at level L. Note that if a Dmin,L is specified, it is recommended that some D—,L limitation (see two bullets below) is also specified. This is dictated by equation 8 in the Pseudo Code Implementation section. If no Dx limitation is specified, there is the risk of an event lasting for undesirable lengths of time.

    • {Nthis year, L, Nyear, L, Nthis month, L, Nmonth, L, Nthis week, L, Nweek, L, Nthis day, L, Nday, L, Nthis hour, L, Nhour, L}—[dimensionless count]—local static input LI_29—limitations on event count or frequency—constraints that have been placed on the maximum number of events that may occur for this system of assets during a given time interval. For example, the set of inputs {Nthis year, L=36, Nthis month, L=6, Nmonth, L=6, Nthis day, L=1} specifies that this asset system is permitted to conduct no more than 36 events over a calendar year, not more than six being conducted during any calendar month or past 30-day-long period, and not more often than once over a given calendar day (e.g., period from midnight until midnight) for a given response level L. Note that if any limitation Nx,L is specified, the corresponding Dx,L limitation (see next bullet) should also be specified. (This is dictated by equation 8 in the Pseudo Code Implementation section. If no Dx limitation is specified, there is the risk of an event lasting for undesirable lengths of time.)

    • {Dthis year, L, Dyear, L, Dthis month, L, Dmonth, L, Dthis week, L, Dweek, L, Dthis day, L, Dday, L, Dthis hour, L, Dhour, L, Dthis event, L}—[time duration: minutes]—local static input LI_30—limitations on curtailment event duration—constraints that have been placed on the maximum total duration of events that may endure during a given time interval.

    • {TIS0(t), TIS0(t−5), . . . , TIS0(t−5 k)}—[$/kWh]—recent history of transactive incentive signals (TIS) by which the statistical likelihood of various incentive levels will be assessed and updated. The TIS0 values from the TIS time series (e.g., the TIS values that correspond to IST0) from the last k five-minute updates are used.

    • {TIS0, TIS1, . . . , TISK−1}—[$/kWh]—current transactive incentive signal TIS for K future intervals.

    • Pwh(t)—[average kW]—typical electrical power consumption by residential tank water heaters in this region as a function of time of day. This function may be available as a function or as a look-up table. See appendix material for an example.

    • OPTIONAL INPUT: {Level, EventStartTimeL, EventDurationL}—[Integer, UTC Time, UTC Duration]—records of events and their durations for events that actually have occurred at each level L. If this input is unavailable, the function should infer that events will have occurred every time that an event response is advised by this function. If this input is explicitly provided, then the toolkit function can more accurately know how many events and their durations remain to be applied into the future.


      Interim Calculation Products:

    • {DISTL(TIS0,min), DISTL(TIS0,min+Δ$), . . . , DISTL(TIS0,max−Δ$)}—[dimensionless]—distributions of absolute TIS0 values based on historic TIS incentive signals and filtered by simple windows of width Dmin, L.

    • {N′this year, L, N′year, L, N′this month, L, N′month, L, N′this week, L, N′week, L, N′this day, L, N′day, L, N′this hour, L, N′hour, L}—[dimensionless count]—cumulative count of actual events L that have occurred during each of the intervals for which limitations have been prescribed. Events L may be called only when the numbers of actual events are fewer than the numbers of allowed events for relevant intervals in LI_29. (This set need not be an an explicit input. The function implementation accepts the responsibility to know how many events have occurred of each type and how many remain to use in the future.)

    • {D′this year, L, D′year, L, D′this month, L, D′month, L, D′this week, L, D′week, L, D′this day, L, D′day, L, D′this hour, L, D′hour, L, D′this event, L}—[time duration: minutes]—actual cumulative duration of events of level L at a given point in time. An event L may be called provided that the event will not cause any total allowed event duration to exceed the limits established by input LI_30. (This set need not be an an explicit input. The function implementation accepts the responsibility to know the accumulated durations of events of each type have occurred and how much event time remains to use in the future.)


      Outputs:

    • {ACS0, ACS1, . . . , ACSK−1}—[dimensionless]—advisory control signal for each K future predicted interval. A standardized approach has been specified by which planned response levels may be indicated by integer values [−127, 127].

    • {ΔL0, ΔL1, . . . , ΔLK−1}—[kM]—average change in power caused by the elastic behavior of this asset system for the K future predicted intervals. The elements of this series will be non-negative during each future interval for which a response event has been planned, corresponding to non-zero elements of the asset control plan.


      Pseudo Code Implementation:

    • 1. Establish/Update the Statistical Distributions of Historical TIS Values. (This process does not require or infer that the distribution of TIS incentive signals is normal.)
      • a. For each unique Dmin, L, tally the number of times that the average TIS0 over interval Dmin, L falls within each of a set of bins b, where Δ$ is the size of the bin and is fixed at $0.001/kWh.

        TIS0,k,mean=mean(TIS0(TIS0(IST0,k−Dmin,L<IST0≤IST0,k))
        IF TIS0,b≤TIS0,k,mean<TIS0,b+Δ$,THEN DISTL(TIS0,b)=DISTL(TIS0,b)+1  (1)
      • TIS0,b—[$/kWh]—lower boundary of distribution interval DISTL(TIS0,b), bin b
      • TIS0,b+Δ$—[$/kWh]—upper boundary of distribution interval DISTL(TIS0,b), bin b
      • DISTL(TIS0,b)—[dimensionless]—a tally count of the number of times that the average value of TIS0 falls into the interval bin b over time. (Because the distribution will be normalized, it is equally valid to sum the durations of the intervals, resulting in a tally count of minutes.)

    • b. Using the distribution for each unique Dmin, L, create a normalized cumulative distribution ΦL(TIS0) as shown in equation 2. The interpretation of ΦL(TIS0) is the fraction of filtered TIS0 that will be expected to fall in any of the bins below bin b, inclusive. By subtracting ΦL(TIS0,b) from 1.0, one estimates the fraction of filtered TIS0 values that would be greater than TIS0,b+Δ$.














Φ
L



(

TIS

0
,
b


)


=





i
=

TIS

0
,
min




TIS

0
,
b










DIST
L



(
i
)







i
=

TIS

0
,
min





TIS

0
,
max


-
Δ$









DIST
L



(
i
)








(
2
)











      • ΦL(TIS0)—[dimensionless]—normalized cumulative distribution of historical averaged TIS0 values at level L.

      • TIS0,min=−$3/kWh and TIS0,max=+$3/kWh














TABLE 40







Useful distribution organization for tracking


the distribution of averaged TIS0 values










DIST(TIS0)
ϕ(TIS0, b)













TIS0, max − Δ$




. . .




TIS0, b




. . .




TIS0, min + Δ$




TIS0, min









A skilled implementer may choose to fit the normalized cumulative distribution Φ(TIS0) column of Table 40 to a monotonic function that could be used hereafter instead of this lookup table. FIG. 59 shows example graphs 5900 for DIST(TIS0) and Φ(TIS0)—

    • c. For each unique Dmin, L, DISTL(TIS0,b) and ΦL(TIS0,b) may be updated whenever a new series of TIS becomes available. (One may choose to update DIST(TIS0,b) and Φ(TIS0,b) at a time interval of his choice.)
    • 2. Update Incentive Thresholds for this System of Assets. The overall process by which allowed numbers and durations of event levels will establish thresholds against which future TIS0 values may be compared is as follows:
      • The TIS threshold at which response level L should be initiated is the TIS value at which no more than the allowed event counts NL or allowed total event durations DL will transpire.
      • This condition is satisfied by the minimum value of TIS0,b that satisfies all the conditions represented by equations 3 through 6.
      • For a calendar interval (e.g., those that state “this interval,” meaning that they are relevant to a given calendar year, month, week, day, hour), the normalized cumulative distribution ΦL(TIS0) should meet all conditions for any defined interval of equations 3 and 4.











Φ
L



(

TIS
0

)


>

1
-



D


this





x

,
L




(

1
-


N


this





x

,
L





/



N


this





x

,
L




)



t

this





x









(
3
)








Φ
L



(

TIS
0

)


>

1
-




D

min
,
L



t

this





x




·
floor







(



D


this





x

,
L


-

D


this





x

,
L





D

min
,
L



)







(
4
)













        • x={year, month, week, day, hour}

        • t′this x—[time: minutes]—time remaining in calendar interval x. For example, at 45 minutes past an hour, there are 15 minutes remaining prior to the end of this hour interval.

        • floor( )—function that rounds the operand down to the next smaller integer.



      • Constraints that state the maximum number of events and total duration of events that are permitted during continuous “trailing” intervals (e.g., within interval durations that are not aligned with “calendar” months, days, etc.) create multiple conditions of the types shown in equations 5 and 6, all of which should be met by a valid threshold TIS.
















Φ
L



(

TIS
0

)


>

1
-



D

x
,
L




(


N

x
,
L


-

N

x
,
L




)



t
x







(
5
)








Φ
L



(

TIS
0

)


>

1
-




D

min
,
L



t
x


·
floor







(



D

x
,
L


-

D

x
,
L





D

min
,
L



)







(
6
)













        • tx—[time: minutes]—length of the interval over which criterion is being addressed (e.g., one year, one month, one week, one day, one hour).



      • The minimum TIS0 that satisfies equation 3 through 6 for a response level L is designated as TISthreshod, L.



    • 3. Update the Advisory Control Signal Time Series for this System of Assets. The TISthreshold, L values assessed in the previous step are now compared to the filtered average current TIS, which are computed as in equation 7 for each IST interval. In short, equation 7 says that those TIS intervals that are shorter than Dmin are averaged, and those TIS intervals that are longer than Dmin are used directly. While this function's approach is workable without this filtering, the filtering of equation 7 may help the implementer avoid responding to certain spurious, short-lived events.

      TISfiltered,n,L=mean(TIS{all n}(ISTn≤IST{all n}<ISTn+Dmin,L))  (7)
      • If any TISfiltered,n,L exceeds the threshold that was established in the prior step, an ongoing event has not lasted Dmin,L, and the allowed event counts NL or allowed total event durations DL are not exceeded, an event should be planned for the affected IST intervals, the event counters and event durations should be updated accordingly, and an advisory control signal and change in average power should be planned or predicted for a future interval n as in equation (8).

        IF(TISfiltered,n,L>TISthreshold,n,LOR(Devent,n,L≠0 AND Devent,n,L<Dmin,L))
        AND(D′this x,n,L+Dmin,L−Devent,n,L≤Dthis x,L)
        AND(D′x,n,L+Dmin,L−Devent,n,L≤Dx,L)
        AND(N′this x,n,L<Nthis x,L)
        AND(N′x,n,L<Nthis x,L)
        AND(D′this x,n,L+(ISTn+1−ISTn)≤Dthis x,L)
        AND(D′x,n,L+(ISTn+1−ISTn)≤Dx,L)
        THEN ACSn=ACSL
        ELSE ACSn=unchanged  (8)
      • Refer to Table 41 that lists the advisory control signals candidates that may be planned for curtailable loads and distributed generation according to the numbers of response levels available from these assets. The algorithm is complete for this update iteration.












TABLE 41







Example assignable advisory control signals for curtailable


load and “dispatchable” distributed generation










Number of
Advisory Control



Response Levels, KL
Signals ACSL














1
0
(normal)




127
(curtailed)



2
0
(normal)




64
(level 1)




127
(level 2)



3
0
(normal)




42
(level 1)




84
(level 2)




127
(level 3)










4
Etc.











    • 4. Predict Change in Average Power that Will Result from Predicted Demand-Response Control Actions.
      • a. Tank Water Heaters. The typical daily pattern of electrical energy consumption by residential tank water heaters may be represented by look-up table or by function of time of day. A look-up table has been appended. See Appendix A. The total energy consumption represented in this table should be represented as inelastic load; when curtailments are planned, then all or part of the represented load should be shown as elastic load by this toolkit function. The magnitudes in the look-up table scale with the number of tank water heaters represented and controlled.
      • b. FIG. 60 is a graph 6000 showing a typical water heater power consumption during week and weekend days.
      • c. Example: A full curtailment of 100 water heaters is presently planned to occur from 13:50 until 14:30 this afternoon. Suppose the IST intervals are 5-minutes long until 14:00 and 15-minutes thereafter. Today is a Tuesday. First, if the inelastic load from these water heaters has not already been addressed by another function, the loads in the weekday columns for the hours of the current IST time series may be multiplied by 100 and allocated to the IST intervals that include them. (One may interpolate the values of 5-minute intervals within the larger 15-minute intervals found in Subappendix A, but the computational cost of this incremental improved accuracy may not be worthwhile.) The water heater control system should be assigned ACS=127 for these four predicted IST intervals indicating a full curtailment is planned. Other ACS values will be assigned as zero. Using Subappendix A, assign ΔL(13:50)=30.8 kW, ΔL(13:55)=30.8 kW, ΔL(14:00)=33.2 kW, and ΔL(14:15)=31.3 kW.
      • d. Thermostatic Space Conditioning.
        • Input parameters: C, KP, U, TOSP(Tcenter, K1, t1, K2, t2), KS, ηh, ηc
        • Other inputs that should be automated by function: KDRP, ΔTDRSP, To, Ps(lave, tsr, tss)
        • A simple dynamic model can be used to predict the energy that will be consumed by a population of residences controlled by demand-responsive thermostats or space conditioning equipment. (This strategy will be so generic that it should be applicable also to commercial thermostatic space conditioning loads.) The dynamic model should (1) predict the inelastic load from the building population relatively well using few readily available predicted weather effects like outdoor temperature and solar insolation, (2) model the first-order dynamics of thermal energy storage of the building population, (3) approximate the effects of daily thermostatic occupancy settings and cycles, (4) accommodate the planning of various demand-response temperature setbacks and/or power cycling, and (5) predict with reasonable accuracy any changes in electrical energy consumption for periods when demand-response events occur (e.g., the change in elastic load).
        • This function uses a first-order dynamic model (see equation 9) for the electrical energy used to heat or cool a population of buildings. The electrical power is estimated as the power used to make a representative indoor temperature track a set point temperature that may be affected by a pattern of occupancy settings and changes in the set point that may be caused by demand response. A single mass is cooled or heated and gains or loses energy through a representative insulation.
        • The following formulation maintains meanings of many parameters that will be recognized by buildings experts. Some, but not all, of the parameters should be scaled to represent the population of multiple buildings.














dT
i

dt

=



-

1
C


·

(



K
DRP

·

K
P


+
U

)

·

T
i


+


1
C

·

(



K
DRP

·


K
P



(


T
OSP

+

Δ






T
DRSP



)



+

U
·

T
o


+


K
S

·

P
S



)







(
9
)












dT
i

dt












          • —[° C./hour]—rate of change of the representative interior temperature Ti

          • Ti—[° C.]—representative interior temperature

          • C—[kWh/° C.]—effective thermal mass (heat capacity) of the building population.

          •  Parameter C may be initially estimated based on a rule of thumb for wood stick construction and furniture contents: 2.0 Btu/° F.-ft2 (1.1×10−3 kWh/° C.-m2) normalized to floor space area. If a typical home has 150 m2 floor area, then the thermal mass of this building would be about 0.17 kWh/° C. One thousand such homes would have an effective thermal mass of 170 kWh/° C. An initial estimate may be improved after data becomes available for the given modeled building population. See Appendix D.

          • U—[kW/° C.]—representative rate of thermal leakage from the population of modeled buildings as a function of difference between representative interior temperature Ti and outside temperature To This number is physically based on insulation R-values and total building surface areas. An effective estimate might be obtained recognizing that virtually all heating and cooling energy is eventually lost, in which case this parameter is approximately the total energy of space conditioning and solar insolation divided by total heating and cooling degree-day-hours.

          •  Numbers near 0.021 kW/° C. per residential building and 0.21 kW/° C. per commercial building should be expected, so these estimates may be multiplied by the numbers of buildings of each type in the modeled population as an initial estimate of parameter U. See appendix D.

          • KP—[kW/° C.]—feedback parameter that represents the magnitude of heating and cooling equipment power P that will be active based on the difference between interior temperature Ti and its target set point TOSP+ΔTDRSP. See equation 10. Electrical power will be stated in this formulation as a function of heating and cooling equipment power P.

          •  Until this parameter can be learned from and fit to an actual building population, it may be estimated by multiplying the number of residential buildings using a default value of 0.25 kW/° C. for a residential building and perhaps 10 times as much for a commercial building. See Appendix D.

            P≡KDRP·KP·((TOSP+ΔTDRSP)−Ti)  (10)

          • KDRP—[dimensionless]—fraction that represents effects of demand responses that result in cycling of the space conditioning equipment. For example, if a response level causes air conditioners to cycle at 50% duty cycle, a factor equal to, or more than, 0.5 should be used for KDRP while the demand response is active. In practice, the effect is less due to oversized equipment, and the value of KDRP will be found to be considerably larger than the duty cycle. KDRP is unity 1.0 at times that no demand response cycling is active. This parameter is specific to the thermostat program and selected thermostat capabilities. (The duty cycle is the fraction of time that the equipment is permitted to operate. (That is, unity minus the fraction of time the equipment is curtailed.) The parameter KDRP is similar to the duty cycle, but it is not linearly or functionally related. If a relationship is to be stated, declare KDRP as the positive square root of the fractional duty cycle D. This relation maps D=0 to KDRP=0, and it maps D=1 to KDRP=1. In the range D=[0,1], it maps D to a KDRP that is larger than D.
























D
KDRP


















0.0
0.0



0.25
0.50



0.50
0.71



0.75
0.87



1.0
1.0

















          • TOSP—[° C.]—effective interior temperature setpoint that includes the daily effects of occupancy set points. This should be set as the representative interior temperature that the populations of buildings would track as its members move between sleep, away, home, and other occupancy settings. See Appendix C for an example occupancy temperature setting time series that may be used as a starting point for this time series.

          • ΔTDRSP—[° C.]—effective change in interior set point temperature for a population of buildings given a planned response level. The setback temperature change may be identical to an actual temperature setback, but it is not necessarily identical to an actual setback. This setback temperature is a feature unique to the utility program and the capabilities of the vendors' products and should be determined for a period during which a response level is planned. Temperature changes are expected to be plus or minus 1-5° C.

          • To—[° C.]—representative outdoor temperature that has been obtained from the National Weather Data Service or similar source. This is an input that should be forecasted. It is preferable that this toolkit function automate the retrieval of forecasted temperature, using coordinates or nearest town or airport as an input.

          • KS·PS—[kW/° C.]—effective total incident solar power on the building population, where PS is the predicted solar power density [kW/m2], and KS is a factor that accounts for the physical characteristics and total areas of glazing and other building surfaces. See Appendix B for an approach by which this product may be predicted for any minute of a day.



        • The electrical power may then be related to the heating and cooling power P, taking into account the efficiency q of the space-conditioning equipment, as shown in equation 11. Heating and cooling power P was defined in equation 10. See Appendix E for example scenarios under which electrical power has been simulated by this model with its default values.





















P
e

=


1

η
h





P




,







if






T
i


<


T
OSP

+

Δ






T
DRSP











P
e

=


1

η
c





P




,







if






T
i


>


T
OSP

+

Δ






T
DRSP










(
11
)















          • ηh—(dimensionless)—effective electrical conversion efficiency that relates heating power to expended electrical power (default value=1.0).

          • ηc—[dimensionless]—effective electrical conversion efficiency that relates cooling power to expended electrical power (default value=1.3).



        • This formulation has treated state variables and inputs as continuous time variables, but one may solve for the predicted electrical power for discrete time intervals n, provided that the time intervals are short with respect to the buildings' thermal response time. (For example, discrete time intervals Δt from 1 to 5 minutes can be used. Several iterations might be used for IST intervals that are longer than 5 minutes. Where an IST interval duration is longer than the solution interval Δt, the electrical power solutions Pe within an IST interval should be averaged to obtain the respective average inelastic load or elastic change in electrical load.) Equation 12 is a discretized version of equation 9 that may be used to predict the state variable Ti after each interval n of length Δt.

















Δ







T
i



(
n
)



=



[



-

1
C


·

(




K
DRP



(
n
)


·

K
P


+
U

)

·


T
i



(
n
)



+


1
C

·

(




K
DRP



(
n
)


·

K
P

·

(



T
OSP



(
n
)


+

Δ







T
DRSP



(
n
)




)


+

U
·


T
o



(
n
)



+


K
S

·


P
S



(
n
)




)



]

·
Δ







t


(
n
)







(
12
)













        • State variable Ti—the representative interior temperature—may be updated after each discrete time interval using equation 13.

          Ti(n+1)=Ti(n)+ΔTi(n)  (13)

        • The solution should be completed twice: In the first case, no demand response is modeled. Both KDRP and ΔTDRSP should be set to zero for intervals of case 1. The resulting electrical power Pe is the inelastic load predicted where the space conditioning equipment is not responsive to an incentive signal and no demand response occurs. In the second case, either or both KDRP and ΔTDRSP are assigned for intervals during which demand responses have been planned. If demand responses have been planned, the solutions for electrical power Pe will differ by the change in elastic load, which is an output of this function expected by the toolkit framework.

          ΔLelastic(n)=Pe,case #1(n)−Pe,case #2(n)  (14)





    • e. Smart Appliances and other Loads. The list of appliances and devices that could become controlled is diverse. Simplifications is necessary until proper models of these loads can be completed. The daily patterns for plug loads and other devices may be learned over time if adequate measurements are being made. Until then, hourly load profiles for most of the other residential loads are provided in Subappendix H.


      Further Alternatives:



  • 1. The extreme parts of TIS distribution curves should be fitted to a smooth monotonic function. There is some concern that event-driven demand response may be allowed so infrequently that it will be difficult to assign accurate thresholds on TIS.

  • 2. While this function has been targeted toward events that happen at relatively high TIS values, this general approach is equally valid for infrequent events that occur at very low TIS values when energy appears to be a great bargain. Today, few commercially available demand-responsive assets are able to provide this valuable response.

  • 3. The lookup table of Subappendix A is simple to use, but it does not correctly predict rebound effects that might be important for peak load management. When water heaters are released from their curtailed operation, they consume heavily to reheat the cooled water volume. In some cases, this rebound will create a new, undesirable peak. Implementers can also use physics-based models of water heaters that include effects of thermal energy storage and customer water consumption.
    • An approach similar to the space conditioning model yields the difference equations 15 and 16 for a population of water heaters. The parameters of the difference equations may, in principle, be determined by fitting the modeled representative water heater power PWH(n) during each interval n to the observed average power shown in Subappendix A.












T
WH



(

n
+
1

)


=



(

1
+




W


(
n
)


·
Δ







t


(
n
)




V
WH


-





K
DR



(
n
)


·

K
P

·
Δ







t
n




V
WH

·

C
W




)

·


T
WH



(
n
)



+






K
DR



(
n
)


·

K
P

·
Δ







t


(
n
)





V
WH

·

C
W



·

T
SP


-





W


(
n
)


·
Δ







t


(
n
)




V
W


·

T
i







(
15
)













P
WH



(
n
)





K
P



(


T
SP

-


T
WH



(
n
)



)







(
16
)











      • TWH(n)—[° C.]—representative temperature of water stored in this population of water heaters at the beginning of interval n.

      • W(n)—[m3/h]—rate of water consumed by the water heaters during interval n.

      • KDR(n)—[dimensionless]—representative impact of a demand-response cycling program on the representative water heater power PWH. At most times, this variable is equal to 1.0. During full curtailment of water heaters, this variable is equal to 0.0. If the water heaters are randomly cycled with an available duty cycle of 50%, the this variable would be a number between 0.5 and 1.0, which number should be determined and fit by theory or observation.

      • KP—[kW/° C.]—representative ratio of water heater power to the difference between the water heaters' representative temperature set point, as is shown in equation 16.

      • Δt(n)—[h]—duration of interval n.

      • ΔWH—[m3]—representative volume of water in the water heaters.

      • CW—[kWh/(m3·° C.)]—heat capacity of water.

      • TSP—[° C.]—representative thermostat setpoint for the modeled population of water heaters.

      • Ti—[° C.]—typical temperature of cold water entering the water heaters.





  • 4. The approach to predicting thermostatic space conditioning loads may be improved in many ways:
    • a. Curve fitting and adaptive algorithms may be developed or employed to improve the parameters and more accurately model the given population of buildings. Specifically, the historical errors between actual and predicted electrical energy consumption by the population of space conditioning loads may be used to estimate parameters via least squares. The parameters to be estimated include constants Kp, U, C, and KS. Parameter TOSP(t) should be treated as a function of time-of-day. KS(t) may also be treated as a function of time-of-day, in which case it might represent the effects of incident angle of solar power on various building surfaces.
    • b. Additional inputs may be employed to improve the accuracy of the model. For example, wind and humidity predictions may be useful to improve the model's accuracy.
    • c. Higher-order state models may be employed to address observed dynamic inaccuracies. However, remember that the states that are meaningful for modeling individual buildings may not be so useful in an aggregated building model.
    • d. As drafted, the building model is equally applicable to both heating and cooling. Care should be taken where methods of heating and cooling are asymmetrical in the modeled buildings. Different electrical efficiencies ηh and ηc have been recommended, but there may also be cause to distinguish Ph and Pc if the effective powers of heating and cooling are different.










SUBAPPENDIX A







Daily Water Heater Consumption Patterns


for Week and Weekend Days in the Pacific Northwest









Time
Weekday
Weekend


(hh:mm)
(kW)
(kW)





 0:00
0.122
0.128


 0:15
0.151
0.128


 0:30
0.130
0.130


 0:45
0.107
0.108


 1:00
0.103
0.106


 1:15
0.113
0.111


 1:30
0.113
0.099


 1:45
0.098
0.097


 2:00
0.089
0.098


 2:15
0.093
0.105


 2:30
0.099
0.100


 2:45
0.089
0.097


 3:00
0.135
0.120


 3:15
0.098
0.104


 3:30
0.164
0.117


 3:45
0.129
0.106


 4:00
0.239
0.209


 4:15
0.183
0.161


 4:30
0.240
0.205


 4:45
0.266
0.170


 5:00
0.401
0.247


 5:15
0.427
0.277


 5:30
0.460
0.295


 5:45
0.542
0.302


 6:00
0.700
0.410


 6:15
0.708
0.420


 6:30
0.743
0.522


 6:45
0.764
0.530


 7:00
0.817
0.640


 7:15
0.785
0.622


 7:30
0.738
0.640


 7:45
0.713
0.634


 8:00
0.716
0.736


 8:15
0.687
0.734


 8:30
0.672
0.710


 8:45
0.636
0.696


 9:00
0.615
0.704


 9:15
0.584
0.695


 9:30
0.563
0.670


 9:45
0.518
0.647


10:00
0.467
0.624


10:15
0.466
0.616


10:30
0.454
0.595


10:45
0.431
0.567


11:00
0.415
0.543


11:15
0.409
0.549


11:30
0.395
0.527


11:45
0.385
0.521


12:00
0.380
0.481


12:15
0.365
0.475


12:30
0.355
0.450


12:45
0.349
0.438


13:00
0.347
0.435


13:15
0.328
0.411


13:30
0.319
0.389


13:45
0.308
0.380


14:00
0.332
0.403


14:15
0.313
0.401


14:30
0.304
0.380


14:45
0.314
0.374


15:00
0.324
0.455


15:15
0.325
0.434


15:30
0.345
0.432


15:45
0.349
0.426


16:00
0.385
0.459


16:15
0.396
0.458


16:30
0.407
0.443


16:45
0.420
0.440


17:00
0.452
0.462


17:15
0.461
0.463


17:30
0.467
0.457


17:45
0.454
0.458


18:00
0.513
0.467


18:15
0.521
0.472


18:30
0.543
0.465


18:45
0.564
0.470


19:00
0.606
0.462


19:15
0.588
0.440


19:30
0.613
0.422


19:45
0.594
0.407


20:00
0.606
0.439


20:15
0.590
0.430


20:30
0.592
0.407


20:45
0.551
0.384


21:00
0.525
0.393


21:15
0.486
0.370


21:30
0.436
0.342


21:45
0.375
0.307


22:00
0.326
0.285


22:15
0.288
0.257


22:30
0.244
0.235


22:45
0.207
0.209


23:00
0.183
0.191


23:15
0.163
0.174


23:30
0.149
0.165


23:45
0.136
0.145










Subappendix B: Example Approximation of Effective Incident Solar Power KS·PS

Input Parameters: Bres, Bcom

Inputs that should be Obtained Automatically by Function (e.g., by Internet): lave, tsr, tss


The following approach will produce reasonable dynamics to represent the effect of solar insolation on building populations, but it does not rely on actual predicted insolation nor on actual building data and building construction properties. As time permits, this approach may be improved to better predict building performance.

    • For the day to be modeled at this location, look up sunrise (tsr), sunset (tss), and average insolation (lave). This input information may be found at http://aom.giss.nasa.gov/srlocat.html, for example, if one enters the month, latitude, and longitude.
    • Estimate KS. First estimate the total square meters of building floor space being modeled. This can be roughly estimated by multiplying the number of modeled residences by 175, and the number of commercial buildings by 2000. The floor space will be multiplied by 7% to represent the effects of glazing and imperfectly reflecting wall and roof surfaces. The product of floor space and 0.07 extimates KS as shown in equation B1.

      KS=0.07·(175·Bres+2000·Bcom)  (B1)
      • KS—[m2]—estimated effective building surface area that is exposed to insolation. This parameter accounts for overall reflectivity, glazing surfaces, and orientation. It is assumed that this parameter is not a function of time.
      • Bres—[count]—number of residential buildings in modeled population. This is a very gross attempt to scale the impact of insolation based on the number of buildings and based on a typical floorspace of represented buildings. The factor 175 may be improved if better information is known about typical residential buildings that are in this population of residential buildings.
      • Bcont—[count]—number of commercial buildings in modeled population. This is a very gross attempt to scale the impact of solar insolation based on the number of buildings and based on a typical floorspace of represented buildings. The factor 2000 may be improved if better information is known about typical residential buildings that are in this population of commercial buildings.
    • Estimate PS(t). A sinusoidal pattern is assumed for the insolation through a day between sunrise and sunset.











P
S



(
t
)


=

{






1440
·

I
ave




t
ss

-

t
sr



·

(

1
-

cos
(




(

t
-

t
sr


)

·
2


π



t
ss

-

t
sr



)


)






t
sr


t


t
ss






0


otherwise








(
B2
)











      • PS(t)—[W/m2]—insolation as a function of time of day.

      • lave—[W/m2]—average insolation for this day (over 24 hours/1440 minutes) at this location from http://aom.giss.nasa.gov/srlocat.html, or similar source of information. This number is multiplied by the number of minutes in a day in equation B2 to state the total insolation expected to be received this day.

      • t—[minutes]—time-of-day represented in minutes. For example, the time 7:06 should be represented in this function by 426 minutes=7*60+6.

      • tsr—[minutes]—minute of this day on which sunrise occurs. Care should be taken to address UTC time and daylight savings properly.

      • tss—[minutes]—minute of this day on which sunset occurs. Care should be taken to address UTC time and daylight savings properly.







An example profile 6100 of Ps(t) is shown in FIG. 61 for a day on which tsr=7:06 (426 minutes into the day), tss=17:13 (1033 minutes into the day), and lave=201 W/m2.


Subappendix C: Example Approach for Smooth Approximation of Occupancy Set Point Temperature TOSP(t)


Input Parameters: Tcenter, K1, t1, K2, t2


Input Variable: t


The occupancy set point temperature TOSP reflects a representative change in the target interior temperature set point that is induced by building occupants as they schedule or manually change their thermostatic set points for periods of the day. The following approach produces a smooth function of time-of-day while using only a few supplied input parameters.











T
OSP



(
t
)


=


T
center

+


K
1

·

sin
(


2


π
·

(

t
+

t
1


)



1440

)


+


K
2

·

sin
(


4


π
·

(

t
+

t
2


)



1440

)







(
C1
)









    • TOSP(t)—[° C.]—occupancy set point temperature as a function of time of day t.

    • Tcenter—[° C.]—input temperature to this function that represents the center of a sinusoidal function. See Table 42 for example default values.

    • K1—[° C.]—input parameter that represents a diurnal magnitude of temperature variation. See Table 42 for example default values.

    • t—[time: minutes]—time of day represented as minutes since the previous midnight. The number 1440 represents a full day cycle period of minutes t.

    • t1—[time: minutes]—input parameter that represents a phase offset of the diurnal magnitude of temperature variation. See Table 42 for example default values.

    • K2—[° C.]—input parameter that represents a magnitude of temperature variation that occurs at twice the diurnal frequency (e.g., two full periods per day). See Table 42 for example default values.

    • t2—[time: minutes]—input parameter that represents a phase offset of the diurnal magnitude of temperature variation. See Table 42 for example default values.





The example input parameters of Table 42 are based on expert opinion and should suffice until data is found to refine these parameters. (It is also acceptable to simply use a constant value Tcenter, similar to what has been recommended in Table 42 for summer and fall periods.)









TABLE 42







Five input parameters that may be used to specify the occupancy


set point temperature TOSP(t) by season of year













Tcenter
K1
t1
K2
t2



(° C.)
(° C.)
(minutes)
(° C.)
(minutes)

















winter
20.0
0.5
−450
0.8
360



spring
21.5
0.0

0.0




summer
23.0
0.2
 270
0.5
180



fall
21.5
0.0

0.0











FIG. 62 is a plot 6200 of a winter profile of TOSP(t) that uses the winter parameters of Table 42. FIG. 63 is a plot 6300 of a summer profile of TOSP(t) that uses the summer parameters of Table 42.


Subappendix D: Additional Insights Concerning the Parameters Used to Model Thermostatic Control of Buildings


There are several terms of equation (9) that are useful toward the understanding of relationships between the model parameters.


Thermal Losses


If the effects of space conditioning and solar insolation were eliminated, the relationship of equation D1 would remain and would describe the asymptotic migration of the representative temperature Ti toward the ambient outdoor temperature To that is characterized by the relationship between thermal losses U and thermal mass C.











dT
i

dt

=


U
C

·

(


T
o

-

T
i


)






(
D1
)







An insight available from equation D1 is that it defines a relaxation time constant as the ratio C/U. The time constant is the time that it would take for the the two temperatures to come within about 37% of the starting difference between the two temperatures. For example, if the interior temperature begins at 20° C. and the outside temperature remains constant at 0° C., the time constant would be the time it takes for the interior temperature to drop to 7.4° C. If that amount of time is estimated to be 8 hours, then the magnitude of parameter C should be 8 times as great as the magnitude of U. Therefore, if the value of C is estimated to be 0.17 kWh/° C. for a residential building, then the value of U should be approximately 0.021 kW/° C., which is the recommended default value for this parameter.


Space Conditioner Size and Responsiveness


If the effects of solar insolation and thermal losses may be temporarily ignored, equation D2 may be derived from equation 9 to represent the rate at which the representative heating or cooling equipment would correct the representative interior temperature Ti toward its set point, which is the sum TOSP+ΔTDRSP.











dT
i

dt

=




K
DRP

·

K
P


C



(


T
OSP

+

Δ






T
DRSP


-

T
i


)






(
D2
)







In the normal case, KDRP is unity.


Equation D2 is characterized by a time constant as the ratio C/KP. Space conditioning equipment is usually sized to correct the interior temperature in a relatively short time. If, for example, buildings heaters were to heat a residential building and its contents from 10° C. to 20° C., it might take about 40 minutes to heat those contents fully to 16.3° C. Therefore, the magnitude of C should be about 0.67 that of KP. If C is 0. 17 kWh/° C. for a residential building, then the representative magnitude of KP should be about 0.25 kW/° C., which is the recommended default value for this parameter.


Average Electrical Power for Space Conditioning


Another insight may be obtained if one calculated the final, constant condition of how much power it would take to maintain a thermostatic set point for a given outdoor temperature To. One may calculate a final interior temperature Ti using equation 9. Then this interior temperature may be used in equations 10 and 11 to predict that resulting electrical power Pe that would be consumed.


Ignoring the effects of solar insolation and setting KDRP to unity, the steady-state electrical power is given by equation D3.










P
e

=


1
η

·

(


U
·

(


T
OSP

+

Δ






T
DRSP


-

T
o


)



1
+

U

K
P




)






(
D3
)







For present purposes, equation D3 should be used to test the reasonableness of the set of parameters. Given the sets of default parameters recommended so far for a residential building, and assuming efficiency q of the electrical conversion and ΔTDRSP are unity, it would take about 190 average watts to maintain a constant 10° C. difference between the set point and ambient outdoor temperatures in this structure.


Subappendix E: Example Electrical Power Profile Cases from Thermostatic Model with Default Winter Parameter



FIG. 64 is a graph 6400 of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=10° C. FIG. 65 is a graph 6500 of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=0° C. FIG. 66 is a graph 6600 of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=0° C.; ΔTDRSP=−2° C. from 8:00 to 10:00 am. FIG. 67 is a graph 6700 of the predicted electrical power consumption for 1000 thermostatically controlled residential buildings where To=0° C.; KDRP=0.75 from 8:00 to 10:00 am.












Subappendix F: Pseudo Code (for calendar events only)















FOR every response level L (excluding L = 0)


 [Establish statistical distribution of TIS0]


 Δ$ = $0.001/kWh


 TIS0,min = −$3/kWh


 TIS0,max = +$3/kWh


 Ψ = {TIS0,min, TIS0,min + Δ$, TIS0,min + 2 · Δ$, . . . , TIS0,max − Δ$}


 FOR all k historical {IST0, TIS0} pairs


  TIS0,k,mean = mean(TIS0 (IST0,k − Dmin,L < IST0 ≤ IST0,k))


    WHERE Dmin,L is the minimum duration for any event at response level L


 END FOR


 FOR all k


  IF TIS0,b ≤ TIS0,k,mean < TIS0,b + Δ$, WHERE TIS0,b ∈ Ψ THEN


   DISTL(TIS0,b) = DISTL(TIS0,b) + 1


  END IF


 END FOR






ΦL(TIS0,b)=i=TIS0,minTIS0,bDISTL(i)i=TIS0,minTIS0,max-Δ$DISTL(i)






END FOR


[Initialize iteration index m]


m = 0


FOR every new {IST, TIS} series (including relaxation instances):


  IF new update interval THEN


   m = m + 1


  ELSE [IF relaxation instance]


   m = m


  END IF


  IST{all n},m = IST{all n},new series


  TIS{all n},m = TIS{all n},new series


  [Initialize ACS]


  ACS{all n},m = 0


  FOR every response level L, in ascending order (excluding L = 0)


   [Update DISTL(TIS0) and ΦL(TIS0)]


   TIS0,mean = mean(TIS0(IST0,m − Dmin,L < IST0 ≤ IST0,m))


   IF TIS0,b ≤ TIS0,mean < TIS0,b + Δ$, WHERE TIS0,b ∈ Ψ THEN


    DISTL(TIS0,b) = DISTL(TIS0,b) + 1


   END IF





   
ΦL(TIS0,b)=i=TIS0,minTIS0,bDISTL(i)i=TIS0,minTIS0,max-Δ$DISTL(i)






  FOR intervals n = 0 to 55


   [Filter TIS]


   TISfiltered,n,m,L = mean (TIS{all n} (ISTn,m ≤ IST{all n},m < ISTn,m + Dmin,L))


   IF n = 0 THEN [time space]


    IF relaxation instance THEN


     Devent,0,m,L = Devent,0,m,L


     Dthis x,0,m,L′ = Dthis x,0,m,L


     Nthis x,0,m,L′ = Nthis x,0,m,L


      WHERE x = {year, month, week, day, hour} and “this” refers to


     calendar periods


    ELSE [IF new update interval]


     [Update event duration in time space]


     IF ACS0,m−1 = ACSL THEN


      Devent,0,m,L = Devent,0,m−1,L + (IST0,m − IST0,m−1)


     ELSE


      Devent,0,m,L = 0


     END IF


     [Update calendar x cumulative event duration(s) and count(s) in time


    space]


     IF change(x, IST0,m−1, IST0,m) THEN


      Dthis x,0,m,L′ = 0


      Nthis x,0,m,L′ = 0


     ELSE IF ACS0,m−1 = ACSL THEN


      Dthis x,0,m,L′ = Dthis x,0,m−1,L′ + (IST0,m − IST0,m−1)


      Nthis x,0,m,L′ = Nthis x,0,m−1,L


     ELSE IF ACS0,m−1 ≠ ACSL AND ACS0,m−2 = ACSL THEN


      Dthis x,0,m,L′ = Dthis x,0,m−1,L


      Nthis x,0,m,L′ = Nthis x,0,m−1,L′ + 1


     ELSE


      Dthis x,0,m,L′ = Dthis x,0,m−1,L


      Nthis x,0,m,L′ = Nthis x,0,m−1,L


     END IF


    END IF


   ELSE [IF n = 1 to 55] [future space]


    [Update event duration in future space]


    IF ACSn−1,m = ACSL THEN


     Devent,n,m,L = Devent,n−1,m,L + (ISTn,m − ISTn−1,m)


    ELSE


     Devent,n,m,L = 0


    END IF


    [Update calendar x cumulative event duration(s) and count(s) in future space]


    IF change (x, ISTn−1,m, ISTn,m) THEN


     Dthis x,n,m,L′ = 0


     Nthis x,n,m,L′ = 0


    ELSE IF ACSn−1,m = ACSL THEN


     Dthis x,n,m,L′ = Dthis x,n−1,m,L′ + (ISTn,m − ISTn−1,m)


     Nthis x,n,m,L′ = Nthis x,n−1,m,L


    ELSE IF n ≠ 1 AND ACSn−1,m ≠ ACSL AND ACSn−2,m = ACSL THEN


     Dthis x,n,m,L′ = Dthis x,n−1,m,L


     Nthis x,n,m,L′ = Nthis x,n−1,m,L′ + 1


    ELSE


     Dthis x,n,m,L′ = Dthis x,n−1,m,L


     Nthis x,n,m,L′ = Nthis x,n−1,m,L


    END IF


   END IF


   [Determine threshold(s)]





   
Φα,thisx,L=1-Dthisx,L(1-Nthisx,n,m,L/Nthisx,L)tthisx,n,






    WHERE tthis x, n′ = time remaining in this x at every ISTn, m





   
Φβ,thisx,L=1-Dmin,Ltthisx,n·floor(Dthisx,L-Dthisx,n,m,LDmin,L)






   TISthreshold,n,m,L = min(TIS0) such that ΦL(TIS0) > max(Φα,this x,L, Φβ,this x,L)|01 for all x


   [Determine ACS]


   IF (TISfiltered,n,m,L > TISthreshold,n,m,L OR (Devent, n,m,L ≠ 0 AND Devent, n,m,L < Dmin,L))


    AND (Dthis x,n,m,L′ + Dmin,L − Devent,n,m,L ≤ Dthis x,L)


    AND (Nthis x,n,m,L′ < Nthis x,L)


    AND (Dthis x,n,m,L′ + (ISTn+1,m − ISTn,m) ≤ Dthis x,L) THEN


    ACSn,m = ACSL


   ELSE


    ACSn,m = ACSn, m


   END IF


  END FOR [every n]


 END FOR [every L]


END FOR [every new {IST, TIS} series]









In the peseucocode, a set of lower boundaries of bins used to build up TIS0 distribution.


It is acceptable to use a standard averaging window during initialization. This may be helpful if the initial TIS0 distribution is to be shared among several load toolkit function implementations at the same transactive node and/or used for response levels L within the same implementation. Note that m is used as an iteration index, so that m —1 refers to the previous update interval. During a relaxation instance, IST0 remains unchanged. Averaging TIS0 may have little effect on updating the TIS0 distribution. If that is the case, the implementer may choose not to do the averaging. This may then allow the update of TIS0 distribution to be done outside of any single toolkit function implementation to be shared among several toolkit function implementations at the same transactive node and/or used for response levels L within the same implementation. Devent is a new variable introduced to keep track of the duration of an event. change(x, t1, t2)″ represents a function to determine whether calendar period x has changed between t1 and t2, inclusive.


Example 1—One Response Level

Running the above MATLAB code, with KL=1, Dmin,1=15 min, Dthis day,1=240 min, Nthis month,1=5, Dthis month,1=5×240 min=1200 min, results in the plots 6800, 6900, 7000, 7100, 7200 of FIG. 68FIG. 69, FIG. 70, FIG. 71 and FIG. 72FIG. 73, respectively. Plot 7100 is in time space whereas plot 7200 is in future space.


Example 2—Two Response Levels

Running the above MATLAB code, with

    • KL=2, Dmin,1=120 min, Dthis day,1=240 min, Nthis month,1=5, Dthis month,1=5×240 min=1200 min,
    • Dmin,2=15 min, Dthis day,2=240 min, Nthis month,2=5, Dthis month,2=5×240 min=1200 min, results in the plots 7300, 7400, 7500, 7600, 7700 of FIG. 73, FIG. 74, FIG. 75, FIG. 76, and FIG. 77, respectively. Plot 7600 is in time space whereas plot 7700 is in future space.


      Subappendix H: Typical Hourly Residential Load Profiles


The load profiles in Table 43 are derived from normalized profiles in single-family detached house models found at [H1] and yearly energy consumed by each load computed from equations given in [H2]. Note that 2400 ft2 and 4 bedrooms were used to represent a “typical” single-family detached house. In Table 43, MEL refers to miscellaneous electric loads.

  • [H1] U.S. Department of Energy, Building Energy Codes Program, Residential Prototype Building Models: http://www.eneravcodes.gov/development/residential/iecc models
  • [H2] U.S. Department of Energy, Building Technologies Program, Building America House Simulation Protocols, by R. Hendrom and C. Engbrecht (National Renewable Energy Laboratory), Available at http://www.nrel.gov/docs/fv11osti/49246.pdf.









TABLE 43







Typical Hourly Residential Load Profiles [kW]













Cooking
Dishwasher
Clothes Washer
Clothes Dryer


















Hour
Lighting
Refrigerator
Range
Weekday
Weekend
Weekday
Weekend
Weekday
Weekend
MELs




















1
0.029
0.0473
0.011
0.0084
0.0090
0.0022
0.0027
0.032
0.039
0.396


2
0.029
0.0463
0.011
0.0037
0.0040
0.0017
0.0021
0.019
0.024
0.365


3
0.029
0.0452
0.006
0.0028
0.0030
0.0009
0.0011
0.013
0.016
0.360


4
0.029
0.0439
0.006
0.0019
0.0020
0.0009
0.0011
0.006
0.008
0.355


5
0.086
0.0432
0.011
0.0019
0.0020
0.0017
0.0021
0.013
0.016
0.342


6
0.179
0.0432
0.017
0.0056
0.0060
0.0026
0.0032
0.019
0.024
0.381


7
0.201
0.0449
0.039
0.0112
0.0120
0.0052
0.0064
0.051
0.063
0.441


8
0.179
0.0473
0.068
0.0169
0.0181
0.0113
0.0138
0.102
0.125
0.468


9
0.079
0.0483
0.073
0.0318
0.0341
0.0170
0.0208
0.156
0.191
0.396


10
0.054
0.0490
0.077
0.0356
0.0381
0.0200
0.0245
0.220
0.270
0.337


11
0.054
0.0473
0.068
0.0309
0.0331
0.0196
0.0240
0.252
0.309
0.345


12
0.054
0.0473
0.079
0.0262
0.0281
0.0174
0.0213
0.263
0.321
0.345


13
0.054
0.0496
0.090
0.0225
0.0241
0.0157
0.0192
0.240
0.293
0.339


14
0.054
0.0496
0.073
0.0253
0.0271
0.0139
0.0170
0.218
0.266
0.351


15
0.054
0.0490
0.070
0.0206
0.0221
0.0122
0.0149
0.196
0.240
0.371


16
0.093
0.0496
0.090
0.0197
0.0211
0.0113
0.0138
0.186
0.227
0.391


17
0.201
0.0523
0.147
0.0206
0.0221
0.0118
0.0144
0.179
0.219
0.463


18
0.279
0.0574
0.239
0.0272
0.0291
0.0113
0.0138
0.175
0.215
0.562


19
0.376
0.0591
0.186
0.0478
0.0512
0.0113
0.0138
0.167
0.204
0.610


20
0.451
0.0574
0.096
0.0609
0.0652
0.0113
0.0138
0.164
0.201
0.630


21
0.459
0.0557
0.056
0.0496
0.0532
0.0113
0.0138
0.169
0.207
0.652


22
0.315
0.0547
0.039
0.0365
0.0391
0.0109
0.0133
0.175
0.215
0.636


23
0.176
0.0523
0.025
0.0243
0.0261
0.0074
0.0091
0.141
0.172
0.551


24
0.072
0.0490
0.017
0.0169
0.0181
0.0039
0.0048
0.077
0.094
0.479









Plots of load profiles given in Table 43 are shown in FIG. 78 through FIG. 84. In particular, FIG. 78 is a plot 7800 of a lighting load. FIG. 79 is a plot 7900 of a refrigerator load. FIG. 80 is a plot 8000 of a cooking range load. FIG. 81 is a plot 8100 of a dishwasher load. FIG. 82 is a plot 8200 of a clothes washer load. FIG. 83 is a plot 8300 of a clothes dryer load. FIG. 84 is a plot 8400 of a miscellaneous electric load.


6.3.11 Load Function—Non-Renewable Distributed Generation Event-Driven Demand Response (Function 2.5)


Description:


This is a function for predicting the responses of distributed generators that only infrequently respond to events that may be identified from an incentive signal. When these assets respond, they transition to a limited number of available response levels, which in this case are limited to two levels—standing idle or generating. This function was adapted quite directly from function 2.4 Residential Event-Driven Demand Response), which includes certain details not repeated here. Also refer to function 2.0 General Event-Driven Demand Response for general guidance about event-driven toolkit functions.


It is assumed that the distributed generator is normally idle, so its inelastic load prediction is zero. If this is not the case, or if the generator is used for objectives other than transactive control, then this toolkit function should be augmented to keep track of its inelastic load as a baseline to its generation under transactive control. Implementers may elect to also keep track of generator availability and scheduled testing periods, which conditions are not being tracked in this function.


This function can respond to absolute or relative TIS as desired by an application. In Version 0.4, a new parameter is recommended to state the effective cost of generation by this distributed generation resource. Because the TIS represents an economic signal, distributed generators that are more expensive than the TIS should not be operated, regardless of how the event periods have been determined.


This function was originally drafted for distributed diesel generators that are operated by UW under the control of operators who (we hope) are responsive to this function's advisory control signal. Having a human in the control loop will affect the reliability of and confidence in the generators' responses, but having a human in the control loop in no other way affected the way that this function was designed. The human operator will introduce uncertainty in the likelihood that advised control actions will be heeded, and this uncertainty may be addressed in future drafts of this function. This function should be useable for most event-driven distributed generators responses.


Block Input/Output Function Model:


Inputs:


inputs for this function are identical to those defined in 2.4 residential event-driven Demand Response with several exceptions listed below. The baseline, inelastic generation is assumed to be the idle state with no power being produced. Therefore, no generation pattern is tracked by this function. If the generator is found to be scheduled for other objectives, the times at which the generators are to be activated should be tracked as a baseline and subtracted from predicted event behaviors.

    • PDG,L—[kW]—Power that is expected to be generated at each response level L. Many generator resources will offer one response level and will be operated at a single power level—perhaps the nameplate full power rating of the generator or generators. Default: 0.0 kW (for each response level).
    • KDG—[cost/energy: $/kWh]—unit cost of generated electrical energy at which this distributed generation resource is able to produce electrical energy.
    • KL—[dimensionless count]
    • Dmin,L—[time: minutes]
    • {Nthis year, L, Nyear, L, Nthis month, L, Nmonth, L, Nthis week, L, Nweek, L, Nthis day, L, Nday, L, Nthis hour, L, Nhour, L}—[dimensionless count].
    • {Dthisyear, L, Dyear, L, Dthis month, L, Dmonth, L, Dthis week, L, Dweek, L, Dthis day, L, Dday, L, Dthis hour, L, Dhour, L, Dthis event, L}—[time duration: minutes].
    • {TIS0(t), TIS0(t−5), . . . , TIS0(t−5 k)}—[$/kWh].
    • {TIS0, TIS1, . . . , TISK−1}—[$/kWh].
    • OPTIONAL INPUT: {Level, EventStartTimeL, EventDurationL}—[Integer, UTC Time, UTC Duration].


      Interim Calculation Products:
    • {DIST(TIS0,min), DIST(TIS0,min+Δ$), . . . , DIST(TIS0,b), . . . }—[dimensionless].
    • {N′this year, L, N′year, L, N′this month, L, N′month, L, N′this week, L, N′week, L, N′this day, L, N′day, L, N′this hour, L, N′hour, L}—[dimensionless count].
    • {D′this year, L, D′year, L, D′this month, L, D′month, L, D′this week, L, D′week, L, D′this day, L, D′day, L, D′this hour, L, D′hour, L, D′this event, L}—[time duration: minutes].


      Outputs:
    • {ACS0, ACS1, . . . , ACSK−1}—[dimensionless].
    • {ΔL0, ΔL1, . . . , ΔLK−1}—[kW]. (In this case, the sign convention should indicate that these are generation resources, not electrical load.)


Pseudo Code Implementation:


The algorithm by which infrequent events are to be determined from the incentive signal are identical to what was described elsewhere in this application.

    • 5. Establish/update the statistical distribution of historical TIS values.
    • 6. Update incentive thresholds for this system of assets.
    • 7. Determine demand-response event periods for this system of assets by comparing the transactive control incentive signal against updated incentive thresholds.
    • 8. Update the advisory control signal time series for this system of assets.
    • 9. Predict change in average power that will result from predicted demand-response control actions. A series of power generation predicted for each IST interval should be calculated corresponding to the set of advisory control signals that were created in the previous step #4.


Where no effects of ramp periods or inelastic load patterns should be modeled, then for each ISTn and each response level L,

ΔLL=
0,
if ACSn=0(no event) or TISn≤KDG  (1)
max(PDG,L),
if both ACSn≥ACSL and TISn>KDG.


In simple terms, Equation 1 says that the distributed generators should not operate and their elastic load is zero if either there is no event for time interval n (ACSn=0) or if the TIS for the interval is less than the cost at which the generators can generate (e.g., TISn≤KDG). If however, the TIS exceeds the cost at which the generators can generate and an event has been determined to invoke one or more response levels (e.g., ACSn≥ACSL), then the amount of power predicted to become generated is the maximum PDG,L for the response levels L that have been invoked.


Further Alternatives






    • 1. Address effects of resource unavailability that may affect the accuracy of predicted generation during events.

    • 2. Address scheduled testing as (potentially) an inelastic impact as generators are typically tested about an hour or so each month, regardless of transactive control signals.

    • 3. Address the uncertainty of elastic load series elements that is introduced by human operators.

    • 4. If in the future distributed generators are to be modeled that have ramp-up and ramp-down periods that are comparable to, or longer than, the update interval of the transactive control and coordination system, then this function should be extended accordingly. (The update interval being used in some embodiments is 5 minutes. If a generator can generate full power within 30 seconds or so, the additional complexity of modeling the ramps may not be worthwhile.) The effect of the ramp periods is that the energy produced during the first event intervals, during which the ramp-up occurs, will produce less energy than PDG,L×Δt for that interval. Energy may also be produced after the final event interval while the generators ramp down. See Appendix A for some calculations that anticipate these ramp-up and ramp-down periods.


      Subappendix A: Planning for Ramp-Up and Ramp-Down Periods





This appendix offers some insights about additional considerations, steps, and calculations that should be conducted if a distributed generation resource is found to use ramp-up and/or ramp-down periods that are comparable to, or longer than, the duration of the update interval.


One additional set of inputs is used to indicate whether ramp-up and ramp-down periods are being modeled and their durations:

    • {rampon, tron, rampon, troff}—[Boolean T/F, minutes, Boolean T/F, minutes]—Input Boolean indicators that indicate whether the distributed generation resource should be ramped into service (rampon=“true”) or ramped out of service (rampoff=“true”). If either or both type of ramping is necessary, this function will linearly ramp the predicted power on over tron minutes and off over troff minutes. Default: {“false”, 0.0, “false”, 0.0}.


The formulation uses additional sub-steps given the various possible relationships between tron, troff, and the ISTn times. In certain embodiments, ISTn* is defined as the ISTn at which an event and tron are initiated. In some embodiments, ISTn** is defined as the ISTn that immediately follows the event. If it were not for troff, no power would be generated in the interval that starts at ISTn**.


The approach will be to define generation power pn at each time ISTn. Then, the average power may be determined from these points and knowledge of the ramp rates. FIG. 85 is a block diagram 9500 showing an example model of ramp up and ramp down periods.

    • First, if

      ISTn≤ISTn**, or if ISTn≥ISTn**+troff  (A1)
    • then pn=0.
    • However, if IST, falls within the interval

      ISTn*≤ISTn≤ISTn**+troff  (A2)
    • then assign pn as shown in equation A3.










p
n

=

min
(




(


IST
n

-

IST

n
*



)

·

P

DG
,
L






ramp
on

·

tr
on


+
ɛ


,

P

DG
,
L


,


(

1
-


(


IST
n

-

IST

n
**







ramp
off

·

tr
off


+
ɛ



)

·

P

DG
,
L




)





(
A3
)









    • The small positive value epsilon has been used in the denominators to avoid division by zero, which could otherwise have occurred if either the Boolean operators rampon or rampoff were false (e.g., “0”) or if either of the ramp durations tron or troff were zero.

    • Now that generation power has been determined at each time ISTn, the average power over each IST interval should be estimated, where ramping may at times reduce the estimate.

    • For any interval prior to ISTn* or after ISTn**+troff, ΔLn=0. No power is produced by the distributed generators during these intervals.

    • For any interval ISTn that coincides with or follows ISTn* and also starts before ISTn**+troff, then















0
,








p
n

=
0







p

n
+
1


=
0










0.5
*

(


p
n

+

p

n
+
1



)


,








p
n

<

P

DG
,
L









p

n
+
1


<

P

DG
,
L













Δ






L
n


=




p

n
+
1


·

(


IST

n
+
1


-

IST
n

-



tr
on

2

·

(

1
-


p
n


p

n
+
1




)



)


+


p
n

·


tr
on

2

·

(

1
-


p
n


p

n
+
1




)





IST

n
+
1


-

IST
n




,








p
n

<

P

DG
,
L









p

n
+
1


=

P

DG
,
L















p
n

·

(


IST

n
+
1


-

IST
n

-



tr
off

2

·

(

1
-


p

n
+
1



p
n



)



)


+


p

n
+
1


·


tr
off

2

·

(

1
-


p

n
+
1



p
n



)





IST

n
+
1


-

IST
n



,








p
n

=

P

DG
,
L









p

n
+
1


<

P

DG
,
L












P


DG
.

,
L


,








p
n

=

P

DG
,
L









p

n
+
1


=

P

DG
,
L












(
A4
)







6.3.12 Incentive Function—Fossil Generation (Function 3.0)

Description:


This function provides the predict fossil generation and its cost aggregated for each transmission zone.


The cost for generating fossil energy includes a fixed infrastructure cost and a variable production cost. The infrastructure cost will be based on estimated amortized fossil heneration plant infrastructure expense; while the variable production cost is mainly based on fuel cost.


Fossil generators include the following types:

    • Nuclear
    • Coal
    • Geothermal
    • Natural Gas Combined Cycle


For simplicity, the infrastructure cost will be calculated for each of the above categories of generation based on the average captipal cost provided in Subappendix B in (kaplan 2008).

















Coal:
2519 $/kw



Nuclear:
3930 $/kw



Geothermal:
3170 $/kw



Natural Gas Combined Cycle:
1165 $/kw









The infrastructure cost of a fossil generating unit can thus be estimated if its capacity is known. This cost shall then be spread over the lifetime T of the generating unit.


It is permissible for the implementer of this function to assume that T=8760 (h/year)*40 (years)*0.9(utilization factor)=315360 (hours) if better estimates are unavailable for the lifetime of fossil generating unit.


It is unlikely that any of the fossil units will surpass their stated lifetime in the short-time. However, after a generating unit exceeds its planned lifetime, a decision should be made. Thereafter, the infrastructure cost may be (a) zeroed out, (b) replaced by ongoing maintenance costs, or (c) continued as before as an ongoing replacement cost. This function should be revisited and refined when this situation will be encountered.


The generating units available to meet system load are “dispatched” (put on-line) in order of lowest variable cost. This is referred to as the “economic dispatch” of a power system's plants. For a plant that uses combustible fuels (such as coal or natural gas) a key driver of variable costs is the efficiency with which the plant converts fuel to electricity, as measured by the plant's “heat rate.” This is the fuel input in British Thermal Units (btus) used to produce one kilowatt-hour of electricity output. A lower heat rate equates with greater efficiency and lower variable costs.


A Unit Commitment and Dispatch Engine is used to produce generation MW, that can meet BPA load forecast. Generation cost is calculated based on the the heat rate curves and fuel prices.



FIG. 86 is a block diagram 8600 of a block input/output function model, which is discussed below.


Inputs:






    • Predicted price of fuel, which may be either constant or a dynamic time series, depending on the fuel.

    • Representative amortized infrastructure cost. (In some cases, the infrastructure costs will be stated as functions of many variables, including local costs of money, taxes, regulations, etc.)

    • Planned generator schedule(s), such as Federal hydro schedules.

    • Constant heat rate curves of fossil generators.

    • BPA Load Forecast.

    • Historical BPA Netmom savecases, which are used to produce generation and load profiles for any given hour of a day in a week of a specific season.

    • Amortized Infrastructure cost Cl,G

      Outputs:

    • Predicted average generated fossil power PTZ,IST For a Transmission Zone TZ for time series using the intervals of the current IST time series.

    • Corresponding predicted energy costs of generated power in each transmission zone CE,TZ,IST using the intervals of the current IST time series.

    • Predicted infrastructure cost in each transmission zone Cl,TZ,IST time series using the intervals of the current IST time series. (Infrastructure cost is not expected to be especially dynamic, but it is specified as a time series for consistency.)


      Pseudo Code Implementation:

    • 1. Process inputs from BPA;

    • 2. Complement input data with the model data from historical Netmom savecases and WECC heat rate curves;

    • 3. Solve a multi-interval economic dispatch problem which produces dispatch MW for each generator PG,t

    • 4. Calculate PTZ,IST for transmission Zone TZ and interval IST;











P

TZ
,
IST


=





G

TZ

GisFossil








P

G
,
t




,






    •  where t is covers the majority portion of an IST interval

    • 5. Compute the infrastructure cost Cl,TZ,IST corresponding to each transmission zone TZ and each IST;










C

I
,
TZ
,
IST


=




G

TZ








(





Gis





Gas









C

I
,
Gas


*

T
IST



+




Gis





Geo









C

I
,
Geo


*

T
IST



+




Gis





Coal









C

I
,
Coal


*

T
IST



+




Gis





Nuke












C

I
,
Nuke


*

T
IST




)








    • 6. Compute the energy product cost CE,TZ,IST for each transmission zone TZ and each IST;











C

TZ
,
IST


=





G

TZ


Gis





Fossil










C

G
,
t




/



T
t

*

T
IST




,






    •  where t is covers the majority portion of an IST interval





6.3.13 Load Function—Residential Time-of-Use Demand Response (Function 3.4)

Description:


This function predicts the response from an automated residential demand-response system that will respond approximately daily to help mitigate peak conditions that are evident in an incentive signal. The peak period will be based on response constraints and the TIS incentive signal. (Note that this approach is more dynamic than typical time-of-use (TOU) demand response, in which daily peak and off-peak intervals remain immutable. The peak and off-peak periods recommended by this function may be assigned differently each day according to events that will have affected the predicted TIS incentive signals.) It may be applied where programmable, communicating thermostats; smart appliances, demand-response switch units, or other assets are installed in residences and where programs are designed to have these systems respond to daily peak periods.


In some cases, this function will be used by the asset systems IF-04 (water heater control), IF-08 (thermostat load control), and LV-02 (water heater demand-response units). (This document may be useful for the determination of appropriate daily intervals, but a unique function may be used to predict the changes in elastic load from such a diverse and changing population of responsive assets.)


A first objective of this function is to establish the time periods during which the response level(s) should be called, based upon the numbers and durations and preferred durations of these periods that are permitted for each response level. The daily events and their durations are positioned to best align with the levels of the TIS incentive signal that has been predicted for the day.


The function should then predict the change in load that will result from these events having been planned. This toolkit function addresses systems that control any combination of (1) residential space heating, (2) residential electric tank water heaters, or (3) smart appliances. Relatively simple models of populations of these devices are used to predict the changed load that they will consume as they respond to these various peak periods.


Block Input/Output Function Model:


Inputs:






    • L—[dimensionless count]—number of response levels to be prescribed for this asset system. For example, an asset system that simply curtails its loads has one response level (e.g., “curtailed”), so L=1.

    • {Threshold1, Threshold2, . . . , Thresholdl, . . . , ThresholdL}—[dimensionless fraction]—typical fraction of time that each response level/should be active during a day. For example, if a system with two response levels has its highest level designed to respond during the two worst peak hours of a day, then Threshold2=2/24=0.083. If the first level may include an additional 2 hours in its peak period, then Threshold1=4/24=0.17. In this example, the system would be in its normal, non-responding condition for 1—Threshold1—Threshold2=0.75. (Through this formulation, it will be assumed that the thresholds are ordered in increasing order, from least to greatest.) (Default={1/(L+1), 2/(L+1), . . . , I/(L+1), . . . , L(L+1)})

    • {Dmin,week day,1, Dmin,weekend day,1, Dmin,holiday,1}—[time: minutes]—for each response level l, minimum time duration for which an event level l should remain in force for this day type after it has become initiated. (In some cases, this can be stated in multiples of 5, 15, 60, or 360 minutes to align with the IST interval durations.) (Default={15 minutes, 15 minutes, 15 minutes})

    • {Nmin,week day,I, Nmin,weekend day,I, Nmin,holiday,I}—[dimensionless count]—local static input LI_29—limitations on the minimum number of TOU events that may be called during the three major day types for each response level l. (Default={0, 0, 0})

    • {Nmax,week day,I, Nmax,weekend day,I, Nmax,holiday,I}—[dimension less count]—local static input LI_29—limitations on the maximum number of TOU events that may be called during the three major day types for each response level l. (Default={1, 0, 0})

    • {Dmax,week day,I, Dmax,weekend day,I, Dmax,holiday,I, Dmax event,I}—[time duration: minutes]—local static input LI_30—maximum total event duration permitted per day type and per event allowed for each event level I—constraints that have been placed on the maximum total duration of events that may endure during a day type or during an event. (In some cases, this can be stated in multiples of 5, 15, 60, or 360 minutes to align with the IST interval durations.) (Default={1440 minutes, 1440 minutes, 1440 minutes} (e.g., no limit))

    • {TIS0(t), TIS0(t−5), . . . , TIS0(t−5 k)}—[$/kWh]—recent history of transactive incentive signals (TIS) by which the statistical likelihood of various incentive levels will be assessed and updated. The TIS0 values from the TIS time series (e.g., the TIS values that correspond to IST0) from the last k five-minute updates are used. (It should be allowed that a recursive method be initiated, in which case historical TIS0 data may not be needed. If historical TIS0 is not used, system responses should initially be canceled or more conservatively applied until the recursive method has learned a meaningful statistical distribution of the TIS signals.)

    • {TIS0, TIS1, . . . , TISK−1}—[$/kWh]—current transactive incentive signal TIS for future IST intervals.

    • Pwh(t)—[average kW]—typical electrical power consumption by residential tank water heaters in this region as a function of time of day. This function may be available as a function or as a look-up table. See appendix material for an example.


      Interim Calculation Products:

    • {DIST(TIS0,min), DIST(TIS0,min+Δ$), . . . , DIST(TIS0,b), . . . }—[dimensionless]—distributions of absolute TIS0 values based on historic or monitored TIS incentive signals.

    • {Φ(TIS0,1), Φ(TIS0,2), . . . , Φ(TIS0,b), . . . , Φ(TIS0,B)}—[dimensionless fraction]—cumulative distribution of historical TIS0 values. (This will sometimes be abbreviated as Φ(b), where b is the bin that is lower bounded by TIS0,b.)


      Outputs:

    • {ACP0, ACP1, . . . , ACPK−1}—[dimensionless]—asset control plan for each future predicted interval. A standardized approach has been specified by which planned response levels may be indicated by integer values [−127,127].

    • {ΔL0, ΔL1, . . . , ΔLK−1}—[kW]—average change in power caused by the elastic behavior of this asset system for future predicted intervals. The non-zero elements of this series corresponding to non-zero elements of the asset control plan. (Positive values are used here to refer to additional power that is made available to the system by curtailed loads.)


      Pseudo Code Implementation:

    • 1. Establish/update the statistical distribution of historical TIS0 values. (This general process does not require that the distribution of TIS incentive signals is a normal distribution.)
      • a. Using available historical information and the TIS time series that becomes available to the transactive node at an update interval, create a distribution of bins b that are Δ$-wide for the available TIS0 values. (Bins of size Δ$=$0.001 are probably small enough for this function.) For each available TIS0,

        If TIS0,b≤TIS0<TIS0,b+Δ$,then set DIST(TIS0,b)=DIST(TISo0,b)+1  (1)
        • TIS0,b—[$/kWh]—lower boundary of distribution interval DIST(TIS0,b), bin b
        • TIS0,b+Δ$—[$/kWh]—upper boundary of distribution interval DIST(TIS0,b), bin b
        • DIST(TIS0,b)—[dimensionless]—a tally count of the number of times that TIS0 have fallen into the interval bin b over time. (Because the distribution will be normalized, it is equally valid to sum the durations of the intervals, resulting in a tally count of minutes.)
      • c. Using DIST(TIS0), create a normalized cumulative distribution Φ(b) as shown in equation 2. The interpretation of Φ(b) is the fraction of TIS0 that will be expected to fall in any of the bins below bin b, inclusive. By subtracting Φ(b) from 1.0, one estimates the fraction of TIS0 values that would be expected to be greater than TIS0,b+Δ$. Refer to Table 44 and FIG. 87, which is a set 8700 of plots for DIST(TIS0) and Φ(b).













Φ


(
b
)


=





bin





0


bin





b








DIST






(

TIS
0

)







bin





0


bin





B








DIST






(

TIS
0

)








(
2
)













        • Φ(b)—[dimensionless fraction in the range [0,1]]—normalized cumulative distribution of historical TIS0 values in bins 0 through b, inclusive.

        • Bin 0—[$/kWh]—bin that possesses the smallest TIS0 value that can be found in DIST(TIS0).

        • Bin B—[$/kWh]—bin that possesses the largest TIS0 value that can be found in DIST(TIS0).
















TABLE 44







Useful table for tracking the distribution of historical TIS0 values










DIST(TIS0)
ϕ(b)













Bin B




. . .




Bin b




. . .




Bin 1




Bin 0













      • A skilled implementer may choose to fit the normalized cumulative distribution Φ(b) column of Table 45 to a monotonic function that could be used hereafter instead of this lookup table.

      • DIST(TIS0) and Φ(b) may be updated whenever a new TIS0 becomes available. (One may choose to update DIST(TIS0) and Φ(b) at a time interval of his choice. Some seasonal variation in the distribution should be anticipated. Therefore, it is advised the the distribution be established representative of this month or this season.)



    • 2. Update incentive thresholds for this system of assets. This step refers to the set {Thresholdl} to establish the typical fraction of a day and TIS values for which a TOU event should be active for a given response level l.
      • The value TIS0,b in equation 3 is an acceptable threshold TISthresh,l for future TIS values and response level l if the condition of equation 3 is true. (One may interpolate to find a better threshold value.) Determine an acceptable threshold for each response level l using equation 3.

        Φ(b)≤1−Thresholdl<Φ(b+1)  (3)

    • 3. Calculate averaged TIS values from the thresholds and statistical information. The raw threshold values are not as useful as averaged TIS values for given response levels. For each response level l, calculate the average of the TIS values that are expected to fall greater than the level's threshold.














TIS
_


thresh
,
l













(


TIS

0
,
b

*

+

0.5
·
Δ$


)

·
DIST







(

TIS

0
,
b

*

)










DIST






(

TIS

0
,
b

*

)








(
4
)












      • TIS
        thresh,1—[$/kWh]—average of TIS values expected to be greater than TISthresh,1

      • TIS0,b*+0.5·Δ$—[$/kWh]—the center of any D IST(TIS0,b) bin b that holds values greater than or equal to TISthresh,1.

      • DIST(TIS0,b)—[dimensionless count]—the count of members in D IST(TIS0,b) bin b that hold values greater than or equal to TISthresh,1.



    • 4. Determine TOU event periods for this system of assets.
      • a. An initial calculation of candidate TOU periods is completed to find periods of time during which the average predicted TISn will be greater than or equal to TISthresh,1—In general, candidate TOU response periods for response level l are the sets of IST intervals from ISTn to ISTn+m (whole numbers m=0, 1, . . . ) that simultaneously maximize the left-hand side of inequality 5 while also satisfying inequality 6.


















n
*



n
*

+

m
*










TIS
n

·

(


IST

n
+
1


-

IST
n


)







n
*



n
*

+

m
*









(


IST

n
+
1


-

IST
n


)






TIS
_


thresh
,
l



,




(
5
)













        • where

          ISTn*+m*+1−ISTn*≤Dmax,1  (6)
          • n*—[dimensionless]—specific index n of the current IST intervals that both maximizes the left-hand side of inequality 5 and satisfies inequality 6 to define a TOU period for response level l.
          • m*—[dimensionless index]—whole number index that combined with n* maximizes the left-hand side of inequality 5 and satisfies inequality 6 to define a TOU period for response level l.
          • ISTn*+m*+1—[time in UTC]—ending time of the newly defined TOU period.
          • ISTn*—[time in UTC]—beginning time of the newly defined TOU period.
          • Dmax,1—[time: minutes]—relevant maximum period duration or durations for this day or event selected from the defined input set {Dmax,week day,1, Dmax,weekend day,1, Dmax,holiday,1, Dmax event,1}.

        • If more than one response level is being used (e.g., L>1), then this step will likely have defined nested response periods where the periods of response level 1 are nested within periods of response level 2, and so on. Normally, the hierarchy or priority of these nested response periods will be trivial, such that the response periods with smaller response level l trump those of greater l.

        • There are L+1 total levels. The remaining level L+1 will most often, but not necessarily, be assigned to normal operation, unmodified by the TIS.

        • Because the IST intervals gradually change from granular to coarse into the future, the function might see response levels over or under prescribed far into the future when coarse 6-hour or daylong IST intervals have been specified. These conditions should disappear as representations become finer and may be mitigated, to a degree, by the input assignments of maximum allowed TOU period durations.



      • b. Special case: The number of defined events is more than the maximum number allowed for a given day. If for any response level l and day type there have been defined a number of TOU periods and their respective n* indices within a day that exceeds the relevant limit from the defined input set {Nmax,week day,1, Nmax,weekend day,1, Nmax,holiday,1}, then those periods within the day having the least (lesser) of the magnitudes on the left-hand side of inequality 5 should be discarded.

      • c. Special case: The number of defined events is less than the minimum number allowed for a given day and its day type. If for any response level l and day type there has been defined a number of TOU periods and their respective n* indices within the day fewer than the minimum number of response periods allowed by the input set {Nmin,week day,1, Nmin,weekend day,1, Nmin,holiday,1}, then inequality 6 and inequality 7 should be relaxed somewhat as shown in inequalities 7 and 8. The corrected indices n* and m* will yield an acceptable number of event periods for this response level l and day type. The corrected indices n* and m* are those that solve inequalities 7 for the smallest positive real number δ for which the minimum allowed TOU period duration of inequality 8 is achieved.




















n
*



n
*

+

m
*










TIS
n

·

(


IST

n
+
1


-

IST
n


)







n
*



n
*

+

m
*









(


IST

n
+
1


-

IST
n


)







TIS
_


thresh
,
l


-
δ


,




(
7
)













        • where

          Dmin,1≤ISTn*+m*+1−ISTn*≤Dmax,1  (8)
          • δ—[$/kWh]—smallest positive real value for which satisfactory indices n* and m* exist.
          • Dmin,1—[time: minutes]—minimum TOU period duration allowed for this day type and response level as selected from defined inputs {Dmin,1, Dmin,2, . . . , Dmin,l, . . . , Dmin,L}.

        • One may revisit inequalities 7 and 8 until the minimum allowed numbers of events have been defined.





    • 5. Specify the prioritization of response levels. Because the TOU periods will have been assigned nested one inside another, the designer should specify the prioritization or hierarchy of the assigned response levels.
      • a. Example 1: Curtailment using one response level. One can start with one of the simplest cases. Suppose that a controlled electrical load will be curtailed during response level 1 and behave normally otherwise. The prioritization of the response levels here is trivial as shown in Table 46. (The advisory control signal column “ACS” in this table will be discussed in the next section.)












TABLE 45







Response-Level Prioritization for Curtailment Example












Response Levels
Priority





Assigned to ISTn
Assignment
Action/Outcome
ACS















1
1
Curtailed system
127





operation




none
none
Normal operation
0













      • b. Example 2: Five-level TOU battery system. As the number of response levels and complexity of the controlled asset system increases, the challenge of prioritizing the response levels increases, too. Refer to Table 47, which defines the priority of assignments to be made for a battery system that has four response levels available to it. (Those who are familiar with battery storage will correctly recognize that a battery system will have additional constraints that may be managed either implicitly or explicitly.) This example has the additional complexity from a storage system that can either increase the available power (ACS>0) or decrease the available power (ACS<0) at its transactive node.














TABLE 46







Response-Level Prioritization for a Battery


System with Five Available Response Levels










Response Levels
Priority




Assigned to ISTn
Assignment
Action/Outcome
ACS













1, 2, 3, and 4
1
Maximum Charge Bias
−127




Strategy



2, 3 and 4
2
Moderate Charge Bias
−64




Strategy



3 and 4
3
Inactive Dead Zone
0


4
4
Moderate Discharge Bias
64




Strategy



none
remaining level
Maximum Discharge Bias
127




Strategy











    • 6. Update the advisory control signal time series for this system of assets. Advisory control signals are discussed elsewhere in this application. In short, an advisory control signal should be stated for an IST interval n and will be non-zero for any interval during which a response other than normal operation is planned. Refer to Table 48 that lists the advisory control signals candidates that will typically be sent for curtailable loads and distributed generation according to the numbers of response levels available from these assets.












TABLE 47







Recommended assignable advisory control signals for curtailable


load and “dispatchable” distributed generation










Number of
Advisory Control



Response Levels
Signals ACSn














1
0
(normal)




127
(curtailed)



2
0
(normal)




64
(level 1)




127
(level 2)



3
0
(normal)




42
(level 1)




84
(level 2)




127
(level 3)










4
Etc.











    • 7. Model and predict the change in elastic load that should be expected from the controlled, responsive asset system. The output from this toolkit function into the overall algorithmic responsibilities of the transactive node (e.g., the “toolkit framework”) expects to receive a series of predicted changes in electrical load ΔLn for each IST interval n. The process or model by which this prediction is made is somewhat unique for the given asset system and its capabilities. The prediction will be affected by the planned response level (as indicated by the corresponding advisory control signal) and other information used by the model as it makes its prediction.
      • The following models are expected to be relevant to this toolkit function and are included by reference:
        • a. Electric tank water heater model. Toolkit function 2.4_Residential Event-Driven Demand Response includes details about trends for electricity consumption by residential electric tank water heaters in the Northwest. There, one will find a lookup file that may be used to predict the average power that may be curtailed by time of day for week days and weekend days. The use of the lookup table should be identical for this function as for the referenced function. Please refer to
        • b. Thermostatic space conditioning dynamic model. Toolkit function 2.4_Residential Event-Driven Demand Response also documents a dynamic state model that may be used to predict the change in energy consumed by buildings based on predicted outdoor temperature, solar insolation, and parameters through which numbers and sizes of buildings, insulation levels, and other building qualities may be represented. The thermostat model tracks a representative building interior temperature that may, in turn, be affected by modeled occupancy set points and by demand-response levels.


          Further Alternatives:





There might exist a preferable way to organize toolkit load functions according to (1) the way events are related to the TIS time series and (2) the asset system models. The present organization, in which these two elements have been combined into each toolkit function, is inefficient and uses multiple cross references and duplications.


The means by which TOU periods are specified from the TIS proved, while conceptually easy, to be relatively difficult to describe and specify. This function should be further refined as implementers learn ways to mathematically represent the process that has been described herein.


Subappendix a—Revised High-Level Pseudo Code


While the pseudo code in the function's specification remains largely correct, the interpretation of selecting the event interval having the “maximum average TIS” was open to interpretation. If strictly followed, the algorithm would select only the events having minimum duration. The following general strategy proved useful.


The following general steps were

    • 1. Parse future intervals into their local (not UTC) days. (This cannot be strictly performed because long intervals, which were aligned with UTC time, do not correctly align with midnight local time.)
    • 2. Review the history of the first day using TIS_0 values within the day. Use only the last of the historical relaxation calculations within any 5-minute update interval and discard other relaxation intervals that were overridden. Update the numbers of time-of-use events, ongoing event duration, and total event duration for the day.
    • 3. Calculate average TIS for permutations of contiguous intervals within the first and each remaining day that have an allowed duration.
    • 4. Select the permutation that gives the maximum average TIS.
    • 5. Tentatively state that the new selected interval(s), plus any prior-approved intervals, are part of the day's event(s).
    • 6. Test the set of tentatively engaged intervals. If
      • a. Total event duration is not more than the maximum allowed for day,
      • b. AND the number of events does not exceed the number allowed for the day,
      • c. AND (the event duration is less than or equal to the minimum OR the selected intervals' average TIS value is greater than or equal to a threshold),
      • d. AND (the number of events fewer than or equal to the minimum count OR the selected intervals' average TIS value is greater than or equal to a threshold),
    • Then include tentative intervals among prior-selected intervals.
    • 7. Select the permutation that gives the next maximum average TIS and go to repeat step 4.


6.3.14 Load Function—Time-of-Use Distribution System Voltage Control (Function 3.5)

Description:


This toolkit load function is similar to Toolkit Function 2.2 Event-Driven Distribution System Voltage Control, except voltage is controlled in this function according to daily on- and off-peak time-of-use periods. (“Time-of-use,” as used here is more dynamic than time-of-use demand response is currently practiced. This function dynamically determines appropriate peak and off-peak periods based on the condition of a relatively dynamic incentive signal.) This toolkit function is applicable where voltage is to be controlled at two or more levels according to the value of the TIS and constraints input by utilities and where responses of the asset have been designed to occur according to daily on- and off-peak periods.


During the strategic design of toolkit load functions, it has been observed that the functions that share time-of-use objectives are very similar, and functions that control the same type of asset system are also similar. This present function makes efficient use of this observation and incorporates similar toolkit load function objectives and text by reference.


Block Input/Output Function Model:


Inputs:


Include by reference the list of inputs in Toolkit Load Function 3.4 Residential Time-of-Use Demand Response.

    • CVRf—[dimensionless fraction]—ratio of relative percentage change in energy that will accompany a relative percentage change in voltage for a circuit or set of circuits. (Default value=0.7) (The CRV factor depends on circuit type and circuit characteristics, but it will often be unknown. A typical default value has been provided based on readily available reports, but a utility may use different and better numbers if they possess better information about their circuits.) In principle, this factor could be different for each feeder, but this formulation will assume that only one factor has been defined for the region. If multiple factors will be employed, the extension of this toolkit function will be straightforward.
    • {ΔV1, ΔV2, . . . , ΔVl, . . . , ΔVL}—[dimensionless fraction]—fractional change in nominal system voltage enacted under each response level l. These changes in voltage will normally be negative, meaning the voltage will have been decreased below its nominal set point.
    • {P0, P1, . . . , Pn, . . . , PN−1}—[kW]—predicted average nominal load during each ISTn interval for the entire region in which the distribution voltage is being controlled. The prediction is for the nominal condition Nominal, which may be, but is not necessarily, when ΔV is equal to zero. (What is desirable here is to capture the percentage changes in voltage that will occur during various transactive-control response levels. It does not especially matter whether the nominal voltage is already lowered at all times (“nominal”) for conservation purposes.) It will be presumed that Toolkit Load Function 1.0 Bulk Inelastic Load has been employed at this transactive node to predict the load for this region that is affected by distribution load control. Electrical load is normally formulated with a negative sign.


      Interim Calculation Products: Same.


      Outputs:


Same.


Pseudo Code Implementation:






    • 1. Establish/update the statistical distribution of historical TIS0 values.

    • 2. Update incentive thresholds for this system of assets.

    • 3. Calculate averaged TIS values from the thresholds and statistical information.

    • 4. Determine TOU event periods for this system of assets.

    • 5. Specify the prioritization of response levels.

    • 6. Update the advisory control signal time series for this system of assets.

    • 7. Model and predict the change in elastic load that should be expected from the controlled, responsive asset system. The output from this toolkit function into the overall algorithmic responsibilities of the transactive node (e.g., the “toolkit framework”) expects to receive a series of predicted changes in electrical load ΔLn for each IST interval n.
      • The predicted change in electrical load ΔLn for this toolkit load function is strongly influenced by the conservation voltage reduction factor CVRf. This factor is usually known imprecisely, so one may rely upon a default value.
      • The change in elastic load is zero until a TOU event occurs. During IST intervals n*, during which a TOU response period is planned for level l, the change in elastic load is predicted by equation 1. (CRVf is normally calculated from energy savings. Some might debate the way it has been applied in equation 1 to individual intervals. The factor is not perfectly applicable to short intervals, where immediate changes in load might not be representative of long-term changes in energy consumption. For this reason, the prediction from equation 1 might be somewhat conservatively made for very short intervals. The effect is probably small.)

        ΔLn*,l=CVRf·ΔV1·Pn  (1)
        • n*—[dimensionless index]—index of those IST—intervals during which a TOU period is active at response level l.
        • ΔLn*,l—[kW]—change in elastic load that has been induced by operating at response level/during IST interval n. ΔLn,l is equal to zero for n≠n*. The sign of ΔLn*,l should be positive where voltage has been reduced, thus reducing energy consumption and making more energy available to the region.
        • ΔV1—[dimensionless fraction]—fractional change in system voltage enacted by the utility under response level l.
        • Pn*—[kW]—predicted average power that would have been consumed during this IST interval n* if no TOU event were planned in this region of the distribution circuit.


          6.3.15 Load Function—Time-of-Use Distribution System Voltage Control with Load Shedding Effect (Function 3.51)


          Description:





This toolkit load function is based on Load Toolkit Function 3.5 Time-of-Use Distribution System Voltage Control, but includes the effect of concurrent shedding of customer loads (e.g. water heaters, thermostatic space conditioning, etc.) that use augmented conservation regulation. For example, this function should be used by Milton-Freewater's test case MF-02-1.2, in which time-of-use voltage reduction both earns conservation from circuit loads and triggers Grid Friendly™ water heaters to turn off.


This function relies on the approach that was formulated in toolkit functions 3.4 Residential Time-of-Use Demand Response and 3.5 Time-of-Use Distribution System Voltage Control.


Block Input/Output Function Model:


Inputs:






    • Include by reference the list of inputs in Load Toolkit Function 3.4 Residential Time-of-Use Demand Response.

    • CVRf—[dimensionless number].

    • {ΔV1, ΔV2, . . . , ΔVl, . . . , ΔVL}—[dimensionless number].

    • {P0, P1, . . . Pn, . . . , PN−1}—[kW].


      Interim Calculation Products:

    • Same.


      Outputs:

    • Same.


      Pseudo Code Implementation:

    • 1. Establish/update the statistical distribution of historical TIS0 values.

    • 2. Update incentive thresholds for this system of assets.

    • 3. Calculate averaged TIS values from the thresholds and statistical information.

    • 4. Determine TOU event periods for this system of assets.

    • 5. Specify the prioritization of response levels.

    • 6. Update the advisory control signal time series for this Time-of-Use Distribution System Voltage Control asset system.

    • 7. Model and predict the change in elastic load that should be expected from the Time-of-Use Distribution System Voltage Control asset system. The overall algorithmic framework of the transactive node (the “toolkit framework”) expects to receive a series of predicted changes in electrical load ΔLn for each IST interval n.
      • The predicted change in electrical load ΔLn for this toolkit load function is strongly influenced by the conservation voltage reduction factor CVRf, which in turn is dependent on the electrical characteristics of the system and varies with the system load. This factor is usually known imprecisely, so one rely upon a default value.
      • The change in elastic load is zero until a TOU event occurs. During IST intervals n*, during which a TOU response period is planned for level l, the change in elastic load is predicted by equation 1. (CRVf is normally calculated from energy savings. Some might debate the way it has been applied in equation 1 to individual intervals. The factor is not perfectly applicable to short intervals, where immediate changes in load might not be representative of long-term changes in energy consumption. For this reason, the prediction from equation 1 might be somewhat conservatively made for very short intervals. The effect is probably small.) (Subtracting ΔLload_n* from Pn* changes the load-dependent CVRf factor. Given the limitation of the project participants to precisely determine CVRf, the interdependency between Pn and CVRf is disregarded in equation 1.)

        ΔLn*,l=CVRf·ΔV1·(Pn*−ΔLload_n*)+ΔLload_n*  (1)
        • n*—[dimensionless index]—index of those ISTn intervals during which a TOU period is active at response level l.
        • ΔLn*,l—[kW]—change in elastic load that has been induced by reducing voltage at response level l during IST interval n. ΔLn,l is equal to zero for n≠n*. The sign of ΔLn*,l should be positive where voltage has been reduced, thus reducing energy consumption and making more energy available to the region.
        • ΔVl—[dimensionless fraction]—fractional change in system voltage enacted by the utility under response level l.
        • Pn*—[kW]—predicted average power that would have been consumed during this IST interval n* if no voltage control or load shedding event were planned in this region of the distribution circuit.
        • ΔLload_n*—[kW]—average change in power caused by the elastic behavior of customer loads in the region, where TOU voltage control is being applied, during IST interval n. ΔLload_n* is equal to zero for n≠n*. The sign of ΔLload_n* should be positive where voltage has been reduced, and is computed as shown elsewhere in this application.





EXAMPLE





    • CVRf=1 on average for a given utility feeder.

    • L=1 and ΔV1=3%=0.03.

    • IST0=midnight; TOU event scheduled to start at 7 a.m. (IST33) and end at 10 a.m. (IST36).

    • Pn is known as shown in FIG. 1 below. P33=9118 kW, P34=9260 kW, and P35=8812 kW.

    • During TOU event, 1000 water heaters will be triggered to turn off. For example—ΔLload_33=1000×mean(0.817, 0.785, 0.738, 0.713) kW=763 kW, ΔLload_34=1000×mean(0.716, 0.687, 0.672, 0.636) kW=678 kW, and ΔLload_35=1000×mean(0.615, 0.584, 0.563, 0.518) kW=570 kW.

    • Applying equation (1) above, ΔL33=1×0.03×(9118−763)+763 kW=1014 kW, ΔL34=1×0.03×(9260−678)+678 kW=935 kW, and ΔL35=1×0.03×(8812−570)+570 kW=817 kW.






FIG. 88 is an illustration 8800 of TOU voltage control concurrent with shedding water heaters.


6.3.16 Load Function—Non-Renewal Generation Time-of-Use Demand Response (Function 3.7)

Description:


This function predicts the response from a non-renewable distributed generator demand-response system that will respond approximately daily to help mitigate peak conditions that are evident in an incentive signal. The peak period will be based on response constraints and the TIS incentive signal. (Note that this approach is more dynamic than typical time-of-use (TOU) demand response, in which daily peak and off-peak intervals remain immutable. The peak and off-peak periods recommended by this function may be assigned differently each day according to events that will have affected the predicted TIS incentive signals.) This function relies on the approach that was formulated in toolkit function 3.4 Residential Time-of-Use Demand Response.


A first objective of this function is to establish the time periods during which the response level(s) should occur, based upon the numbers and durations and preferred durations of these periods that are permitted for each response level. The daily events and their durations are positioned to best align with the levels of the TIS incentive signal that has been predicted for the day.


The function should then predict the change in load that will result from these events. Specifically, what additional energy will be generated at each prescribed response level.


Block Input/Output Function Model:


Inputs:






    • m—[power per time: kW/minute]—maximum allowed linear rate of change in generated power. This value may at times limit the rate at which control changes are permitted and may thereby modify the generation power predictions. This is a strictly positive number. Default: 100 MW/minute (e.g., an essentially infinite rate of change is allowed by default).

    • L—[dimensionless count]— Default: 1.

    • {Threshold1, Threshold2, . . . , Thresholdl, . . . , ThresholdL}— [dimensionless fraction]. (Default={1/(L+1), 2/(L+1), . . . , l/(L+1), . . . , L/(L+1)})

    • {Dmin,week day,l, Dmin,weekend day,l, Dmin,holiday,l}—[time: minutes].

    • {Nmin,week day,l, Nmin,weekend day,l, Nmin,holiday,l}—[dimensionless count].

    • {Nmax,week day,l, Nmax,weekend day,l, Nmax,holiday,l}—[dimensionless count].

    • {Dmax,week day,l, Dmax,weekend day,l, Dmax,holiday,l, Dmax event,l}—[time duration: minutes].

    • {TIS0(t), TIS0(t−5), . . . , TIS0(t−5 k)}—[$/kWh].

    • {TIS0, TIS1, . . . , TISK−1}—[$/kWh].

    • {Pweekday(0), Pweekday(1), . . . , Pweekday(h), Pweekday(23)}—[power: kW]—typical baseline power that is generated during UTC hour h of a weekday day type by this distributed generation resource. Additional inputs may be used in implementations that anticipate more day types other than weekdays and weekend days. Default: {0, 0, . . . }.

    • {Pweekend(0), Pweekend(1), . . . , Pweekend(h), Pweekend(23)}—[kW]—typical baseline power that is generated during hour h of a weekend day by this distributed generation resource. Default: {0, 0, . . . }.

    • {ΔP1, ΔP2, . . . , ΔPL}—[power: kW]—Change in generation that may be anticipated at each of the L response levels, with respect to inelastic load. It is presumed that the opportunity to generate at each level may be assigned as a constant regardless of hour of day. This list may be updated seasonally for cogeneration plants that may be affected by changes in seasonal thermal heating loads.


      Interim Calculation Products:

    • {DIST(TIS0,min), DIST(TIS0,min+Δ$), . . . , DIST(TIS0,b), . . . }—[dimensionless].

    • {Φ(TIS0,1), Φ(TIS0,2), . . . , Φ(TIS0,b), . . . , Φ(TIS0,B)}—[dimensionless fraction].


      Outputs:

    • {L0, L1, . . . , LK−1}—[kW]—inelastic load (generation) from these generators. The generated power that is predicted to occur at response level 0 (e.g., no response) during each of the K IST intervals. (This baseline series will normally become reported as inelastic load. Caution should be used that its impact is not double-counted. Also, it should be assumed that none of the transitions during typical operations will be permitted to exceed the allowed rate of change.)

    • {ACS0, ACS1, . . . , ACSK−1}—[dimensionless].

    • {ΔL0, ΔL1, . . . , ΔLK−1}—[kW].


      Pseudo Code Implementation:

    • 1. Establish/update the statistical distribution of historical TIS0 values.

    • 2. Update incentive thresholds for this system of assets.

    • 3. Calculate averaged TIS values from the thresholds and statistical information.

    • 4. Determine TOU event periods for this system of assets.

    • 5. Specify the prioritization of response levels.

    • 6. Update the advisory control signal time series for this system of assets.

    • 7. Model and predict the inelastic load and the change in elastic load that should be expected from the controlled, responsive asset system.
      • a. Inelastic Load—Case where no limit is imposed on rate of change (essentially infinite rate of change)
        • The inelastic load (generation) from the distributed generator assets is the generated power that is expected to occur if the generators were unaffected by transactive control and operated normally, not in any response level. If there is no limit imposed on the rate that generation can occur, then the inelastic load is predicted simply from the hourly generation profiles for each day type, which are inputs to this toolkit function. Two day types—weekday and weekend (including holidays)—are defined, but the rule of equation 1 should be formulated for each day type that is being modeled for the given IST interval k.













L
k

=

{






P
weekday







(
h
)






or






P
weekend







(
h
)


,





if




[


IST
k

,

IST

k
+
1



)







[


h


:


00.

h

+

1


:


00


)








mean






(



P
weekday



(

h
*

)


,


P
weekend







(

h
*

)



)


,





if




[



h
*



:


00

,


h
*

+

1


:


00



)







[


IST
k

,

IST

k
+
1



)










(
1
)















          • Lk—[average power: kW]—inelastic load (generation) during interval [ISTk, ISTk+1). Default; 0.00 kW.

          • Pweekday(h)—[average power: kW]—typical weekday power generated by this resource during hour h.

          • h—[hour]—UTC clock hour at which an hour-long interval starts. The notation h* has been used to refer to a set of hours that initiate hour-long intervals that are a subset of an IST interval. The hour-long interval starting at h has been shown as [h:00,h+1:00).





      • b. Elastic Load—Case where no limit is imposed on rate of change
        • Elastic load is the predicted change in generation when compared to the unaffected inelastic load prediction. In the case where no limit has been imposed on the rate of change in generation, the magnitudes of these changes are found by simply allocating the ΔPl input values to the IST intervals having the corresponding response level l as shown in equation 2.















Δ






L
k


=

{





Δ






P
l


,





if






ACS
k


=

ACS
l







0
,



otherwise








(
2
)















          • ΔLk—[average power: kW]—change in power (generation)—the elastic load expected during the interval that begins at ISTk.

          • ΔPl—[average power: kW]—the change in power (generation) expected at times that the modeled distributed generator resource is in its response level l.

          • ACSk—Advisory control signal that has been assigned by this function during the interval that starts at ISTk.

          • ACSl—Advisory control signal that has been assigned if the modeled generator is to be at its response level l.





      • c. Inelastic and Elastic Load where a limit has been imposed on the rate of change of generated power. In the case where the rate of change of generated electric power is to be constrained, this function should keep track of the power generated at the beginning of each interval. This attainable power for the interval boundaries are at times modified by the allowed rate of change m as shown in equation 3 and FIG. 1. These are additional steps to be taken after equations 1 and 2. The power at ISTk+1, is predicted from the power at ISTk and the allowed rate of change in generated power m. (This formulation and equation 3 have a minor challenge for the determination of p0, the power at time IST0. This value should either be determined by current measurement, or it should be inferred from the prior calculation that was conducted during a prior update interval. This implies a desire for the parameter to be stored from one iteration to the next (e.g., the value pi from five minutes ago is now the best estimate of p0; each of these values refer to the same ISTtime value).)















p

k
+
1


=

{





min






(



p
k

+

m
·

(


IST

k
+
1


-

IST
k


)



,


L
k

+

Δ






L
k





)


,






if






L
k


+

Δ






L
k






p
k








max






(



p
k

-

m
·

(


IST

k
+
1


-

IST
k


)



,


L
k

+

Δ






L
k





)


,






if






L
k


+

Δ






L
k




<

p
k










(
3
)













        • pk—[power: kW]—generated power at beginning of interval ISTk.

        • m—[power per time: kW/minute]—allowed rate of change in generated power. This formulation assumes the same restrictions apply for both ramping up and down.

        • Lk—[average interval power: kW]—inelastic load during interval ISTk as was calculated in equation 1 above.

        • ΔL′k—[average interval power: kW]—elastic load during interval ISTk as was first calculated in equation 2 above.










FIG. 89 is a series 8900 of plots that show possible scenarios for changes in generation during one interval. The average elastic load dLk for the interval that starts at ISTk is then recalculated using the powers pk and pk+1 at the intervals boundaries as shown in equation 4.










Δ






L
k


=

{









p

k
+
1


·

(


IST

k
+
1


-

IST
k

-



p

k
+
1


-

p
k


m


)


+



p

k
+
1

2

-

p
k
2



2
·
m





IST

k
+
1


-

IST
k



-

L
k


,






if






p

k
+
1






p
k






and






p

k
+
1




=


L
k

+

Δ






L
k















p

k
+
1


·

(


IST

k
+
1


-

IST
k

-



p
k

-

p

k
+
1



m


)


+



p
k
2

-

p

k
+
1

2



2
·
m





IST

k
+
1


-

IST
k



-

L
k


,






if






p
k





p

k
+
1







and






p

k
+
1




=


L
k

+

Δ






L
k














p
k

+

p

k
+
1



2

-

L
k


,



otherwise








(
4
)







Steps 2-7 (and perhaps 1, too) should be iterated each update interval.


Further Alternatives:






    • 1. This function has its event times invoked by relative TIS values. For some future DG systems, there costs of operation will be more completely modeled, and the boundaries between time-of-use events will be based on absolute thresholds of the TIS signal. Additional operational inputs like actual steam load and price of fuel would be used by these future improvements to this function.





6.3.17 Incentive Function—General Infrastructure Cost (Function 4.0)

Description:


Where transactive control is applied at the device level, each device would have the opportunity to inject the impact of hardware costs (e.g., its infrastructure costs). However, where transactive control has been applied to large aggregate regions, the owner of the large aggregate transactive node may be unable or unwilling to accurately represent the impact of infrastructure costs on the delivered cost of energy. The purpose of this function, therefore, is to represent the influence of bulk infrastructure costs on the delivered cost of electrical energy where it might be impracticable to track the costs of individual infrastructure components.


The effect of this function should be to apply an offset to the calculation of the delivered cost of energy (e.g., the transactive incentive signal (TIS)). It is assumed by this function that the difference between the sum of existing resource costs and incentives, which are otherwise already represented in the TIS, and an accepted delivered cost of energy is attributable to infrastructure costs. (This assumption may be somewhat imperfect due to profit, labor costs, taxes and other impacts.)


This toolkit function may be applied at any of the transactive nodes, but it is desirable that transmission zone transactive nodes use this function to represent the bulk impact of generation and transmission infrastructure costs that might not have otherwise been included.


Negative C1 parameter outputs are to be disallowed in order to halt most occurrences of negative calculated TIS in the system.


Block Input/Output Function Model:


Inputs:


TIS0(n)—[cost/energy: default: $/kWh]—(series of real floating)—time series of the transactive control signal (TIS) at interval start time zero (IST0) at each of a series of update intervals n. (The update interval may be 5 minutes. In certain embodiments, a TIS is calculated and transmitted at least once by this transactive node at each update interval. Of the interval values within each TIS, only the first, TIS0, that refers to the nearest 5-minute interval is to be used by this function.)


TISavg—[cost/energy: default: $/kWh]—(real floating scalar)—typical, or long-term average, value of TIS0(n). This value should be observed from or analyzed from calculated TIS values at this transactive node. This value is used only during initialization of the infrastructure cost parameter Cl. The default value $0.04/kWh may be used, but doing so may introduce an initialization error that can take months to fully eliminate.


TIStarget—[cost/energy: default: $/kWh]—(real floating scalar)—accepted reference baseline for what the long-term delivered average cost of energy (e.g., the TIS) should be at this transactive node. In some cases, acceptable target TIS values have been found among energy supply costs in utilities' annual reports. Alternatively, the lowest customer costs that a utility passes along to its customers, too, might be an acceptable surrogate for the target TIS. Default: $0.05/kWh.


ΣPG—[power:default:kW]—(real floating scalar)—long-term average of the sum of power imported into and generated within the boundaries of this transactive node. This parameter is a long-term average of the denominator of the Update TIS framework function. This parameter is mostly static, but it may be updated quarterly or yearly by the owner of the transactive node. This parameter affects that rate at which the function's proportional controller tracks the infrastructure cost parameter Cl. The accuracy of this parameter is not critical. The default value 1 GW should be used only as a last resort for this parameter. This default value will virtually disable this function for most transactive nodes so that the infrastructure cost will not be tracked.


α—[dimensionless]—(real floating scalar)—factor used in the proportional controller to affect the rate at which the infrastructure cost parameter should track the TIS. Default value: 0.0001, assuming that updates occur every 5 minutes.


Outputs:


Cl—[cost/time: default units: $/h]—Parameter defined and used in Transactive Node and Toolkit Functions and Transactive Control System Data Collection. Time series of cost per time duration to be applied at defined future time intervals. In this function, this output is a correction that approximates the amortized costs of infrastructure over time. A remedial action was initiated to disallow this output parameter from becoming negative.


Pseudo Code Implementation:






    • (1) Initialize the infrastructure cost parameter C, for this transactive node. Because this function relies on an extremely slow, low-pass feedback loop, it is strongly recommended that the function's infrastructure cost parameter C, be initialized to a reasonable value. If this step is not performed, the function will eventually identify an acceptable offset that represents infrastructure costs, but it will slowly and asymptotically approach the offset over multiple months. The formulation and details of this initialization may be found in SubAppendix A.
      • Assign the initial value to the infrastructure cost parameter as shown in Equation 1.

        Cl=(TIStarget−TISavg)·ΣPG  (1)

    • (2) Replicate the initialized or updated infrastructure cost parameter into the elements of the series of values expected by the toolkit framework and publish the new series to the toolkit framework.
      • For k=0 to K, where K=56 for certain embodiments.
        • Set Cl(k)=
        • Next k
        • Publish {Cl(0), Cl(1), . . . , Cl(K)} to this transactive node's toolkit framework for this function.

    • (3) After an update interval (e.g. every 5 minutes), update the calculated infrastructure cost based on the target TIS, actual recent TIS0, typical sum of imported and generated power, and parameter a. Equation (2) can be modified to disallow negative Ck output parameters.

      Cl,n=maximum(0,Cl,n−1+α·(TIStarget−TIS0,n−1)·ΣPG)  (2)

    • (4) Loop back to step (2).


      Subappendix A: Details about Initializing and Updating Infrastructure Cost Parameter Cl





This appendix takes one through formulations on which the initialization and updating of the infrastructure cost parameter Cl output of this function is based.


Refer to the framework function by which the TIS for an interval is calculated at a transactive node, copied here as Equation A1. The numerator is a total cost, and the denominator is the sum of electrical energy that is imported into or generated within this transactive node during interval n. The resulting division yields a unit cost of energy, the TIS, which represents the delivered cost of energy at this location in the system.










TIS
n

=









a
=
1

A









C

E
,
a
,
n


·


P
^


G
,
a
,
n


·
Δ







t
n



+










b
=
1

B








C

C
,
b
,
n


·


P
^


C
,
b
,
n




+




c
=
1

C









C

I
,
c
,

.
n



·
Δ







t
n



+




d
=
1

D







C

O
,
d
,
n











a
=
1

A










P
^


G
,
a
,
n


·
Δ







t
n








(
A1
)







We assume that the costs in the numerator prior to applying this function can be lumped together as shown in Equation A2. These costs will neither affect nor be affected by this formulation.










TIS
n
old

=


Cost
n
old





a
=
1

A










P
^


G
,
a
,
n


·
Δ







t
n








(
A2
)







A term is added to both sides of Equation A2 to represent an infrastructure cost offset that had not been represented in the prior formulation. See Equation A3. The new TIStarget may be thought of a corrected version of the TIS and may be independently assigned based on long-term-average energy supply costs or other representations of the delivered cost of energy at this system location. An infrastructure term a was selected for this function because the new infrastructure costs will be modeled as being amortized evenly over time.










TIS
target

=



TIS
n
old

+

Infrastructure





Cost





Offset


=



Cost
n
old

+



C
I

·
Δ






t






a
=
1

A










P
^


G
,
a
,
n


·
Δ







t
n









(
A3
)







Equation A4 is found by subtracting Equation A2 from Equation A3. Equation A4 states a relationship between the independent reference TIStarget, calculated TIS values, the new infrastructure cost parameter Cl, and the sum of imported and generated power at this transactive node.











TIS
target

-

TIS
n
old


=


Infrastructure





Cost





Offset

=


C
I





a
=
1

A








P
^


G
,
a
,
n









(
A4
)







We rearrange Equation A4 to solve for the new infrastructure cost parameter, as shown in Equation A5.










C
I

=


(


TIS
target

-

TIS
n
old


)

·




a
=
1

A








P
^


G
,
a
,
n








(
A5
)







Equation A5 gives us insights about how to initialize the infrastructure cost parameter: Because the infrastructure cost parameter and target TIS are relatively constant, they should be compared to long-term averaged representations of the old TIS and sum of imported and generated power. Ideally, this node would be allowed to operate for months before this function is implemented so that these “typical” values could be learned. Realistically, one may have little or no prior TIS and power values to average. Some off-line analysis can be performed. Regardless, any errors during initialization will eventually be erased by the operation of the function's proportional controller.










C
I

=


(


TIS
target

-

TIS
avg
old


)

·




a
=
1

A








P
^


G
,
a
,
avg








(
A6
)







Equation A5 is also the basis for the formulation of a proportional controller by which the estimated value of Cl may be gradually improved. Equation A7 suggests how Cl may be updated from a prior version of itself and an approximation of the value from Equation A5. This is also illustrated in diagram 9000 of FIG. 90. The new parameter a determines the weight of the proportional controller and, therefore, the rate of convergence. If the time between update intervals n−1 and n is 5 minutes, then setting α=0.0001 will ensure a response time near a month, which is about right for the tracking of infrastructure costs. Because Cl varies extremely slowly, even longer update intervals (and correspondingly revised α) may be selected by implementers of this function.


Equation A7 can be modified to disallow negative Cl output parameter.










C

I
,
n


=

maxium
(

0
,


C

I
,

n
-
1



+

α
·

(


TIS
target

-

TIS

n
-
1

old


)

·




a
=
1

A








P
^


G
,
a
,
avg






)





(
A7
)







It is presumed that recent calculations of the TIS (e.g., TISn−1) will be available to this function at this node. However, it is recommended that the constant, “typical,” value for the sum of imported and generated power should be used because access to this sum may not be readily available and is not warranted by the precision used by this function.



FIG. 90 is a diagram 9000 illustrating an infrastructure cost control diagram


Figures FIG. 91 and FIG. 92 show examples of how the infrastructure cost estimate and TIS improve over time for different a parameter values using the iterative approach of Equation A7 at 5-minute intervals. In particular, FIG. 91 shows a graph 9110 illustrating the improvement of uninitialized infrastructure cost estimate for different a parameter selections assuming 5-minute update intervals. FIG. 92 shows a graph 9120 illustrating the uninitialized correction of TIS over time for different a parameter selections assuming 5-minute update intervals. In this instance, the TIS was 80% of the Target TIS at the time this function is activated.


6.3.18 Load Function—Battery Storage—Real-Time (Function 4.1)

Description:


This function is applicable to battery storage systems that respond very dynamically to the TIS and other local conditions and provide also a continuum of charge and discharge levels. (If the battery system has only a few levels of response available to it (e.g. full charge, full discharge, and inactive) then the implementer should select a time-of-use function to model the battery system's behavior.) The function will recommend the appropriate charge and discharge rate based on the system's power capacity, state-of-charge, and historical and predicted incentive signals. The implementer is able to limit the responsiveness of his system using additional preferences.


All of the load or generation by a battery system is considered elastic; none is inelastic.


An assumption is made in this present formulation that battery system inefficiency (e.g., losses and auxiliary loads) may be ignored.


Block Input/Output Function Model:


Inputs:






    • {IST0, IST1, . . . , ISTn, . . . , ISTN}—[UTC time]—current interval start time (IST) time series.

    • {TIS0, TIS1, . . . , TISn, . . . , TISN−1}—[$/kW]—transactive incentive signal (TIS) time series. Time series of predicted incentives.

    • SOC−1—[kWh]—present state of battery charge just prior to the prediction intervals of the current IST time series. This is the known starting point from which battery charge should be managed.

    • SOCmax—[kWh]—maximum state of charge that will be allowed for this battery. This function will assume this constraint is constant over time.

    • SOCmin—[kWh]—minimum state of charge that will be allowed for this battery. This function will assume this constraint is constant over time.

    • E—[kWh]—total battery energy capacity.

    • PC—[kW]—nameplate rating for the rate at which the battery system may be charged. This function will assume this constraint is constant over time.

    • Pd—[kW]—nameplate rating for the rate at which the battery system may be discharged. This function will assume this constraint is constant over time.


      Interim Calculation Products:

    • {Δt0, Δt1, . . . , Δtn, . . . , ΔtN−1}—[time: minutes]—duration of each IST interval in the current IST time series.

    • {SOC0, SOC1, . . . , SOCn, . . . , SOCN−1}—[%]—predicted state of battery charge at the end of each IST interval using the predicted charge and discharge profile.


      Outputs:

    • {ΔL1, ΔL2, . . . , ΔLn, . . . , ΔLN−1}—[kW]—predicted change in elastic load for each IST interval.

    • {S1, S2, . . . , Sn, . . . , SN−1}—[dimensionless]—advisory output signal to the battery system.


      Pseudo Code Implementation:

    • 1. Predict the power to be consumed or generated during each current IST interval (e.g., its elastic load prediction).
      • Define state relationships for the battery system as in equations 1 through 5. The batteries' state of charge at the end of intervals n are its states x.












x
=


[




x
0






x
1











x

N
-
1





]



[




SOC
0






SOC
1











SOC

N
-
1





]






(
1
)











      • The change in state Δx is equivalent to the rate of battery charge or discharge during the corresponding interval, which incidentally is also the change in elastic ΔL for the interval. (If the change in state of charge Δx is negative, this means that the battery system should have discharged some of its energy during the interval. The corresponding change in load ΔL should reduce the apparent load at this location much as would happen if load were curtailed. Ultimately, the correctness of the sign convention will depend on how the outputs of this function are to be used. If load is a generally a positive quantity, then charging of a battery is a positive load, and discharging is a negative load. This discussion contradicts the sign convention shown in Equation 2, in which a negative load sign convention is used.) The change in elastic load ΔL is an important output from this function that is expected by the Toolkit Framework.















Δ





x

=


[




Δ






x
0







Δ






x
2












Δ






x

N
-
1






]



[





-
Δ







L
0








-
Δ







L
1













-
Δ







L

N
-
1






]






(
2
)











      • Difference equation 3 is the state relationship to which this physical system should adhere.

        Δx=A·x+b  (3)







where










A


[




1

Δ






t
0





0





0






-
1


Δ






t
1






1

Δ






t
1








0


















0






-

1

Δ






t

N
-
1








1

Δ






t

N
-
1







]







and




(
4
)






b



[





-

SOC

-
1




Δ






t
0







0









0



]

.





(
5
)







One important constraint is that the rate of charge or discharge in each interval n should be bounded by the physical capabilities of the conversion equipment. The bounds are the physical nameplate ratings of the conversion equipment.

Pc≤Δxn≤Pd  (6)

      • The state of charge itself is often constrained at each interval to lie within prescribed boundaries. Only a fraction of a battery system's total energy capacity may be available to use.

        SOCmin≤xn≤SOCmax  (7)

        The augmented cost function is the sum of incentive costs received (and paid) at times that the battery system is being charged or discharged. One strives to maximize this cost function. Doing so would mean that the battery system is doing its best to charge while incentives are low and discharge while incentives are high in a way that will maximize its overall incentive.

        J=ƒ0(x,Δt,TIS)+ƒ1(x)+ƒ2(x)  (8)
      • where ƒ0 is the main economic incentive to be maximized over the duration that a TIS signal has been defined.










f
0

=


-




n
=
0


N
-
1








Δ







x
n

·

TIS
n

·
Δ







t
n




=

-




n
=
0


N
-
1











m
=
0


M
-
1










(



a

n
,
m


·

x
m


+

b
n


)

·

TIS
n

·
Δ








t
n

.










(
9
)











      • The constraints on state of charge may be incorporated via penalty function ƒ1, thus avoiding the use of additional Lagrangian terms and allowing a more direct solution approach. This penalty function creates more accurate solutions for successive integers k=1, 2, . . . .















f
1

=

-




n
=
0


N
-
1









(



(


x
n

-

SOC
max


)

+

(


x
n

-

SOC
min


)




SOC
max

-

SOC
min



)


2

k








(
10
)











      • Similarly, the constraints on the rates of charge or discharge may be imposed by penalty function ƒ2 as is shown in equation 11. Again, this penalty function will enforce a more accurate solution for successive integers k=1, 2, . . . .















f
2

=


-




n
=
0


N
-
1









(



(


Δ






x
n


-

P
c


)

+

(


Δ






x
n


-

P
d


)




P
c

-

P
d



)


2

k




=

-




n
=
0


N
-
1











m
=
0


M
-
1









(



2
·

(



a

n
,
m


·

x
m


+

b
n


)


-

P
c

-

P
d




P
c

-

P
d



)


2

k










(
11
)











      • Now that the augmented cost function J has been entirely stated in respect to the states x, one may use the necessary condition of equation 12 to solve for state of charge xn at the end of each interval n.


















J




x
n



=
0

,


for





n

-
0

,
1
,
2
,





,

N
-
1





(
12
)








In turn, predicted charge rate may also be calculated from equation 3 resulting in the important predicted elastic change in load at each interval ΔLn.


Using constraint integer k=1, equation 12 give us N equations which may be solved for xn in respect to xn−1 and xn+1 as shown in equation 13. (The terms of b vector have been omitted from this formulation. This general equation 13 is set up for solution by either relaxation or by matrix inversion, where starting and ending states are assumed to be known. Hammerstrom has solved these equations in MS Excel using relaxation and iterations. The solution is somewhat soft, allowing minor violations of the stated constraints to persist. These constraint violations could be reduced by using larger k values or by using altogether other, sharper penalty functions. It is easiest to assert the final value xN in this formulation. A proper optimization would set the final state at SOCmin, however, which is unrealistic and undesirable. A preferred method is to set SOCN equal to starting initial value SOC−1, in which case the relaxation solution is fully specified.)









0
=




J




x
n



=


-

(




a

n
,
n


·

TIS
n

·
Δ







t
n


+



a


n
+
1

,
n


·

TIS

n
+
1


·
Δ







t

n
+
1




)


-


8


(


SOC
max

-

SOC
min


)

2


·

x
n


+


4
·

(


SOC
max

+

SOC
min


)




(


SOC
max

-

SOC
min


)

2


-



8
·

(


a

n
,
n

2

+

a


n
+
1

,
n

2


)




(


P
c

-

P
d


)

2


·

x
n


-



8
·

a

n
,

n
-
1



·

a

n
,
n





(


P
c

-

P
d


)

2


·

x

n
-
1



-



8
·

a


n
+
1

,

n
+
1



·

a


n
+
1

,
n





(


P
c

-

P
d


)

2


·

x

n
+
1



+



4
·

(


P
d

+

P
c


)




(


a

n
,
n


+

a


n
+
1

,
n



)




(


P
c

-

P
d


)

2








(
13
)









    • 2. Generate the advisory signal time series prediction for the battery system. After the desired charge rate Δx vector has been solved, the charge rates should be stated as changes in elastic load ΔLn at each interval n using the relationship of equation 2. One should also state an advisory control signal S that will be sent to the battery system. The advisory control signal has been specified as an integer and may be calculated as the closest integer in the assignment shown in equation 14.













S
n



{







-
127

·
Δ







x
n


,





Δ






x
n



0








-
127

·


Δ






x
n



P
d



,





Δ






x
n


<
0









(
14
)








Further Alternatives:

    • 1. Additional steps could probably be taken to make the application of this strategy more formulaic for a specific implementer.
    • 2. A completed example would probably be useful in an appendix to this toolkit function.
    • 3. Sharper penalty functions may be used to make the solution more accurate and which would permit fewer soft constraint violations.
    • 4. The formulation should probably be normalized. The weights of the functions f0, f1, and f2 do not enforce a true economic optimization when the impact of f0 may be less at times than that of the constraint functions.
    • 5. While the constraints on state of charge and charge rate have been stated as constants, these constraints may, in fact, be functions of time and should be thought of as an allowed operational envelope. Letting these envelopes be more dynamic does not break this formulation, but it does lead to the formulation being tweaked to state constraints as functions of time intervals n.
    • 6. Implementation may wish to specify a dead zone which has not yet been accommodated in this formulation.


6.3.19 Incentive Function—Transmission Flowgate (Function 5.1)

Description:


This function is to predict the MW flow and the cost of of a transmission flowgate for each interval start times {ISTn} (e.g., n=0, 1, . . . , 56) used by the toolkit framework. A transmission flowgate is potentially congested transmission corridor defined between two transmission zones. A flowgate may consists of one of more than more transmission devices, such as high voltage AC/DC overhead lines and/or transformers.


With a given network topology, generation shift factors (SF) to a specific flowgate can be calculated by a network analysis application. Flowgates are modeled as linear inequality constraints using these shift factors in the Economic Dispatch (ED) Linear Programming problem. When a flowgate constraint is binding at its reliability flow limit, generators can be be redispatched “out-of-merit” according to their shift factors to the flowgate, in order to relieve the congestion. Such redispatch will lead to non-zero operational cost to a binding flowgate (aka shadow price of a constraint in Linear Programming). The physical meaning of the cost of a flowgate is the cost saving with one addition MW added to the limit of flowgate, which will increase one MW generation (cheaper) from the sending end of the flowgate and decrease one MW generation (more expensive) from the receiving end of the flowgate.



FIG. 93 is a diagram 9330 of an exemplary block input/output function model, which is discussed below.


Inputs:






    • Predicted price of fuel, which may be either constant or a dynamic time series, depending on the fuel.

    • Representative amortized infrastructure cost. (In some cases, the infrastructure costs will be stated as functions of many variables, including local costs of money, taxes, regulations, etc.)

    • Planned generator schedule(s), such as Federal hydro schedules.

    • Constant heat rate curves of fossil generators.

    • BPA Load Forecast.

    • Historical BPA Netmom savecases, which are used to produce generation and load profiles for any given hour of a day in a week of a specific season.

    • WECC Flowgate definition


      Outputs:

    • Predicted flowgate flow PFG,IST For a Transmission Flowgate FG for time series using the intervals of the current IST time series.

    • Corresponding predicted costs of each binding Flowgate CFG,IST using the intervals of the current IST time series. If a flowgate is not congested (non-binding) in a particular interval, its cost will be zero.


      Pseudo Code Implementation:

    • 1. Process inputs from BPA;

    • 2. Complement input data with the model data from historical Netmom savecases and WECC heat rate curves;

    • 3. Solve a multi-interval economic dispatch problem which produces MW flow PFG,t and shadow price based cost CFG,t for each flowgate FG at each scheduling interval t

    • 4. Calculate PFG,IST for transmission Flowgate FG and interval IST;
      • PFG,IST=PFG,t where t is covers the majority portion of an IST interval

    • 5. Compute the operational cost CFG,IST for each transmission flowgate FG and each IST interval;
      • CFG,IST=CFG,t/Tt*TlST where t is covers the majority portion of an IST interval





6.3.20 Incentive Function—Equipment and Line Constraints (Function 5.2)

Description:


Discourage consumption of energy downstream from constrained distribution equipment, including distribution lines.


Applies to transactive nodes that are in a position to mitigate their constraints by increasing the delivered cost of energy to downstream transactive nodes.


Intended to be used where constraints may be correlated to specific equipment. Does not apply to transmission flowgates.


Block Input/Output Function Model:


Inputs:


Predicted capacity to which this function applies.


Function which estimates the cost impacts of exceeding the capacity constraint.


Outputs:


Predicted capacity cost time series CC and corresponding capacity time series PC.


6.3.21 Incentive Function—BPA Demand Charges (Function 7.1)
DESCRIPTION

This function predicts the impact of demand charges that the Bonneville Power Administration (BPA) will apply to its customer utilities according to interpretation of its intricate Tiered Rate Methodology (TRM). The TRM explains how BPA's demand charges are to be allocated to its customer utilities at the conclusion of each month. However, since the transactive control and coordination system is predictive, the demand charge impacts of the methodology should be predicted instead. This function can, at best, estimate the demand charge impacts from the TRM.


Many components of the TRM duplicate energy costs that will already be represented in the transactive incentive signal (TIS) by electrically upstream locations. Generally, transactive control applies energy costs at the points where electrical energy is generated and fed into the electrical power grid. These influences should not be duplicated or double-counted. Therefore, this function should only insert the unique demand charge impacts from the TRM that apply specifically to the utilities. This may be achieved by applying upward pressure to the TIS—by adding, to the TIS computation, the product of the pair of capacity cost CC and average power capacity PC—during and around a time interval when the transactive feedback signal (TFS) predicts the occurrence of a peak that exceeds the highest peak that has already been recorded during the time elapsed for the calendar month prior to the start time (e.g., IST0) of the TFS. If the increased TIS, in turn, applies enough downward pressure on the TFS, the predicted peak may be lowered enough to prevent any additional demand charge.


Normally, an electric utility would be the entity to apply this function. This function applies to a “utility” transactive node or to the transactive node that represents the perspective of an electric utility.


Block Input/Output Function Model:


Inputs:






    • HLH—[number of hours]—Heavy Load Hour for every month of the year. The daily HLH periods are defined by the North American Electric Reliability Corporation (NERC), but should be updated yearly or whenever there is a change.

    • Cdemand—[$/kW]—BPA demand rate for every month for two years, as approved by Federal Energy Regulatory Commission (FERC) and published by BPA at the beginning of every other fiscal year (starting in October). This is to be updated every other year in this function or whenever there is a change.

    • CDQ—[kW]—Contract Demand Quantity for every month of the year, as computed yearly by BPA for each of the customer/utility. This is to be updated yearly in this function or whenever there is a change.

    • WT1-HLH,m0—[kWh]—planned Tier 1 HLH energy for the present month m when this function is employed for the very first time; this is an initial condition.

    • WT1-HLH,m+1—[kWh]—planned Tier 1 HLH energy for the upcoming month m+1. Since the transactive control and coordination system provides predictions for a 4-day horizon, this should be made available to this function at least 4 days prior to the start of an upcoming month.

    • PnonFed_fix (optional)—[kW]—monthly fixed non-Federal power capacity that is planned by or contracted to a customer. This may include Tier 2 power capacity, Secondary Credit Service, Super Peak Credit, and any other energy resources that qualify as fixed non-Federal. This is to be updated whenever there is a change in the planned or contracted power capacity.

    • PnonFed_var (optional)—[kW]— monthly variable non-Federal power capacity that is available to a customer. An example is small-scale renewables resources, which may be considered as negative loads. Due to the variability of such resources, their power outputs will have to be predicted, for each of IST intervals, to be used in this function. PnonFed_var may be set to zero if it is small (≤5%) compared to PnonFed_fix.

    • TFSn—[kW]—Transactive Feedback Signal, which is available within the transactive node framework, where, for example, n=0, 1, . . . , 55. The TFS is only to be used when it represents the total load for the customer's service territory. If that is not the case, the customer should use a secondary source for the prediction of its total utility load.

    • ISTn—Present time series interval start times used by the toolkit framework, where, for example, n=0, 1, . . . , 56. (In some embodiments, there is no prediction to correspond with ISTn—for n=56. This last IST is simply used to make it clear when the final interval concludes.)

    • K—dimensionless—scaling factor (a constant) by which the effect of the demand charge on the TIS may be scaled. This is to be set to 1.0 until it becomes clear that it will be used.


      Interim Calculation Products:

    • aHLH—[kW]—average monthly Tier 1 load served during the HLH of the month.

    • PSCS-HLH (optional)—[kW]—average monthly SCS load served during the HLH of the month.

    • Pth—[kW]—threshold power capacity above which demand charge may be incurred.

    • P′demand—[kW]—Demand amount/capacity at a given point in a month. This is updated every time a higher demand capacity is recorded. At the end of the month, this should be the same as the usual demand amount—also defined as the Demand Charge Billing Determinant—which is used to compute the customer's demand charge for the month.

    • A—[kWh]—average energy above Pth during an interval where and surrounding where PC (defined below) exceeds CSP′.





Outputs:

    • PC,n—[kW]—average power capacity, corresponding to ISTn.
    • CC,n—[$/kW]—capacity costs, corresponding to ISTn.


      Pseudo Code Implementation:
    • 1. Convert power capacities in units kW, if necessary.
    • 2. Convert energy values in units kWh, if necessary.
    • 3. Convert demand rates in units $/kW, if necessary.
      • Denote present month by m and upcoming month by m+1.
    • 4. Initializations:

      P′demand,m=0  (1)
      P′demand,m+1=0  (2)
      WTI-HLH,m=WTI-HLH,m0  (3)
    • 5. Computations:















a





H





L






H
m


=


W



T





1

-
HLH

,
m



H





L






H
m








(
4
)












a





H





L






H

m
+
1



=


W



T





1

-
HLH

,

m
+
1




H





L






G

m
+
1









(
5
)












P

th
,
m
,
n


=


a





H





L






H
m


+

C





D






Q
m


+

P

nonFed_fix
,
m


+

P

nonFed_var
,
n








(
6
)







P

th
,

m
+
1

,
n


=


a





H





L






H

m
+
1



+

C





D






Q

m
+
1



+

P

nonFed_fix
,

m
+
1



+

P

nonFed_var
,

m
+
1

,
n







(
7
)











for







n
=
0

,
1
,





,


55


:







P

C
,
n



=

{





max


(

0
,


T





F






S
n


-

P

th
,
m
,
n




)


,





if





n


m







max


(

0
,


T





F






S
n


-

P

th
,

m
+
1

,
n




)


,





if





n



m
+
1













(
8
)











for











n


m


:







n

demand
,
m




=

{




n
,





if






max


(

P

C
,
n


)



>

P

demand
,
m








Ø
,




otherwise
,











(
9
)









    •  where Ø represents the null set.

















for










n


m
+

1


:







n

demand
,

m
+
1




+

{




n
,





if






max


(

P

C
,
n


)



>

P

demand
,

m
+
1









Ø
,



otherwise











(
10
)











if








n

demand
,
m




Ø


:







l
m



=

{


n





surrounding





and





including






n

demand
,
m








s
.
t
.





P

C
,
n




>
0

}











if








n

demand
,

m
+
1





Ø


:







l

m
+
1




=

{


n





surrounding





and





including






n

demand
,

m
+
1









s
.
t
.





P

C
,
n




>
0

}







(
11
)











for











n



{


l
m



l

m
+
1



}



:







A
n



=


P

C
,
n


×

(


I





S






T

n
+
1



-

I





S






T
n



)








(
12
)











for







n
=
0

,
1
,





,


55


:







C

C
,
n



=

{






C

demand
,
m


×

(


A
n





i


l
m





A
i



)

×
K

,





if





n



l
m









C

demand
,

m
+
1



×

(


A
n





i


l

m
+
1






A
i



)

×
K

,





if





n



l

m
+
1








0
,



otherwise











(
13
)











      • For the next iteration:

        if PC,0>Pdemand,m:Pdemand,m=PC,0  (14)
        Pdemand,m+1=PC,ndemand,m+1  (15)



    • 6. At the start of a month:

      Pdemand,m=0  (16)
      Pdemand,m+1=0  (17)
      WTI-HLH,m=WTI-HLH,m+1  (18)

    • 7. Repeat computations under point 5.


      Exaggerated Example for One Iteration at a Given Time:






FIG. 94 is a graph 9400 illustrating an example for one iteration at a given time.

ndemand,m=4 and ndemand,m+1=14(assuming PC,14=max(PC,n) for n∈m+1)
lm={2,3,4,5} and lm+1={14}
PC,2=TFS2−Pth,m,2
CC,2=Cdemand,m×[A2/(A2+A3+A4+As)]×K
PC,3=TFS3−Pth,m,3
CC,3=Cdemand,m×[A3/(A2+A3+A4+A5)]×K
PC,4=TFS4−Pth,m,4
CC,4=Cdemand,m×[A4/(A2+A3+A4+A5)]×K
PC,5=TFS5−Pth,m,5
CC,5=Cdemand,m×[A5/(A2+A3+A4+A5)]×K
PC,10=TFS10−Pth,m,10
CC,10=0
PC,14=TFS14−Pth,m+1,14
CC,14=Cdemand,m+1×[A14/A14K=Cdemand,m+1×K

    • For the next iteration, Pdemand,m=0 and Pdemand,m+1=PC,14.


6.3.22 Incentive Function—BPA Demand Charges (Function 7.1.1)

Description:


An evaluation of prior function 7.1 BPA Demand Charges was carried out. This evaluation determined that the function was not recognizing meaningful events in the presence of real load data (precisely, transactive feedback signals (TFS) data). While the inputs specified for this present function 7.1.1 have not changed from those in function 7.1, the pseudo code algorithm has been significantly simplified and has been shown through simulation to properly identify new demand peaks and their cost impacts.


This function predicts the impact of demand charges that the Bonneville Power Administration (BPA) will apply to its customer utilities according to interpretation of its intricate Tiered Rate Methodology (TRM). The TRM explains how BPA's demand charges are to be allocated to its customer utilities at the conclusion of each month. However, since the transactive control and coordination system is predictive, the demand charge impacts of the methodology should be predicted instead. This function can, at best, estimate the demand charge impacts from the TRM.


Many components of the TRM duplicate energy costs that will already be represented in the transactive incentive signal (TIS) by electrically upstream locations. Generally, transactive control applies energy costs at the points where electrical energy is generated and fed into the electrical power grid. These influences should not be duplicated or double-counted. Therefore, this function should only insert the unique demand charge impacts from the TRM that apply specifically to the utilities. This may be achieved by applying upward pressure to the TIS—by adding, to the TIS computation, the product of the pair of capacity cost CC and incremental demand PC—as the transactive feedback signal (TFS) predicts the occurrence of a peak that exceeds the highest peak that has already been recorded during the present calendar month prior to the start time (e.g., IST0) of the TFS. If the increased TIS, in turn, induces responsive assets to curtail load, the predicted peak may be lowered enough to prevent any additional demand charge.


Normally, an electric utility would be the entity to apply this function. This function applies to a “utility” transactive node or to the transactive node that represents the perspective of an electric utility.


Block Input/Output Function Model:


Inputs:






    • HLH—[number of hours]—Heavy Load Hour for every month of the year. The daily HLH periods are defined by the North American Electric Reliability Corporation (NERC), but should be updated yearly or whenever there is a change. Presently, HLH hours are defined between 6:00 am and 10:00 pm (prevailing Pacific Time) on days excluding Sundays and recognized holidays.

    • Cdemand—[$/kW]—BPA demand rate for every month for two years, as approved by Federal Energy Regulatory Commission (FERC) and published by BPA at the beginning of every other fiscal year (starting in October). This is to be updated every other year in this function or whenever there is a change.

    • CDQ—[kW]—Contract Demand Quantity for every month of the year, as computed yearly by BPA for each of the customer/utility. This is to be updated yearly in this function or whenever there is a change.

    • WT1-HLH,m0—[kWh]—planned Tier 1 HLH energy for the present month m when this function is employed for the very first time; this is an initial condition.

    • WT1-HLH,m+1—[kWh]—planned Tier 1 HLH energy for the upcoming month m+1. Since the transactive control and coordination system provides predictions for a 4-day horizon, this should be made available to this function at least 4 days prior to the start of an upcoming month.

    • PnonFed_fix (optional)—[kW]—monthly fixed non-Federal power capacity that is planned by or contracted to a customer. This may include Tier 2 power capacity, Secondary Credit Service, Super Peak Credit, and any other energy resources that qualify as fixed non-Federal. This is to be updated whenever there is a change in the planned or contracted power capacity.

    • PnonFed_var (optional)—[kW]— monthly variable non-Federal power capacity that is available to a customer. An example is small-scale renewables resources, which may be considered as negative loads. Due to the variability of such resources, their power outputs will have to be predicted, for each of IST intervals, to be used in this function. PnonFed_var may be set to zero if it is small (≤5%) compared to PnonFed_fix.

    • TFSn—[kW]—Transactive Feedback Signal, which is available within the transactive node framework, where, for example, n=0, 1, . . . , 55. The TFS is only to be used when it represents the total load for the customer's service territory. If that is not the case, the customer should use a secondary source for the prediction of its total utility load.

    • ISTn—Present time series interval start times used by the toolkit framework, where, for example, n=0, 1, . . . , 56. (There is no prediction to correspond with ISTn for n=56. This last IST is simply used to make it clear when the final interval concludes.)

    • K—dimensionless—scaling factor (a constant) by which the effect of the demand charge on the TIS may be scaled. This is to be set to 1.0 until it becomes clear that it will be used.


      Interim Calculation Products:

    • aHLH—[kW]—average monthly Tier 1 load served during the HLH of the month. This value is determined by dividing a month's HLH energy by the number of HLH hours that month.

    • Pth—[kW]—threshold power capacity above which demand charge may be incurred. This value is determined as a sum of other stated BPA threshold values.

    • Pdemand—[kW]—Demand amount/capacity at a given point in a month. This is updated every time a higher demand capacity is recorded. At the end of the month, this should be the same as the usual demand amount—also defined as the Demand Charge Billing Determinant—which is used to compute the customer's demand charge for the month.

    • P′demand—[kW]—Like—demand, but refers to the predicted future.


      Outputs:

    • PC,n—[kW]—average power capacity, corresponding to ISTn. This output parameter increases each time a new monthly peak demand occurs or is predicted to occur. By the end of a month, the sum of PC,1 parameters should be very close to the determinant upon which BPA demand charges are calculated.

    • CC,n—[$/kW]—capacity costs, corresponding to ISTn. This parameter is defined nonzero at times PC,n is nonzero. The magnitude of CC,n is constant during a month, equal to the rate that is to be charged by BPA that month for utility demand.


      Pseudo Code Implementation:

    • a. Beginning of New Month:
      • Set m=0
      • Initialize Pth(ThisMonth), Cdemand(ThisMonth), Pth(NextMonth), Cdemand(NextMonth) based on tabular contract information from the energy supplier for the present and next month
      • Set Pdemand(m)=Pth(ThisMonth)

    • b. Beginning of Update Interval:
      • Set m=m+1

    • c. Beginning of Relaxation Update:
      • Set P′demand(ThisMonth)=Odemand(m−1)
      • Set P′demand(NextMonth)=Pth(NextMonth)
      • Calculate TFSn(m) for n={0, 2, . . . 55}
      • For n=0 to 55



















If TFSn(m) > P′demand(ThisMonth)



 AND ISTn(m) is in ThisMonth



 AND ISTn(m) is within HLH hours, then



  Set P_cn(m) = TFSn(m) − P′demand(ThisMonth)



  Set C_cn(m) = Cdemand(ThisMonth)



  Set P′demand(ThisMonth) = TFSn(m)



Elseif TFSn(m) > P′demand (NextMonth)



 AND ISTn(m) is in NextMonth



 AND ISTn(m) is within HLH hours, then



  Set P_cn(m) = TFSn(m) − P′demand(NextMonth)



  Set C_cn(m) = Cdemand(NextMonth)



  Set P′demand(NextMonth) = TFSn(m)



Else



  Set P_cn(m) = 0



  Set C_cn(m) = 0



Next n











    • d. On next relaxation update (e.g., IST0=IST1(m,0) does not change, but a new calculation ID is in effect)
      • Go to (c)

    • e. On next update interval (e.g., IST0=IST0(m+1) will advance 5 minutes and a new calculation ID is in effect),
      • If IST0(m) is in HLH hours, then



















  Set Pdemand(m) = maximum(Pdemand(m−1), TFS0(m))



Else



  Set Pdemand(m) = Pdemand(m−1)



End













      • Go to (b)



    • f. On next month (e.g., IST0 is in NextMonth and a new calculation ID is in effect)
      • Go to (a)












APPENDIX A





Mat lab code that implements the stated pseudo code for


TKRS_7.1.1















% Note that function lnHLH(a) has been created. It returns a Boolean true


% if time a is within HLH hours and is not a Sunday. The format of


% variable “a” is presumed to be ‘yyyy-mm-ddTHH:MM:SS’.


NextMonth = ThisMonth+1;


% (a) Beginning of New Month


PeakMonthDemand(1) = DemandThreshold(ThisMonth);


P_c(1,1:56) = zeros(1,56);


C_c(1,1:56) = zeros(1,56);


for m = 2:length(TFS(:,1))


 % (b) Beginning of Update Interval


 if ~strcmp(IST(m,1),IST(m−1,1)) && lnHLH(IST(m−1,1)) % An


 update interval


  PeakMonthDemand(m) = max(PeakMonthDemand(m−1),


 TFS(m−1,1));


 else % A relaxation update


  PeakMonthDemand(m) = PeakMonthDemand(m−1);


 end


 % (c) Beginning of Relaxation Update:


 PeakFutureDemand(ThisMonth) = PeakMonthDemand(m−1);


 PeakFutureDemand(NextMonth) = DemandThreshold(NextMonth);


 % TFS was already read from project data


 for n = 1:56 % NOTE: No distinction made yet for month


   if TFS(m,n) > PeakFutureDemand(ThisMonth) ...


      && datenum(IST(m,n),DF) >=


      datenum([num2str(DemandRateYear(ThisMonth)),‘-


      ’,num2str(DemandRateMonth(ThisMonth)),‘−01’]) ...


      && datenum(IST(m,n),DF) <


      datenum([num2str(DemandRateYear(NextMonth)),‘-


      ’,num2str(DemandRateMonth(NextMonth)),‘−01’]) ...


    && lnHLH(IST(m,n));


    P_c(m,n) = TFS(m,n) − PeakFutureDemand(ThisMonth);


    C_c(m,n) = DemandCharge(ThisMonth);


    PeakFutureDemand(ThisMonth) = TFS(m,n);


   elseif TFS(m,n) > PeakFutureDemand(NextMonth) ...


      && datenum(IST(m,n),DF) >=


      datenum([num2str(DemandRateYear(NextMonth)),‘-


      ’,num2str(DemandRateMonth(NextMonth)),‘−01’]) ...


    && lnHLH(IST(m,n));


    P_c(m,n) = TFS(m,n) − PeakFutureDemand(NextMonth);


    C_c(m,n) = DemandCharge(NextMonth);


    PeakFutureDemand(NextMonth) = TFS(m,n);


   else


    P_c(m,n) = 0;


    C_c(m,n) = 0;


   end


 end


end;


************************************************************


*************************************


function [YorN] = lnHLH(T)


% lnHLH--Logic check true if in HLH hours


DT = ‘yyyy-mm-ddTHH:MM:SS’;


T = datenum(T,DT) − (7 + (datenum(T,DT) > datenum(2012,11,4,10,0,


0)))/24;


YorN = weekday(T) ~= 1 ...


 && datevec(T)*[0 0 0 1 0 0]’ >= 6 && datevec(T)*[0 0 0 1 0 0]’ < 22;










FIG. 95 is a diagram 9500 that shows the specified strategy during a month.


6.3.23 Incentive Function—Seattle City Light Demand Charges (Function 7.2)

Description:


This function predicts the impacts of energy and demand charges that the Seattle City Light (SCL) will apply to the University of Washington (UW). SCL supplies the UW with most of its electricity.


This function applies the impact of its energy charges to the weighted cost for the total energy imported into UW's energy territory from the TZ02 (West Washington) transmission zone transactive node. This is achieved through the addition of an “other” cost component CO to the numerator of the TIS computation at UW's transactive node.


Although the SCL's demand charges are to be allocated at the conclusion of each month, since the transactive control and coordination system is predictive, the demand charge impacts should be predicted instead. This function can, at best, estimate the demand charge impacts. UW expects to minimize its monthly SCL demand changes by using this function to apply upward pressure to its TIS when its transactive feedback signal (TFS) predicts the occurrence of a peak in its load. This is achieved by adding the product of the pair of capacity cost CC and average power capacity PC to the numerator of its TIS computation whenever its TFS exceeds the highest peak that has already been recorded during the time elapsed for the calendar month prior to the start time (e.g., IST0). The product CC—PC thus represents the incremental demand charge that UW would incur if a new peak were to happen. If the increased TIS, in turn, applies enough downward pressure on the TFS (e.g. through load curtailment), the predicted peak may be lowered enough to prevent any additional demand charge. It should be noted that, because the SCL demand charges apply to the maximum demand during the month, the charges can only be minimized and not completely eliminated. This function is to be applied at UW's transactive node.


Block Input/Output Function Model:


Inputs:






    • Cenergy_peak—[$/kWh]—SCL peak energy rate. This peak energy rate is to be updated whenever there is a change. This rate applies to energy used between six (6:00) a.m. and ten (10:00) p.m., Monday through Saturday, excluding major holidays. (Major holidays excluded from the peak period are New Year's Day, Memorial Day, Independence Day, Thanksgiving Day, and Christmas Day.) Note that Sunday is considered as part of the off-peak period. This rate is $0.0638/kWh in one example.

    • Cenergy_offpeak—[$/kWh]—SCL off-peak energy rate. This off-peak energy rate is to be updated whenever there is a change. This rate applies to energy used during times other than the peak period. This rate is $0.0432/kWh in one example.

    • Cdemand_peak—[$/kW]—SCL peak demand rate. This peak demand rate is to be updated whenever there is a change. This rate applies to kW of maximum demand Pmax_peak during the peak period. This rate is $0.98/kW in one example.

    • Cdemand_offpeak—[$/kW]—SCL off-peak demand rate. This off-peak demand rate is to be updated whenever there is a change. This rate applies to kW of maximum demand Pmax_offpeak in excess of Pmax_peak during times other than the peak period. In other words, this off-peak demand rate applies only if Pmax_offpeak>Pmax_peak and applies only to the difference Pmax_offpeak−Pmax_peak. This rate is $0.26/kW in one example.

    • {Ppeak1, Ppeak2, . . . , Ppeak12}—[kW]—monthly peak load for every month of the most recent elapsed year. This is to be updated at the beginning of a year if more recent data become available.

    • K—dimensionless—scaling factor (a constant) by which the effect of the demand charge on the TIS may be scaled. This is to be set to 1.0 until it becomes clear that it will be used.

    • TFSn—[kW]—Transactive Feedback Signal, which is available within the transactive node framework, corresponding to the nth interval, where, for example, n=0, 1, . . . , 55. The TFS is only to be used if it represents the total UW's demand from SCL.

    • ISTn—Present time series interval start times used by the toolkit framework. (There is no prediction to correspond with IST56. This last IST is simply used to make it clear when the final interval concludes.)

    • TFSTZ02,n—[kW]—Transactive Feedback Signal from transmission zone transactive node TZ02, representing the average power imported into UW's service territory during the nth interval.


      Interim Calculation Products:

    • Pmax_peak—[kW]—Maximum demand during the peak period.

    • Pmax_offpeak—[kW]—Maximum demand during the off-peak period.

    • hpeak—[number of hours]—Number of hours in one continuous peak period.

    • hoffpeak—[number of hours]—Number of hours in one continuous off-peak period.

    • δpeak—[$/kWh]—Adjustment to the weighted cost of imported energy, due to the impact of SCL energy charges, during peak period.

    • δoffpeak—[$/kWh]—Adjustment to the weighted cost of imported energy, due to the impact of SCL energy charges, during off-peak period.


      Outputs:

    • C0,n—[$]—Other cost representing SCL's energy charge impact, corresponding to the nth interval.

    • CC,n—[$/kW]—Capacity cost corresponding to the nth interval.

    • PC,n—[kW]—Average power capacity corresponding to the nth interval.


      Pseudo Code Implementation:

      n,CO,n=(x·δpeak+y·δoffpeak)·TFSTZ02,n·Δtn  (4)

    • where

      x=portion/fraction of n lying within lpeak
      y=portion/fraction of n lying within loffpeak  (5)
      and
      Δtn=ISTn+1−ISTn  (6)

    • 1. Compute Pc,n*:

      n,PC,n=max(0,TFSn−Pmax_peak)  (7)

    • 2. Compute CC,n:














n

,


C

C
,
n


=

{





K
·

(


x
·

C
demand_peak


+

y
·

C
demand_offpeak



)


,





if





T





F






S
n


>

P
max_offpeak

>

P
max_peak








K
·
x
·

C
demand_peak


,





if





T





F






S
n


>

P
max_peak



P
max_offpeak







0
,



otherwise









(
8
)











      • where x and y are as defined in equation (5) above.

      • 3. For the next iteration:















P
max_peak

=

{





T





F






S
0


,





if






(






T





F






S
0


>

P
max_peak


)




(

n
=

0


l
peak



)








P
max_peak

,



otherwise








(
9
)







P
max_offpeak

=

{





T





F






S
0


,





if






(


T





F






S
0


>

P
max_offpeak


)




(

n
=

0


l
offpeak



)








P
max_offpeak

,



otherwise








(
10
)











      • 4. Repeat, starting from point 6.







Example





    • hpeak=16 hoffpeak=8

    • Cenergy_peak=$0.0638/kWh Cenergy_offpeak=$0.0432/kWh

    • δpeak=$0.0069/kWh δoffpeak=−$0.0137/kWh

    • δdemand_peak=$0.98/kW Cdemand_offpeak=$0.26/kW

    • K=1.0

    • Pmax_peak=Pmax_offpeak=min (Ppeak1, Ppeak2, . . . , Ppeak12)×90%=40000 kW×90%=36000 kW




























Δtn
x
y
TFSn
TFSTZ02,n
TISTZ02,n
CO,n
PC,n
CC,n
TISn


n
ISTn
[h]
[%]
[%]
[kW]
[kW]
[$/kWh]
[$]
[kW]
[$/kW]
[$/kWh]


























0
9/1/10
1/12
0
100
31225
31225
0.0569
−35.74
0
0.00
0.0432



0:00












1
9/1/10
1/12
0
100
31200
31200
0.0569
−35.71
0
0.00
0.0432



0:05












2
9/1/10
1/12
0
100
31199
31199
0.0569
−35.71
0
0.00
0.0432



0:10












3
9/1/10
1/12
0
100
31192
31192
0.0569
−35.70
0
0.00
0.0432



0:15












4
9/1/10
1/12
0
100
31199
31199
0.0569
−35.71
0
0.00
0.0432



0:20












5
9/1/10
1/12
0
100
31195
31195
0.0569
−35.70
0
0.00
0.0432



0:25












6
9/1/10
1/12
0
100
31192
31192
0.0569
−35.70
0
0.00
0.0432



0:30












7
9/1/10
1/12
0
100
31090
31090
0.0569
−35.58
0
0.00
0.0432



0:35












8
9/1/10
1/12
0
100
31100
31100
0.0569
−35.59
0
0.00
0.0432



0:40












9
9/1/10
1/12
0
100
31112
31112
0.0569
−35.61
0
0.00
0.0432



0:45












10
9/1/10
1/12
0
100
31090
31090
0.0569
−35.58
0
0.00
0.0432



0:50












11
9/1/10
1/12
0
100
31000
31000
0.0569
−35.48
0
0.00
0.0432



0:55












12
9/1/10
¼
0
100
30960
30960
0.0569
−106.30
0
0.00
0.0432



1:00












13
9/1/10
¼
0
100
31000
31000
0.0569
−106.43
0
0.00
0.0432



1:15












14
9/1/10
¼
0
100
30936
30936
0.0569
−106.21
0
0.00
0.0432



1:30












15
9/1/10
¼
0
100
30904
30904
0.0569
−106.10
0
0.00
0.0432



1:45












16
9/1/10
¼
0
100
30880
30880
0.0569
−106.02
0
0.00
0.0432



2:00












17
9/1/10
¼
0
100
30784
30784
0.0569
−105.69
0
0.00
0.0432



2:15












18
9/1/10
¼
0
100
30880
30880
0.0569
−106.02
0
0.00
0.0432



2:30












19
9/1/10
¼
0
100
30848
30848
0.0569
−105.91
0
0.00
0.0432



2:45












20
9/1/10
¼
0
100
30816
30816
0.0569
−105.80
0
0.00
0.0432



3:00












21
9/1/10
¼
0
100
30776
30776
0.0569
−105.66
0
0.00
0.0432



3:15












22
9/1/10
¼
0
100
30760
30760
0.0569
−105.61
0
0.00
0.0432



3:30












23
9/1/10
¼
0
100
30672
30672
0.0569
−105.31
0
0.00
0.0432



3:45












24
9/1/10
¼
0
100
30672
30672
0.0569
−105.31
0
0.00
0.0432



4:00












25
9/1/10
¼
0
100
30768
30768
0.0569
−105.64
0
0.00
0.0432



4:15












26
9/1/10
¼
0
100
30760
30760
0.0569
−105.61
0
0.00
0.0432



4:30












27
9/1/10
¼
0
100
30872
30872
0.0569
−105.99
0
0.00
0.0432



4:45












28
9/1/10
¼
0
100
31016
31016
0.0569
−106.49
0
0.00
0.0432



5:00












29
9/1/10
¼
0
100
31584
31584
0.0569
−108.44
0
0.00
0.0432



5:15












30
9/1/10
¼
0
100
31848
31848
0.0569
−109.34
0
0.00
0.0432



5:30












31
9/1/10
¼
0
100
32072
32072
0.0569
−110.11
0
0.00
0.0432



5:45












32
9/1/10
1
100
0
32986
32986
0.0569
226.50
0
0.00
0.0638



6:00












33
9/1/10
1
100
0
34300
34300
0.0569
235.53
0
0.00
0.0638



7:00












34
9/1/10
1
100
0
35476
35476
0.0569
243.60
0
0.00
0.0638



8:00












35
9/1/10
1
100
0
36876
36876
0.0569
253.22
876
0.98
0.0870



9:00












36
9/1/10
1
100
0
38084
38084
0.0569
261.51
2084
0.98
0.1174



10:00 












37
9/1/10
1
100
0
38750
38750
0.0569
266.08
2750
0.98
0.1333



11:00 












38
9/1/10
1
100
0
39536
39536
0.0569
271.48
3536
0.98
0.1514



12:00 












39
9/1/10
1
100
0
39618
39618
0.0569
272.04
3618
0.98
0.1533



13:00 












40
9/1/10
1
100
0
39962
39962
0.0569
274.41
3962
0.98
0.1609



14:00 












41
9/1/10
1
100
0
40140
40140
0.0569
275.63
4140
0.98
0.1648



15:00 












42
9/1/10
1
100
0
39682
39682
0.0569
272.48
3682
0.98
0.1547



16:00 












43
9/1/10
1
100
0
38194
38194
0.0569
262.27
2194
0.98
0.1201



17:00 












44
9/1/10
1
100
0
36804
36804
0.0569
252.72
804
0.98
0.0852



18:00 












45
9/1/10
1
100
0
35284
35284
0.0569
242.28
0
0.00
0.0638



19:00 












46
9/1/10
1
100
0
34742
34742
0.0569
238.56
0
0.00
0.0638



20:00 












47
9/1/10
1
100
0
33852
33852
0.0569
232.45
0
0.00
0.0638



21:00 












48
9/1/10
1
0
100
32612
32612
0.0569
−447.87
0
0.00
0.0432



22:00 












49
9/1/10
1
0
100
31578
31578
0.0569
−433.67
0
0.00
0.0432



23:00 












50
9/2/10
6
0
100
30497
30497
0.0569
−2512.98
0
0.00
0.0432



0:00












51
9/2/10
6
100
0
35836
35836
0.0569
1476.46
0
0.00
0.0638



6:00












52
9/2/10
6
100
0
40813
40813
0.0569
1681.51
4813
0.98
0.0830



12:00 












53
9/2/10
6
67
33
34919
34919
0.0569
0.00
0
0.00
0.0569



18:00 












54
9/3/10
24 
67
33
36143
36143
0.0569
0.00
143
0.65
0.0570



0:00












5
9/4/10
24 
67
33
31816
31816
0.0569
0.00
0
0.00
0.0569



0:00









For the next iteration, Pmax_peak=36000 kW and Pmax_offpeak=36000 kW.


In the above table, TFSTz02=TFS, but some mismatch should be expected in reality. TISTZ02 is not required as an input to this function. It is simply being used in this example for the computation of TIS. It is shown as constant here, but is more like to have some variation in reality. TIS is neither an output of or input to this function, but is given in this example to show the impacts of both SCL energy and demand charges. In certain embodiments, TIS can be computed as follows:







T





I






S
n


=



T





I







S


TZ





02

,
n


·
T






F







S


TZ





02

,
n


·
Δ







t
n


+


C

C
,
n


·

P

C
,
n



+

C

O
,
n




T





F







S


TZ





02

,
n


·
Δ







t
n







6.3.24 Incentive Function—Spot Market Impacts (Function 8.1)

Description:


This function is to be used by a utility that wishes to mitigate the impacts that it will likely incur in spot markets. This function modifies the transactive incentive signal so that the utility's resources may help the utility respond to its participation in the spot market.


Refer to FIG. 96 is a graph 9600 illustrating power operations concepts, that will be useful as some basic components of a utilities' power mix are addressed. For utilities that trade on the spot market, the cost of procured energy is the sum of costs from these following components:


Base load—large blocks of constant capacity that will have been procured far in advance of the day on which it will be used.


Term trading—procurement of coarsely shaped energy supply far in advance of the day on which it will be used.


Pre-scheduled trading—procurement of well-shaped energy supply that should be settled no later than the morning before the day on which the energy will be used.


Spot market trading—procurement of “real-time” energy needs that should be settled just shortly before the beginning of the hour in which the energy will be used. The purpose of this trading is to obtain an accurate, final balance between forecasted load and energy resources. The energy traded on a spot market is among the most expensive energy resources in a utility's resource mix. Surplus energy may be sold in the spot market. A spot market usually addresses hourly periods, but a trend has begun to shorten the intervals to 30 minutes or even shorter.


The transactive signals calculated at a transactive node will have incorporated the costs and energy from base load, term, and some of pre-scheduled energy resources that will be known from published schedules. However, the resources procured from “real-time” spot market trading may not be predictable far in advance. Furthermore, the strategies and trades may not be revealed by traders due to regulations and the business sensitivity of this information.


This function specifies two mechanisms by which the impacts of spot market trading should influence the transactive incentive signal:

    • 1. Cost of energy procured on the spot market. As for any energy resource, the cost of energy procured on the spot market will have an impact on the delivered cost of energy commensurate with the fraction of total load that this energy represents. A transactive node should predict the energy that it will procure on the spot market and the cost of that energy. Normally, this prediction will become more accurate as an affected hour draws near. This effect produces energy terms CE and PG into the algorithmic framework at a transactive node. Because only a small fraction of a transactive node's forecasted load is supplied by spot market trading, the influence of the cost of energy procured on the spot market will also be relatively small. (For example, if the average unit cost of other resources is $10/MWh and the spot market unit cost is $50/MWh for 5% of the total forecasted load, the resulting weighted unit cost is $12/MWh.)
      • The calculation of a TIS is performed presently by summing the costs and quantities of imported or generated energy, not of exported or consumed energy. Therefore, the cost of any energy that is sold (e.g., that will be exported) in a spot market has no impact on the TIS.
    • 2. An additional incentive from the utility to incentivize responsive assets to respond to the relative cost of energy on the spot market. From a utility's perspective, its customers should defer energy consumption from times at which spot market energy is expensive to times at which it is inexpensive. This statement is true both at times that energy should be purchase and sold on the spot market. Therefore, another incentive component can be used to induce a utility's customers to respond to the relative cost of energy on the spot market.
      • This incentive should create no net change in the delivered cost of energy over long periods of time; for each hour that it disincentivizes consumption it should create an hour during which it incentivizes consumption to a similar degree. Because the outcome of this incentive should be a benefit (or cost) for an hourly block of time, this function will assert that the infrastructure cost term Ci (units: $/h) should be used to represent this incentive.


        Block Input/Output Function Model:


        Inputs:
    • {P(h0−1), P(h0−2), . . . , P(h0−i), . . . , P(h0−I)}—[kW]—historical time series of traded capacity for recent spot market trading hours h0−i
    • {C(h0−1), C(h0−2), . . . , C(h0−i), . . . , C(h0−I)}—[$/kWh]—historical time series of unit energy cost from prior recent prior spot market trading at hours h−1, h−2, etc.
    • {P(h0), P(h0+1), . . . P(h0+i), . . . , P(h0+I)}—[kW]—predicted hourly capacity shortfall or surplus for each hour of the next four days (e.g., the predicted time horizon of the transactive signals), to the degree that such shortfalls and surpluses may be known. Where this input cannot be known, trends will be used. Where this input is known, it may be used to improve the trending predictions.
    • {C(h0), C(h0+1), . . . , C(h0+i), . . . , C(h0+I)}—[$/kWh]—predicted hourly unit cost of energy that may be purchased in the spot market for each hour of the next four days (e.g., the predicted time horizon of the transactive signals), to the degree that such shortfalls and surpluses may be known. Where this input cannot be known, trends will be used. Where this input is known, it may be used to improve the trending predictions.
    • K—dimensionless—scaling parameter (a constant) by which effect of utility incentive on Cl may be scaled.


      Interim Calculation Products:
    • Ctrend,all—[$/kWh]—average historical spot market unit energy cost
    • |P|ave—[kW]—average magnitude of historical procured (or sold) spot market capacity
    • {Ctrend,1, Ctrend,2, . . . , Ctrend,h, . . . , Ctrend,24)—[$/KWh]—trended spot market unit energy cost by hour of day
    • {Ptrend,1, Ptrend,2, . . . , Ptrend,h, . . . , Ptrend,24}—[kW]—trended procured (or sold) spot market capacity by hour of day


      Outputs:
    • {PG,0, PG,1, . . . , PG,n, . . . , PG,N}—[kW]—predicted average power that is predicted to be purchased or sold during each ISTn interval of the current IST series. (The sign convention should apply a positive number to sold capacity and negative number to purchased capacity.) (In certain embodiments, there will be 56 IST intervals.)
    • CE,0, CE,1, . . . ,CE,n, . . . , CE,N}—[$/kWh]—predicted unit energy cost of energy that is predicted to be purchased or sold on the spot market during each ISTn interval of the current IST series
    • {Cl,0, Cl,1, . . . , Ct,n, . . . , CE,N}—[$/h]—predicted hourly incentive applied to induce customers to track relative spot market pricing for each interval n.


      Pseudo Code Implementation:
    • 1. Convert available historical and predicted power capacities into the units kW.
    • 2. Convert available historical and predicted unit energy costs into the units $/kWh.
    • 3. Calculate or update the average historical spot market unit energy cost (e.g., its trend)










C

trend
,
all


=


1
H






i
=
1

H



C


(


h
0

-
i

)








(
1
)











      • Ctrend,all—[$/kWh]—average historical spot market unit energy cost for all hours of the day

      • H—dimensionless—total number of historic hours used in this calculation

      • C(h0−i)—[$/kWh]—spot market unit price of energy observed from historic hour h0−i.



    • In subsequent updates, this value may be updated each hour by applying the following filter to the prior calculation result: (The number 168 is the number of hours in a week. This number sets the dynamics with which the average spot market price will be tracked.)













C

trend
,
all


=



167
·

C

trend
,
all
,
old



+

C


(

h
0

)



168





(
2
)











      • Ctrend,all,old—[$/kWh]—the representation of the average spot market price that has incorporated spot market prices prior to C(h0). This is the prior value Ctrend,all that existed before this update.



    • 4. Calculate or update the average magnitude of historical spot market capacity (e.g., its trend)















P


ave

=


1
H






i
=
1

H





P


(


h
o

-
i

)










(
3
)











      • |P|ave—[kW]— average magnitude of historical spot market capacity for energy that has been procured or sold for all hours of the day

      • H—dimensionless—total number of historic hours used in this calculation

      • |P(h0-i)|—[kW]— magnitude of spot market capacity procured or sold in historic hour h0−i.



    • In subsequent updates, this value may be updated each hour by applying the following filter to the prior calculation result. (The number 168 is the number of hours in a week. This number sets the dynamics with which the average spot market capacity purchased or sold will be tracked.):
















P


ave

=



167
·



P



ave
,
old



+



P


(

h
0

)





168


,




(
4
)











      • |P(h0)|—[kW]—the magnitude of the next spot market capacity to become known

      • |P|ave,old—[kW]—the average spot market capacity that has incorporated spot market capacities procured or sold prior to |P(h0)|.



    • 5. Calculate or update trends for hour-by-hour spot market unit energy cost that may be used if better predictions are not known. For each hour of the day h, estimate the recent average spot market unit cost of energy. If a utility possesses better means to make these predictions, then such predictions should replace trend information as it becomes available.













C

trend
,
h


=


1
D






d
=
1

D




C
h



(


d
0

-
d

)








(
5
)











      • Ctrend,h—[[$/kWh]—average spot market unit cost of energy for the last D recent days. At least seven days should be used.

      • D—[dimensionless]—number of days included in the average trend

      • Ch(d0−d)—[$/kWh]—the spot market unit energy price for hour of day h recorded d days prior to the present index day d0.



    • Successive updates may be accomplished using the following filter that has a response time of about 1 week.













C

trend
,
h


=



6
·

C

trend
,
h
,
old



+


C
h



(

d
0

)



7





(
6
)











      • Ctrend,h,old—[$/kWh]—prior value of Ctrend,h that will become displaced by this update.



    • 6. Calculate or update trends for hour-by-hour spot market capacity purchased or sold that may be used if better predictions are not known. If a utility possesses better means to make these predictions, then such predictions should replace trend information as it becomes available.













P

trend
,
h


=


1
D






d
=
1

D




P
h



(


d
o

-
d

)








(
7
)











      • Ptrend,h—[kW]—average spot market capacity that is procured or sold during hour of day h in the recent history of this transactive node.

      • D—[dimensionless]—number of days included in the average trend

      • Ph(d0−d)—[kW]— the spot market capacity procured or sold for hour of day h recorded d days prior to the present index day d0.



    • Successive updates may be accomplished using the following filter that has a response time of about 1 week.













P

trend
,
h


=



6
·

P

trend
,
h
,
old



+


P
h



(

h
0

)



7





(
8
)











      • Ptrend,h,old—[ kW]— prior value of Ptrend,h that will become displaced by this update.



    • 7. Update the allocation of predicted spot market capacity to the IST intervals and make this prediction available as an output of this function into the transactive node's algorithmic toolkit framework.















P

G
,
n


=

P

trend
,
h



,




when








I





S






T
n



h









1

b
-
a







h
=
a

b



P

trend
,
h




,




when







h


I





S






T
n







(
9
)











      • PG,n—[kW]—Energy term parameter output to toolkit algorithmic framework for the interval corresponding to interval ISTn.



    • 8. Update the allocation of predicted spot market unit cost of energy to the IST intervals and make this prediction available as an output of this function into the transactive node's algorithmic toolkit framework.















C

E
,
n


=

C

trend
,
h



,




when








I





S






T
n



h









1

b
-
a







h
=
a

b



C

trend
,
h




,




when







h


I





S






T
n







(
10
)











      • CE,n—[$/kWh]—energy cost parameter output to toolkit algorithmis framework for the interval corresponding to ISTn.



    • 9. Calculate or update the additional incentive.

      Cl,h=K·|Ptrend,all|·(C(h)−Ctrend,all)  (11)
      • Cl,h—[$/h]—an incentive for future hour h. The future time horizon should be at least as long as that of the current IST interval set (about 4 days)
      • K—dimensionless—scaling parameter. Set this parameter to 1.0 until it becomes clear that it will be used.
      • |Pave,all|—[kW]—the absolute value of the average capacity that is traded by this utility in the spot market based on prior history
      • C(h)—[$/kWh]—the best present prediction of the spot market unit energy cost during future hour h. This will often have been estimated from the trended value for this hour of the day, but it may be replaced by better predictions, if such prediction are available.
      • Cave,all—[$/kWh]—the average spot market unit cost of energy based on prior history.

    • 10. Allocate the incentive to IST intervals. Now that the incentive has been predicted on an hour-by-hour basis, this incentive should be allocated to the set of IST intervals. Two cases should be considered. Where hour an interval ISTn lies inside hour h, the incentive is simply assigned to the interval ISTn. However, if the interval ISTn is longer than an hour and hour h lies within ISTn, then the incentive for interval ISTn should be stated as the average of the incentives for the hours h that lie within ISTn.















C

I
,
n


=

C

I
,
h



,




when








I





S






T
n



h










1





hour


b
-
a







h
=
a

b



C

I
,
h




,




when







h


I





S






T
n







(
12
)











      • Cl.n—[$/h]—incentive to be applied during future interval ISTn

      • Cl,h—[$/h]—hourly incentive for hour h that was calculated in equation (X) above

      • (b−a)—[h]—number of hours included in interval ISTn starting from hour a and ending hour b.








FIG. 96 is a graph 9600 illustrating power operations concepts.


6.3.25 Incentive Function—Non-Transactive Imported Energy (Function 1.1)

Description:


This function addresses the importation of electrical energy from outside a transactive node from entities that are not themselves transactive nodes—are not participants in this transactive control and coordination system. This function should be applied at transactive nodes that are scheduled to receive bulk electrical energy from outside the boundaries of the transactive control and coordination system. The California-Oregon Intertie is an example of such a connection that could potentially import energy into a transactive control and coordination system.


It is challenging to generalize this function because the non-transactive sources of imported energy are diverse. However, the energy predicted to flow to or from sources will typically have been scheduled by balancing authorities and other entities that are responsible to negotiate the flow of electrical power to and from the sources. Usually, wholesale market forces determine the cost of the scheduled energy, although such costs may not be promptly known from indices or other records and should therefore be predicted from past trends. Therefore, this function is simply represented as a translation of the scheduled energy and its corresponding predicted energy costs into the parameters of the toolkit framework.



FIG. 97 is a diagram 10700 of an exemplary block input/output function model.


Pseudo Code Implementation:






    • 1. Procure a current power exchange schedule for the exchange that is being modeled. This schedule should predict the energy to be exchanged for at least the next three days if it is to be useful for the entire predicted future of transactive signals. Some of these schedules will be found to be published daily or even less frequently.

    • 2. Procure the corresponding index or other documentation of market price (cost) for the exchanged energy. For much of the power exchanged in the Northwest, the price (cost) may only be known a day later from published indices. The energy price (cost) should therefore be predicted from trends or from an informed simulation.

    • 3. If necessary; restate the scheduled power from step #1 in units of average power, as will be used for parameter PG (default units: average kW) in the toolkit framework.

    • 4. If necessary, restate the price (cost) from step #2 in units of unit energy cost, as will be used for parameter CE (default units; $/kWh) in the toolkit framework. (At this point in the algorithm, the product will be useful, but it will be stated still using the intervals from the original exchange schedule.)

    • 5. Interpolate the values CE′ and PG′ to recast their intervals according to the current set of interval start times (IST) that should have been calculated by the transactive node. A library of interpolation functions may evolve to perform such interpolations, but the basic approach should be to interpolate the average power PG and cost of energy included in each IST interval CE as is shown in these equations below. “Included duration” is the part of a scheduled interval that resides within a given IST interval.





















P
G

=




total





energy


I





S





T





duration









=







IST





duration





(

included





duration

)



(

scheduled





power

)




I





S





T





duration









(

1.1

a

)










C
E

=




(

total





energy





cost

)


total





energy








=







IST





duration





(

scheduling





cost

)

·

(

included





duration

)

·

P
scheduled







IST





duration





(

included





duration

)

·

P
scheduled











(

1.1

b

)







PG—Series of average power energy terms expected by the toolkit framework (example units: average kW). Series members correspond to IST intervals.


CE—Series of energy cost terms expected by the toolkit framework (example units: $/kWh). Series members correspond to IST intervals.


Total energy—Interim calculation of total energy that is exchanged over the duration of a given IST interval (example units: kWh).


Included duration—The fractional part of a schedule interval that also lies within a given IST interval (example units: seconds).


IST duration—The duration of a given IST interval (example units: seconds). In some embodiments, IST intervals are 5 minutes, 15 minutes, 1 hour, 6 hours, or 1 day long.


Scheduled cost—The index or market price that corresponds to the energy exchanged during a given scheduled interval (example units: $/kWh). This cost may be obtained through an informed simulation based on historical data and trends.


Scheduled power—The average power scheduled to be exchanged during a given schedule interval (example units: kW).


6.4 Appendix D—Example Formulation of Distributed Relative Power Flow

Introduction


Distributed control typically uses tools to assess effects of actions by distributed calculation. The challenge has been to predict power flow to and from neighbor nodes. When generation or loads change at the present node, it may be impossible to allocate such change among the power flow to and from neighbors without global knowledge.


Additionally, embodiments discussed herein might have ramifications for even centralized solvers as possible solution accelerator. Further, parallel calculations are enabled and global management of power angle becomes unnecessary.


Further, some embodiments exhibit iterative improvement of the solution occurs over time.


Discussion


The example method introduced below is formulated for distributed transactive control, where decisions are made independently at distributed locations to respond to an incentive signal. The impacts of these decisions on power flow are desirably predicted, which is presently challenging to do with conventional power flow formulations.


The example method is “relative” in that the objective of a node is to locate itself among neighbor nodes while assuming that the vector positions of those nodes do not change during an iteration. In this example, each node considers its own vector state location to be its system reference.


A node does not necessarily have to know its neighbor's state. In fact, there is not necessarily any system reference by which a node could make such an assessment. The relative vector state of a neighbor may be adequately inferred by receiving from that neighbor its anticipated complex power flow between it and the present node. It is not necessary even that the neighbors perfectly agree on the impedance of the transmission corridor between them.


A node's performance using this example method may be configured to improve over time with learning. Eventually, a node is able to test its prediction as the predicted time (or interval) occurs and passes.


The method is an embodiment of a Newton-Raphson relaxation method. The number of iterations of this method versus conventional power flow approaches will vary from implementation to implementation. Overrelaxation and other acceleration methods may be applicable. The power error can be used to assess status of the solution, or can assess ongoing dynamic system flux where the process is allowed to track updates to predicted states in “real time.”


Example Embodiment



  • 1. Receive neighbors' predicted real and reactive flow estimates for iteration k. Power P0,n is to be exported to neighboring node n; reactive power C0,n is to be exported to neighboring node n. The basic node equations that will be used in the formulation are:











P
0

=



P

0
,
Gen


-

P

0
,
Load



=




n
=
1





P

0
,
n








Eq
.




1







Q
0

=



Q

0
,
Gen


-

Q

0
,
Load



=




n
=
1

N



Q

0
,
n








Eq
.




2







  • 2. Calculate the real and reactive power errors based on neighbors' estimated real and reactive power exchange that they have provided and any updated estimates of generation and load at this node:











Δ





P



=
.




P

0
,
Gen


-

P

0
,
Load


-




n
=
1





P

0
,
n








Eq
.




3







Δ





Q



=
.




Q

0
,
Gen


-

Q

0
,
Load


-




n
=
1

N



Q

0
,
n








Eq
.




4







  • 3. Use real and reactive flow and knowledge of corridor impedance to solve for and update the voltages and relative angles of each neighbor. Use the best present estimate of this node's voltage V0 for this iteration k and the power P0,n and reactive power Q0,n reported by interacting neighbor nodes. Note that the voltages and power angles of neighboring nodes are inferred from their reports of how much real and reactive power they intend to import or export. Neighbors need not perfectly agree on their relative voltages and angles in order for this approach to work. As derived in the appendix:











V
n

=


(


V
0

-



Q

0
,
n




X

0
,
n




V
0



)


cos


(


tan

-
1




(



P

0
,
n




X

0
,
n





V
0
2

-


Q

0
,
n




X

0
,
n





)


)







Eq
.




5








δ
0

-

δ
n


=


tan

-
1




(



P

0
,
n




X

0
,
n





V
0
2

-


Q

0
,
n




X

0
,
n





)






Eq
.




6







  • 4. Update Jacobian elements for this node's voltage and angle using the updated state variables from this iteration k. The state variables are the relative angles between this node and its neighbors, the voltages of neighbor nodes, and the voltage of this node. For this formulation, one can assume values of δn and Vn are held constant during the iteration. Such differentials can be calculated that will allow expansion of the power errors in terms of the voltage and angle of this node only, as will be accomplished in the next steps.











dP

dV
0


=




n
=
1

N





V
n


X

0
,
n





sin


(


δ
0

-

δ
n


)








Eq
.




7







dP


0


=




n
=
1

N






V
0



V
n



X

0
,
n





cos


(


δ
0

-

δ
n


)








Eq
.




8







dQ

dV
0


=




n
=
1

N




1

X

0
,
n





[


2


V
0


-


V
n



cos


(


δ
0

-

δ
n


)




]







Eq
.




9







dQ


0


=




n
=
1

N






V
0



V
n



X

0
,
n





sin


(


δ
0

-

δ
n


)








Eq
.




10









    • Derivations of Eqs. 7-8 can be found in the appendix. Note that the values calculated for Eq. 8 and Eq. 9 are much larger and more influential than those calculated in Eq. 7 and Eq. 10. Consequently, the calculation can be accelerated by using only these two components, thus decoupling the real and reactive components of power flow. Alternatively, the system can be established to manage only real power or only reactive power (separate control mechanisms).



  • 5. Calculate voltage change and angle change of this node only. These two unknowns are solvable from power and reactive power equations and a first linear expansion with respect to changes in the voltage ΔV0 and angle Δδ0. Because this is a relative formulation, a solution is found for the new conditions of this node that will solve the real and reactive power errors. The result will be an updated voltage for this node. The angle will later be discarded and is not a state (the angle of this node is defined as the reference), but the resulting angle help us allocate changes in power flow among the powers being exchanged with neighbors.











Δ





P

=





n
=
1

N





dP

0
,
n



d






δ
0



·

Δδ
0



+




n
=
1

N






dP

0
,
n



dV
0


·
Δ







V
0








Eq
.




11









    • By substitution:













Δ





P

=





n
=
1

N






V
0



V
n



X

0
,
n






cos


(


δ
0

-

δ
n


)


·

Δδ
0




+




n
=
1

N





V
n


X

0
,
n






sin


(


δ
0

-

δ
n


)


·
Δ







V
0








Eq
.




12












Δ





Q

=





n
=
1

N





dQ

0
,
n




0


·

Δδ
0



+




n
=
1

N






dQ

0
,
n



dV
0


·
Δ







V
0









Eq
.




13









    • By substitution:













Δ





Q

=





n
=
1

N






V
0



V
n



X

0
,
n






sin


(


δ
0

-

δ
n


)


·

Δδ
0




+




n
=
1

N






1

X

0
,
n





[


2


V
0


-


V
n



cos


(


δ
0

-

δ
n


)




]


·
Δ







V
0








Eq
.




14









    • Finish updating the state variables at this node using the changes that were calculated using Eq. 12 and Eq.14.

      δ0(k+1)=δ0(k)+Δδ0  Eq. 15
      V0(k+1)=V0(k)+ΔV0  Eq. 16



  • 6. Use the updated voltage state and temporary angle for this node to calculate refine the estimate of real and reactive power to be exchanged with neighbors. (The change in angle may be used to modify the relative angle states, but doing so is not necessary.)

















P

0
,
n




(

k
+
1

)


=





V
0



(

k
+
1

)





V
n



(
k
)




X

0
,
n





sin


(



δ
0



(

k
+
1

)


-


δ
n



(
k
)



)








Eq
.




17








Q

0
,
n




(

k
+
1

)


=




V
0



(

k
+
1

)



X

0
,
n





[



V
0



(

k
+
1

)


-



V
n



(
k
)




cos


(



δ
0



(

k
+
1

)


-


δ
n



(
k
)



)




]






Eq
.




18







  • 7. Provide these updated estimates of real and reactive power to be exchanged with neighbors to those neighbors for their use with iteration k+1, (the values calculated in step 6 are those that will be shared with neighbors during iteration k+l)

  • 8. Reset this node's angle to zero.

    δ0=0  Eq. 19

  • 9. Calculate the real and reactive power errors given the updated state. This power error may be used for confidence assessments and convergence criteria. (See steps 4 and 5.)











Δ





P

=



P

0
,
Gen




(

k
+
1

)


-


P

0
,
Load




(

k
+
1

)


-




n
=
1






P

0
,
n




(

k
+
1

)








Eq
.




20







Δ





Q

=



Q

0
,
Gen




(

k
+
1

)


-


Q

0
,
Load




(

k
+
1

)


-




n
=
1

N




Q

0
,
n




(

k
+
1

)








Eq
.




21







  • 10. Repeat. If the process is repeated using the same neighbors' estimates of real and reactive power, this node's voltage may be further resolved. If the process is repeated using newly updated neighbors' estimates of real and reactive power for iteration k+l, the entire system power flow solution becomes refined by iteration.



Examples

The approach can be demonstrated using a simple example where a node interacts with only two neighbors and must assess its relative power flow state from information reported by these two neighbors. Let this node have no real or reactive generation or load. One possible flow state having small power error is shown in diagram 9800 of FIG. 99.


In step 1, assume that a perturbation has occurred at node 2 and it reports 1.2+j1.0 should now be leaving the center node. Node 1 reports an unchanged complex power flow of 1.0+j1.0.


In step 2, the new power error is calculated to be −0.2 because there now appears to be 0.2 more real power leaving this node than entering it.


In step 3, the voltage and angle of node 2 is corrected to match the complex power that is reported to the present node by node 2. This is illustrated in diagram 9900 of FIG. 99.


In step 4, the present variability of power is assessed based on the state determined in step 3.










dP

d






δ
0



=
19.9994





dP

dV
0


=
0.1999







dQ


0


=
0.1999





dQ

dV
0


=
20.0006







In step 5, solve for the corresponding changes of this node's voltage and angle that will help resolve the power error. The voltage and angle of this node are updated accordingly.

Δδ0=−0.0100 radians=0.5730 ΔV0=0.0001


In step 6, real and reactive power to be exchanged with neighbor nodes is recalculated using the new voltage and angle for the present node. The implications of this calculation are shown in diagram 10000 of FIG. 100. The voltage and angle of the present node have been altered, which has changed also the real and reactive power that would be exchanged by this node with nodes 1 and 2. The resulting power is balanced partway between the powers that had been reported by nodes 1 and 2 at the beginning of the iteration. The reactive power is unfortunately decreased by about 1%, an outcome of the nonlinearity of the calculation.


Interestingly, the result of fast decoupled calculations at this node would have been resulted in about the same result.


APPENDIX



  • 1. Real and reactive power flow between this and neighbor node:



Apparent Power:

S=VI*  Eq. A1


Voltage at this node is defined as V0·e0. Current leaving this node is defined as










V
0

·

e

j






δ
0




-


V
n

·

e

j






δ
n






j

X

0
,
n




,





where a common practice has been adopted of representing the impedance between the nodes by the reactance component only.


By substitution of these values into Eq. A1,










S
_

=

j





V
0


X

0
,
n





[


V
0

-


V
n

·

e

j


(


δ
0

-

δ
n


)





]


.







Eq
.




A






2







Real power leaving this node to node n is the real part of the apparent power:











P

0
,
n




Re


{

S
_

}



=




V
0



V
n



X

0
,
n





sin


(


δ
0

-

δ
n


)







Eq
.




A3







Reactive power leaving this node to node n is the imaginary component of the apparent power:











Q

0
,
n




Im


{

S
_

}



=



V
0


X

0
,
n





[


V
0

-


V
n



cos


(


δ
0

-

δ
n


)




]






Eq
.




A4







  • 2. Given power and reactive power, calculate neighbor's voltage and relative angle.



The reactive power equation can be used to solve for neighbor's voltage and relative angle. First solve Eq. A4 for Vn with respect to the relative angle.










V
n

=


(


V
0

-



Q

0
,
n




X

0
,
n




V
0



)


cos


(


δ
0

-

δ
n


)







Eq
.




A5







By substitution of into Eq. A3, the relative angle may be calculated in terms of known variables.











δ
0

-

δ
n


=


tan

-
1




(



P

0
,
n




X

0
,
n





V
0
2

-


Q

0
,
n




X

0
,
n





)






Eq
.




A6







And by substitution of the relative angle of Eq. A6 into Eq. A5, one can solve for Vn also in terms of known variables:










V
n

=


(


V
0

-



Q

0
,
n




X

0
,
n




V
0



)


cos


(


tan

-
1




(



P

0
,
n




X

0
,
n





V
0
2

-


Q

0
,
n




X

0
,
n





)


)







Eq
.




A7







  • 3. Jacobian sensitivities of power at this node to changes in this node's voltage and relative angles:



Differentiate Eq. A3 for every neighbor node n with respect to V0 and with respect to the relative power angle δ0−δn to get Eq. A8 and Eq. A9:











dP

0
,
n



dV
0


=




n
=
1

N





V
n


X

0
,
n





sin


(


δ
0

-

δ
n


)








Eq
.




A8








dP

0
,
n



d


(


δ
0

-

δ
n


)



=




n
=
1

N






V
0



V
n



X

0
,
n





cos


(


δ
0

-

δ
n


)








Eq
.




A9







This formulation will assume that δn remains constant through this iteration. Solving with respect to this node's angle,











dP

0
,
n



d






δ
0



=




n
=
1

N






V
0



V
n



X

0
,
n






cos


(


δ
0

-

δ
n


)


.







Eq
.




A10







  • 4. Jacobian sensitivities of reactive power at this node to changes in this node's voltage and relative angles:



Similar to what was done above, differentiate Eq. A4 for every neighbor node n with respect to V0 and with respect to the relative power angle δ0−δn to get Eq. A11 and Eq. A12:











dQ

0
,
n



dV
0


=




n
=
1

N




1

X

0
,
n





[


2


V
0


-


V
n



cos


(


δ
0

-

δ
n


)




]







Eq
.




A11








dQ

0
,
n



d


(


δ
0

-

δ
n


)



=




n
=
1

N






V
0



V
n



X

0
,
n





sin


(


δ
0

-

δ
n


)








Eq
.




A12







Remembering that δn remains constant through this iteration and solving with respect to this node's angle,











dQ

0
,
n




0


=




n
=
1

N






V
0



V
n



X

0
,
n






sin


(


δ
0

-

δ
n


)


.







Eq
.




A13







  • 5. Power and reactive power error definitions:











Δ





P

=


P
Gen

-

P
Load

-




n
=
1

N



P

0
,
n








Eq
.




A14







Δ





Q

=


Q
Gen

-

Q
load

-




n
=
1

N



Q

0
,
n








Eq
.




A15







  • 6. Calculate voltage and angle of this node.



In a traditional power flow calculation, linear expansion would be completed about all power angle and voltage states. For example,










Δ





P

=





n
=
1

N





dP

0
,
n



d


(


δ
0

-

δ





n


)



·

Δ


(


δ
n

-

δ
0


)




+




n
=
1

N






dP

0
,
n



dV
0


·
Δ







V
0



+




n
=
1

N






dP

0
,
n



dV
n


·
Δ








V
n

.








Eq
.




A16







In the present, relative formulation, assume δn and Vn are constant through each iteration at this node. Eq. A16 can be simplified to










Δ





P

=





n
=
1

N





dP

0
,
n




0


·

Δδ
0



+




n
=
1

N






dP

0
,
n



dV
0


·
Δ








V
0

.









Eq
.




A






17







Remembering Eq. A8 and Eq. A1D, by substitution,










Δ





P

=





n
=
1

N






V
0



V
n



X

0
,
n






cos


(


δ
0

-

δ
n


)


·

Δδ
0




+




n
=
1

N





V
n


X

0
,
n






sin


(


δ
0

-

δ
n


)


·
Δ








V
0

.








Eq
.




A18







Similarly, for Q, a traditional linearization might result in










Δ





Q

=





n
=
1

N





dQ

0
,
n



d


(


δ
0

-

δ
n


)



·

Δ


(


δ
0

-

δ
n


)




+




n
=
1

N






dQ

0
,
n



dV
0


·
Δ







V
0



+




n
=
1

N






dQ

0
,
n



dV
n


·
Δ








V
n

.








Eq
.




A19







In the present, relative formulation, assume δn and Vn are constant through each iteration at this node. Eq. A19 can be simplified to










Δ





Q

=





n
=
1

N





dQ

0
,
n



d






δ
0



·

Δδ
0



+




n
=
1

N





dQ

0
,
n



dV
0


·


V
0

.








Eq
.




A20







Remembering Eq. A11 and Eq. A13, by substitution,










Δ





Q

=





n
=
1

N






V
0



V
n



X

0
,
n






sin


(


δ
0

-

δ
n


)


·

Δδ
0




+




n
=
1

N






1

X

0
,
n





[


2


V
0


-


V
n



cos
[


δ
0

-

δ
n


)



]


·
Δ








V
0

.








Eq
.




A21







7 CONCLUDING REMARKS

Having illustrated and described the principles of the disclosed technology, it will be apparent to those skilled in the art that the disclosed embodiments can be modified in arrangement and detail without departing from such principles. For example, any one or more aspects of the disclosed technology can be applied in other embodiments. In view of the many possible embodiments to which the principles of the disclosed technologies can be applied, it should be recognized that the illustrated embodiments are only preferred examples of the technologies and should not be taken as limiting the scope of the invention.

Claims
  • 1. A method for operating a transactive node in a market-based electrical-energy-allocation system, comprising: by computing hardware configured to operate the transactive node: computing incentive signal data, the incentive signal data comprising data indicative of a cost of electric energy at the transactive node at a current time interval and data indicative of a forecasted cost of electric energy at the transactive node at one or more future time intervals, wherein the incentive signal data further comprises data indicative of a confidence level that the data indicative of the cost of electric energy at the transactive node at the current time interval is accurate or data indicating a confidence level that the data indicative of the forecasted cost of electric energy at the transactive node at the one or more future time intervals is accurate;computing feedback signal data, the feedback signal data comprising data indicative of an electric load at the transactive node at the current time interval and data indicative of a forecasted load for electric energy at the transactive node at the one or more future time intervals; andtransmitting the incentive signal data and the feedback signal data to a neighboring transactive node.
  • 2. The method of claim 1) wherein the data indicative of the cost of electric energy comprises data indicative of a cost of real electrical energy, reactive electrical energy, or a combination of both real and reactive electrical energies at the transactive node at the current time interval, and wherein the data indicative of the forecasted cost of electric energy comprises data indicative of a forecasted cost of real electrical energy, reactive electrical energy, or a combination of both real and reactive electrical energies at the transactive node at the one or more future time intervals.
  • 3. The method of claim 1), wherein the data indicative of the electric load comprises data indicative of a real electrical load, reactive electrical load, or a combination of both real and reactive electrical loads at the transactive node at the current time interval, and wherein the data indicative of the forecasted load for electric energy comprises data indicative of a forecasted load of real electrical load, reactive electrical load, or a combination of both real and reactive electrical loads at the transactive node at the one or more future time intervals.
  • 4. The method of claim 1), wherein the incentive signal data further comprises data indicating a confidence level that the data indicative of the cost of electric energy at the transactive node at the current time interval is accurate, and data indicating a confidence level that the data indicative of the forecasted cost of electric energy at the transactive node at the one or more future time intervals is accurate.
  • 5. The method of claim 1), wherein the feedback signal data further comprises data indicating a confidence level that the data indicative of the electric load at the transactive node at the current time interval is accurate, and data indicating a confidence level that the data indicative of the forecasted load for electric energy at the transactive node at the one or more future time intervals is accurate.
  • 6. The method of claim 1), wherein the method further comprises receiving incentive signal data and feedback signal data from one or more neighboring transactive nodes, wherein the computing the incentive signal data is based at least in part on the received incentive signal data, and wherein the computing the feedback signal data is based at least in part on the received feedback signal data.
  • 7. One or more non-transitory computer-readable media storing computer-readable instructions for causing computer to perform the method of claim 1).
  • 8. A transactive node comprising computing hardware configured to perform the method of claim 1).
  • 9. A method for operating a transactive node in a market-based electrical-energy-allocation system, comprising: by computing hardware: receiving incentive signal data at the transactive node from two or more neighboring transactive nodes, the incentive signal data from the two or more neighboring transactive nodes comprising data indicative of at least a cost of electric energy at a current time interval;computing aggregated incentive signal data based at least in part on the incentive signal data from the two or more neighboring transactive nodes; andtransmitting the aggregated incentive signal data to a further transactive node,wherein the received incentive signal data further includes data indicating a confidence level of the received incentive signal data, or wherein the transmitted incentive signal data further includes data indicating a confidence level of the transmitted incentive signal data.
  • 10. The method of claim 9), wherein the received incentive signal data and the transmitted aggregated incentive signal data comprise data indicative of a cost of real electrical energy, reactive electrical energy, or a combination of both real and reactive electrical energies.
  • 11. The method of claim 9), wherein the aggregated incentive signal data comprises a weighted sum of the incentive signal data from the two or more neighboring transactive nodes.
  • 12. The method of claim 9), wherein the aggregated incentive signal data is further modified to provide an incentive or disincentive to the further transactive node based on local conditions at the transactive node.
  • 13. The method of claim 9), wherein the received incentive signal data comprises data indicative of the cost of electric energy at the current time interval and data indicative of a forecasted cost of electric energy at one or more future time intervals, and wherein the aggregated incentive signal data comprises data indicative of the aggregated cost of electric energy at the current time interval and data indicative of a forecasted aggregated cost of electric energy at one or more future time intervals.
  • 14. The method of claim 9), wherein the method further comprises: receiving feedback signal data at the transactive node from the two or more neighboring transactive nodes, the feedback signal data from the two or more neighboring transactive nodes comprising data indicative of at least an electric load for electric energy at a current time interval;computing aggregated feedback signal data based at least in part on the feedback signal data from the two or more neighboring transactive nodes; andtransmitting the aggregated feedback signal data to the further transactive node.
  • 15. The method of claim 14), wherein the received feedback signal data comprises data indicative of the electric load for electric energy at the current time interval and data indicative of a forecasted load of electric energy at the one or more future time intervals, and wherein the aggregated feedback signal data comprises data indicative of the aggregated load of electric energy at the current time interval and data indicative of a forecasted aggregated load of electric energy at one or more future time intervals.
  • 16. One or more non-transitory computer-readable media storing computer-readable instructions for causing computer to perform the method of claim 9).
  • 17. A transactive node comprising computing hardware configured to perform the method of claim 9).
  • 18. A method for operating a transactive node in a market-based electrical-energy-allocation system, comprising: by computing hardware: receiving feedback signal data at a transactive node from two or more neighboring transactive nodes, the feedback signal data from the two or more neighboring transactive nodes comprising data indicative of at least an electric load for electric energy at a current time interval;computing aggregated feedback signal data based at least in part on the feedback signal data from the two or more neighboring transactive nodes; andtransmitting the aggregated feedback signal data to a further transactive node,wherein the received feedback signal data further includes data indicating a confidence level of the received feedback signal data, orwherein the transmitted feedback signal data further includes data indicating a confidence level of the transmitted feedback signal data.
  • 19. The method of claim 18), wherein the received feedback signal data and the transmitted aggregated feedback signal data comprise data indicative of a real electrical load, reactive electrical load, or a combination of both real and reactive electrical loads.
  • 20. The method of claim 18), wherein the received feedback signal data comprises data indicative of the electric load of electric energy at the current time interval and data indicative of a forecasted load of electric energy at one or more future time intervals, and wherein the aggregated feedback signal data comprises data indicative of the aggregated load of electric energy at the current time interval and data indicative of a forecasted aggregated load of electric energy at the one or more future time intervals.
  • 21. The method of claim 18), wherein the method further comprises: receiving incentive signal data at the transactive node from the two or more neighboring transactive nodes, the incentive signal data from the two or more neighboring transactive nodes comprising data indicative of at least a cost of electric energy at the current time interval;computing aggregated incentive signal data based at least in part on the incentive signal data from the two or more neighboring transactive nodes; andtransmitting the aggregated incentive signal data to the further transactive node.
  • 22. The method of claim 21), wherein the received incentive signal data comprises data indicative of the cost of electric energy at the current time interval and data indicative of a forecasted cost of electric energy at the one or more future time intervals, and wherein the aggregated incentive signal data comprises data indicative of the aggregated cost of electric energy at the current time interval and data indicative of a forecasted aggregated cost of electric energy at one or more future time intervals.
  • 23. One or more non-transitory computer-readable media storing computer-readable instructions for causing computer to perform the method of claim 18).
  • 24. A transactive node comprising computing hardware configured to perform the method of claim 18).
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application 61/737,726 filed on Dec. 14, 2012, and entitled “TRANSACTIVE CONTROL FRAMEWORK AND TOOLKIT FUNCTIONS”, which is hereby incorporated herein by reference.

ACKNOWLEDGMENT OF GOVERNMENT SUPPORT

This invention was made with government support under DE-OE0000190 awarded by the Department of Energy. The government has certain rights in the invention.

US Referenced Citations (148)
Number Name Date Kind
2042187 Powers et al. May 1936 A
4010614 Arthur Mar 1977 A
4482814 Daniels Nov 1984 A
5572438 Ehlers et al. Nov 1996 A
5684710 Ehlers et al. Nov 1997 A
5696695 Ehlers et al. Dec 1997 A
5924486 Ehlers et al. Jul 1999 A
6021402 Takriti Feb 2000 A
6216956 Ehlers et al. Apr 2001 B1
6343277 Gaus et al. Jan 2002 B1
6633823 Bartone et al. Oct 2003 B2
6681156 Weiss Jan 2004 B1
6895325 Munson, Jr. May 2005 B1
6963854 Boyd et al. Nov 2005 B1
7043380 Rodenberg et al. May 2006 B2
7085739 Winter et al. Aug 2006 B1
7130719 Ehlers et al. Oct 2006 B2
7135956 Bartone et al. Nov 2006 B2
7141321 McArthur et al. Nov 2006 B2
7243044 McCalla Jul 2007 B2
7249169 Blouin et al. Jul 2007 B2
7343226 Ehlers et al. Mar 2008 B2
7343360 Ristanovic et al. Mar 2008 B1
7379997 Ehlers et al. May 2008 B2
7395252 Anderson et al. Jul 2008 B2
7418428 Ehlers et al. Aug 2008 B2
7516106 Ehlers et al. Apr 2009 B2
7587330 Shan Sep 2009 B1
7599866 Yan et al. Oct 2009 B2
7716101 Sandholm et al. May 2010 B2
7953519 Hamilton, II et al. May 2011 B2
7996296 Lange Aug 2011 B2
8126794 Lange et al. Feb 2012 B2
8271345 Milgrom et al. Sep 2012 B1
8504463 Johnson et al. Aug 2013 B2
8527389 Johnson et al. Sep 2013 B2
8577778 Lange et al. Nov 2013 B2
8639392 Chassin Jan 2014 B2
9395707 Anderson et al. Jul 2016 B2
20010032029 Kauffman Oct 2001 A1
20020038279 Samuelson et al. Mar 2002 A1
20020091626 Johnson et al. Jul 2002 A1
20020128747 Mima Sep 2002 A1
20020132144 McArthur et al. Sep 2002 A1
20020178047 Or et al. Nov 2002 A1
20030014379 Saias et al. Jan 2003 A1
20030023540 Johnson et al. Jan 2003 A2
20030036820 Yellepeddy et al. Feb 2003 A1
20030040844 Spool et al. Feb 2003 A1
20030040845 Spool et al. Feb 2003 A1
20030041002 Hao et al. Feb 2003 A1
20030041016 Spool et al. Feb 2003 A1
20030041017 Spool et al. Feb 2003 A1
20030055774 Ginsberg Mar 2003 A1
20030078797 Kanbara et al. Apr 2003 A1
20030093332 Spool et al. May 2003 A1
20030093357 Guler et al. May 2003 A1
20030139939 Spool et al. Jul 2003 A1
20030144864 Mazzarella Jul 2003 A1
20030149672 Laskoski Aug 2003 A1
20030171851 Brickfield et al. Sep 2003 A1
20030216971 Sick et al. Nov 2003 A1
20040010478 Peljto et al. Jan 2004 A1
20040015428 Johnson et al. Jan 2004 A2
20040024483 Holcombe Feb 2004 A1
20040128266 Yellepeddy et al. Jul 2004 A1
20040133529 Munster Jul 2004 A1
20040140908 Gladwin et al. Jul 2004 A1
20040153330 Miller et al. Aug 2004 A1
20040225649 Yeo Nov 2004 A1
20040254688 Chassin et al. Dec 2004 A1
20050015283 Iino et al. Jan 2005 A1
20050027636 Gilbert et al. Feb 2005 A1
20050065867 Aisu et al. Mar 2005 A1
20050114255 Shields et al. May 2005 A1
20050125243 Villalobos Jun 2005 A1
20050137959 Yan et al. Jun 2005 A1
20050197875 Kauffman Sep 2005 A1
20050228553 Tryon Oct 2005 A1
20060036357 Isono et al. Feb 2006 A1
20060195229 Bell et al. Aug 2006 A1
20060241951 Cynamom et al. Oct 2006 A1
20060259199 Gjerde et al. Nov 2006 A1
20060293980 Corby et al. Dec 2006 A1
20070005192 Schoettle et al. Jan 2007 A1
20070011080 Jain et al. Jan 2007 A1
20070038335 McIntyre et al. Feb 2007 A1
20070061248 Shavit et al. Mar 2007 A1
20070087756 Hoffberg Apr 2007 A1
20070124026 Troxell et al. May 2007 A1
20080021628 Tryon Jan 2008 A1
20080027639 Tryon Jan 2008 A1
20080039980 Pollack et al. Feb 2008 A1
20080046387 Gopal et al. Feb 2008 A1
20080051977 Tryon Feb 2008 A1
20080243664 Shavit et al. Oct 2008 A1
20080243682 Shavit et al. Oct 2008 A1
20080243719 Shavit et al. Oct 2008 A1
20080281663 Hakim Nov 2008 A1
20080297113 Saeki et al. Dec 2008 A1
20080300907 Musier et al. Dec 2008 A1
20080300935 Musier et al. Dec 2008 A1
20080306801 Musier et al. Dec 2008 A1
20080319893 Mashinsky et al. Dec 2008 A1
20090063228 Forbes Mar 2009 A1
20090132360 Arfin et al. May 2009 A1
20090177591 Thorpe et al. Jul 2009 A1
20090195349 Frader-Thompson et al. Aug 2009 A1
20090228151 Wang et al. Sep 2009 A1
20090307059 Young et al. Dec 2009 A1
20090313174 Hafner et al. Dec 2009 A1
20100010939 Arfin et al. Jan 2010 A1
20100049371 Martin Feb 2010 A1
20100057625 Boss et al. Mar 2010 A1
20100106332 Chassin et al. Apr 2010 A1
20100106641 Chassin et al. Apr 2010 A1
20100107173 Chassin Apr 2010 A1
20100114387 Chassin May 2010 A1
20100121700 Wigder et al. May 2010 A1
20100138363 Batterberry Jun 2010 A1
20100179704 Ozog Jul 2010 A1
20100179862 Pratt et al. Jul 2010 A1
20100216545 Lange et al. Aug 2010 A1
20100217550 Crabtree et al. Aug 2010 A1
20100218108 Crabtree et al. Aug 2010 A1
20100256999 Ghani et al. Oct 2010 A1
20100332373 Crabtree et al. Dec 2010 A1
20110015801 Mazzarella Jan 2011 A1
20110016055 Mazzarella Jan 2011 A1
20110018704 Burrows Jan 2011 A1
20110081955 Lange et al. Apr 2011 A1
20110301964 Conwell Dec 2011 A1
20110316480 Mills-Price et al. Dec 2011 A1
20120022700 Drees et al. Jan 2012 A1
20120022995 Lange Jan 2012 A1
20120053011 Onomura et al. Mar 2012 A1
20120072039 Anderson et al. Mar 2012 A1
20120083930 Ilic et al. Apr 2012 A1
20120143385 Goldsmith Jun 2012 A1
20120278220 Chassin et al. Nov 2012 A1
20130110304 Shiga et al. May 2013 A1
20130268131 Venayagamoorthy et al. Oct 2013 A1
20130325691 Chassin et al. Dec 2013 A1
20130325692 Chassin et al. Dec 2013 A1
20140188689 Kalsi et al. Jul 2014 A1
20150379542 Lian et al. Dec 2015 A1
20160195866 Turney et al. Jul 2016 A1
20160248260 Kulyk et al. Aug 2016 A1
Foreign Referenced Citations (5)
Number Date Country
2678828 Mar 2010 CA
2008-204073 Sep 2008 JP
WO 9901822 Jan 1999 WO
WO 0223693 Mar 2002 WO
WO 2007065135 Jun 2007 WO
Non-Patent Literature Citations (141)
Entry
ANSI/CEA Standard, “Modular Communications Interface for Energy Management,” ANSI/CEA-2045, ISO/IEC JTC 1/SC 25 N2152, 98 pp. (Feb. 2013).
Bergen et al., “A Structure Preserving Model for Power System Stability Analysis,” IEEE Trans. on Power Apparatus and Systems, pp. 25-35 (Jan. 1981).
Boch, “PJM Interconnection OPENADR 2.0 Advanced Technology Resource Pilot,” 5 pp. (Dec. 2014).
Borenstein et al., “Diagnosing Market Power in California's Deregulated Wholesale Electricity Market,” University of California Energy Institute, Power, PWP-064, 54 pp. (Aug. 2000).
Borenstein et al., “Diagnosing Market Power in California's Deregulated Wholesale Electricity Market,” University of California Energy Institute, Power, PWP-064, 52 pp. (Mar. 2000).
Boyd et al., “Load Reduction, Demand Response, and Energy Efficient Technologies and Strategies,” Pacific Northwest National Laboratory PNNL-18111, 44 pp. (Nov. 2008).
Brambley, “Thinking Ahead: Autonomic Buildings,” ACEEE Summer Study on the Energy Efficiency in Buildings, vol. 7, pp. 73-86 (2002).
Brooks et al., “Demand Dispatch,” IEEE Power and Energy Magazine, vol. 8, No. 3, pp. 20-29 (May 2010).
Callaway et al., “Achieving Controllability of Electric Loads,” Proc. IEEE, vol. 99, No. 1, pp. 184-199 (Jan. 2011).
Callaway, “Tapping the Energy Storage Potential in Electric Loads to Deliver Load Following and Regulation, with Application to Wind Energy,” Energy Conversion and Management, vol. 50, No. 5, pp. 1389-1400 (May 2009).
Chandley, “How RTOs Set Spot Market Prices (and How It Helps Keep the Lights On),” PJM Interconnection, 23 pp. (Sep. 2007).
Chao, “Price-Responsive Demand Management for a Smart Grid World,” Electr. J., vol. 23, No. 1, pp. 7-20 (2010).
Chassin et al., “Decentralized Coordination through Digital Technology, Dynamic Pricing, and Customer-Driven Control: The GridWise Testbed Demonstration Project,” The Electricity Journal, vol. 21, pp. 51-59 (Oct. 2008).
Chassin et al., “Gauss-Seidel Accelerated: Implementing Flow Solvers on Field Programmable Gate Arrays,” IEEE Power Engineering Society General Meeting, 5 pp. (Jun. 2006).
Chassin et al., “GridLAB-D: An open-source power systems modeling and simulation environment,” IEEE, 5 pp. (Apr. 2008).
Chassin, “GridLAB-D Technical Support Document: Tape Modules Version 1.0,” Pacific Northwest National Laboratory PNNL-17614, 8 pp. (May 2008).
Chassin, “GridLAB-D Technical Support Document: Commercial Modules Version 1.0,” Pacific Northwest National Laboratory PNNL-17615, 8 pp. (May 2008).
Chassin, “GridLAB-D Technical Support Document: Network Module Version 1.0,” Pacific Northwest National Laboratory PNNL-17616, 10 pp. (May 2008).
Chassin et al., “Load Modeling and Calibration Techniques for Power System Studies,” North American Power Symp., 7 pp. (Aug. 2011).
Chassin et al., “Modeling Power Systems as Complex Adaptive Systems,” Pacific Northwest National Laboratory PNNL-14987, 151 pp. (Dec. 2004).
Chassin et al., “Project 2.6—Enhancement of the Whole-Building Diagnostician,” Pacific Northwest National Laboratory PNNL-14383, 17 pp. (Aug. 2003).
Chassin, “The Abstract Machine Model for Transaction-based System Control,” Pacific Northwest National Laboratory PNNL-14082, 28 pp. (Nov. 2002).
Chassin, “Statistical Mechanics: A Possible Model for Market-based Electric Power Control”, Proc. of the 37th Hawaii Int'l Conf. on System Sciences, 10 pp. (Jan. 2004).
Chassin et al., “The pacific northwest demand response market demonstration,” IEEE, 6 pp. (Jul. 2008).
Chen et al., “The Influence of Topology Changes on Inter-area Oscillation Modes and Mode Shapes,” IEEE Power and Energy Society General Meeting, 7 pp. (Jul. 2011).
Chow et al., “A Toolbox for Power System Dynamics and Control Engineering Education and Research,” IEEE Trans. on Power Systems, vol. 7, No. 4, pp. 1559-1564 (Nov. 1992).
Chow et al., “Power System Toolbox, Version 3.0,” 123 pp. (2008).
Clearwater et al., “Thermal Markets for Controlling Building Environments,” Energy Engineering, vol. 91, No. 3, pp. 26-56 (1994).
Daily et al., “Framework for Network Co-Simulation,” Workshop on Next-Generation Analytics for the Future Power Grid, PowerPoint presentation, 20 pp. (Jul. 2014).
Denholm et al., “An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles,” NREL Technical Report NREL/TP-620-40293, 30 pp. (Oct. 2006).
Denton et al., “Spot Market Mechanism Design and Competitivity Issues in Electric Power”, Proc. of the 31st Hawaii International Conference on System Sciences, vol. 3, pp. 48-56 (Jan. 1998).
Diao et al., “Deriving Optimal Operational Rules for Mitigating Inter-area Oscillations,” IEEE/PES Power Systems Conference & Exposition, 8 pp. (Mar. 2011).
Diao et al., “Electric Water Heater Modeling and Control Strategies for Demand Response,” Power and Energy Society General Meeting, 8 pp. (Jul. 2012).
Donnelly et al., “Autonomous Demand Response for Primary Frequency Regulation,” PNNL-21152, 69 pp. (Jan. 2012).
Dorfler et al., “Synchronization in Complex Oscillator Networks: A Survey,” Automatica, vol. 50, No. 6, pp. 1539-1564 (Jun. 2014).
Electric Power Research Institute, “IntelliGrid—Program 161,” 2014 Research Portfolio, 23 pp. (downloaded Dec. 2014).
Electric Reliability Council of Texas, Inc., “Glossary,” 59 pp. (document not dated—downloaded on Jul. 10, 2015).
Ellison et al., “Project Report: A Survey of Operating Reserve Markets in U.S. ISO/RTO-managed Electric Energy Regions,” SAND2012-1000, Sandia National Laboratories, 44 pp. (Sep. 2012).
Energy Star, “Energy Star® Program Requirements—Product Specification for Residential Refrigerators and Freezers, Eligibility Criteria,” Version 5.0, 10 pp. (Sep. 2014).
Fernandez et al., “Self Correcting HVAC Controls: Algorithms for Sensors and Dampers in Air-Handling Units,” Pacific Northwest Laboratory PNNL-19104, 49 pp. (Dec. 2009).
Fuller et al., “Analysis of Residential Demand Response and Double-Auction Markets,” IEEE Power and Energy Society General Meeting, 7 pp. (Jul. 2011).
Fuller et al., “Communication Simulations for Power System Applications,” Modeling and Simulation of Cyber-Physical Energy Systems Workshop, 6 pp. (May 2013).
Fuller et al., “Evaluation of Representative Smart Grid Investment Grant Project Technologies: Demand Response,” Pacific Northwest National Laboratory PNNL-20772, 349 pp. (Feb. 2012).
Fuller et al., “Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets,” PNNL-22128, 64 pp. (Dec. 2012).
Fuller et al., “Modeling of GE Appliances in GridLAB-D: Peak Demand Reduction,” Pacific Northwest National Laboratory PNNL-21358, 157 pp. (Apr. 2012).
Gatterbauer, “Interdependencies of Electricity Market Characteristics and Bidding Strategies of Power Producers,” Master's Thesis, Massachusetts Institute of Technology, 33 pp. (May 2002).
GE Energy Consulting, “PSLF—Get It Done Faster with PSLF!,” downloaded from the World Wide Web, 2 pp. (2013).
Georgilakis, “Market Clearing Price Forecasting in Deregulated Electricity Markets Using Adaptively Trained Neural Networks,” Hellenic Conference on Artificial Intelligence, vol. 3955, pp. 56-66 (2006).
Gjerstad et al., “Price Formation in Double Auctions,” Games and Economic Behavior, vol. 22, article No. GA970576, pp. 1-29 (1998).
Goldberg et al., “Measurement and Verification for Demand Response,” 123 pp. (Feb. 2013).
Green Car Congress, “PG&E and Tesla to Research Smart Recharging Vehicle-to-Grid Technology,” downloaded from http://www.greencarcongress.com/2007/09/pge-and-tesla-t.html, 3 pp. (Sep. 12, 2007).
Gridwise Architecture Council, “Transactive Energy Workshop Proceedings,” PNNL-SA-86105, 24 pp. (May 2011).
Guttromson et al., “Residential energy resource models for distribution feeder simulation,” IEEE, vol. 1, pp. 108-113 (Jul. 2003).
Hammerstrom et al., “Pacific Northwest GridWise Testbed Demonstration Projects: Part I. Olympic Peninsula Project,” Pacific Northwest National Laboratory PNNL-17167, 157 pp. (Oct. 2007).
Hammerstrom et al., “Pacific Northwest GridWise Testbed demonstration Projects: Part II. Grid Friendly Appliance Project,” Pacific Northwest National Laboratory PNNL-17079, 123 pp. (Oct. 2007).
Hammerstrom et al., “Standardization of a Hierarchical Transactive Control System,” Grid Interop Conf., 7 pp. (Nov. 2009).
Hammerstrom et al., “Standardization of a Hierarchical Transactive Control System,” Grid Interop Conf., PowerPoint presentation slides, 19 pp. (Nov. 2009).
Hao et al., “How Demand Response from Commercial Buildings Will Provide the Regulation Needs of the Grid,” 50th Annual Allerton Conf., 6 pp. (Oct. 2012).
Hatley et al., “Energy Management and Control System: Desired Capabilities and Functionality,” Pacific Northwest National Laboratory PNNL-15074, 46 pp. (Apr. 2005).
Hill et al., “Stability Analysis of Multimachine Power Networks with Linear Frequency Dependent Loads,” IEEE Trans. on Circuits and Systems, vol. 29, No. 12, pp. 840-848 (Dec. 1982).
Hô et al., “Econophysical Dynamics of Market-Based Electric Power Distribution Systems,” IEEE, pp. 1-6 (Jan. 2006).
Holmes, “Using AMI Data for DR M&V Webcast,” EPRI Powerpoint presentation, 21 pp. (May 2013).
Huang et al., “Analytics and Transactive Control Design for the Pacific Northwest Smart Grid Demonstration Project,” IEEE Int'l Conf. on Smart Grid Communications, pp. 449-454 (Oct. 2010).
Huang et al., “MANGO—Modal Analysis for Grid Operation: A Method for Damping Improvement through Operating Point Adjustment,” Pacific Northwest National Laboratory PNNL-19890, 92 pp. (Oct. 2010).
Huang et al., “Transforming Power Grid Operations,” Scientific Computing, vol. 45, No. 5, pp. 22-27 (Apr. 2007).
Kalsi et al., “Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services,” PNNL-22875, 46 pp. (Sep. 2013).
Kalsi et al., “Loads as a Resource: Frequency Responsive Demand,” PNNL SA-23764, 49 pp. (Sep. 2014).
Kannberg et al., “GridWise: The Benefits of a Transformed Energy System,” Pacific Northwest National Laboratory PNNL-14396, 48 pp. (Sep. 2003).
Katipamula et al., “Evaluation of Residential HVAC Control Strategies for Demand Response Programs,” ASHRAE Trans., Symp. on Demand Response Strategies for Building Systems, 12 pp (Jan. 2006).
Katipamula et al., “Transactive Controls: A Market-Based GridWise Controls for Building Systems,” Pacific Northwest National Laboratory PNNL-15921, 14 pp. (Jul. 2006).
Kiesling, “Retail Electricity Deregulation: Prospects and Challenges for Dynamic Pricing and Enabling Technologies,” The Searle Center Annual Review of Regulation, 44 pp. (May 2007).
Kintner-Meyer et al., “Final Report for the Energy Efficient and Affordable Small Commercial and Residential Buildings Research Program—Project 3.3—Smart Load Control and Grid Friendly Appliances,” Pacific Northwest National Laboratory PNNL-14342, 147 pp. (Jul. 2003).
Koch et al., “Modeling and Control of Aggregated Heterogeneous Thermostatically Controlled Loads for Ancillary Services,” Proc. Power Systems Computation Conference, 8 pp. (Aug. 2011).
Kok et al., “Agent-based Electricity Balancing with Distributed Energy Resources, A Multiperspective Case Study,” Proc. Hawaii Int'l Conf. on System Sciences, 10 pp. (Jan. 2008).
Kok et al., “PowerMatcher: Multiagent Control in the Electricity Infrastructure,” AAMAS, 8 pp. (Jul. 2005).
Kundu et al., “Modeling and Control of Thermostatically Controlled Loads,” Power Systems Computation Conference, 7 pp. (Aug. 2011).
LeMay et al., “An Integrated Architecture for Demand Response Communications and Control,” Hawaii Int'l Conf. on System Sciences, 10 pp. (Jan. 2008).
Lian et al., “Distributed Hierarchical Control of Multi-area Power Systems with Improved Primary Frequency Regulation,” IEEE Annual Conf. on Decision and Control, pp. 444-449 (Dec. 2012).
Lu et al., “A State-Queueing Model of Thermostatically Controlled Appliances,” IEEE Trans. on Power Systems, vol. 19, No. 3, pp. 1666-1673 (Aug. 2004).
Lu et al., “Control Strategies of Thermostatically Controlled Appliances in a Competitive Electricity Market,” IEEE Proc. Power Engineering Society General Meeting, pp. 202-207 (Jun. 2005).
Lu et al., “Design Considerations for Frequency Responsive Grid Friendly Appliances,” IEEE PES Trans. and Distribution Conference and Exhibition, 6 pp. (May 2006).
Lu et al., “Grid Friendly Device Model Development and Simulation,” Pacific Northwest National Laboratory PNNL-18998, 52 pp. (Nov. 2009).
Lu et al., “Modeling Uncertainties in Aggregated Thermostatically Controlled Loads Using a State Queueing Model,” IEEE Trans. on Power Systems, vol. 20, No. 2, pp. 725-733 (May 2005).
Lu et al., “Reputation-Aware Transaction Mechanisms in Grid Resource Market,” IEEE Sixth Int'l Conf. on Grid and Cooperative Computing, 6 pp. (Aug. 2007).
Lu et al., “Simulating Price Responsive Distributed Resources,” IEEE, vol. 3, pp. 1538-1543 (Oct. 2004).
Marinovici et al., “Distributed Hierarchical Control Architecture for Transient Dynamics Improvement in Power Systems,” IEEE Trans. on Power Systems, vol. 28, No. 3, pp. 3065-3074 (2013).
Mathieu et al., “State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance,” IEEE Trans. on Power Systems, vol. 28, No. 1, pp. 430-440 (Feb. 2013).
Melton, “A Transactive Control Approach to Engaging Responsive Assets,” Connectivity Week, PowerPoint presentation slides, 14 pp. (May 2010).
Melton et al., “Transactive Control: An Approach for Widespread Coordination of Responsive Smart Grid Assets,” Pacific Northwest Smart Grid Demonstration Project PowerPoint presentation slides, 19 pp. (May 2010).
Melton, “Transactive Control in Electricity Delivery,” Grid-Interop 2010, Pacific Northwest Smart Grid Demonstration Project, PowerPoint presentation slides, 15 pp. (Nov. 2010).
Melton, “Using Transactive Control to Engage Distributed Energy Resources,” Connectivity Week, PowerPoint presentation slides, 10 pp. (May 2011).
Molina-Garcia et al., “Decentralized Demand-side Contribution to Primary Frequency Control,” IEEE Trans. on Power Systems, vol. 26, No. 1, pp. 411-419 (2011).
Moya et al., “A Hierarchical Framework for Demand-Side Frequency Control,” American Control Conference, pp. 52-57 (Jun. 2014).
Moya et al., “A Hierarchical Framework for Demand-Side Frequency Control,” American Control Conference, PowerPoint presentation, 65 pp. (Jun. 2014).
Nanduri et al., “A Methodology for Evaluating Auction Based Pricing Strategies in Deregulated Energy Markets,” Working Paper, 12 pp. (2005).
Nanduri, et al., “A Reinforcement Learning Model to Assess Market Power Under Auction-Based Energy Pricing,” IEEE Trans. on Power Systems, vol. 22, No. 1, pp. 85-95 (Feb. 2007).
Nicolaisen et al., “Market Power and Efficiency in a Computational Electricity Market With Discriminatory Double-Auction Pricing,” ISU Economic Report No. 52, 26 pp. (Aug. 27, 2000; revised Aug. 24, 2001).
Ns-3 Network Simulator, ns-3 Manual, Release ns-3.16, 126 pp. (Dec. 2012).
Pacific Northwest National Laboratory, “GridLAB-D—A Unique Tool to Design the Smart Grid,” PNNL-SA-92325, 4 pp. (Nov. 2012).
PJM Interconnection, “Description of Regulation Signals,” downloaded from the World Wide Web, 1 p. (document not dated—downloaded on Jul. 14, 2015).
PJM Interconnection, “Markets & Operations,” downloaded from the World Wide Web, 3 pp. (document not dated—downloaded on Jul. 14, 2015).
PJM Interconnection, Regulation Performance Senior Task Force, “Performance Based Regulation: Year One Analysis,” 22 pp. (Oct. 2013).
Plott et al., “Instability of Equilibria in Experimental Markets: Upward-sloping Demands, Externalities, and Fad-like Incentives,” Southern Economic Journal, vol. 65 (3), 23 pp. (Jan. 1999).
Pourebrahimi et al., “Market-based Resource Allocation in Grids,” IEEE Int'l Conf. on e-Science and Grid Computing, 8 pp. (2006).
Power World Corporation, “Simulator Version 14, User's Guide,” 1517 pp. (2009).
Pratt et al., “Potential Impacts of High Penetration of Plug-in Hybrid Vehicles on the U.S. Power Grid,” DOE/EERE PHEV Stakeholder Workshop, 14 pp. (Jun. 2007).
Satayapiwat et al., “A Utility-based Double Auction Mechanism for Efficient Grid Resource Allocation,” Int'l Symp. on Parallel and Distributed Processing with Applications (ISPA '08), pp. 252-260 (Dec. 10-12, 2008).
Schneider et al., “A Taxonomy of North American Radial Distribution Feeders,” IEEE Power & Energy Society General Meeting, 6 pp. (Jul. 2009).
Schneider et al., “Analysis of Distribution Level Residential Demand Response,” IEEE/PES Power System Conference and Exposition, 6 pp. (Mar. 2011).
Schneider et al., “Detailed End Use Load Modeling for Distribution System Analysis,” IEEE Power and Energy Society General Meeting, 7 pp. (Jul. 2010).
Schneider et al., “Distribution Power Flow for Smart Grid Technologies,” IEEE/PES Power System Conference and Exhibition, 7 pp. (Mar. 2009).
Schneider et al., “Evaluation of Conservation Voltage Reduction (CVR) on a National Level,” Pacific Northwest National Laboratory PNNL-19596, 114 pp. (Jul. 2010).
Schneider et al., “Modern Grid Strategy: Enhanced GridLAB-D Capabilities Final Report,” Pacific Northwest National Laboratory PNNL-18864, 30 pp. (Sep. 2009).
Schneider et al., “Multi-State Load Models for Distribution System Analysis,” IEEE Trans. on Power Systems, vol. 26, No. 4, pp. 2425-2433 (Nov. 2011).
Schneider et al., “Voltage Control Devices on the IEEE 8500 Node Test Feeder,” IEEE PES Transmission & Distribution Conference & Exposition, 6 pp. (Apr. 2010).
Shu et al., “Dynamic Incentive Strategy for Voluntary Demand Response Based on TDP Scheme,” Proc. IEEE Asia-Pacific Signal & Information Processing Association Annual Summit Conf., 6 pp. (Dec. 2012).
Siemens, “Power Transmission System Planning Software,” downloaded from the World Wide Web, 8 pp. (downloaded on Oct. 27, 2016).
Siljak et al., “Robust Decentralized Turbine/Governor Control Using Linear Matrix Inequalities,” IEEE Trans. on Power Systems, vol. 17, No. 3, pp. 715-722 (Aug. 2002).
Siljak et al., “Robust Stabilization of Nonlinear Systems: The Lmi Approach,” Mathematical Problems in Engineering, vol. 6, No. 5, pp. 461-493 (Jun. 2000).
Singh et al., “Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR),” IEEE Power and Energy Society General Meeting, 7 pp. (Jul. 2011).
Subbarao et al., “Transactive Control and Coordination of Distributed Assets for Ancillary Services,” PNNL-22942, 56 pp. (Sep. 2013).
Taylor et al., “GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0,” Pacific Northwest National Laboratory PNNL-17694, 30 pp. (Jul. 2008).
Trudnowski et al., “Overview of Algorithms for Estimating Swing Modes from Measured Responses,” Power Energy Society General Meeting, 8 pp. (Jul. 2009).
Varaiya et al., “Direct Methods for Transient Stability Analysis of Power Systems: Recent Results,” Proc. IEEE, vol. 73, No. 12, pp. 1703-1715 (1985).
Widergren et al., “AEP Ohio gridSMART® Demonstration Project: Real-Time Pricing Demonstration Analysis,” PNNL-23192, 92 pp. (Feb. 2014).
Widergren et al., “Residential Real-time Price Response Simulation,” IEEE Power and Energy Society General Meeting, pp. 3074-3078 (Jul. 2011).
Wikipedia, “Spec:Market—Market Module Overview,” downloaded from the World Wide Web, 19 pp. (last modified Jan. 2013).
Yin et al., “A Novel Double Auction Mechanism for Electronic Commerce: Theory and Implementation,” IEEE Proc. of the Third Int'l Conf. on Machine Learning and Cybernetics, pp. 53-58 (Aug. 2004).
Zhang et al., “Aggregated Modeling and Control of Air Conditioning Loads for Demand Response,” IEEE Trans. on Power Systems, vol. 28, No. 4, pp. 4655-4664 (Nov. 2013).
Zhao et al., “Fast Load Control with Stochastic Frequency Measurement,” IEEE Power and Energy Society General Meeting, 8 pp. (2012).
Zhao et al., “Frequency-based Load Control in Power Systems,” American Control Conf., pp. 4423-4430 (2012).
Zhao et al., “Swing Dynamics as Primal-dual Algorithm for Optimal Load Control,” IEEE Int'l Conf. on Smart Grid Comm., pp. 570-575 (2012).
Zimmerman et al., “A ‘SuperOPF’ Framework,” FERC Technical Conf. on Enhanced Optimal Power Flow Models, PowerPoint presentation, 39 pp. (Jun. 2010).
AEP gridSmart demonstration project, Available: http://www.gridsmartohio.com/, Aug. 2013, 1 page. (Feb. 2013).
AEP Ohio power company standard tariff, available at: https://www.aepohio.com/account/bills/rates/AEPOhioRatesTariffsOH.aspx, Issued: Aug. 28, 2015, 187 pages. (Feb. 2013).
Allcott, “Real Time Pricing and Electricity Markets,” Harvard University, Feb. 5, 2009, 77 pages. (Feb. 2013).
Basso, “IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid,” a Technical Report published by the National Renewable Energy Laboratory Dec. 2014, 22 pp.
“IEEE P1547.8 Recommended Practice for Establishing Methods and Procedures that Provide Supplemental Support for Implementation Strategies for Expanded Use of IEEE Standard 1547,” retrieved Feb. 11, 2019 from http://grouper.ieee.org/groups/scc21/1547.8/1547.8_index.html, 1 p.
Lundstrom “An Advanced Platform for Development and Evaluation of Grid Interconnection Systems Using Hardware-in-the-Loop”, © Blake R. Lundstrom, 2013, 149 pp.
Ma, et al., “Dynamics of electricity markets with unknown utility functions: An extremum seeking control approach,” in 2014 11th IEEE International Conference on Control & Automation (ICCA), 2014, pp. 302-307.
Narang et al., “IEEE Smart Grid Tutorial”, an IEEE Presentation dated Jan. 18, 2018, 31 pp.
Related Publications (1)
Number Date Country
20140172503 A1 Jun 2014 US
Provisional Applications (1)
Number Date Country
61737726 Dec 2012 US