This disclosure relates generally to a transapical removal device, and more specifically, to a transapcial removal device for removal of a mitral valve clip or the anterior leaflet of the mitral valve.
Mitral valve regurgitation occurs when a heart's mitral valve does not close tightly, allowing some blood to leak backward through the mitral valve into the atrium rather than flowing through the aortic valve. Mitral valve regurgitation is present in approximately 1.7% of the adult population, and the incidence rises with advancing age such that more than 9% of adults 75 years of age and older have moderate or severe mitral valve regurgitation. Because blood cannot move through the heart or to the rest of the body as efficiently in people suffering from mitral valve regurgitation, symptoms include shortness of breath and fatigue, as well as heart murmur, heart palpitations, and swollen feet or ankles. Severe mitral valve regurgitation can lead to heart failure, atrial fibrillation, and pulmonary hypertension. If left untreated, the one year mortality rate for mitral valve regurgitation is 57%.
A variety of treatment options have been developed to treat mitral valve regurgitation, including medications, open-heart surgery, and catheter procedures. One catheter procedure involves clipping together mitral valve leaflets of the mitral valve in order to improve the function of the mitral valve. Under certain circumstances, such as an allergic reaction, dislodgement of the clip, or infection, removal of a mitral valve clip is necessary. Unfortunately, after mitral valve clip deployment, the mitral valve clip can only be removed surgically, closing the door for future percutaneous mitral valve replacement and causing elevated morbidity and mortality. Preferably, removal of the mitral valve clip could be achieved by a catheter procedure that would not require open-heart surgery. Additionally, some patients with mitral valve regurgitation undergo transcatheter mitral valve replacement and subsequently experience a left ventricular outflow tract (LVOT) obstruction. The anterior mitral leaflets have been identified as playing a considerable role in the etiology of LVOT obstructions in many patients. Preferably, any catheter procedure for removing a mitral valve clip could also ablate, remove or modify the anterior mitral valve leaflets as a first step to transcatheter mitral valve replacement in order to prevent future complications, such as an LVOT obstruction.
The current disclosure is directed to multiple arrangements of a transapical removal device that can be deployed in a catheter procedure to capture for removal or alteration a mitral valve clip or heart tissue, such as the anterior leaflet of the mitral valve, as well as to methods of use of such a transapical removal device. The removal device includes a delivery catheter configured to be deployed near a mitral valve using a guide catheter. In some arrangements, the guide catheter can be used to deploy the delivery catheter.
The delivery catheter has a snare head at the distal end, which assumes a collapsed state during movement of the delivery catheter along the guide catheter and a deployed state for capturing a mitral valve clip or anterior leaflet. The snare head controller controls the transition of the snare head between the collapsed and deployed states. The snare head has a snare basket for at least partially surrounding a pre-positioned mitral valve clip or the anterior leaflet. The snare basket may be made of, for example, medical-grade plastic, medical-grade metal, or both. The snare basket may be made of a shape memory material, such as nitinol, that assists in the transition from the collapsed state to the deployed state. In some arrangements, the snare head may comprise a spring that is compressed when the snare head is in the collapsed state and at rest when the snare head is in the deployed state, the spring configured to be compressed within the snare basket unless the snare basket is in the deployed state. A retraction funnel may be provided at a proximal end of the delivery catheter in order to forcibly return the snare head to the collapsed state from the deployed state. In some arrangements, magnets may be provided on the snare basket to facilitate closing the snare basket around the pre-positioned mitral valve clip or the anterior leaflet. In other arrangements, the snare basket may comprise a cord for cinching the snare basket around the pre-positioned mitral valve clip or the anterior leaflet.
In some arrangements, the snare basket may be a single-part basket having an oval shape. In other arrangements, the snare basket may be a two-part basket having a first basket side and a second basket side. The two-part basket may have a closed state, in which the first basket side and the second basket side are arranged to secure a mitral valve clip, tissue, or another element between them, and an open state, in which the first and second basket sides are separated from one another.
The snare head also has one or more ablation delivery catheters configured to ablate tissue surrounding the pre-positioned mitral valve clip or anterior leaflet. In some arrangements within the scope of the present disclosure, each ablation delivery catheter comprises an electrode for supplying radiofrequency energy to ablate tissue adjacent the mitral valve clip or anterior leaflet to allow for removal of the mitral valve clip or removal or alteration of the anterior leaflet. An electrical source, such as a battery, may be provided that is in communication with the electrodes, and a switch may alternately permit and cease to permit electrical current to flow from the electrical source to the electrodes. The switch may be controlled remotely. In other arrangements within the scope of the present disclosure, each ablation delivery catheter includes an optical fiber positioned to deliver a laser ablation signal to ablate tissue adjacent the mitral valve clip or anterior leaflet to allow for removal of the mitral valve clip or removal or alteration of the anterior leaflet. The transapical removal device may include an ablation source, such as a radiofrequency source, a laser source, or a cryo-thermal source. When the ablation source is a radiofrequency source, the radiofrequency signal may be in the range of 250-500 kHz. The snare head is controlled by a snare head controller connected at a proximal end of the delivery catheter. The snare head controller is configured to control the position and/or size of the snare basket during the deployed state and to control ablation source delivery to the tissue during the deployed state.
In some arrangements within the scope of the present disclosure, the transapical removal device comprises a grasping tool movable between a closed and open state and controlled by the snare head controller. The grasping tool is configured to allow manipulation of tissue or a mitral valve clip as needed. The grasping tool may be controllably movable by the snare head controller between a position inside a tube and a position outside the tube, and the snare head controller may control the movement of the grasping tool between the positions. The tube may be connected with or integral with the snare head.
In some arrangements within the scope of the present disclosure, the removal device includes a deployment mechanism for deploying a transcatheter valve into the mitral valve to replace a removed mitral valve clip. The deployment mechanism may comprise a delivery catheter, which contains the transcatheter valve and is configured to deliver, in a valve replacement mode, the transcatheter valve into the mitral valve to replace the removed mitral valve.
Once the snare basket is closed around the mitral valve clip 14, an ablation signal is provided to the ablation delivery catheters 10 and delivered to the tissue surrounding the mitral valve clip 14. In some arrangements within the scope of the present disclosure, the ablation delivery catheters 10 each have an electrode 12 provided on a distal end for supplying radiofrequency energy to ablate tissue. The radiofrequency signal may be in the range of 250-500 kHz. An electrical source 42 (shown in
The snare head controller controls the position and/or size of the snare basket 8 during the deployed state and also controls ablation source delivery to the tissue during the deployed state. The mitral valve clip 14 is then captured by the snare basket 8 of the snare head 6. As shown in
Although the method of using a transapical removal device 2 depicted in
In the illustrated example, the control system 102 includes a database 114 (via a link 122 connected to an input/output (I/O) circuit 112) for storing collect data, such as historical data from the controller 104 and/or from external data sources, such as historical data collected from other medical devices and medical databases. That is, it should be noted that, while not shown, additional databases may be linked to the snare head controller 104 in a known manner.
The snare head controller 104 includes a program memory 106, the processor 108 (may be called a microcontroller or a microprocessor), a random-access memory (RAM) 110, and the input/output (I/O) circuit 112, all of which are interconnected via an address/data bus 120. It should be appreciated that although only one microprocessor 108 is shown, the snare head controller 104 may include multiple microprocessors 108. Similarly, the memory of the controller 104 may include multiple RAMs 110 and multiple program memories 106. Although the I/O circuit 112 is shown as a single block, it should be appreciated that the I/O circuit 112 may include a number of different types of I/O circuits. The RAM(s) 110 and the program memories 106 may be implemented as semiconductor memories, magnetically readable memories, and/or optically readable memories, for example. A link 124 may operatively connect the controller 104 to the sensors 116 through the I/O circuit 112.
The program memory 106 and/or the RAM 110 may store various applications (i.e., machine readable instructions) for execution by the microprocessor 108. For example, an operating system 130 may generally control the operation of the control system 102 and provide a user interface to the control system 102 to implement the removal processes described herein. The program memory 106 and/or the RAM 110 may also store a variety of subroutines 132 for accessing specific functions of the testing apparatus 102. By way of example, and without limitation, the subroutines 132 may include, among other things: a subroutine for controlling ablation of mitral valve tissue, a subroutine for controlling activation of a snare head from a first collapsed state for delivery to the mitral value, to a deployed state for snaring the mitral valve clip, and then to a second collapsed state for removing the capture mitral valve clip, as well as other subroutines, for example, implementing software keyboard functionality, interfacing with other hardware in the computer system 102, etc. The program memory 106 and/or the RAM 110 may further store data related to the configuration and/or operation of the transapical removal device, and/or related to the operation of one or more subroutines 132. In addition to the controller 104, the control system 102 may include other hardware resources.
The control system 102 may also include various types of input/output hardware such as a visual display 126 and input device(s) 128 (e.g., keypad, keyboard, etc.). In an arrangement, the display 126 is touch-sensitive, and may cooperate with a software keyboard routine as one of the software routines 132 to accept user input. It may be advantageous for the testing apparatus to communicate with broader medical analysis networks or medical treatment networks (not shown) through any of a number of known networking devices and techniques (e.g., through a commuter network such as a hospital or clinic intranet, the Internet, etc.). For example, the control system 102 may be connected to a medical records database, hospital management processing system, health care professional terminals (e.g., doctor stations, nurse stations), patient monitoring systems, automated drug delivery systems. Accordingly, the disclosed arrangements may be used as part of an automated closed loop system or as part of a decision assist system.
Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.
Additionally, certain arrangements are described herein as including logic or a number of routines, subroutines, applications, or instructions. These may constitute either software (e.g., code embodied on a non-transitory, machine-readable medium) or hardware. In hardware, the routines, etc., are tangible units capable of performing certain operations and may be configured or arranged in a certain manner. In example arrangements, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.
In various arrangements, a hardware module may be implemented mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.
Accordingly, the term “hardware module” should be understood to encompass a tangible entity, be that an entity that is physically constructed, permanently configured (e.g., hardwired), or temporarily configured (e.g., programmed) to operate in a certain manner or to perform certain operations described herein. Considering arrangements in which hardware modules are temporarily configured (e.g., programmed), each of the hardware modules need not be configured or instantiated at any one instance in time. For example, where the hardware modules comprise a general-purpose processor configured using software, the general-purpose processor may be configured as respective different hardware modules at different times. Software may accordingly configure a processor, for example, to constitute a particular hardware module at one instance of time and to constitute a different hardware module at a different instance of time.
Hardware modules can provide information to, and receive information from, other hardware modules. Accordingly, the described hardware modules may be regarded as being communicatively coupled. Where multiple of such hardware modules exist contemporaneously, communications may be achieved through signal transmission (e.g., over appropriate circuits and buses) that connect the hardware modules. In arrangements in which multiple hardware modules are configured or instantiated at different times, communications between such hardware modules may be achieved, for example, through the storage and retrieval of information in memory structures to which the multiple hardware modules have access. For example, one hardware module may perform an operation and store the output of that operation in a memory device to which it is communicatively coupled. A further hardware module may then, at a later time, access the memory device to retrieve and process the stored output. Hardware modules may also initiate communications with input or output devices, and can operate on a resource (e.g., a collection of information).
The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example arrangements, comprise processor-implemented modules.
Similarly, the methods or routines described herein may be at least partially processor-implemented. For example, at least some of the operations of a method may be performed by one or more processors or processor-implemented hardware modules. The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example arrangements, the processor or processors may be located in a single location (e.g., within a home environment, an office environment or as a server farm), while in other arrangements the processors may be distributed across a number of locations.
The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example arrangements, the one or more processors or processor-implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example arrangements, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations.
Unless specifically stated otherwise, discussions herein using words such as “processing,” “computing,” “calculating,” “determining,” “presenting,” “displaying,” or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non-volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.
Some arrangements may be described using the expression “coupled” and “connected” along with their derivatives. For example, some arrangements may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The arrangements are not limited
This detailed description is to be construed as examples and does not describe every possible arrangement, as describing every possible arrangement would be impractical, if not impossible. One could implement numerous alternate arrangements, using either current technology or technology developed after the filing date of this application.
As used herein any reference to “one arrangement” or “an arrangement” means that a particular element, feature, structure, or characteristic described in connection with the arrangement is included in at least one arrangement. The appearances of the phrase “in one arrangement” in various places in the specification are not necessarily all referring to the same arrangement.
As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
In addition, use of the “a” or “an” are employed to describe elements and components of the arrangements herein. This is done merely for convenience and to give a general sense of the description. This description, and the claims that follow, should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
While the present invention has been described with reference to specific examples, which are intended to be illustrative only and not to be limiting of the invention, it will be apparent to those of ordinary skill in the art that changes, additions and/or deletions may be made to the disclosed arrangements without departing from the spirit and scope of the invention.
The foregoing description is given for clearness of understanding; and no unnecessary limitations should be understood therefrom, as modifications within the scope of the invention may be apparent to those having ordinary skill in the art.
This is a US national stage of International Application No. PCT/US17/38309, filed Jun. 20, 2017, which claims the priority of U.S. Provisional Patent Application No. 62/352,235, filed Jun. 20, 2016, and entitled “Transapical Removal Device”; the entire contents thereof are incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/038309 | 6/20/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/223073 | 12/28/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3378010 | Codling et al. | Apr 1968 | A |
3470875 | Johnson | Oct 1969 | A |
3874388 | King et al. | Apr 1975 | A |
4007743 | Blake | Feb 1977 | A |
4055861 | Carpentier et al. | Nov 1977 | A |
4312337 | Donohue | Jan 1982 | A |
4327736 | Inoue | May 1982 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4646719 | Neuman et al. | Mar 1987 | A |
4657024 | Coneys | Apr 1987 | A |
4693248 | Failla | Sep 1987 | A |
4716886 | Schulman et al. | Jan 1988 | A |
4795458 | Regan | Jan 1989 | A |
4809695 | Gwathmey et al. | Mar 1989 | A |
4930674 | Barak | Jun 1990 | A |
4998917 | Gaiser et al. | Mar 1991 | A |
5002562 | Oberlander | Mar 1991 | A |
5069679 | Taheri | Dec 1991 | A |
5071428 | Chin et al. | Dec 1991 | A |
5098440 | Hillstead | Mar 1992 | A |
5125895 | Buchbinder et al. | Jun 1992 | A |
5147370 | McNamara et al. | Sep 1992 | A |
5171259 | Inoue | Dec 1992 | A |
5217460 | Knoepfler | Jun 1993 | A |
5222963 | Brinkerhoff et al. | Jun 1993 | A |
5238002 | Devlin et al. | Aug 1993 | A |
5271544 | Fox et al. | Dec 1993 | A |
5327905 | Avitall | Jul 1994 | A |
5330501 | Tovey et al. | Jul 1994 | A |
5334217 | Das | Aug 1994 | A |
5363861 | Edwards et al. | Nov 1994 | A |
5389077 | Melinyshyn et al. | Feb 1995 | A |
5403326 | Harrison et al. | Apr 1995 | A |
5425744 | Fagan et al. | Jun 1995 | A |
5450860 | O'Connor | Sep 1995 | A |
5452837 | Williamson, IV et al. | Sep 1995 | A |
5456400 | Shichman et al. | Oct 1995 | A |
5456674 | Bos et al. | Oct 1995 | A |
5478353 | Yoon | Dec 1995 | A |
5542949 | Yoon | Aug 1996 | A |
5562678 | Booker | Oct 1996 | A |
5601224 | Bishop et al. | Feb 1997 | A |
5601574 | Stefanchik et al. | Feb 1997 | A |
5607462 | Imran | Mar 1997 | A |
5607471 | Seguin et al. | Mar 1997 | A |
5609598 | Laufer et al. | Mar 1997 | A |
5611794 | Sauer et al. | Mar 1997 | A |
5636634 | Kordis et al. | Jun 1997 | A |
5695504 | Gifford, III et al. | Dec 1997 | A |
5713911 | Racenet et al. | Feb 1998 | A |
5716417 | Girard et al. | Feb 1998 | A |
5741297 | Simon | Apr 1998 | A |
5755778 | Kleshinski | May 1998 | A |
5782239 | Webster, Jr. | Jul 1998 | A |
5797960 | Stevens et al. | Aug 1998 | A |
5810847 | Laufer et al. | Sep 1998 | A |
5814097 | Sterman et al. | Sep 1998 | A |
5820630 | Lind | Oct 1998 | A |
5843178 | Vanney et al. | Dec 1998 | A |
5849019 | Yoon | Dec 1998 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5908420 | Parins et al. | Jun 1999 | A |
5976159 | Bolduc et al. | Nov 1999 | A |
6015417 | Reynolds, Jr. | Jan 2000 | A |
6048351 | Gordon et al. | Apr 2000 | A |
6079414 | Roth | Jun 2000 | A |
6117144 | Nobles et al. | Sep 2000 | A |
6120496 | Whayne et al. | Sep 2000 | A |
6139508 | Simpson et al. | Oct 2000 | A |
6149658 | Gardiner et al. | Nov 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6182664 | Cosgrove | Feb 2001 | B1 |
6193734 | Bolduc et al. | Feb 2001 | B1 |
6200315 | Gaiser et al. | Mar 2001 | B1 |
6217528 | Koblish et al. | Apr 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6290674 | Roue et al. | Sep 2001 | B1 |
6312447 | Grimes | Nov 2001 | B1 |
6332880 | Yang et al. | Dec 2001 | B1 |
6334860 | Dorn | Jan 2002 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6419640 | Taylor | Jul 2002 | B1 |
6419696 | Ortiz et al. | Jul 2002 | B1 |
6461366 | Seguin | Oct 2002 | B1 |
6482224 | Michler et al. | Nov 2002 | B1 |
6496420 | Manning | Dec 2002 | B2 |
6540719 | Bigus et al. | Apr 2003 | B2 |
6544215 | Bencini et al. | Apr 2003 | B1 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6575971 | Hauck et al. | Jun 2003 | B2 |
6599311 | Biggs et al. | Jul 2003 | B1 |
6626930 | Allen et al. | Sep 2003 | B1 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6695866 | Kuehn et al. | Feb 2004 | B1 |
6719767 | Kimblad | Apr 2004 | B1 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6770083 | Seguin | Aug 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6837867 | Kortelling | Jan 2005 | B2 |
6855137 | Bon | Feb 2005 | B2 |
6875224 | Grimes | Apr 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6926730 | Nguyen et al. | Aug 2005 | B1 |
6932810 | Ryan | Aug 2005 | B2 |
7011669 | Kimblad | Mar 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7112207 | Allen et al. | Sep 2006 | B2 |
7125421 | Tremulis et al. | Oct 2006 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7556632 | Zadno | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7569062 | Kuehn et al. | Aug 2009 | B1 |
7604646 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7666204 | Thornton et al. | Feb 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7811296 | Goldfarb et al. | Oct 2010 | B2 |
7972323 | Bencini et al. | Jul 2011 | B1 |
7981139 | Martin et al. | Jul 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
8062313 | Kimblad | Nov 2011 | B2 |
8118822 | Schaller et al. | Feb 2012 | B2 |
8216230 | Hauck et al. | Jul 2012 | B2 |
8216256 | Raschdorf, Jr. et al. | Jul 2012 | B2 |
8303608 | Goldfarb et al. | Nov 2012 | B2 |
8500761 | Goldfarb et al. | Aug 2013 | B2 |
8623077 | Cohn | Jan 2014 | B2 |
8734505 | Goldfarb et al. | May 2014 | B2 |
8740920 | Goldfarb et al. | Jun 2014 | B2 |
8821518 | Saliman et al. | Sep 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
9211119 | Hendricksen et al. | Dec 2015 | B2 |
9439757 | Wallace et al. | Sep 2016 | B2 |
9510829 | Goldfarb et al. | Dec 2016 | B2 |
9770256 | Cohen | Sep 2017 | B2 |
10076415 | Metchik et al. | Sep 2018 | B1 |
10105222 | Metchik et al. | Oct 2018 | B1 |
10123873 | Metchik et al. | Nov 2018 | B1 |
10130475 | Metchik et al. | Nov 2018 | B1 |
10136993 | Metchik et al. | Nov 2018 | B1 |
10159570 | Metchik et al. | Dec 2018 | B1 |
10231837 | Metchik et al. | Mar 2019 | B1 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10245144 | Metchik et al. | Apr 2019 | B1 |
10258408 | Fung | Apr 2019 | B2 |
D847983 | Ho et al. | May 2019 | S |
10314586 | Greenberg et al. | Jun 2019 | B2 |
10413408 | Krone et al. | Sep 2019 | B2 |
10470881 | Noe et al. | Nov 2019 | B2 |
10507109 | Metchik et al. | Dec 2019 | B2 |
10517726 | Chau et al. | Dec 2019 | B2 |
10524792 | Hernandez et al. | Jan 2020 | B2 |
10595997 | Metchik et al. | Mar 2020 | B2 |
10624664 | Cohen | Apr 2020 | B2 |
10631893 | Drapeau | Apr 2020 | B2 |
10646342 | Marr et al. | May 2020 | B1 |
10736632 | Khairkhahan | Aug 2020 | B2 |
10751173 | Morriss et al. | Aug 2020 | B2 |
10779837 | Lee et al. | Sep 2020 | B2 |
D902403 | Marsot et al. | Nov 2020 | S |
10856988 | McNiven et al. | Dec 2020 | B2 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020183787 | Wahr et al. | Dec 2002 | A1 |
20030069593 | Tremulis et al. | Apr 2003 | A1 |
20030167071 | Martin et al. | Sep 2003 | A1 |
20040034365 | Lentz et al. | Feb 2004 | A1 |
20040044350 | Martin et al. | Mar 2004 | A1 |
20040116951 | Rosengart | Jun 2004 | A1 |
20050159763 | Mollenauer et al. | Jul 2005 | A1 |
20050192633 | Montpetit | Sep 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060184198 | Bales et al. | Aug 2006 | A1 |
20070038293 | St. Goar et al. | Feb 2007 | A1 |
20070213735 | Saadat | Sep 2007 | A1 |
20080009858 | Rizvi | Jan 2008 | A1 |
20080097467 | Gruber et al. | Apr 2008 | A1 |
20080140189 | Nguyen | Jun 2008 | A1 |
20090012538 | Saliman et al. | Jan 2009 | A1 |
20090082857 | Lashinski et al. | Mar 2009 | A1 |
20090209955 | Forster | Aug 2009 | A1 |
20090209991 | Hinchliffe et al. | Aug 2009 | A1 |
20100268226 | Epp | Oct 2010 | A1 |
20110009864 | Bucciaglia et al. | Jan 2011 | A1 |
20110178366 | Suzuki | Jul 2011 | A1 |
20110184405 | Mueller | Jul 2011 | A1 |
20110238052 | Robinson | Sep 2011 | A1 |
20120022527 | Woodruff et al. | Jan 2012 | A1 |
20130197299 | Chin et al. | Aug 2013 | A1 |
20140046320 | Kappel | Feb 2014 | A1 |
20140228871 | Cohen et al. | Aug 2014 | A1 |
20150238729 | Jenson et al. | Aug 2015 | A1 |
20150257883 | Basude et al. | Sep 2015 | A1 |
20170042546 | Goldfarb et al. | Feb 2017 | A1 |
20170049455 | Seguin | Feb 2017 | A1 |
20170100250 | Marsot et al. | Apr 2017 | A1 |
20170239048 | Goldfarb et al. | Aug 2017 | A1 |
20170265994 | Krone | Sep 2017 | A1 |
20180021133 | Barbarino | Jan 2018 | A1 |
20180036119 | Wei et al. | Feb 2018 | A1 |
20180092661 | Prabhu | Apr 2018 | A1 |
20180146964 | Garcia et al. | May 2018 | A1 |
20180235657 | Abunassar | Aug 2018 | A1 |
20180242976 | Kizuka | Aug 2018 | A1 |
20180243086 | Barbarino et al. | Aug 2018 | A1 |
20180325671 | Abunassar et al. | Nov 2018 | A1 |
20180344460 | Wei | Dec 2018 | A1 |
20180353181 | Wei | Dec 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190053803 | Ketai et al. | Feb 2019 | A1 |
20190125536 | Prabhu et al. | May 2019 | A1 |
20190151041 | Ho et al. | May 2019 | A1 |
20190151089 | Wei | May 2019 | A1 |
20190159899 | Marsot et al. | May 2019 | A1 |
20190167197 | Abunassar et al. | Jun 2019 | A1 |
20190183571 | De Marchena | Jun 2019 | A1 |
20190209293 | Metchik et al. | Jul 2019 | A1 |
20190247187 | Kizuka | Aug 2019 | A1 |
20190274831 | Prabhu | Sep 2019 | A1 |
20190321597 | Van Hoven et al. | Oct 2019 | A1 |
20190343630 | Kizuka | Nov 2019 | A1 |
20190350702 | Hernandez | Nov 2019 | A1 |
20190350710 | Ketai et al. | Nov 2019 | A1 |
20190365536 | Prabhu | Dec 2019 | A1 |
20200000473 | Dell et al. | Jan 2020 | A1 |
20200060687 | Hernández et al. | Feb 2020 | A1 |
20200078173 | McNiven et al. | Mar 2020 | A1 |
20200113678 | McCann et al. | Apr 2020 | A1 |
20200121460 | Dale et al. | Apr 2020 | A1 |
20200121894 | Prabhu et al. | Apr 2020 | A1 |
20200187942 | Wei | Jun 2020 | A1 |
20200205829 | Wei | Jul 2020 | A1 |
20200214733 | Drapeau | Jul 2020 | A1 |
20200245998 | Basude et al. | Aug 2020 | A1 |
20200261107 | Cohen | Aug 2020 | A1 |
20200281591 | Krone et al. | Sep 2020 | A1 |
20200323528 | Khairkhahan | Oct 2020 | A1 |
20200323549 | Goldfarb et al. | Oct 2020 | A1 |
20200323634 | Von Oepen et al. | Oct 2020 | A1 |
20200360018 | Dell et al. | Nov 2020 | A1 |
20200367871 | Van Hoven et al. | Nov 2020 | A1 |
20210137579 | Rafiee | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2 296 317 | Jan 2009 | CA |
91 00 873 | Apr 1991 | DE |
0 558 031 | Sep 1993 | EP |
1 383 448 | Jun 2008 | EP |
1383448 | Jun 2008 | EP |
2760351 | May 2018 | EP |
2 705 556 | Dec 1994 | FR |
2 768 324 | Mar 1999 | FR |
2 768 325 | Nov 1999 | FR |
2016-508858 | Mar 2016 | JP |
WO 9101689 | Feb 1991 | WO |
WO 9212690 | Aug 1992 | WO |
WO 94018893 | Sep 1994 | WO |
WO 9508292 | Mar 1995 | WO |
WO 9632882 | Oct 1996 | WO |
WO 9727807 | Aug 1997 | WO |
WO 9807375 | Feb 1998 | WO |
WO 9907295 | Feb 1999 | WO |
WO 9907354 | Feb 1999 | WO |
WO 9913777 | Mar 1999 | WO |
WO 9915223 | Apr 1999 | WO |
WO 0003759 | Jan 2000 | WO |
WO 0060995 | Oct 2000 | WO |
WO 0128432 | Apr 2001 | WO |
WO 03020179 | Mar 2003 | WO |
WO 03049619 | Jun 2003 | WO |
WO 2015008286 | Jan 2015 | WO |
WO 2015057289 | Apr 2015 | WO |
WO 2016178722 | Nov 2016 | WO |
WO 2018093663 | May 2018 | WO |
2019058178 | Mar 2019 | WO |
WO 2021007324 | Jan 2021 | WO |
2021113785 | Jun 2021 | WO |
Entry |
---|
Extended European search report dated Oct. 10, 2022 in EP 22173362. |
U.S. Appl. No. 14/348,527 (U.S. Pat. No. 9,770,256) filed Mar. 28, 2014 (Sep. 26, 2017). |
U.S. Appl. No. 15/714,692 (U.S. Pat. No. 10,624,664) filed Sep. 25, 2017 (Apr. 21, 2020). |
U.S. Appl. No. 16/853,664 (US 2020/0261107) filed Apr. 20, 2020 (Aug. 20, 2020). |
U.S. Appl. No. 17/744,218 (US 2022/0361907) filed May 13, 2022 (Nov. 17, 2022). |
U.S. Appl. No. 14/348,527, filed Aug. 24, 2017 Issue Fee Payment. |
U.S. Appl. No. 14/348,527, filed May 25, 2017 Notice of Allowance. |
U.S. Appl. No. 14/348,527, filed Mar. 29, 2017 Response to Non-Final Office Action. |
U.S. Appl. No. 14/348,527, filed Oct. 25, 2016 Non-Final Office Action. |
U.S. Appl. No. 14/348,527, filed Jul. 22, 2016 Response to Restriction Requirement. |
U.S. Appl. No. 14/348,527, filed May 25, 2016 Restriction Requirement. |
U.S. Appl. No. 15/714,692, filed Mar. 13, 2020 Issue Fee Payment. |
U.S. Appl. No. 15/714,692, filed Dec. 13, 2019 Notice of Allowance. |
U.S. Appl. No. 15/714,692, filed Oct. 29, 2019 Response to Non-Final Office Action. |
U.S. Appl. No. 15/714,692, filed May 31, 2019 Non-Final Office Action. |
U.S. Appl. No. 16/853,664, filed Nov. 14, 2022 Notice of Allowance. |
U.S. Appl. No. 16/853,664, filed Oct. 25, 2022 Response to Non-Final Office Action. |
U.S. Appl. No. 16/853,664, filed Aug. 4, 2022 Non-Final Office Action. |
Dang et al., “Surgical Revision After Percutaneous Mitral Valve Repair With a Clip: Initial Multicenter Experience,” Ann Thorac Surg 80:2338-2342 (2005). |
European Search Report dated Oct. 10, 2022 in Application No. EP 22173362. |
Extended European Search Report dated May 19, 2021 in Application No. EP 18859611. |
Extended European Search Report dated May 4, 2021 in Application No. EP 21161291. |
International Search Report and Written Opinion for Application No. PCT/US2017/038309, dated Aug. 21, 2017. |
International Search Report and Written Opinion mailed Jan. 8, 2019 in International Application No. PCT/IB2018/001188. |
International Search Report mailed Mar. 11, 2013 in International Application No. PCT/US2012/058139. |
Rose et al., “Late MitraClip Failure: Removal Technique for Leaflet-Sparing Mitral Valve Repair,” Journal of Cardiac Surgery 27:543-545 (2012). |
Number | Date | Country | |
---|---|---|---|
20190183571 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
62352235 | Jun 2016 | US |