The disclosure relates generally to any procedure performed within the heart (or its main arteries), including closure of ventricular septal defects, repair of aortic aneurysm, ablation of atrial/ventricular arrhythmia, and valve replacement procedures. More particularly, it relates to transapical valve replacement procedures.
Natural heart valves, such as aortic valves, mitral valves, pulmonary valves, and tricuspid valves, often become damaged by disease in such a manner that they fail to maintain bodily fluid flow in a single direction. A malfunctioning heart valve may be stenotic (i.e., calcification of the valve leaflets) or regurgitant (i.e., heart leaflets are wide open). Maintenance of blood flow in a single direction through the heart valve is important for proper flow, pressure, and perfusion of blood through the body. Hence, a heart valve that does not function properly may noticeably impair the function of the heart. Left untreated, valve disease can lead to death. There has been increasing consideration given to the possibility of using, as an alternative to traditional cardiac-valve prostheses, valves designed to be implanted using minimally-invasive surgical techniques or endovascular delivery (so-called “percutaneous valves”).
Example 1 is a transapical method of gaining access to an interior of a patient's heart. A first guidewire may be advanced through the ascending aorta and through the aortic valve to a location within the left ventricle. A guide catheter may be advanced over the first guidewire to the location within the left ventricle. A cutting catheter may be advanced over the first guidewire and a balloon catheter having an inflatable balloon may be advanced over the first guide catheter. The inflatable balloon may be inflated proximate the wall of the left ventricle, and the left ventricle wall may be penetrated using the cutting catheter. The interior of a patient's chest may be accessed through an intercostal space that is disposed above the apex of the patient's heart. An S-shaped catheter may be advanced through the intercostal space such that the S-shaped catheter has a distal end positioned proximate the patient's pericardial sac. The pericardial sac may be penetrated using an instrument advanced through the S-shaped catheter. A distal end of the balloon catheter may be connected to the distal end of the S-shaped catheter and the S-shaped catheter may be withdrawn to lift the apex of the heart.
In Example 2, the method of Example 1 in which the first guidewire is advanced through the patient's vasculature from a femoral access point.
In Example 3, the method of Example 1 or Example 2 in which accessing the interior of a patient's chest includes penetrating the chest wall through an intercostal space using a hollow needle.
In Example 4, the method of any of Examples 1-3 in which the instrument used to penetrate the pericardial sac is a hollow needle.
In Example 5, the method of any of Examples 1-4, further including advancing a port over the balloon catheter.
In Example 6, the method of Example 5, further including delivering a prosthetic valve through the port.
Example 7 is a transapical method of gaining access to an interior of a patient's heart. A first hollow needle may be advanced into a patient's chest through an intercostal space, the intercostal space being above the apex of the patient's heart. An S-shaped catheter may be advanced through the first hollow needle such that the S-shaped catheter has a distal end positioned proximate the patient's pericardial sac. A guidewire may be advanced through the S-shaped catheter. A second hollow needle may be advanced over the guidewire to a position proximate the pericardial sac, and the pericardial sac may be penetrated with the second hollow needle. A catheter bearing a cutting blade may be advanced through the second hollow needle and penetrating the heart wall. A catheter including an inflatable balloon on a distal region of the catheter may be advanced, the inflatable balloon may be inflated, and then the catheter may be partially withdrawn to lift the apex of the heart to a higher position proximate the intercostal space through which the first hollow needle was advanced.
While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.
While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.
The invention pertains to techniques for gaining access to the interior of the heart. Once access has been gained to the interior of the heart, a variety of useful procedures may be performed. For illustrative purposes, embodiments of the invention will be described with respect to cardiac valve replacement. In some embodiments, the invention pertains to aortic valve replacement techniques that combine elements of percutaneous implantation methods and elements of surgical implantation methods. In some embodiments, aortic valve replacement may include a transapical approach.
In some embodiments, as illustrated in
Once the guidewire 24 has been placed, additional elements such as a guide catheter may be advanced over the guidewire 24 such that the guide catheter passes through the aorta 16, through the aortic valve 22 and into the left ventricle 14 to a location proximate the apex 15. In some embodiments, the guidewire 24 may be withdrawn once the guide catheter 26 has been placed. As seen in
In some embodiments, a cutting element may be introduced through the guide catheter 26. The cutting element may be an elongate hollow needle. In some embodiments, as illustrated in
Before the cutting catheter 28 is advanced into significant contact with the myocardium, a balloon catheter 32 may be advanced over or through the guide catheter 26. In some embodiments, as illustrated, the balloon catheter 32 may be advanced over the guide catheter 26. In some embodiments, the balloon catheter 32 includes an inflatable balloon 34 disposed at or near a distal end 36 of the balloon catheter 32. In some embodiments (not illustrated), the guide catheter 26 itself includes an inflatable balloon and thus functions as a balloon catheter. In some embodiments, the balloon catheter 32 may be advanced over the cutting catheter 28, particularly if the cutting catheter 28 includes a configuration in which the blade 30 is withdrawn, retracted, folded or otherwise temporarily rendered inert to permit the balloon catheter 32 to advance over the cutting catheter 28. The balloon catheter 32 will include an inflation lumen (not shown) that permits inflation fluid to be communicated to an interior of the inflatable balloon 34 in order to inflate the inflatable balloon 34.
In
In some embodiments, as illustrated in
In some embodiments, the dual transapical procedure also includes an intercostal portion of the procedure, as outlined in
As seen in
As seen in
Turning now to
As seen in
As seen in
In some embodiments, as illustrated in
In some embodiments, access to the aortic valve 22 may be provided without the transfemoral or percutaneous portion of the procedure. In some embodiments, the steps shown in
As seen in
As seen in
In some embodiments, as illustrated in
As seen in
In some embodiments, as illustrated in
Once the port 70 (or 170) has been deployed, a variety of different valves, including prosthetic aortic valves, may be implanted through the port 70 (170). An illustrative but non-limiting example of a suitable prosthetic valve may be seen in
The first series of ribs 305 and the second series of ribs 306 have different functions. In some embodiments, the ribs 305 form an external or anchor portion of the armature 302 that is configured to enable the location and anchorage of the valve 301 at an implantation site. The ribs 306 are configured to provide an internal or support portion of the armature 302. In some embodiments, the ribs 306 support a plurality of valve leaflets 330 provided within the set of leaflets 303.
In some embodiments, the ribs 305 are arranged in sets of ribs (threes or multiples of three) such that they are more readily adaptable, in a complementary way, to the anatomy of the Valsalva's sinuses, which is the site of choice for implantation of the valve 301. The Valsalva's sinuses are the dilatations, from the overall lobed profile, which are present at the root of the aorta, hence in a physiologically distal position with respect to the aortic valve annulus.
In some embodiments, the structure and the configuration of the ribs 306 is, as a whole, akin to that of the ribs 305. In the case of the ribs 306, which form the internal part of the armature 302 of the valve 301, there is, however, usually the presence of just three elements that support, in a position corresponding to homologous lines of commissure (which take material form as sutures 331), on the valve leaflets 330. Essentially, the complex of ribs 306 and valve leaflets 330 is designed to form the normal structure of a biological valve prosthesis. This is a valve prosthesis which (in the form that is to be implanted with a surgical operation of a traditional type, hence of an invasive nature) has met with a wide popularity in the art.
In some embodiments, suitable materials used to form the leaflets 330, such as the pericardium or meningeal tissue of animal origin are described for example in EP 0 155 245 B and EP 0 133 420 B, both of which are hereby incorporated by reference herein in their entirety. In some embodiments, the valve 301 may be similar to those described in U.S. Patent Publication No. 2005/0197695, which is hereby incorporated by reference herein in its entirety.
Another illustrative but non-limiting example of a suitable prosthetic valve may be seen in
As can be seen, the armature 402 has a general cage-like structure and is generally symmetric about a principal axis X1. As shown, the armature 402 defines a lumen which operates as a flow tube or duct to accommodate the flow of blood there through. As will be readily apparent to those skilled in the art, a major characteristic of the present invention is the absence of structural elements that can extend in the lumen through which blood flows.
The valve sleeve 403 may be constructed according to various techniques known in the art. For example, in some embodiments, techniques for the formation of the valve leaflets, assembly of the valve sleeve and installation thereof on an armature that can be used in the context of the present disclosure are described in EP-A-0 133 420, EP-A-0 155 245 and EP-A-0 515 324 (all of which are hereby incorporated by reference). In some embodiments, the valve 401 may be similar to those described in U.S. Patent Publication No. 2006/0178740, which is hereby incorporated by reference herein in its entirety.
As will be understood by those of ordinary skill in the art, in operation, the valve leaflets 403a, 403b, 403c are able to undergo deformation, divaricating and moving up against the armature 402 so as to enable free flow of the blood through the prosthesis. When the pressure gradient, and hence the direction of flow, of the blood through the prosthesis tends to be reversed, the valve leaflets 403a, 403b, 403c then move into the position represented in
The prosthetic valves described herein, such as the valve 301 and the valve 401, may be delivered in a variety of different manners. In some embodiments, a prosthetic valve may be delivered in a minimally invasive manner in which the valve is disposed on a delivery apparatus that is configured to be inserted into the patient through the port 70 (170) discussed above. Once the prosthetic valve has been appropriately positioned, the delivery apparatus can be manipulated to deploy the valve.
An illustrative but non-limiting example of a suitable delivery device can be seen in
The manipulation portion 503 may have more than one configuration.
As shown in
In the illustrated embodiment, the valve prosthesis V is self-expanding, and is arranged within the carrier portion 502 such that an expandable portion IF and an expandable portion OF are each located within one of the deployment elements 510, 520. Each deployment element 510, 520 may be formed as a collar, cap or sheath. In yet a further embodiment, the elements 510, 520 are porous (or have apertures) such that blood flow is facilitated prior, during and after placement of prosthesis V. As will be appreciated, blood flows through the elements 510, 520 and over or through the prosthesis V during the placement procedure. Each deployment element 510, 520 is able to constrain the portions IF, OF in a radially contracted position, against the elastic strength of its constituent material. The portions IF, OF are able to radially expand, as a result of their characteristics of superelasticity, only when released from the deployment element 510, 520. Typically, the release of the portions IF, OF is obtained by causing an axial movement of the deployment elements 510, 520 along the main axis X2 of the carrier portion 502. In one embodiment, the operator causes this axial movement by manipulating the sliders 505 and 506, which are coupled to the deployment elements 510, 520. In some embodiments, suitable delivery devices such as the delivery device 501 may be found in U.S. Patent Publication No. 2008/0147182, which is hereby incorporated by reference herein in its entirety.
Another illustrative but non-limiting example of a delivery device may be seen in
In one embodiment, the valve V includes two annular end portions V1 and V2 and is arranged within the holder unit 710 at the distal delivery end of the device 700 with the annular portions V1, V2 in a radially contracted configuration. In some embodiments, the valve V is delivered by releasing the annular portion V1 first and then by causing the valve V to gradually expand (e.g. due to its elastic or superelastic nature), starting from the portion V1 and continuing to the portion V2, until expansion is complete.
As shown in the exploded view of
In some embodiments, the proximal portion 705 of the inner sheet or sleeve terminates in an annular member 750 adapted to abut against a stop member 702. When in place on the shaft 706, the stop member 702 prevents the inner sleeve from being retracted (i.e. slid back) along the axis X6 of the shaft 706 from the position shown in
In one embodiment, the stop or blocking member 702 includes a fork-shaped body (e.g. of plastics material) adapted to be arranged astride the root portion of the shaft 706 between the annular member 750 and the handle 701 to prevent “backward” movement of the inner sleeve towards the handle 701.
A further tubular sheet or sleeve (hereinafter the “outer” sleeve) is slidably arranged over the inner sleeve 705, 707. The outer sleeve 704 includes a proximal portion having an outer threaded surface 740 to cooperate with a complementary threaded formation 730 provided at the inner surface of a tubular rotary actuation member 703 arranged around the proximal portion 704 of the outer sleeves. In an embodiment, the actuation member 703 encloses the annular member 750 of the inner sleeve. The outer sleeve 704 extends over the inner sleeve 705, 707 and terminates with a distal portion 708 including an terminal constraint or outer member 780 adapted to extend around the distal portion to form an external tubular member of the holder unit 710 adapted to radially constrain and retain the annular portion V1 of the valve V located therein.
In some embodiments, the threaded surface/formations 730, 740 form a “micrometric” device actuatable by rotating the actuation member 703 to produce and precisely control axial displacement of the outer sleeve along the axis X6 of the shaft 706. Such a controlled movement may take place along the axis X6 of the shaft 706 starting from an extended position, as shown in
In one embodiment, the retraction movement produced by the “micrometric” actuation device 730, 740 actuated via the rotary member 703 is stopped when the distal marginal end of the outer member 780 is aligned with the marginal end of the intermediate member 770 which still radially constrains and retains the annular portion V2 of the valve V in the formation 709. As further described below, in that condition, the valve V is partly expanded (i.e., more or less “basket-like”) with the annular portion V1 completely (or almost completely) expanded and the annular portion V1 still contracted.
Starting from that position, if the stop member 702 is removed or otherwise disengaged, both the inner sleeve and the (retracted) outer sleeve mounted thereon can be slid back along the axis X6 towards the handle 701. In that way, the intermediate member 770 of the holder unit 710 releases the annular portion V2 of the valve V thus permitting valve expansion to become complete. Valve expansion is not hindered by the member 780 as this is likewise retracted towards the handle 701.
In an illustrative embodiment, the practitioner introduces the device 700 into the patient's body. In a particular example of aortic valve replacement, the device 700 may be placed such that the outer member 780 is located immediately distal (with respect to blood flow from the left ventricle) of the aortic annulus so that the annular portions V1 and V2 are located on opposite sides of the Valsalva sinuses.
One the device 700 is placed such that the outer member 780 is disposed properly at the annulus site, the rotary actuation member 730 may be actuated by rotating the rotary actuation member in such a way that cooperation of the threaded sections 730 and 740 will cause the outer sleeve 704, 708 to start gradually retracting towards the handle 701. As a result of this retraction of the outer sleeve, the outer member 780 will gradually disengage the annular portion V1 of the valve V. The annular portion V1 will thus be allowed to radially expand.
Gradual withdrawal of the outer sleeve 704, 708 proceeds until the outer member 780 has almost completely disengaged the valve V, while the annular formation V2 is still securely retained by the intermediate member 770 of the inner sleeve 705, 707 which maintains the annular formation V2 of the valve on the holder portion 709. This deployment mechanism of the annular formation V1 and the valve V may be controlled very precisely by the practitioner via the screw-like mechanism 730, 740 actuated by the rotary member 703. Deployment may take place in a gradual and easily controllable manner by enabling the practitioner to verify how deployment takes place.
In some embodiments, so long as the annular formation V2 of the valve V is still constrained within the formation 709 by the intermediate member 770, the practitioner still retains firm control of the partial (e.g., “basket-like”) expanded valve V. The practitioner will thus be able to adjust the position of the valve V both axially and radially (e.g., by rotating the valve V around its longitudinal axis). This radial adjustment allows the practitioner to ensure that radially expanding anchoring formations of the valve V are properly aligned with the Valsalva sinuses to firmly and reliably retain in place the valve V once finally delivered.
With the valve V retained by the device 700 almost exclusively via the intermediate member 770 acting on the annular formation V2, the blocking member 702 can be removed from the shaft 706, thus permitting the inner sleeve 705, 707 (and, if not already effected previously, the outer sleeve 704, 708) to be retracted in such a way to disengage the annular portion V2 of the valve. This movement allows the annular formation V2 (and the valve V as a whole) to become disengaged from the device 700 and thus becoming completely deployed at the implantation site. This movement can be effected by sliding the inner sleeve (and the outer sleeve) towards the handle 701.
In some embodiments, the valves described herein such as the valve 301 (
Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.
This application is a division of application from U.S. application Ser. No. 13/478,729, filed May 23, 2012, which claims the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 61/489,435, filed May 24, 2011, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3514131 | McKinney | May 1970 | A |
3671979 | Moulopoulos | Jun 1972 | A |
4011947 | Sawyer | Mar 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4220151 | Whitney | Sep 1980 | A |
4477930 | Totten et al. | Oct 1984 | A |
4601706 | Aillon | Jul 1986 | A |
4624822 | Arru et al. | Nov 1986 | A |
4684364 | Sawyer et al. | Aug 1987 | A |
4722725 | Sawyer et al. | Feb 1988 | A |
4732152 | Wallsten et al. | Mar 1988 | A |
4758151 | Arru et al. | Jul 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4784644 | Sawyer et al. | Nov 1988 | A |
4994077 | Dobben | Feb 1991 | A |
5057092 | Webster, Jr. | Oct 1991 | A |
5084151 | Vallana et al. | Jan 1992 | A |
5123919 | Sauter et al. | Jun 1992 | A |
5133845 | Vallana et al. | Jul 1992 | A |
5181911 | Shturman | Jan 1993 | A |
5201757 | Heyn et al. | Apr 1993 | A |
5287848 | Cubb | Feb 1994 | A |
5304189 | Goldberg et al. | Apr 1994 | A |
5312393 | Mastel | May 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5370684 | Vallana et al. | Dec 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5387247 | Vallana et al. | Feb 1995 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5423886 | Arru et al. | Jun 1995 | A |
5433723 | Lindenberg et al. | Jul 1995 | A |
5445608 | Chen et al. | Aug 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5545214 | Stevens | Aug 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5556414 | Turi | Sep 1996 | A |
5662712 | Pathak et al. | Sep 1997 | A |
5693083 | Baker et al. | Dec 1997 | A |
5766151 | Valley et al. | Jun 1998 | A |
5772693 | Brownlee | Jun 1998 | A |
5782811 | Samson et al. | Jul 1998 | A |
5824064 | Taheri | Oct 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5849005 | Garrison et al. | Dec 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5871489 | Ovil | Feb 1999 | A |
5925063 | Knosravi | Jul 1999 | A |
5951600 | Lemelson | Sep 1999 | A |
5954766 | Zadno Azizi et al. | Sep 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5980570 | Simpson | Nov 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6010531 | Donlon et al. | Jan 2000 | A |
6019756 | Mueller et al. | Feb 2000 | A |
6019790 | Holmberg et al. | Feb 2000 | A |
6029671 | Stevens et al. | Feb 2000 | A |
6030360 | Biggs | Feb 2000 | A |
6090099 | Samson et al. | Jul 2000 | A |
6106497 | Wang | Aug 2000 | A |
6125852 | Stevens et al. | Oct 2000 | A |
6139572 | Campbell et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6174307 | Daniel et al. | Jan 2001 | B1 |
6251093 | Valley et al. | Jun 2001 | B1 |
6299638 | Sauter | Oct 2001 | B1 |
6309382 | Garrison et al. | Oct 2001 | B1 |
6346071 | Mussivand | Feb 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6416474 | Penner et al. | Jul 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6572642 | Rinaldi et al. | Jun 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6607553 | Healy et al. | Aug 2003 | B1 |
6641558 | Aboul Hosn et al. | Nov 2003 | B1 |
6645197 | Garrison et al. | Nov 2003 | B2 |
6645220 | Huter et al. | Nov 2003 | B1 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6685739 | DiMatteo et al. | Feb 2004 | B2 |
6726648 | Kaplon et al. | Apr 2004 | B2 |
6726651 | Robinson et al. | Apr 2004 | B1 |
6726712 | Raeder Devens et al. | Apr 2004 | B1 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6767362 | Schreck | Jul 2004 | B2 |
6769434 | Liddicoat et al. | Aug 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6830585 | Artof et al. | Dec 2004 | B1 |
6875231 | Anduiza et al. | Apr 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6913618 | Denardo et al. | Jul 2005 | B2 |
6945957 | Freyman | Sep 2005 | B2 |
6964673 | Tsugita et al. | Nov 2005 | B2 |
6974464 | Quijano et al. | Dec 2005 | B2 |
6981942 | Khaw et al. | Jan 2006 | B2 |
6991646 | Clerc et al. | Jan 2006 | B2 |
7001423 | Euteneuer et al. | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7041132 | Quijano et al. | May 2006 | B2 |
7044966 | Svanidze et al. | May 2006 | B2 |
7077801 | Haverich | Jul 2006 | B2 |
7101396 | Artof et al. | Sep 2006 | B2 |
7144364 | Barbut et al. | Dec 2006 | B2 |
7156872 | Strecker | Jan 2007 | B2 |
7195641 | Palmaz et al. | Mar 2007 | B2 |
7201761 | Woolfson et al. | Apr 2007 | B2 |
7329279 | Haug et al. | Feb 2008 | B2 |
7338467 | Lutter | Mar 2008 | B2 |
7338520 | Bailey et al. | Mar 2008 | B2 |
7374571 | Pease et al. | May 2008 | B2 |
RE40377 | Williamson, IV et al. | Jun 2008 | E |
7399315 | Iobbi | Jul 2008 | B2 |
7544206 | Cohn | Jun 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7591843 | Escano et al. | Sep 2009 | B1 |
7618432 | Pedersen et al. | Nov 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7708775 | Rowe et al. | May 2010 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7993393 | Rihhini et al. | Aug 2011 | B2 |
8057539 | Ghione et al. | Nov 2011 | B2 |
8070799 | Righini et al. | Dec 2011 | B2 |
8114154 | Righini et al. | Feb 2012 | B2 |
8353953 | Giannetti et al. | Jan 2013 | B2 |
8403982 | Giannetti et al. | Mar 2013 | B2 |
8470024 | Ghione et al. | Jun 2013 | B2 |
8475521 | Suri et al. | Jul 2013 | B2 |
8486137 | Suri et al. | Jul 2013 | B2 |
20010002445 | Vesely | May 2001 | A1 |
20010007956 | Letac et al. | Jul 2001 | A1 |
20010010017 | Letac et al. | Jul 2001 | A1 |
20010039450 | Pavcnik et al. | Nov 2001 | A1 |
20010044591 | Stevens et al. | Nov 2001 | A1 |
20020029075 | Leonhardt | Mar 2002 | A1 |
20020042651 | Liddicoat et al. | Apr 2002 | A1 |
20020045846 | Kaplon et al. | Apr 2002 | A1 |
20020045929 | Diaz | Apr 2002 | A1 |
20020058995 | Stevens | May 2002 | A1 |
20020099431 | Armstrong et al. | Jul 2002 | A1 |
20020107531 | Schreck et al. | Aug 2002 | A1 |
20020117264 | Rinaldi et al. | Aug 2002 | A1 |
20020123802 | Snyders | Sep 2002 | A1 |
20020138138 | Yang | Sep 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020198594 | Schreck | Dec 2002 | A1 |
20030014104 | Cribier | Jan 2003 | A1 |
20030023300 | Bailey et al. | Jan 2003 | A1 |
20030023303 | Palmaz et al. | Jan 2003 | A1 |
20030033000 | DiCaprio et al. | Feb 2003 | A1 |
20030036795 | Andersen et al. | Feb 2003 | A1 |
20030055495 | Pease et al. | Mar 2003 | A1 |
20030109924 | Cribier | Jun 2003 | A1 |
20030130729 | Paniagua et al. | Jul 2003 | A1 |
20030153974 | Spenser et al. | Aug 2003 | A1 |
20030163194 | Quijano et al. | Aug 2003 | A1 |
20030191521 | Denardo et al. | Oct 2003 | A1 |
20030191528 | Quijano et al. | Oct 2003 | A1 |
20040034411 | Quijano et al. | Feb 2004 | A1 |
20040039371 | Tockman et al. | Feb 2004 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040039442 | St. Goar et al. | Feb 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040055606 | Hendricksen et al. | Mar 2004 | A1 |
20040078072 | Tu et al. | Apr 2004 | A1 |
20040093060 | Seguin et al. | May 2004 | A1 |
20040093063 | Wright et al. | May 2004 | A1 |
20040106976 | Bailey et al. | Jun 2004 | A1 |
20040127848 | Freyman | Jul 2004 | A1 |
20040147993 | Westlund et al. | Jul 2004 | A1 |
20040186563 | Lobbi | Sep 2004 | A1 |
20040215333 | Duran et al. | Oct 2004 | A1 |
20040236170 | Kim | Nov 2004 | A1 |
20040249413 | Allen et al. | Dec 2004 | A1 |
20050075584 | Cali | Apr 2005 | A1 |
20050075712 | Biancucci et al. | Apr 2005 | A1 |
20050075713 | Biancucci et al. | Apr 2005 | A1 |
20050075717 | Nguyen et al. | Apr 2005 | A1 |
20050075718 | Nguyen et al. | Apr 2005 | A1 |
20050075719 | Bergheim | Apr 2005 | A1 |
20050075720 | Nguyen et al. | Apr 2005 | A1 |
20050075724 | Svanidze et al. | Apr 2005 | A1 |
20050075726 | Svanidze et al. | Apr 2005 | A1 |
20050075728 | Nguyen et al. | Apr 2005 | A1 |
20050075729 | Nguyen et al. | Apr 2005 | A1 |
20050075730 | Myers et al. | Apr 2005 | A1 |
20050075731 | Artof et al. | Apr 2005 | A1 |
20050080476 | Gunderson et al. | Apr 2005 | A1 |
20050096993 | Pradhan et al. | May 2005 | A1 |
20050104957 | Okamoto et al. | May 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137687 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137689 | Salahieh et al. | Jun 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050137691 | Salahieh et al. | Jun 2005 | A1 |
20050137692 | Haug et al. | Jun 2005 | A1 |
20050137693 | Haug et al. | Jun 2005 | A1 |
20050137694 | Haug et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137696 | Salahieh et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050137699 | Salahieh et al. | Jun 2005 | A1 |
20050137701 | Salahieh et al. | Jun 2005 | A1 |
20050137702 | Haug et al. | Jun 2005 | A1 |
20050143809 | Salahieh et al. | Jun 2005 | A1 |
20050165480 | Jordan et al. | Jul 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251251 | Cribier | Nov 2005 | A1 |
20050267493 | Schreck et al. | Dec 2005 | A1 |
20050278010 | Richardson | Dec 2005 | A1 |
20060004436 | Amarant et al. | Jan 2006 | A1 |
20060004439 | Spenser et al. | Jan 2006 | A1 |
20060020333 | Lashinski et al. | Jan 2006 | A1 |
20060020334 | Lashinski et al. | Jan 2006 | A1 |
20060025844 | Majercak et al. | Feb 2006 | A1 |
20060030922 | Dolan | Feb 2006 | A1 |
20060063199 | Elgebaly et al. | Mar 2006 | A1 |
20060064054 | Sakakine et al. | Mar 2006 | A1 |
20060074271 | Cotter | Apr 2006 | A1 |
20060074484 | Huber | Apr 2006 | A1 |
20060085060 | Campbell | Apr 2006 | A1 |
20060095025 | Levine et al. | May 2006 | A1 |
20060100639 | Levin et al. | May 2006 | A1 |
20060135962 | Kick et al. | Jun 2006 | A1 |
20060142838 | Molaei et al. | Jun 2006 | A1 |
20060142848 | Gabbay | Jun 2006 | A1 |
20060178740 | Stacchino et al. | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20060229659 | Gifford et al. | Oct 2006 | A1 |
20060241656 | Starksen et al. | Oct 2006 | A1 |
20060271081 | Realyvasquez | Nov 2006 | A1 |
20060276775 | Rosenberg et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070010850 | Balgobin et al. | Jan 2007 | A1 |
20070027534 | Bergheim et al. | Feb 2007 | A1 |
20070032850 | Ruiz et al. | Feb 2007 | A1 |
20070055357 | Pokorney et al. | Mar 2007 | A1 |
20070088431 | Bourang et al. | Apr 2007 | A1 |
20070100302 | Dicarlo et al. | May 2007 | A1 |
20070100356 | Lucatero et al. | May 2007 | A1 |
20070100440 | Figulla et al. | May 2007 | A1 |
20070112355 | Salahieh et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070118207 | Amplatz et al. | May 2007 | A1 |
20070118209 | Strecker | May 2007 | A1 |
20070156225 | George et al. | Jul 2007 | A1 |
20070162100 | Gabbay | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070162107 | Haug et al. | Jul 2007 | A1 |
20070162111 | Fukamachi et al. | Jul 2007 | A1 |
20070162113 | Sharkawy et al. | Jul 2007 | A1 |
20070173861 | Strommer et al. | Jul 2007 | A1 |
20070203503 | Salahieh et al. | Aug 2007 | A1 |
20070203561 | Forster et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070219630 | Chu | Sep 2007 | A1 |
20070250097 | Weitzner et al. | Oct 2007 | A1 |
20070265702 | Lattouf | Nov 2007 | A1 |
20080021546 | Patz et al. | Jan 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080082165 | Wilson et al. | Apr 2008 | A1 |
20080097595 | Gabbay | Apr 2008 | A1 |
20080140189 | Nguyen et al. | Jun 2008 | A1 |
20080147160 | Ghione et al. | Jun 2008 | A1 |
20080147180 | Ghione et al. | Jun 2008 | A1 |
20080147181 | Ghione et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080147188 | Steinberg | Jun 2008 | A1 |
20080183097 | Leyde et al. | Jul 2008 | A1 |
20080208216 | Cerier | Aug 2008 | A1 |
20080262507 | Righini et al. | Oct 2008 | A1 |
20090069886 | Suri et al. | Mar 2009 | A1 |
20090069887 | Righini et al. | Mar 2009 | A1 |
20090069889 | Suri et al. | Mar 2009 | A1 |
20090069890 | Suri et al. | Mar 2009 | A1 |
20090105794 | Ziarno et al. | Apr 2009 | A1 |
20090118580 | Sun et al. | May 2009 | A1 |
20090157174 | Yoganathan et al. | Jun 2009 | A1 |
20090164004 | Cohn | Jun 2009 | A1 |
20090164006 | Seguin et al. | Jun 2009 | A1 |
20090171363 | Chocron | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090177275 | Case | Jul 2009 | A1 |
20090228093 | Taylor et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240326 | Wilson et al. | Sep 2009 | A1 |
20090254165 | Tabor et al. | Oct 2009 | A1 |
20090281609 | Benichou et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100292782 | Giannetti et al. | Nov 2010 | A1 |
20100292783 | Giannetti et al. | Nov 2010 | A1 |
20100292784 | Giannetti et al. | Nov 2010 | A1 |
20110144690 | Bishop et al. | Jun 2011 | A1 |
20120053684 | Righini et al. | Mar 2012 | A1 |
20130123915 | Giannetti et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
19546692 | Jun 1997 | DE |
29919625 | Feb 2000 | DE |
19857887 | May 2005 | DE |
0133420 | Feb 1988 | EP |
0155245 | May 1990 | EP |
0515324 | Nov 1992 | EP |
0637454 | Feb 1995 | EP |
0592410 | Oct 1995 | EP |
0512359 | Dec 1996 | EP |
0850607 | Jul 1998 | EP |
0941716 | Sep 1999 | EP |
1057460 | Dec 2000 | EP |
1059271 | Dec 2000 | EP |
1356763 | Oct 2003 | EP |
1440671 | Oct 2003 | EP |
0852481 | Feb 2004 | EP |
1440671 | Jul 2004 | EP |
1088529 | Jun 2005 | EP |
0955895 | Aug 2005 | EP |
1488735 | Jun 2007 | EP |
1212989 | Jan 2008 | EP |
1653884 | Jun 2008 | EP |
1935377 | Jun 2008 | EP |
1955643 | Aug 2008 | EP |
1978895 | Oct 2008 | EP |
1986579 | Nov 2008 | EP |
1570809 | Jan 2009 | EP |
2033581 | Mar 2009 | EP |
2033597 | Mar 2009 | EP |
2828091 | Feb 2003 | FR |
WO1995011055 | Apr 1995 | WO |
WO1997024989 | Jul 1997 | WO |
WO1998017202 | Apr 1998 | WO |
WO1998029057 | Jul 1998 | WO |
WO1998053761 | Dec 1998 | WO |
WO1999004728 | Feb 1999 | WO |
WO1999012483 | Mar 1999 | WO |
WO1999056665 | Nov 1999 | WO |
WO2000018303 | Apr 2000 | WO |
WO2000041525 | Jul 2000 | WO |
WO2000041652 | Jul 2000 | WO |
WO2001021244 | Mar 2001 | WO |
WO2001062189 | Aug 2001 | WO |
WO2001064137 | Sep 2001 | WO |
WO2001076510 | Oct 2001 | WO |
WO2002041789 | Aug 2002 | WO |
WO2002076348 | Oct 2002 | WO |
WO2002047575 | Dec 2002 | WO |
WO2003047468 | Jun 2003 | WO |
WO2003003943 | Nov 2003 | WO |
WO2003094797 | Nov 2003 | WO |
WO2004019825 | Mar 2004 | WO |
WO2004028399 | Apr 2004 | WO |
WO2004089253 | Oct 2004 | WO |
WO2005046525 | May 2005 | WO |
WO2005065200 | Jul 2005 | WO |
WO2005096993 | Oct 2005 | WO |
WO2005104957 | Nov 2005 | WO |
WO2006009690 | Jan 2006 | WO |
WO2006014233 | Feb 2006 | WO |
WO2006054107 | May 2006 | WO |
WO2006063199 | Jun 2006 | WO |
WO2006076890 | Jul 2006 | WO |
WO2006086135 | Aug 2006 | WO |
WO2006089517 | Aug 2006 | WO |
WO2006116538 | Nov 2006 | WO |
WO2006135551 | Dec 2006 | WO |
WO2006138173 | Dec 2006 | WO |
WO2007021708 | Feb 2007 | WO |
WO2007033093 | Mar 2007 | WO |
WO2007059252 | May 2007 | WO |
WO2007071436 | Jun 2007 | WO |
WO2007076463 | Jul 2007 | WO |
WO2008031103 | Mar 2008 | WO |
WO2008097589 | Aug 2008 | WO |
WO2008125153 | Oct 2008 | WO |
WO2008138584 | Nov 2008 | WO |
Entry |
---|
European Search Report and Search Opinion of European Patent Application No. 07115960.2, dated Jan. 24, 2008. |
European Search Report Issued in EP 09160184 dated Oct. 22, 2009. |
European Search Report issued in EP 11182402, dated Nov. 16, 2011, 5 pages. |
European Search Report issued in EP Application 08163752, dated Dec. 29, 2008. |
European Search Report Issued in EP Application No. 07115951, dated Sep. 24, 2009, 8 pages. |
European Search Report issued in EP Application No. 08159301, dated Dec. 30, 2008, 6 pages. |
European Search Report Issued in EP Application No. 09160183, dated Sep. 29, 2009, 6 pages. |
European Search Report Issued in EP Application No. 09160186, dated Oct. 6, 2009, 5 pages. |
Extended European Search Report issued in EP Application 06126552, dated Jun. 6, 2007, 7 pages. |
Extended European Search Report issued in EP Application 06126556, dated Jul. 6, 2007, 13 pages. |
Extended European Search Report issued in EP Application 07115960, dated Jan. 24, 2008, 8 pages. |
Extended European Search Report issued in EP Application 09158322, dated Sep. 29, 2009, 5 pages. |
Ho, Paul C., “Percutaneous aortic valve replacement: A novel design of the delivery and deployment system”, Minimally Invasive Therapy, 2008; 17:3; 190-194. |
Huber et al., “Direct-Access Valve Replacement: A Novel Approach for Off-Pump Valve Implantation Using Valved Stents”, Journal for the American College of Cardiology, pp. 366-370, vol. 46, No. 2, Jul. 19, 2005, ISSN: 0735-1097/05 published on-line Jul. 5, 2005. |
Partial European Search Report issued in EP App No. 06126556, dated Apr. 16, 2007, 6 pages. |
Partial European Search Report issued in EP Application No. 10155332, dated Jun. 9, 2011, 7 pages. |
U.S. Appl. No. 11/612,968, filed Dec. 19, 2006. |
U.S. Appl. No. 11/612,974, filed Dec. 19, 2006. |
U.S. Appl. No. 11/351,528, filed Sep. 7, 2007. |
Number | Date | Country | |
---|---|---|---|
20160256143 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61489435 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13478729 | May 2012 | US |
Child | 15153475 | US |