Intravascular catheters are used to access target vascular regions from remote vascular access sites to perform a procedure. The design, materials, and construction of particular catheters are primarily directed to allow the catheter to reach the target vascular anatomy while not causing vessel trauma, as well as to perform the catheter's intended function upon the catheter reaching the target anatomy. The catheter often has multiple requirements that may conflict with one another. Consequently, a strong design optimally balances the goals of these requirements.
Many catheters are single lumen catheters wherein the lumen acts as a channel for the delivery of radiopaque or therapeutic agents or for other interventional devices into the blood vessel, and/or for aspiration of blood, thrombus, or other occlusive material out of the blood vessel. Such catheters have physical properties that allow them to be advanced through a vessel access site from a proximal end into vascular anatomy which is often very curved, delicate, tortuous, and remote from the blood vessel access site. These catheters are also designed to be used with adjunctive devices such as guide wires and sometimes smaller catheters positioned in the inner lumen, and to be directed to the target anatomy through vascular access sheaths, guide catheters and sometimes sub-selective guide catheters (i.e. catheters that are specifically designed to go to more distal locations than typical guide catheters). In other words, it is often not a single catheter but a system of catheters, guide wires, guide catheters, and sheaths that allows the user to adequately perform an intended procedure.
Interventions in the cerebral vasculature often have special access challenges. Most neurointerventional procedures use a transfemoral access to the carotid or vertebral artery and thence to the target cerebral artery. However, this access route is often tortuous and may contain stenosic plaque material in the aortic arch and carotid and brachiocephalic vessel origins, presenting a risk of embolic complications during the access portion of the procedure. In addition, the cerebral vessels are usually more delicate and prone to perforation than coronary or other peripheral vasculature. In recent years, interventional devices such as wires, guide catheters, stents and balloon catheters, have all been scaled down and been made more flexible to better perform in the neurovascular anatomy. However, many neurointerventional procedures remain either more difficult or impossible because of device access challenges. In some instances, a desired access site is the carotid artery. Procedures in the intracranial and cerebral arteries are much closer to this access site than a femoral artery access site. Importantly, the risk of embolic complications while navigating the aortic arch and proximal carotid and brachiocephalic arteries are avoided. However, because most catheters used in interventional procedures are designed for a femoral access site, current devices are not ideal for the alternate carotid access sites, both in length and mechanical properties. This makes the procedure more cumbersome and in some cases more risky if using devices designed for femoral access in a carotid access procedure.
U.S. Pat. No. 5,496,294 (the '294 patent) describes a single lumen, three-layer catheter design, including (1) an inner Polytetrafluoroethylene (PTFE) liner to provide a low-friction inner surface; (2) a reinforcement layer formed of a metal coil wire or coil ribbon; and (3) an outer jacket layer. Typically, the three layers are laminated together using heat and external pressure such as with heat shrink tubing. The catheter has multiple sections of varying stiffness such that flexibility increases moving towards the distal end of the catheter. This variation in flexibility may be accomplished by varying the durometer of the outer jacket layer along the length of the catheter. Another method to vary flexibility is by varying the reinforcement structure and/or material along the length of the catheter.
One limitation in the '294 patent and in other existing neurovascular catheter technology is that the devices are designed for a femoral access approach to the cerebral arteries. The pathway from the femoral artery to the common carotid artery and thence to the internal carotid artery is both long and comprises several back and forth bends. The dimensions provided in the '294 patent are consistent with this design goal. However, catheters designed to navigate this route have lengths and flexibility transitions that would not be appropriate for a transcarotid access, and would in fact detract from performance of a transcarotid catheter. For example the flexible sections must be at least 40 cm of gradually increasing stiffness from the distal end to a proximal-most stiff section, to be able to navigate both the internal carotid artery curvature and the bends required to go from the aortic arch into the common and then the internal carotid artery.
Another disadvantage to the catheter construction described in the '294 patent is the catheter's limited ability to have continuous, smooth transitions in flexibility moving along its length. There are discreet differences in flexibility on a catheter where one jacket material abuts another, or when one reinforcement structures abuts another reinforcement structure. In addition, the tri-layer catheter construction of the '294 patent has limitations on the wall-thickness due to the need to be able to handle and assemble the three layers of the catheter during manufacture. In addition, the catheter construction makes it difficult to have a relatively large inner lumen diameter while maintaining properties of flexibility and/or kink resistance to very sharp bends in the blood vessel. As a general rule, the larger diameter catheters also tend to be stiffer in order to remain kink resistant.
There is a need for a catheter with dimensions and mechanical properties which have been optimized to access the cerebral vessels from a carotid artery access site. There is also a need to for a catheter that has gradual, smooth transitions from a first flexibility to at least a second, different flexibility moving along the length of the catheter. There is also a need for a catheter that has a relatively large inner diameter compared to prior art catheters, and yet is able to maintain physical properties such as thin wall thickness, kink resistance and flexibility.
Disclosed is an intravascular catheter that that has been optimized for accessing anterior cerebral vessels from a carotid artery access site.
Disclosed also is a catheter which includes variations in flexibility or stiffness moving along at the entire length of catheter or a portion of the length of the catheter. Advantageously, the change in flexibility of the catheter is represented by smooth, rather than sudden, changes in flexibility. In other words, the flexibility of the catheter transitions gradually moving along its length without any sudden or discrete variations in flexibility from one section of the catheter to an adjacent section of the catheter. As described in more detail below, the catheter can be particularly sized and shaped according to how the catheter will be used and in what particular section of the vascular anatomy the catheter will be used.
Also disclosed is an interventional catheter for treating an artery, comprising: an elongated body sized and shaped to be transcervically introduced into a common carotid artery at an access location in the neck, the elongated body sized and shaped to be navigated distally to an intracranial artery through the common carotid artery via the access location in the neck; an internal lumen in the elongated body, the internal lumen forming a proximal opening in a proximal region of the elongated body and a distal opening in a distal region of the elongated body; wherein the elongated body has a proximal most section and a distal most section wherein the proximal most section is a stiffest portion of the elongated body, and wherein the elongated body has an overall length and a distal most section length such that the distal most section can be positioned in an intracranial artery and at least a portion of the proximal most section is positioned in the common carotid artery during use.
Other features and advantages should be apparent from the following description of various embodiments, which illustrate, by way of example, the principles of the disclosure.
With reference again to
The catheter 105 may be made with a two or more layer construction. In an embodiment, the catheter has a PTFE inner liner, an outer jacket layer, and at least a portion of the catheter has a reinforcement structure, such as a tubular structure formed of, for example, a wound coil, braid or cut hyptotube. In addition, the catheter may have a radiopaque marker at the distal tip to facilitate placement of the device using fluoroscopy.
The catheter 105 has an insertable portion (or working length) that is sized to be inserted through an access sheath in the carotid artery and passed through an arterial pathway (through the artery) to the distal ICA or cerebral vessels. In an embodiment adapted to be used with an access sheath of total length including the sheath hemostasis valve of about 15 to 20 cm, the catheter 105 has a working length ranging from 40 to 70 cm. The working length (or insertable portion) of the catheter is the portion of the catheter that is sized and shaped to be inserted into the artery and wherein at least a portion of the working length is actually inserted into the artery during a procedure. In an embodiment, the catheter has a working length of less than 70 cm, less than 60 cm, or less than 50 cm. A similar catheter designed for a transfemoral access site may have a working length of between 100 and 130 cm. Alternately, the length of catheter can be defined relative to the location of the access site and the target cerebral artery site. In an embodiment, the catheter is configured to be introduced into the artery at a location in the artery that is less than 40 cm, less than 30 cm, or less than 20 cm from the location of the target site as measured through the arterial pathway. The distance may further be defined by a ratio of working length to the distance between the location where the catheter enters the arteriotomy and the target site. In an embodiment, this ratio is less than 2×. In an embodiment, the working length of the device may have a hydrophilic coating to improve the ease of advancement of the device through the vasculature. In an embodiment, at least 40% of the working length of the catheter is coated with a hydrophilic material. In other embodiments, at least 50% or at least 60% of the working length of the catheter is coated with a hydrophilic material. In an embodiment, the elongated body has an overall length and a distal most section or portion length such that the distal most section can be positioned in an intracranial artery and at least a portion of the proximal most section 115 (
In an embodiment, the distal-most section 111 (
Alternately, the flexible distal section and transition section may be described as a portion of the overall catheter working length. In an embodiment, the flexible distal most section is between 3 to 15% of the length of the working length of the catheter. In another embodiment, the flexible distal most section is between 4 and 25% of the length of the working length of the catheter. Similarly, in an embodiment, the transition section is between 7 and 35% of the length of the working length of the catheter. In another embodiment, the transition section is between 6 and 20% of the working length of the catheter.
In an embodiment, the flexibility of the distal most section is in the range 3 to 10 N-mm2 and the flexibility of the proximal post section is in the range 100 to 500 N-mm2, with the flexibility/flexibilities of the transition section falling between these two values.
As noted above, the catheter may have sections with discreet and/or continuously variable stiffness shaft. The sections of varying flexibility may be achieved by multiple methods. For example, the outer jacket layer may be composed of discreet sections of polymer with different durometers, composition, and/or thickness. In another embodiment, the outer layer has one or more sections of continuously variable outer layer material that varies in flexibility. The catheter may be equipped with the continuously variable outer layer material by dip coating the outer layer rather than laminating a jacket extrusion onto a PTFE-liner and reinforcement assembly of the catheter. The dip coating may be, for example, a polymer solution that polymerizes to create the outer jacket layer of the catheter. The smooth transition from one flexibility (e.g., durometer) to another flexibility along the length of the catheter can be accomplished via dipping the catheter assembly in multiple varying durometer materials whereby the transition from one durometer to another can be accomplished in a graded pattern, for example by dipping from one side of the catheter in one durometer with a tapering off in a transition zone, and dipping from the other side in another durometer with a tapering off in the same transition zone, so there is a gradual transition from one durometer to the other. In this embodiment, the dip coating can create a thinner walled outer jacket than a lamination assembly. In another embodiment, the catheter has an outer jacket layer that is extruded with variable durometer along the length, to provide variable flexibility along the length of the catheter.
In an embodiment, at least a portion of the catheter has a reinforcement structure, such as a tubular structure formed of, for example, a wound coil, braid that is composed of discreet or continuously varying structure to vary the stiffness, for example a variable coil or braid pitch. In an embodiment, the reinforcement structure is a cut hyptotube, with a cut pattern that is graded along the length, for example cut in a spiral pattern with continuously variable pitch or continually variable cut gap, or a repeating cut pattern that allows the tube to flex whereby the repeating pattern has a continuously variable repeat distance or repeat size or both. A cut hypotube-reinforced catheter may also have superior pushability than a coil-reinforced catheter, as it is a structure with potentially greater stability in the axial direction than a wound coil. The material for the reinforcement structure may be stainless steel, for example 304 stainless steel, nitinol, cobalt chromium alloy, or other metal alloy that provides the desired combination of strengths, flexibility, and resistance to crush. In an embodiment, the reinforcement structure comprises multiple materials along the different sections of flexibility.
In another embodiment the catheter has a PTFE inner liner with one or more thicknesses along variable sections of flexibility. In an embodiment, the PTFE inner liner is constructed to be extremely thin, for example between 0.0005″ and 0.0010″. This embodiment provides the catheter with a high level of flexibility as well as the ability to construct a thinner-walled catheter. For example, the PTFE liner is constructed by drawing a mandrel through a liquid PTFE liquid solution rather than the conventional method of thin-walled PTFE tubing manufacture, namely extrusion of a PTFE paste which is then dried and sintered to create a PTFE tube. The draw method allows a very thin and controlled wall thickness, such as in the range of 0.0005″-0.0010″.
Any one of the aforementioned manufacturing methods may be used in combination to construct the desired flexibility and kink resistance requirement. Current tri-layer catheters have wall thicknesses ranging from 0.005″ to 0.008″. These manufacturing techniques may results in a catheter with better catheter performance at the same wall thickness, or with equal or better catheter performance at lower wall thicknesses for example between 0.003″ to 0.005″.
In an embodiment, the distal flexible section of the catheter may be constructed using one or more of: a dip coated outer layer, an extremely thin drawn PTFE layer, and a cut hypotube reinforcement layer, with a gradual transition from the flexible section to a stiffer proximal section. In an embodiment, the entire catheter is constructed with one or more of these elements.
In some instances, there is a need to reach anatomic targets with the largest possible internal lumen size for the catheter. For example the catheter may be used to aspirate an occlusion in the blood vessel. Thus there is a desire to have a very flexible, kink resistant and collapse resistant catheter with a thin wall and large inner diameter. A catheter using the construction techniques disclosed herein meets these requirements. For example, the catheter may have an inner diameter of 0.068″ to 0.095″ and a working length of 40-60 cm. In another embodiment, the catheter may be sized to reach the more distal cerebral arteries, with an inner diameter of 0.035″ to 0.062″ and a working length of 50-70 cm. In an embodiment, the catheter is configured to navigate around a 180° bend around a radius as small as 0.050″ or 0.100″ without kinking, wherein the bends are located within 5 cm, 10 cm, or 15 cm of the arteriotomy measured through the artery. In an embodiment, the catheter can resist collapsing whilst in a tortuous anatomy up to 180°×0.050″ radius bend without collapsing when connected to a vacuum up to 20 inHg. In an embodiment, the catheter can resist collapse in the same conditions when connected to a vacuum up to 25 inHg.
In another embodiment shown in
In some instances, a neurovascular catheter is used to aspirate clot or other obstruction in a cerebral or intracranial vessel.
A cause of difficulty in advancing catheters through severe bends and across side branches is the mismatch between the catheter and the inner guiding components such as smaller catheters, microcatheters, or guidewires. One technique for advancing a catheter is called a tri-axial technique in which a smaller catheter or microcatheter is placed between the catheter and the guide wire. However, with current systems the smaller catheter has a diameter mismatch between either the larger catheter, the guide wire, or both, which creates a step in the system's leading edge as the system is advanced in the vasculature. This step may cause difficulty when navigating very curved vessels, especially at a location where there is a side-branch, for example the ophthalmic artery. In an embodiment, as shown in
In a variation of this embodiment, shown in
The material of the dilator (inner member 2652) is flexible enough and the taper is long enough to create a smooth transition between the flexibility of the guide wire and the catheter. This configuration will facilitate advancement of the catheter through the curved anatomy and into the target cerebral vasculature. In an embodiment, the dilator is constructed to have variable stiffness, for example the distal most section is made from softer material, with increasingly harder materials towards the more proximal sections. In an embodiment, distal end of the tapered dilator has a radiopaque marker such as a platinum/iridium band, a tungsten, platinum, or tantalum-impregnated polymer, or other radiopaque marker.
Although embodiments of various methods and devices are described herein in detail with reference to certain versions, it should be appreciated that other versions, embodiments, methods of use, and combinations thereof are also possible. Therefore the spirit and scope of the appended claims should not be limited to the description of the embodiments contained herein.
This application is a Continuation of U.S. application Ser. No. 15/728,915 filed Oct. 10, 2017 entitled “Transcarotid Neurovascular Catheter” and issuing on Aug. 20, 2019 as U.S. Pat. No. 10,384,034, which is a Continuation of U.S. application Ser. No. 15/299,146, filed Oct. 20, 2016 now U.S. Pat. No. 9,861,783 entitled “Transcarotid Neurovascular Catheter”, which is a Continuation of U.S. application Ser. No. 15/050,039 filed Feb. 22, 2016 now U.S. Pat. No. 9,492,637 entitled “Transcarotid Neurovascular Catheter” which is a Continuation of U.S. application Ser. No. 14/569,365 filed Dec. 12, 2014, now U.S. Pat. No. 9,265,512 entitled “Transcarotid Neurovascular Catheter”, which claims priority to: (1) U.S. Provisional Application Ser. No. 62/029,799 filed Jul. 28, 2014; (2) U.S. Provisional Application Ser. No. 62/075,101 filed Nov. 4, 2014; (3) U.S. Provisional Application Ser. No. 62/046,112 filed Sep. 4, 2014; and (4) U.S. Provisional Application Ser. No. 62/075,169 filed Nov. 4, 2014; (5) U.S. Provisional Application Ser. No. 61/919,945 filed Dec. 23, 2013; and (6) U.S. Provisional Application Ser. No. 62/083,128 filed Nov. 21, 2014, which are hereby incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3993079 | Henriques de Gatztanondo | Nov 1976 | A |
4354491 | Marbry | Oct 1982 | A |
4771777 | Horzewski et al. | Sep 1988 | A |
4840690 | Melinyshyn et al. | Jun 1989 | A |
4862891 | Smith | Sep 1989 | A |
4865581 | Lundquist et al. | Sep 1989 | A |
4921478 | Solano et al. | May 1990 | A |
4921479 | Grayzel | May 1990 | A |
4946440 | Hall | Aug 1990 | A |
5084022 | Claude | Jan 1992 | A |
5112308 | Olsen et al. | May 1992 | A |
5135484 | Wright | Aug 1992 | A |
5250060 | Carbo et al. | Oct 1993 | A |
5312356 | Engelson et al. | May 1994 | A |
RE34633 | Sos et al. | Jun 1994 | E |
5324262 | Fischell et al. | Jun 1994 | A |
5328471 | Slepian | Jul 1994 | A |
5380284 | Don Michael | Jan 1995 | A |
5429605 | Richling | Jul 1995 | A |
5437632 | Engelson | Aug 1995 | A |
5443454 | Tanabe et al. | Aug 1995 | A |
5454795 | Samson | Oct 1995 | A |
5456667 | Ham et al. | Oct 1995 | A |
5476450 | Ruggio | Dec 1995 | A |
5484412 | Pierpont | Jan 1996 | A |
5484418 | Quiachon et al. | Jan 1996 | A |
5492530 | Fischell et al. | Feb 1996 | A |
5496294 | Hergenrother et al. | Mar 1996 | A |
5522836 | Palermo | Jun 1996 | A |
5542937 | Chee et al. | Aug 1996 | A |
5558635 | Cannon | Sep 1996 | A |
5573520 | Schwartz et al. | Nov 1996 | A |
5599326 | Carter | Feb 1997 | A |
5628754 | Shevlin et al. | May 1997 | A |
5658264 | Samson | Aug 1997 | A |
5667499 | Welch et al. | Sep 1997 | A |
5695483 | Samson | Dec 1997 | A |
5702373 | Samson | Dec 1997 | A |
5707376 | Kavteladze et al. | Jan 1998 | A |
5730734 | Adams et al. | Mar 1998 | A |
5749849 | Engelson | May 1998 | A |
5749858 | Cramer | May 1998 | A |
5794629 | Frazee | Aug 1998 | A |
5795341 | Samson | Aug 1998 | A |
5810869 | Kaplan et al. | Sep 1998 | A |
5827229 | Auth et al. | Oct 1998 | A |
5833650 | Imran | Nov 1998 | A |
5836926 | Peterson et al. | Nov 1998 | A |
5836955 | Buelna et al. | Nov 1998 | A |
5846251 | Hart | Dec 1998 | A |
5851203 | van Muiden | Dec 1998 | A |
5851210 | Torossian | Dec 1998 | A |
5853400 | Samson | Dec 1998 | A |
5876367 | Kaganov et al. | Mar 1999 | A |
5876386 | Samson | Mar 1999 | A |
5882334 | Sepetka et al. | Mar 1999 | A |
5895399 | Barbut et al. | Apr 1999 | A |
5908407 | Frazee et al. | Jun 1999 | A |
5913848 | Luther et al. | Jun 1999 | A |
5916208 | Luther et al. | Jun 1999 | A |
5921952 | Desmond, III et al. | Jul 1999 | A |
5928192 | Maahs | Jul 1999 | A |
5935122 | Fourkas et al. | Aug 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5957882 | Nita et al. | Sep 1999 | A |
5964773 | Greenstein | Oct 1999 | A |
5976093 | Jang | Nov 1999 | A |
5976178 | Goldsteen et al. | Nov 1999 | A |
5997508 | Lunn et al. | Dec 1999 | A |
6004310 | Bardsley et al. | Dec 1999 | A |
6013085 | Howard | Jan 2000 | A |
6022336 | Zadno-Azizi et al. | Feb 2000 | A |
6022340 | Sepetka et al. | Feb 2000 | A |
6030369 | Engelson et al. | Feb 2000 | A |
6033388 | Nordstrom et al. | Mar 2000 | A |
6044845 | Lewis | Apr 2000 | A |
6053903 | Samson | Apr 2000 | A |
6053904 | Scribner et al. | Apr 2000 | A |
6071263 | Kirkman | Jun 2000 | A |
6074357 | Kaganov et al. | Jun 2000 | A |
6074398 | Leschinsky | Jun 2000 | A |
6090072 | Kratoska et al. | Jul 2000 | A |
6110139 | Loubser | Aug 2000 | A |
6139524 | Killion | Oct 2000 | A |
6146370 | Barbut | Nov 2000 | A |
6146373 | Cragg et al. | Nov 2000 | A |
6146415 | Fitz | Nov 2000 | A |
6152909 | Bagaoisan et al. | Nov 2000 | A |
6152912 | Jansen et al. | Nov 2000 | A |
6159230 | Samuels | Dec 2000 | A |
6161547 | Barbut | Dec 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6176844 | Lee | Jan 2001 | B1 |
6197016 | Fourkas et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6210370 | Chi-Sing et al. | Apr 2001 | B1 |
6234971 | Jang | May 2001 | B1 |
6254628 | Wallace et al. | Jul 2001 | B1 |
6258080 | Samson | Jul 2001 | B1 |
6270477 | Bagaoisan et al. | Aug 2001 | B1 |
6277139 | Levinson et al. | Aug 2001 | B1 |
6287319 | Aboul-Hosn et al. | Sep 2001 | B1 |
6295989 | Connors, III | Oct 2001 | B1 |
6295990 | Lewis et al. | Oct 2001 | B1 |
6306106 | Boyle | Oct 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6364900 | Heuser | Apr 2002 | B1 |
6368316 | Jansen et al. | Apr 2002 | B1 |
6368344 | Fitz | Apr 2002 | B1 |
6379325 | Benett et al. | Apr 2002 | B1 |
6383172 | Barbut | May 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6423032 | Parodi | Jul 2002 | B2 |
6423086 | Barbut et al. | Jul 2002 | B1 |
6428531 | Visuri et al. | Aug 2002 | B1 |
6435189 | Lewis et al. | Aug 2002 | B1 |
6436087 | Lewis et al. | Aug 2002 | B1 |
6454741 | Muni et al. | Sep 2002 | B1 |
6458151 | Saltiel | Oct 2002 | B1 |
6464664 | Jonkman et al. | Oct 2002 | B1 |
6481439 | Lewis et al. | Nov 2002 | B1 |
6482172 | Thramann | Nov 2002 | B1 |
6482217 | Pintor et al. | Nov 2002 | B1 |
6508824 | Flaherty et al. | Jan 2003 | B1 |
6517520 | Chang et al. | Feb 2003 | B2 |
6527746 | Oslund et al. | Mar 2003 | B1 |
6533800 | Barbut | Mar 2003 | B1 |
6540712 | Parodi et al. | Apr 2003 | B1 |
6544276 | Azizi | Apr 2003 | B1 |
6549800 | Atalar et al. | Apr 2003 | B1 |
6551268 | Kaganov et al. | Apr 2003 | B1 |
6555057 | Barbut et al. | Apr 2003 | B1 |
6562049 | Norlander et al. | May 2003 | B1 |
6562052 | Nobles et al. | May 2003 | B2 |
6582390 | Sanderson | Jun 2003 | B1 |
6582396 | Parodi | Jun 2003 | B1 |
6582448 | Boyle et al. | Jun 2003 | B1 |
6595953 | Coppi et al. | Jul 2003 | B1 |
6595980 | Barbut | Jul 2003 | B1 |
6605074 | Zadno-Azizi et al. | Aug 2003 | B2 |
6612999 | Brennan et al. | Sep 2003 | B2 |
6623471 | Barbut | Sep 2003 | B1 |
6623491 | Thompson | Sep 2003 | B2 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6626886 | Barbut | Sep 2003 | B1 |
6632236 | Hogendijk | Oct 2003 | B2 |
6635070 | Leeflang et al. | Oct 2003 | B2 |
6638243 | Kupiecki | Oct 2003 | B2 |
6638245 | Miller et al. | Oct 2003 | B2 |
6641573 | Parodi | Nov 2003 | B1 |
6645160 | Heesch | Nov 2003 | B1 |
6645222 | Parodi et al. | Nov 2003 | B1 |
6652480 | Imran et al. | Nov 2003 | B1 |
6656152 | Putz | Dec 2003 | B2 |
6663650 | Sepetka et al. | Dec 2003 | B2 |
6663652 | Daniel et al. | Dec 2003 | B2 |
6679893 | Tran | Jan 2004 | B1 |
6682505 | Bates et al. | Jan 2004 | B2 |
6685722 | Rosenbluth et al. | Feb 2004 | B1 |
6702782 | Miller et al. | Mar 2004 | B2 |
6711436 | Duhaylongsod | Mar 2004 | B1 |
6719717 | Johnson et al. | Apr 2004 | B1 |
6730104 | Sepetka et al. | May 2004 | B1 |
6733517 | Collins | May 2004 | B1 |
6749627 | Thompson et al. | Jun 2004 | B2 |
6755847 | Eskuri | Jun 2004 | B2 |
6758854 | Butler et al. | Jul 2004 | B1 |
6764464 | McGuckin, Jr. et al. | Jul 2004 | B2 |
6790204 | Zadno-Azizi et al. | Sep 2004 | B2 |
6824545 | Sepetka et al. | Nov 2004 | B2 |
6827730 | Leschinsky | Dec 2004 | B1 |
6837881 | Barbut | Jan 2005 | B1 |
6840949 | Barbut | Jan 2005 | B2 |
6849068 | Bagaoisan et al. | Feb 2005 | B1 |
6855136 | Dorros et al. | Feb 2005 | B2 |
6884235 | McGuckin, Jr. et al. | Apr 2005 | B2 |
6902540 | Dorros et al. | Jun 2005 | B2 |
6905490 | Parodi | Jun 2005 | B2 |
6905505 | Nash et al. | Jun 2005 | B2 |
6908474 | Hogendijk et al. | Jun 2005 | B2 |
6929632 | Nita et al. | Aug 2005 | B2 |
6929634 | Dorros et al. | Aug 2005 | B2 |
6936060 | Hogendijk et al. | Aug 2005 | B2 |
6958059 | Zadno-Azizi | Oct 2005 | B2 |
6960189 | Bates et al. | Nov 2005 | B2 |
6972030 | Lee et al. | Dec 2005 | B2 |
7001400 | Modesitt et al. | Feb 2006 | B1 |
7004924 | Brugger et al. | Feb 2006 | B1 |
7004931 | Hogendijk | Feb 2006 | B2 |
7004952 | Nobles et al. | Feb 2006 | B2 |
7022100 | Aboul-Hosn et al. | Apr 2006 | B1 |
7029488 | Schonholz et al. | Apr 2006 | B2 |
7033336 | Hogendijk | Apr 2006 | B2 |
7033344 | Imran | Apr 2006 | B2 |
7048758 | Boyle et al. | May 2006 | B2 |
7063714 | Dorros et al. | Jun 2006 | B2 |
7083594 | Coppi | Aug 2006 | B2 |
7104979 | Jansen et al. | Sep 2006 | B2 |
7108677 | Courtney et al. | Sep 2006 | B2 |
7144386 | Korkor et al. | Dec 2006 | B2 |
7150712 | Buehlmann et al. | Dec 2006 | B2 |
7152605 | Khairkhahan et al. | Dec 2006 | B2 |
7166088 | Heuser | Jan 2007 | B2 |
7169165 | Belef et al. | Jan 2007 | B2 |
7172621 | Theron | Feb 2007 | B2 |
7223253 | Hogendijk | May 2007 | B2 |
7232452 | Adams et al. | Jun 2007 | B2 |
7250042 | Kataishi et al. | Jul 2007 | B2 |
7306585 | Ross | Dec 2007 | B2 |
7309334 | von Hoffmann | Dec 2007 | B2 |
7367982 | Nash et al. | May 2008 | B2 |
7374560 | Ressemann et al. | May 2008 | B2 |
7374561 | Barbut | May 2008 | B2 |
7384412 | Coppi | Jun 2008 | B2 |
7402151 | Rosenman et al. | Jul 2008 | B2 |
7422579 | Wahr et al. | Sep 2008 | B2 |
7458980 | Barbut | Dec 2008 | B2 |
7497844 | Spear et al. | Mar 2009 | B2 |
7524303 | Don Michael et al. | Apr 2009 | B1 |
7534250 | Schaeffer et al. | May 2009 | B2 |
7731683 | Jang et al. | Jun 2010 | B2 |
7766049 | Miller et al. | Aug 2010 | B2 |
7766820 | Core | Aug 2010 | B2 |
7806906 | Don Michael | Oct 2010 | B2 |
7815626 | McFadden et al. | Oct 2010 | B1 |
7842065 | Belef et al. | Nov 2010 | B2 |
7867216 | Wahr et al. | Jan 2011 | B2 |
7905856 | McGuckin, Jr. et al. | Mar 2011 | B2 |
7905877 | Jimenez et al. | Mar 2011 | B1 |
7909812 | Jansen et al. | Mar 2011 | B2 |
7927309 | Palm | Apr 2011 | B2 |
7927347 | Hogendijk et al. | Apr 2011 | B2 |
7972308 | Putz | Jul 2011 | B2 |
7998104 | Chang | Aug 2011 | B2 |
8029533 | Bagaoisan et al. | Oct 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8142413 | Root et al. | Mar 2012 | B2 |
RE43300 | Saadat et al. | Apr 2012 | E |
8152782 | Jang et al. | Apr 2012 | B2 |
8157760 | Criado et al. | Apr 2012 | B2 |
8181324 | McFadden et al. | May 2012 | B2 |
8221348 | Hackett et al. | Jul 2012 | B2 |
8231600 | von Hoffmann | Jul 2012 | B2 |
8252010 | Raju et al. | Aug 2012 | B1 |
8292850 | Root et al. | Oct 2012 | B2 |
8343089 | Chang | Jan 2013 | B2 |
8414516 | Chang | Apr 2013 | B2 |
8545552 | Garrison et al. | Oct 2013 | B2 |
8574245 | Garrison et al. | Nov 2013 | B2 |
8870805 | Chang | Oct 2014 | B2 |
8961549 | Conn | Feb 2015 | B2 |
9126018 | Garrison | Sep 2015 | B1 |
9241699 | Kume et al. | Jan 2016 | B1 |
20010044598 | Parodi | Nov 2001 | A1 |
20010049486 | Evans et al. | Dec 2001 | A1 |
20010049517 | Zadno-Azizi et al. | Dec 2001 | A1 |
20020087119 | Parodi | Jul 2002 | A1 |
20020128679 | Turovskiy et al. | Sep 2002 | A1 |
20020133111 | Shadduck | Sep 2002 | A1 |
20020151922 | Hogendijk et al. | Oct 2002 | A1 |
20020156455 | Barbut | Oct 2002 | A1 |
20020156460 | Ye et al. | Oct 2002 | A1 |
20020165598 | Wahr et al. | Nov 2002 | A1 |
20020173815 | Hogendijk et al. | Nov 2002 | A1 |
20020183783 | Shadduck | Dec 2002 | A1 |
20030040762 | Dorros et al. | Feb 2003 | A1 |
20030065356 | Tsugita et al. | Apr 2003 | A1 |
20030069468 | Bolling et al. | Apr 2003 | A1 |
20030078562 | Makower et al. | Apr 2003 | A1 |
20030186203 | Aboud | Oct 2003 | A1 |
20030212304 | Lattouf | Nov 2003 | A1 |
20030212384 | Hayden | Nov 2003 | A1 |
20040019322 | Hoffmann | Jan 2004 | A1 |
20040059243 | Flores et al. | Mar 2004 | A1 |
20040116878 | Byrd et al. | Jun 2004 | A1 |
20040133232 | Rosenbluth et al. | Jul 2004 | A1 |
20040138608 | Barbut et al. | Jul 2004 | A1 |
20040181150 | Evans et al. | Sep 2004 | A1 |
20040210194 | Bonnette et al. | Oct 2004 | A1 |
20050004553 | Douk | Jan 2005 | A1 |
20050065467 | Pudelko et al. | Mar 2005 | A1 |
20050090802 | Connors et al. | Apr 2005 | A1 |
20050131453 | Parodi | Jun 2005 | A1 |
20050154344 | Chang | Jul 2005 | A1 |
20050154349 | Renz et al. | Jul 2005 | A1 |
20050209559 | Thornton et al. | Sep 2005 | A1 |
20050273051 | Coppi | Dec 2005 | A1 |
20060058836 | Bose et al. | Mar 2006 | A1 |
20060058837 | Bose et al. | Mar 2006 | A1 |
20060058838 | Bose et al. | Mar 2006 | A1 |
20060089618 | McFerran et al. | Apr 2006 | A1 |
20060106338 | Chang | May 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060200191 | Zadno-Azizi | Sep 2006 | A1 |
20060271098 | Peacock | Nov 2006 | A1 |
20070021778 | Carly | Jan 2007 | A1 |
20070073264 | Stedman et al. | Mar 2007 | A1 |
20070173784 | Johansson et al. | Jul 2007 | A1 |
20070197956 | Le et al. | Aug 2007 | A1 |
20070198028 | Miloslavski et al. | Aug 2007 | A1 |
20070198049 | Barbut | Aug 2007 | A1 |
20080058839 | Nobles et al. | Mar 2008 | A1 |
20080082107 | Miller et al. | Apr 2008 | A1 |
20080140010 | Kennedy et al. | Jun 2008 | A1 |
20080177245 | Mesallum | Jul 2008 | A1 |
20080200946 | Braun et al. | Aug 2008 | A1 |
20080255475 | Kondrosky et al. | Oct 2008 | A1 |
20090018455 | Chang | Jan 2009 | A1 |
20090024072 | Criado et al. | Jan 2009 | A1 |
20090030400 | Bose et al. | Jan 2009 | A1 |
20090198172 | Garrison et al. | Aug 2009 | A1 |
20090254166 | Chou et al. | Oct 2009 | A1 |
20090299393 | Martin et al. | Dec 2009 | A1 |
20100004607 | Wilson et al. | Jan 2010 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100042118 | Garrison et al. | Feb 2010 | A1 |
20100049147 | Tanikawa et al. | Feb 2010 | A1 |
20100063479 | Merdan et al. | Mar 2010 | A1 |
20100063480 | Shireman | Mar 2010 | A1 |
20100094330 | Barbut | Apr 2010 | A1 |
20100114017 | Lenker et al. | May 2010 | A1 |
20100145308 | Layman et al. | Jun 2010 | A1 |
20100185216 | Garrison et al. | Jul 2010 | A1 |
20100204672 | Lockhart et al. | Aug 2010 | A1 |
20100204684 | Garrison et al. | Aug 2010 | A1 |
20100217276 | Garrison et al. | Aug 2010 | A1 |
20100228269 | Garrison et al. | Sep 2010 | A1 |
20100256600 | Ferrera | Oct 2010 | A1 |
20100280431 | Criado et al. | Nov 2010 | A1 |
20100318097 | Ferrera et al. | Dec 2010 | A1 |
20110004147 | Renati et al. | Jan 2011 | A1 |
20110009875 | Grandfield et al. | Jan 2011 | A1 |
20110034986 | Chou et al. | Feb 2011 | A1 |
20110087147 | Garrison et al. | Apr 2011 | A1 |
20110112567 | Lenker et al. | May 2011 | A1 |
20110125131 | Chang | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110152760 | Parker | Jun 2011 | A1 |
20110166496 | Criado et al. | Jul 2011 | A1 |
20110166497 | Criado et al. | Jul 2011 | A1 |
20110238041 | Lim et al. | Sep 2011 | A1 |
20120095485 | Cully et al. | Apr 2012 | A1 |
20120109044 | Santamore et al. | May 2012 | A1 |
20120179097 | Cully et al. | Jul 2012 | A1 |
20120238956 | Yamada et al. | Sep 2012 | A1 |
20120310212 | Fischell et al. | Dec 2012 | A1 |
20130035628 | Garrison et al. | Feb 2013 | A1 |
20130172852 | Chang | Jul 2013 | A1 |
20130184735 | Fischell et al. | Jul 2013 | A1 |
20130197621 | Ryan et al. | Aug 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20140031682 | Renati et al. | Jan 2014 | A1 |
20140031925 | Garrison et al. | Jan 2014 | A1 |
20140046297 | Shimada et al. | Feb 2014 | A1 |
20140046346 | Hentges et al. | Feb 2014 | A1 |
20140058414 | Garrison et al. | Feb 2014 | A1 |
20140135661 | Garrison et al. | May 2014 | A1 |
20140155783 | Starksen et al. | Jun 2014 | A1 |
20140236120 | Tsai et al. | Aug 2014 | A1 |
20140257018 | Farnan | Sep 2014 | A1 |
20140257186 | Kerr | Sep 2014 | A1 |
20140296769 | Hyde et al. | Oct 2014 | A1 |
20140296868 | Garrison et al. | Oct 2014 | A1 |
20140371653 | Criado et al. | Dec 2014 | A1 |
20150025616 | Chang | Jan 2015 | A1 |
20150080942 | Garrison et al. | Mar 2015 | A1 |
20150141760 | Chou et al. | May 2015 | A1 |
20150150562 | Chang | Jun 2015 | A1 |
20150173782 | Garrison et al. | Jun 2015 | A1 |
20150174368 | Garrison et al. | Jun 2015 | A1 |
20150327843 | Garrison | Nov 2015 | A1 |
20160008025 | Gupta et al. | Jan 2016 | A1 |
20160128688 | Garrison et al. | May 2016 | A1 |
20160158044 | Chou et al. | Jun 2016 | A1 |
20160158502 | Kume et al. | Jun 2016 | A1 |
20160166804 | Garrison et al. | Jun 2016 | A1 |
20160271315 | Chang | Sep 2016 | A1 |
20160271316 | Criado et al. | Sep 2016 | A1 |
20160279379 | Chang | Sep 2016 | A1 |
20160296690 | Kume et al. | Oct 2016 | A1 |
20170043141 | Kume et al. | Feb 2017 | A1 |
20170136212 | Garrison et al. | May 2017 | A1 |
20170209260 | Garrison et al. | Jul 2017 | A1 |
20170312491 | Ryan et al. | Nov 2017 | A1 |
20170354523 | Chou et al. | Dec 2017 | A1 |
20170354803 | Kume et al. | Dec 2017 | A1 |
20170361072 | Chou et al. | Dec 2017 | A1 |
20170368296 | Chang | Dec 2017 | A1 |
20180008294 | Garrison et al. | Jan 2018 | A1 |
20180154063 | Criado et al. | Jun 2018 | A1 |
20180185614 | Garrison et al. | Jul 2018 | A1 |
20180289884 | Criado et al. | Oct 2018 | A1 |
20190105439 | Criado et al. | Apr 2019 | A1 |
20190150916 | Hentges et al. | May 2019 | A1 |
20190175885 | Kume et al. | Jun 2019 | A1 |
20190231962 | Criado et al. | Aug 2019 | A1 |
20190254680 | Chang | Aug 2019 | A1 |
20190262530 | Criado et al. | Aug 2019 | A1 |
20190269538 | Chou et al. | Sep 2019 | A1 |
20190350568 | Garrison | Nov 2019 | A1 |
20190388654 | Chou et al. | Dec 2019 | A1 |
20200009406 | Garrison et al. | Jan 2020 | A1 |
20200015826 | Chang | Jan 2020 | A1 |
20200016321 | Criado et al. | Jan 2020 | A1 |
20200038576 | Garrison et al. | Feb 2020 | A1 |
20200054871 | Ryan et al. | Feb 2020 | A1 |
20200108221 | Chang | Apr 2020 | A1 |
20200113587 | Garrison et al. | Apr 2020 | A1 |
20200170637 | Garrison et al. | Jun 2020 | A1 |
20200282127 | Garrison et al. | Sep 2020 | A1 |
20200297912 | Criado et al. | Sep 2020 | A1 |
20200375728 | Garrison et al. | Dec 2020 | A1 |
20200375729 | Garrison et al. | Dec 2020 | A1 |
20200390438 | Garrison et al. | Dec 2020 | A1 |
20200397446 | Chang | Dec 2020 | A1 |
20210205571 | Chang | Jul 2021 | A1 |
20210212679 | Hentges et al. | Jul 2021 | A1 |
20210228847 | Kume et al. | Jul 2021 | A1 |
20210251634 | Chang | Aug 2021 | A1 |
20210290213 | Garrison | Sep 2021 | A1 |
20210290257 | Garrison et al. | Sep 2021 | A1 |
20210299343 | Criado et al. | Sep 2021 | A1 |
20210307945 | Chou et al. | Oct 2021 | A1 |
Number | Date | Country |
---|---|---|
101267781 | Sep 2008 | CN |
102223909 | Oct 2011 | CN |
102006039236 | Feb 2008 | DE |
0427429 | May 1991 | EP |
1440663 | Jul 2004 | EP |
H02-71764 | Mar 1990 | JP |
H04-263870 | Sep 1992 | JP |
H7-148264 | Jun 1995 | JP |
2003-522560 | Jul 2003 | JP |
2005-500138 | Jan 2005 | JP |
2007007042 | Jan 2007 | JP |
2009-535084 | Oct 2009 | JP |
2013-048881 | Mar 2013 | JP |
WO-9505209 | Feb 1995 | WO |
WO-9838930 | Sep 1998 | WO |
WO-9945835 | Sep 1999 | WO |
WO-0032266 | Jun 2000 | WO |
WO-0076390 | Dec 2000 | WO |
WO-0115767 | Mar 2001 | WO |
WO-0158365 | Aug 2001 | WO |
WO-0232495 | Apr 2002 | WO |
WO-03018085 | Mar 2003 | WO |
WO-03090831 | Nov 2003 | WO |
WO-2004006803 | Jan 2004 | WO |
WO-2005051206 | Jun 2005 | WO |
WO-2006126642 | Nov 2006 | WO |
WO-2007046348 | Apr 2007 | WO |
WO-2007125488 | Nov 2007 | WO |
WO-2008123521 | Oct 2008 | WO |
WO-2008144587 | Nov 2008 | WO |
WO-2009012473 | Jan 2009 | WO |
WO-2009099764 | Aug 2009 | WO |
WO-2009100210 | Aug 2009 | WO |
WO-2010075445 | Jul 2010 | WO |
WO-2010075565 | Jul 2010 | WO |
WO-2012047803 | Apr 2012 | WO |
Entry |
---|
U.S. Appl. No. 14/227,585, filed Mar. 27, 2014, US 2014-0296769. |
U.S. Appl. No. 15/049,637, filed Feb. 22, 2016, US 2016-0242764. |
U.S. Appl. No. 15/141,060, filed Apr. 28, 2016, US 2016-0317288. |
U.S. Appl. No. 15/399,638, filed Jan. 5, 2017, US 2017-0209260. |
U.S. Appl. No. 15/641,966, filed Jul. 5, 2017, US 2017-0296798. |
U.S. Appl. No. 15/901,502, filed Feb. 21, 2018, US 2018-0235789. |
U.S. Appl. No. 16/008,703, filed Jun. 14, 2018, US 2018-0289884. |
U.S. Appl. No. 16/056,208, filed Aug. 6, 2018, US 2019-0175885. |
U.S. Appl. No. 16/148,849, filed Oct. 1, 2018, US 2019-0269538. |
U.S. Appl. No. 16/171,784, filed Oct. 26, 2018, US 2019-0125512. |
U.S. Appl. No. 16/177,716, filed Nov. 1, 2018, US 2019-0150916. |
U.S. Appl. No. 16/256,229, filed Jan. 24, 2019, US 2019-0254680. |
U.S. Appl. No. 16/377,663, filed Apr. 8, 2019, US 2019-0231962. |
U.S. Appl. No. 16/410,485, filed May 13, 2019, US 2019-0262530. |
PCT/US18/40264, filed Jun. 29, 2018, WO 2019/010077. |
PCT/US18/57789, filed Oct. 26, 2018, WO 2019/089385. |
Adami, M.D., et al., (2002) “Use of the Parodi Anti-Embolism System in Carotid Stenting: Italian Trial Results” J Endovasc Ther 9:147-154. |
Bergeron et al. (1999). “Percutaneous stenting of the internal carotid artery: the European Cast I Study” J. Endovasc. Surg. 6:155-159. |
Bergeron et al. (2008) MEET Presentation, Cannes, French Riviera “Why I do not use routine femoral access for CAS”. 12 pages. |
Bergeron P. et al. (1996) “Recurrent Carotid Disease: Will Stents be an alternative to surgery?” J Endovasc Surg; 3: 76-79. |
Bourekas, E. C., A. P. Slivka, et al. (2004). “Intraarterial thrombolytic therapy within 3 hours of the onset of stroke.” Neurosurgery 54(1): 39-44; discussion 44-6. |
Cohen et al., “A reappraisal of the common carotid artery as an access site in interventional procedures for acute stroke therapies”, Case Reports, Journal of Clinical Neuroscience 19 (2012) pp. 323-326. |
Criado et al. (1997) “Evolving indications for and early results of carotid artery stenting” Am. J. Surg.; 174:111-114. |
Diederich et al. (2004) “First Clinical experiences with an endovascular clamping system for neuroprotection during carotid stenting” Eur. J. Vase. Endovasc. Surg. 28:629-633. |
Diethrich et al., (1996). “Percutaneous techniques for endoluminal carotid interventions” J. Endovasc. Surg. 3:182-202. |
Diethrich, E. B. (2004). The Direct Cervical Carotid Artery Approach. Carotid Artery Stenting: Current Practice and Techniques. N. Al-Mubarak, G. S. Roubin, S. Iyer and J. Vitek. Philadephia, Lippincott Williams & Wilkins: Chapter 11. pp. 124-136. |
Feldtman, R. W., C. J. Buckley, et al. (2006). “How I do it: cervical access for carotid artery stenting.” Am J Surg 192(6): 779-81. |
Fiorella, D., M. Kelly, et al. (2008). “Endovascular Treatment of Cerebral Aneurysms.” Endovascular Today Jun. 2008. pp. 53-64. |
Frazee, J. G. and X. Luo (1999). “Retrograde transvenous perfusion.” Crit Care Clin 15(4): 777-88, vii. |
Frazee, J. G., X. Luo, et al. (1998). “Retrograde transvenous neuroperfusion: a back door treatment for stroke.” Stroke 29(9): 1912-6. |
Goldstein “Acute Ischemic Stroke Treatment in 2007” Circ 116:1504-1514 (2007). |
Gray et al. (2007) “The CAPTURE registry: Results of carotid stenting with embolic protection in the post approval setting” Cath. Cardovasc. Interven. 69:341-348. |
Henry et al. (1999) “Carotid stenting with cerebral protection: First clinical experience using the PercuSurge GuardWire System” J. Endovasc. Surg. 6:321-331. |
Hoffer et al. “Percutaneous Arterial Closure Devices” J. Vasc. Interv. Radiol. 14:865-885 (2003). |
Howell, M., K. Doughtery, et al. (2002). “Percutaneous repair of abdominal aortic aneurysms using the AneuRx stent graft and the percutaneous vascular surgery device.” Catheter Cardiovasc Interv 55(3): 281-7. |
Koebbe, C. J., E. Veznedaroglu, et al. (2006). “Endovascular management of intracranial aneurysms: current experience and future advances.” Neurosurgery 59(5 Suppl 3): S93-102; discussion S3-13. |
Luebke, T et al. (2007) “Meta-analysis of randomized trials comparing carotid endarterectomy and endovascular treatment” Eur. J. Vasc. Endovasc. Surg. 34:470-479. |
MacDonald, S. (2006) “Is there any evidence that cerebral protection is beneficial?” J. Cardiovasc. Surg. 47:127-36. |
Mas et al. (2006) “Endarterectomy versus stenting in patients with symptomatic severe carotid stenosis” NEJM 355:1660-71. |
MomaPresn (AET) 2002 Biamino, G; MO.MA as a distal protective device, University of Leipzig—Heart Center Department of Clinical and Interventional; Angiology Leipzig, Germany; 2002. 37 pages. |
Nesbit, G. M., G. Luh, et al. (2004). “New and future endovascular treatment strategies for acute ischemic stroke.” J Vasc Interv Radiol 15(1 Pt 2): S103-10. |
Nii, K., K. Kazekawa, et al. (2006). “Direct carotid puncture for the endovascular treatment of anterior circulation aneurysms.” AJNR Am J Neuroradiol 27(7): 1502-4. |
Ouriel, K., R. K. Greenberg, et al. (2001). “Hemodynamic conditions at the carotid bifurcation during protective common carotid occlusion.” J Vase Surg 34(4): 577-80. |
Parodi et al. (2000). “Initial evaluation of carotid angioplasty and stenting with three different cerebral protection devices” J. Vasc. Surg. 32:1127-1136. |
Parodi, J. C., L. M. Ferreira, et al. (2005). “Cerebral protection during carotid stenting using flow reversal.” J Vasc Surg 41(3): 416-22. |
Perez-Arjona, E. A., Z. DelProsto, et al. (2004). “Direct percutaneous carotid artery stenting with distal protection: technical case report.” Neurol Res 26(3): 338-41. |
Reekers, J. A. (1998). “A balloon protection sheath to prevent peripheral embolization during aortoiliac endovascular procedures.” Cardiovasc Intervent Radiol 21(5): 431-3. |
Reimers et al. (2005). “Proximal endovascular flow blockage for cerebral protection during carotid artery stenting: Results froma prospective multicenter registry” J. Endovasc. Ther. 12:156-165. |
Ribo, M., C. Molina, et al. (2008). “Buying Time for Recanalization in Acute Stroke: Arterial Blood Infusion Beyond the Occluding Clot as a Neuroprotective Strategy.” J Neuroimaging. 4 pages. |
Ross, I. B. and G. D. Luzardo (2006). “Direct access to the carotid circulation by cut down for endovascular neuro-interventions.” Surg Neurol 65(2): 207-11; discussion 211. |
Stejskal, et al., “Experience of 500 Cases of Neurophysiological Monitoring in Carotid Endarterectomy”, Acta Neurochir, 2007, 149:681-689. |
Theron, et al. “New Triple Coaxial Catheter System for Carotid Angioplasty with Cerebral Protection.”. AJNR 11:869-874, Sep./Oct. 1990. 0195-6108/90/1106-0869. American Society of Neurology. |
U.S. Appl. No. 16/250,825, filed Jan. 17, 2019, US 2019-0350568. |
U.S. Appl. No. 16/281,311, filed Feb. 21, 2019, US 2019-0388654. |
U.S. Appl. No. 16/297,348, filed Mar. 8, 2019, US 2020-0038576. |
U.S. Appl. No. 16/299,524, filed Mar. 12, 2019, US 2019-0366070. |
U.S. Appl. No. 16/353,492, filed Mar. 14, 2019, US 2020-0009406. |
U.S. Appl. No. 16/530,783, filed Aug. 2, 2019, US 2020-0054871. |
U.S. Appl. No. 16/581,034, filed Sep. 24, 2019, US 2020-0015826. |
U.S. Appl. No. 16/581,061, filed Sep. 24, 2019, US 2020-0016321. |
Number | Date | Country | |
---|---|---|---|
20200171277 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
62083128 | Nov 2014 | US | |
62075169 | Nov 2014 | US | |
62075101 | Nov 2014 | US | |
62046112 | Sep 2014 | US | |
62029799 | Jul 2014 | US | |
61919945 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15728915 | Oct 2017 | US |
Child | 16544083 | US | |
Parent | 15299146 | Oct 2016 | US |
Child | 15728915 | US | |
Parent | 15050039 | Feb 2016 | US |
Child | 15299146 | US | |
Parent | 14569365 | Dec 2014 | US |
Child | 15050039 | US |