Transcatheter heart valve storage container and crimping mechanism

Information

  • Patent Grant
  • 10918473
  • Patent Number
    10,918,473
  • Date Filed
    Monday, July 16, 2018
    6 years ago
  • Date Issued
    Tuesday, February 16, 2021
    4 years ago
Abstract
Disclosed herein is a storage container for an expandable prosthetic heart valve that crimps the valve upon opening the container and removal of the valve from the container. The container includes a housing sized to receive the heart valve in its expanded configuration and a crimping mechanism. The crimping mechanism is incorporated into the container and engages the heart valve so as to operably convert the heart valve from its expanded configuration to its smaller crimped configuration upon opening the container and removing the valve.
Description
TECHNICAL FIELD

The present invention relates generally to medical devices and particularly to containers and methods for storing and preparing expandable heart valve prostheses for implantation.


BACKGROUND

Prosthetic heart valves are used to replace damaged or diseased heart valves. In vertebrate animals, the heart is a hollow muscular organ having four pumping chambers: the left and right atria and the left and right ventricles, each provided with its own one-way valve. The natural heart valves are identified as the aortic, mitral (or bicuspid), tricuspid and pulmonary valves. Prosthetic heart valves can be used to replace any of these naturally occurring valves.


Where replacement of a heart valve is indicated, the dysfunctional valve is typically surgically removed and replaced with either a mechanical valve or a tissue valve. Tissue valves are often preferred over mechanical valves because they typically do not require long-term treatment with anticoagulants. The most common tissue valves are constructed with whole porcine (pig) valves, or with separate leaflets obtained from bovine (cow) pericardium. Although so-called stentless valves, comprising a section of porcine aorta along with the valve, are available, the most widely used valves include some form of stent or synthetic leaflet support. Typically, a wireform having alternating arcuate cusps and upstanding commissures supports the leaflets within the valve, in combination with an annular stent and a sewing ring. The alternating cusps and commissures mimic the natural contour of leaflet attachment.


A conventional heart valve replacement surgery involves accessing the heart in the patient's thoracic cavity through a longitudinal incision in the chest. For example, a median sternotomy requires cutting through the sternum and forcing the two opposing halves of the rib cage to be spread apart, allowing access to the thoracic cavity and heart within. The patient is then placed on cardiopulmonary bypass which involves stopping the heart to permit access to the internal chambers. Such open heart surgery is particularly invasive and involves a lengthy and difficult recovery period.


Recently, a great amount of research has been performed to reduce the trauma and risk associated with conventional open heart valve replacement surgery. In particular, the field of minimally invasive surgery (MIS) has exploded since the early to mid-1990s, with devices now being available to enable valve replacements without opening the chest cavity. MIS heart valve replacement surgery still typically requires bypass, but the excision of the native valve and implantation of the prosthetic valve are accomplished via elongated tubes (catheters or cannulas), with the help of endoscopes and other such visualization techniques.


More recently, a variety of prosthetic heart valves have been developed wherein the valve structure is mounted on a stent and then delivered to the implantation site via a percutaneous catheterization technique. Such transcatheter heart valves (THV) are typically crimped to a smaller diameter or profile just prior to implantation.


To minimize the possibility of damage to the relatively delicate tissue type or bioprosthetic heart valves, they are packaged in jars filled with a sterilant and preservative solution for shipping and storage prior to use. In doing so, the valves are stabilized to prevent the valves from contacting the inside of the jar. Prior to implantation in a patient, residual traces of the sterilant and preservative solution are washed from the valve. Washing is accomplished by first removing the valve from the jar and then rinsing the valve in a sterile saline solution. After rinsing, the valve is crimped to reduce it to a size appropriate for transcatheter delivery and implantation. This process leaves the valve susceptible to damage if the valve contacts any surfaces while being manipulated prior to implantation.


There remains a need for a storage and preparation system for such valves that prevents damage to the valve, and enables a medical practitioner to easily and safely remove the valve from the storage container, prepare, and crimp the valve prior to implantation


SUMMARY

Disclosed herein is a storage container for a transcatheter heart valve that allows for the storage of the heart valve in its expanded configuration and permits easy crimping of the heart valve from a larger diameter to a smaller diameter upon removal of the valve from the storage jar prior to implantation. The storage container includes a container housing and a crimping mechanism. The container housing is sized to receive the heart valve in its expanded configuration. The crimping mechanism is incorporated into the container and engages the heart valve to convert the heart valve from its expanded configuration to its crimped or unexpanded configuration upon opening of the container and removal of the valve.


While the present invention is particularly well-suited for use with stented prosthetic heart valves, it can also be applied to other types of stents such as coronary stents, peripheral stents, other stented heart valves and stent grafts.


In some embodiments, the crimping mechanism includes a valve cover coupled to the container housing. The valve cover including a central opening in communication with an interior of the container housing where movement of the heart valve through the central opening converts the heart valve from its expanded configuration to its crimped configuration. The heart valve has a larger diameter in its expanded configuration than in its crimped configuration.


The valve cover can include a tapered channel extending from a bottom surface to the central opening, where movement of the heart valve through the tapered channel upon opening of the container converts the heart valve from its expanded configuration to its crimped configuration. In some embodiments, the tapered channel can define a cone-shaped passage. The size of the opening to the tapered channel at the bottom surface of the valve cover can be designed to correspond to the size of the heart valve in its expanded configuration, while the other end of the channel corresponds to the size of the valve in its crimped configuration.


In some embodiments, the crimping mechanism further includes a top cover coupled to the container housing having an opening axially aligned with the central opening of the valve cover. The crimping mechanism further includes a base structure having a central cavity sized and configured to receive the heart valve. The base is axially movable with respect to the valve cover for moving the heart valve through the central opening of the valve cover. The valve cover can be fixed to the container housing. And the top cover can be rotatably coupled to the container housing and the valve cover. The base includes an exterior thread for engaging a threaded opening in the top cover such that rotation of the top cover causes the threaded opening to engage the exterior threads of the base and move the base axially with respect to the top cover.


In some embodiments, the crimping mechanism further includes a valve stage located within a central cavity of the base, the valve stage providing axial support for the heart valve. In other embodiments, the crimping mechanism includes a valve support extending axially adjacent the heart valve and providing radial or lateral support for the heart valve.


Also disclosed herein is a system for storing and crimping an expandable prosthetic heart valve. The system includes an expandable prosthetic heart valve having both crimped and expanded configurations, the heart valve comprising an annular frame with a leaflet structure positioned within frame. The system also includes a container housing sized to receive the heart valve in its expanded configuration, and a crimping mechanism incorporated into the container housing and engaging the heart valve that is operable to convert the heart valve from its expanded configuration to its crimped configuration upon opening of the container and removal of the heart valve. The heart valve can be a tissue-type valve and the container housing can hold a solution suitable for preserving the leaflet structure.


In some embodiments, crimping mechanism includes a valve cover coupled to the container housing and including a central opening in communication with an interior of the container housing, and a base having a central cavity sized and configured to receive the heart valve. The base is axially movable with respect to the valve cover for moving the heart valve through the central opening of the valve cover. The heart valve is positioned within a central cavity of the base, and movement of the heart valve through the central opening converts the heart valve from its expanded configuration to its crimped configuration.


In some embodiments, the crimping mechanism includes a top cover rotatably coupled to the valve cover and the container housing, the top cover having an opening axially aligned with the central opening of the valve cover. The base includes an exterior thread for engaging a threaded opening in the top cover. The base is rotatably coupled to the top cover and rotation of the top cover causes the threaded opening to engage the exterior threads of the base thereby moving the base axially with respect to the top cover.


In some embodiments, the valve cover includes a tapered channel extending from a bottom surface of the valve cover to the central opening of the valve cover. The size of the opening to the tapered channel at the bottom surface corresponds to the size of the heart valve in its expanded configuration while the other end of the channel corresponds to the size of the valve in its crimped configuration. Movement of the heart valve through the tapered channel converts the heart valve from its expanded configuration to its crimped configuration.


Further disclosed herein is a method of storing and crimping an expandable prosthetic heart valve. The method includes providing a prosthetic heart valve having a crimped configuration sized to be delivered to a site of implantation through a catheter and an expanded configuration sized to engage a heart valve annulus. The method also includes storing the heart valve in a container in its expanded configuration and converting the heart valve from its expanded configuration to its crimped configuration as it passes through an opening in the container. The step of converting further comprises compressing the heart valve through a tapered channel provided in the container.


In some embodiments, the container includes a container housing, a valve cover coupled to the container housing and including a central opening in communication with an interior of the container housing, and a base having a central cavity receiving the heart valve. The base is rotatably coupled to the valve cover and axially movable with respect to the valve cover and container housing. The step of converting the heart valve from its expanded configuration to its crimped configuration further comprises axially moving the base with respect to the valve cover and advancing the heart valve from the central cavity of the base and through the central opening of the valve cover.


In some embodiments, a top cover is rotatably coupled to the valve cover and the container housing. The base can include an exterior thread for engaging a threaded opening in the top cover, where the threaded opening in the top cover is axially aligned with the central opening of the valve cover. The step of converting the heart valve from its expanded configuration to its crimped configuration further comprises rotating the top cover to cause the threaded opening to engage the exterior threads of the base and thereby moving the base axially with respect to the top cover.


In some embodiments, the step of converting the heart valve from its expanded configuration to its crimped configuration further comprises crimping the heart valve and maintaining the heart valve in its crimped state using a constraint around the heart valve. And the method further includes detaching the heart valve from the storage container after placing the constraint around the valve and mounting the valve on a delivery catheter.


The details of one or more embodiments of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the disclosure will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIG. 1 is a perspective view of an example storage container for a transcatheter heart valve;



FIG. 2 is a front view of the storage container of FIG. 1;



FIG. 3 is a top view of the storage container of FIG. 1;



FIG. 4 is a bottom view of the storage container of FIG. 1;



FIG. 5 is a perspective view of the storage container of FIG. 1 including a lid;



FIG. 6 is a front perspective view of the storage container of FIG. 5;



FIG. 7 is a bottom perspective view of the lid of FIG. 5;



FIG. 8 is a front view of the storage container of FIG. 5;



FIG. 9A is a section view of the storage container of FIG. 1;



FIG. 9B is a section view of the storage container of FIG. 1;



FIG. 10 is a top perspective view of an example valve cover;



FIG. 11 is a bottom perspective view of the valve cover of FIG. 10;



FIG. 12 is a front view of the valve cover of FIG. 10;



FIG. 13 is at top view of the valve cover of FIG. 10;



FIG. 14 is a bottom view of the valve cover of FIG. 10;



FIG. 15 is a section view of the valve cover of FIG. 13;



FIG. 16 is a front view of an example base;



FIG. 17 is a side view of the base of FIG. 16;



FIG. 18 is a perspective view of the base of FIG. 16;



FIG. 19 is a top view of the base of FIG. 16;



FIG. 20 is a bottom view of the base of FIG. 16;



FIG. 21 is a perspective view of an example lower flange;



FIG. 22 is a bottom view of the lower flange of FIG. 21;



FIG. 23 is a perspective view of an example valve stage;



FIG. 24 is a front view of the valve stage of FIG. 23;



FIG. 25 is a top view of the valve stage of FIG. 23;



FIG. 26 is a section view of the valve stage of FIG. 25;



FIG. 27 is a perspective view of an example support ring;



FIG. 28 is a front view of the support ring of FIG. 27;



FIG. 29 is a top view of the support ring of FIG. 27;



FIG. 30 is a perspective view of an example valve support;



FIG. 31 is a front view of the valve support of FIG. 30;



FIG. 32 is a side view of the valve support of FIG. 30;



FIG. 33 is a top view of the valve support of FIG. 30;



FIG. 34 is a perspective view of an example valve support ring;



FIG. 35 is a front view of the valve support ring of FIG. 34; and



FIG. 36 is a top view of the valve support ring of FIG. 34.





Like reference symbols in the various drawings indicate like elements.


DETAILED DESCRIPTION

The following description of certain examples of the inventive concepts should not be used to limit the scope of the claims. Other examples, features, aspects, embodiments, and advantages will become apparent to those skilled in the art from the following description. As will be realized, the device and/or methods are capable of other different and obvious aspects, all without departing from the spirit of the inventive concepts. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.


For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The described methods, systems, and apparatus should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed methods, systems, and apparatus are not limited to any specific aspect, feature, or combination thereof, nor do the disclosed methods, systems, and apparatus require that any one or more specific advantages be present or problems be solved.


Features, integers, characteristics, compounds, chemical moieties, or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract, and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract, and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


It should be appreciated that any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated material does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.


As used in the specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another aspect includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another aspect. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.


“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.


Throughout the description and claims of this specification, the word “comprise” and variations of the word, such as “comprising” and “comprises,” means “including but not limited to,” and is not intended to exclude, for example, other additives, components, integers or steps. “Exemplary” means “an example of” and is not intended to convey an indication of a preferred or ideal aspect. “Such as” is not used in a restrictive sense, but for explanatory purposes.


The terms “proximal” and “distal” as used herein refer to regions of a sheath, catheter, or delivery assembly. “Proximal” means that region closest to handle of the device, while “distal” means that region farthest away from the handle of the device.


The term “tube” or “tubular” as used herein is not meant to limit shapes to circular cross-sections. Instead, tube or tubular can refer to any elongate structure with a closed-cross section and lumen extending axially therethrough. A tube may also have some selectively located slits or openings therein—although it still will provide enough of a closed structure to contain other components within its lumen(s).


Embodiments disclosed herein provide a storage container for a transcatheter heart valve that also facilitates preparation for delivery and implantation of the valve. Transcatheter heart valves come in a variety of designs, including directly radially expandable types (such as balloon expandable valves), self-expanding valves, mechanically expandable valves, and so-called “rolled” heart valves that are spirally wound into a compact configuration that can be expanded by unwinding. While a balloon expandable heart valve is represented herein, it should be understood that the principles disclosed herein are applicable to all types of expandable heart valves, stents and similar medical devices.


The present disclosure is directed to a container for storing, preparing, and handling an expandable prosthetic heart valve prior to implantation. Many transcatheter heart valves include flexible leaflets typically made from animal tissue or other biocompatible natural or synthetic material. The embodiment illustrated represents an expandable prosthetic heart valve having bovine pericardial leaflets. This heart valve is similar to that shown and described in U.S. Pat. No. 9,393,110, entitled “Prosthetic Heart Valve” and expressly incorporated herein by reference. Regardless of the material of the flexible leaflets, it is advantageous to store them in a relaxed state to minimize folding or compression of the leaflets. However, to deliver such expandable heart valves, the overall profile of the valve is made smaller (i.e., crimped) in order to pass through a relatively small diameter delivery catheter, thus requiring folding or compressing of the leaflets.


The container of the present disclosure enables the storage of a heart valve in its expanded configuration to better protect the flexible leaflets during potentially long storage times, and permits easy crimping of the heart valve upon removal from the storage jar prior to implantation.



FIG. 1 illustrates an assembled view of an example storage container 100 for a prosthetic heart valve 105, the valve having both expanded and unexpanded configurations. FIG. 2 provides a front elevation of the storage container 100, and FIGS. 3 and 4 provide top and bottom views, respectively. As shown, the storage container 100 includes a container housing 110 sized to receive the heart valve 105 in its expanded configuration (as shown in FIGS. 9A and 9B) and a top cover 130.


The storage container 100 includes a removable lid 190 to prevent contamination of the heart valve 105 and other storage container 100 components. FIGS. 5, 6 and 8 illustrate the storage container 100 of FIG. 1 with the lid 190 coupled to the top cover 130. The lid 190 is sized and configured to be removably press fit (interference fit) into the threaded opening 132 of the top cover 130. FIG. 7 provides a bottom perspective view of the lid 190 illustrating a raised annular surface 191 projecting from the bottom of the lid 190 for engaging the threaded opening 132 of the top cover 130 of the storage container 100. It is also contemplated that the lid 190 can couple to the top cover 130 using a snap fit, a threaded connection, or using any other reversible fastener known in the art. The storage container 100 can be used for storing bioprosthetic heart valves having leaflets that require wet storage in a liquid sterilant/preservative. Therefore, when the lid 190 is coupled to the top cover 130, the storage container 100 is desirably leak-proof. The various components of the storage container 100 can be made of a variety of corrosion resistant materials, preferably molded polymers.


As will be described in more detail below, a crimping mechanism 120 is incorporated into the container 100. The crimping mechanism 120 engages the heart valve 105 and is operable to convert the heart valve 105 from a larger diameter in its expanded configuration to a smaller diameter in its crimped configuration upon opening the container and removal of the valve from the container 100. FIGS. 9A and 9B provide cross-section views of the storage container 100 of FIG. 1 taken along the section lines illustrated in FIG. 3. FIGS. 9A and 9B illustrate the various components of the crimping mechanism 120 including the top cover 130, a base 140, a valve cover 150, a valve stage 160, and a valve support 170.



FIGS. 10-14 provide various view of an example valve cover 150. FIG. 15 provides a cross-section of the valve cover 150 taken along the section lines illustrated in FIG. 13. The valve cover 150 includes a central opening 152 in communication with the interior of the container housing 110. As will be described in more detail below, as the heart valve 105 is pushed through valve cover 150 and out the central opening 152, it is converted from its larger expanded configuration to its smaller unexpanded/crimped configuration. The diameter of the central opening 152 corresponds to the diameter of the heart valve 105 in the crimped configuration. As illustrated in FIG. 15, the valve cover 150 includes a tapered channel 154 extending from a bottom opening 158 on the bottom surface 156 of the valve cover 150 to the central opening 152. The tapered channel 154 can define a cone-shaped passage. The tapered channel 154 can also include a cylindrically-shaped portion 155 adjacent the central opening 152. This cylindrically-shaped portion 155 can help maintain the heart valve 105 in its crimped configuration and in a secure position for attachment to a delivery device. The dimension/diameter of the opening 158 provided on the bottom surface 156 of the valve cover 150 is sized and configured to correspond to the dimension/diameter of the heart valve 105 in the expanded configuration. The opening 158 can also have a dimension/diameter larger than the dimension/diameter of the heart valve 105 in the expanded configuration.


As illustrated in FIGS. 11, 12 and 15, the bottom surface 156 of the valve cover 150 includes a cylindrically-shaped projection 159. As provided in FIGS. 9A and 9B, this projection 159 is sized to extend into, and help position, the valve cover 150 with respect to the container housing 110.


The valve cover 150 can be fixedly connected to the container housing 110 such that the valve cover 150 cannot move axially and/or rotationally with respect to the container housing 110. For example, the valve cover 150 can be coupled to the container housing 110 by a number of screws positioned around the circumference of the valve cover 150. It is contemplated that the valve cover 150 could be coupled to the container housing 110 using any suitable known fastener. As will be described in more detail below, with the valve cover 150 fixed to the container housing 110, rotation of the top cover 130 allows the heart valve 105 (supported by base 140) to move axially within the storage container 100 and ultimately out through opening 152. As such, the heart valve 105 is converted from its larger expanded configuration to its smaller crimped configuration upon removal from the container.



FIGS. 16-20 provide various views of an example base 140. The base 140 includes a central cavity 143 sized to receive the heart valve 105, as illustrated in FIGS. 9A and 9B. The base 140 is axially movable with respect to the valve cover 150 and the top cover 130 for moving the heart valve 105 through the central opening 152 of the valve cover 150.


The base 140 includes an engagement feature for mating with the top cover 130 to facilitate axial movement of the base 140. For example, as illustrated in FIG. 9B, the top cover 130 includes a threaded opening 132 axially aligned with the opening 152 of the valve cover 150. The base 140 can include an exterior thread 142 for rotatably coupling with the threaded opening 132 of the top cover 130.


As illustrated in FIG. 9B, a portion of the base 140 extends through the valve cover 150 to threadingly engage the threaded opening 132 of the top cover 130. For example, as provided in FIG. 16, the exterior thread 142 is provided on one or more arms 144 of the base 140. The arms 144 extend up from a generally horizontal end surface 145 of the base 140. In assembly, the arms 144 extend through openings 151 provided in the valve cover 150 (shown in FIG. 13) to engage the threaded opening 132 of the top cover 130. In an example storage container 100, the arms 144 are sized and configured to move freely through the openings 151 in the valve cover 150 and do not engage or contact the valve cover 150 during axial movement of the base 140. FIGS. 13 and 14 of the valve cover 150 illustrate example arcuate shaped openings 151 for accommodating through movement of the arms 144 of the base 140.


The storage container 100 includes a lower flange 134 for axially fixing the container housing 110, valve cover 150, and top cover 130. FIGS. 21 and 22 provide perspective and top views, respectively, of the lower flange 134. As provided in FIGS. 9A and 9B, the lower flange 134 is coupled to a bottom surface 136 of the top cover 130 such that the lower flange 134 is fixedly connected, axially and rotationally, with respect to the top cover 130. The lower flange 134 can be coupled to the top cover 130 by a number of screws positioned around the circumference of the lower flange 134. It is contemplated that the lower flange 143 can be coupled to the top cover 130 using any suitable fastener known in the art. A recessed shoulder 138 provided on the lower flange 134 can be sized to provide a gap or space 139 between the lower flange 134 and the container housing 110 and the valve cover 150. The inclusion of this gap/spacing 139 allows the top cover 130 and lower flange 143 to rotate independently of the container housing 110 and valve cover 150 (the container housing 110 being fixedly connected to the valve cover 150).



FIGS. 23-25 provide various views of an example valve stage 160. FIG. 26 is a cross-section view of the valve stage 160 taken along the section line illustrated in FIG. 25. The valve stage 160 is located within the central cavity 143 of the base 140. The heart valve 105 is positioned on the valve stage 160 such that the valve stage 160 provides axial support for the heart valve 105. The valve stage 160 can include multiple arms 162 extending up from a base structure 166 of the valve stage 160. As illustrated in FIGS. 23 and 25, the arms 162 can be equally spaced around the circumference of the valve stage 160. The top surface 164 of the arms 162 provides the support surface for the heart valve 105. The arms 162 can move radially. That is, the ends of the arms 162 can move radially in towards the longitudinal axis of the valve stage 160, resulting in a radial compression of the valve stage 160 proximate the end of the arms 162. The arms 162 are fixed to the base structure 166, but flexure features (such as cutouts 161 illustrated in FIG. 26) can be provided at the juncture between the arms 162 and the base structure 166. The arms 162 can also be constructed from a flexible material, to allow them to flex under compressive force (i.e., the force applied by the tapered channel 154 as the valve stage 160 is moved axially along with the base 140). This allows the arms 162 and the distal end of the valve stage 160 to contract slightly as it is pushed into the tapered channel 154 during crimping of the heart valve 105. It is also contemplated that the valve stage 160 can be used to limit axial movement of the base 140 and help push the heart valve 105 through the tapered channel 154. For example, as contact between the valve arms 162 and the tapered channel 154 causes the arms 162 to move radially inward, the arms 162 will reach a point of ultimate compression thereby preventing any further axial movement of the valve stage 160 and the base 140. As illustrated in FIGS. 23 and 25, the arms 162 can define a wedge-shape in cross-section. This wedge-shape allows the arms 162 to compress until the adjacent side walls 163A and 163B of the wedge-shape arms 162 contact. The arms 162 can also include a bend 165 along the length of the arm 162. This bend 165 provides for further compression/radial movement of the arms 162.



FIGS. 27-29 provide various views of an example support ring 180. The crimping mechanism 120 can include a support ring 180 positioned at the top surface 164 of the valve stage 160 as illustrated in FIGS. 9A and 9B. The support ring 180 helps position the heart valve 105 on the valve stage 160 and within the tapered channel 154. As illustrated in FIGS. 27 and 28, the support ring 180 includes a tapered edge 182 that provides a contact point for the heart valve 105 and centers the heart valve 105 on the support ring 180.



FIGS. 30-33 provide various views of an example valve support 170. The crimping mechanism 120 includes a valve support 170 that extends axially adjacent to the heart valve 105 as illustrated in FIG. 9A. During axial movement of the base 140 and/or crimping of the heart valve 105, the valve support 170 can provide radial and/or lateral support for the heart valve 105. The valve support 170 can include axially extending arms 172 that extend from a base structure 174. The arms 172 can define a curved inner surface 176 corresponding in size and shape to the outer surface of the heart valve 105.


The valve support 170 remains fixed axially within the container housing 110 during crimping of the heart valve 105. That is, as the base 140 moves axially towards/away from the top cover 130, the arms 172 of the valve support 170 extend/pass through openings 146 provided in the base 140. In an example storage container 100, the arms 172 are sized and configured to move freely through the openings 146 in the base 140. FIGS. 18-20 illustrate arcuate-shaped openings 146 for accommodating through movement of the arms 172. As illustrated in FIG. 9A, the base structure 174 is positioned under the base 140, and between the base 140 and the container housing 110.



FIGS. 34-36 provide various views of an example upper valve support ring 185. The crimping mechanism 120 includes an upper valve support ring 185 positioned at the lower surface 156 of the valve cover 150 proximate the opening 158 to the tapered channel 154 as illustrated in FIGS. 9A and 9B. As shown in FIGS. 30 and 31, the distal end of the arms 172 of the valve support 170 can include a recessed surface 178 for accommodating the upper valve support ring 185. The upper valve support ring 185 can be positioned above the heart valve 105 and can be used to secure the heart valve 105 in the container 110 in its expanded configuration. The upper support ring 185 can also be used to guide the heart valve 105 into the tapered channel 154 and ease the transition (from the expanded configuration) into the valve cover 150 and towards the crimped configuration.


As mentioned above, a preferred heart valve 105 includes a stent body and a plurality of flexible leaflets. If the leaflets need to remain hydrated during storage, such as if they are made of bioprosthetic material, the entire container housing 110 is filled with a liquid sterilant/preservative solution. To facilitate preparation of the heart valve 105 prior to implantation, the container housing 110 and/or top cover 130 can include a drain hole (not shown). Alternatively, the lid 190 can be removed from the top cover 130 and unwanted fluid can be drained by tilting or inverting the storage container 100.


Prior to implantation of the heart valve 105, the preservative solution (if present) can be drained from within the container housing 110. If desired, the lid 190 can be removed and the heart valve 105 rinsed while the heart valve 105 remains within the container housing 110, thereby reducing the chance of damage to the valve 105. The heart valve 105 can then be crimped by passing the heart valve 105 through the crimping mechanism 120. The user can grasp the container housing 110 to hold it in a fixed position whiling rotating the top cover 130. Rotation of the top cover 130 allows the exterior thread 142 on the arms 144 of the base 140 to engage the threaded opening 132 in the top cover 130, resulting in axial movement of the base 140. Axial movement of the base 140 results in a corresponding axial movement of the heart valve 105 toward and through the tapered channel 154 of the valve cover 150. As the heart valve 105 is moved through the tapered channel 154, and ultimately out through opening 152, radial pressure provided by the tapered channel 154 compresses the heart valve 105 and the heart valve 105 is converted from its larger expanded configuration to its smaller crimped configuration. If desired, a constraint can be provided around the heart valve 105 to maintain it in the crimped configuration and/or further crimp the heart valve 105. The heart valve 105 can then be detached from the storage container 100 and mounted to a delivery device for implantation.


Although the foregoing embodiments of the present disclosure have been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent to those skilled in the art that certain changes and modifications may be practiced within the spirit and scope of the present disclosure. It is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. A storage container for a prosthetic heart valve, comprising: a container housing sized to receive a heart valve in an expanded configuration; anda crimping mechanism incorporated into the storage container and operable to engage a heart valve and convert a heart valve from its expanded configuration to its crimped configuration as it exits the container housing, the crimping mechanism including:a valve cover coupled to the container housing, the valve cover including a central opening in communication with an interior of the container housing for allowing passage of a heart valve therethrough, anda base received within the container housing, the base having a central cavity sized and configured to receive a heart valve, the base axially movable with respect to the valve cover and the container housing for moving a heart valve through the central opening of the valve cover,wherein axial movement of the base towards the valve cover causes a portion of the base to extend through an opening provided in the valve cover.
  • 2. The storage container of claim 1, wherein movement of a heart valve through the central opening converts a heart valve from its expanded configuration to its crimped configuration.
  • 3. The storage container of claim 2, wherein the valve cover includes a tapered channel extending from a bottom surface to the central opening, and wherein movement of a heart valve through the tapered channel converts a heart valve from its expanded configuration to its crimped configuration.
  • 4. The storage container of claim 3, wherein the tapered channel defines a cone-shaped passage.
  • 5. The storage container of claim 3, wherein a size of an opening to the tapered channel at the bottom surface corresponds to the size of a heart valve in its expanded configuration.
  • 6. The storage container of claim 1, wherein the crimping mechanism further includes: a top cover coupled to the container housing such that the valve cover is located between the top cover and the container housing, the top cover including an opening axially aligned with the central opening of the valve cover for allowing passage of a heart valve therethrough.
  • 7. The storage container of claim 6, wherein the valve cover is fixed to the container housing.
  • 8. The storage container of claim 6, wherein an outer surface of the container housing includes a radially projecting shoulder that is received within a corresponding recess provided in the top cover such that the top cover is rotatably coupled to the container housing and the valve cover.
  • 9. The storage container of claim 6, wherein the opening of the top cover is a threaded opening, wherein the base includes an arm comprising the portion of the base that extends through the opening in the valve cover, the arm including an exterior thread for engaging the threaded opening of the top cover, andwherein rotation of the top cover causes the threaded opening to engage the exterior thread of the base and move the base axially with respect to the top cover and move the arm axially through the opening in the valve cover.
  • 10. The storage container of claim 6, wherein the crimping mechanism further includes a valve stage located within a central cavity of the base, the valve stage configured to provide axial support for a heart valve.
  • 11. The storage container of claim 6, wherein the crimping mechanism further includes a valve support configured to extend axially adjacent a heart valve and to provide radial or lateral support for a heart valve, the valve support including an axially extending arm extending from a base structure, wherein the arm passes through an arm opening provided in the base such that the valve support is fixed axially within the container housing during movement of the base with respect to the valve cover.
  • 12. A system for storing and crimping an expandable prosthetic heart valve, comprising: an expandable prosthetic heart valve having both crimped and expanded configurations, the heart valve comprising an annular frame with a leaflet structure positioned within frame,a container housing sized to receive the heart valve in its expanded configuration;a crimping mechanism incorporated into the container housing and engaging the heart valve that is operable to convert the heart valve from its expanded configuration to its crimped configuration as it exits the container housing, the crimping mechanism including: a valve cover coupled to the container housing, the valve cover including a central opening in communication with an interior of the container housing for allowing passage of the heart valve therethrough, anda base received within the container housing, the heart valve the base having positioned within a central cavity of the base, the base axially movable with respect to the valve cover and the container housing for moving the heart valve through the central opening of the valve cover,wherein axial movement of the base towards the valve cover causes a portion of the base to extend through an opening provided in the valve cover.
  • 13. The system of claim 12, wherein the container housing holds a solution suitable for preserving the leaflet structure.
  • 14. The system of claim 12, wherein the crimping mechanism includes: wherein movement of the heart valve through the central opening converts the heart valve from its expanded configuration to its crimped configuration,wherein a central longitudinal axis of the base is co-axial with a central longitudinal axis of the central opening of the valve cover.
  • 15. The system of claim 12, wherein the crimping mechanism includes: a top cover rotatably coupled to the valve cover and the container housing, the top cover having an opening axially aligned with the central opening of the valve cover.
  • 16. The system of claim 15, wherein the opening of the top cover is a threaded opening, wherein the base includes an exterior thread for engaging the threaded opening of the top cover, the base being rotatably coupled to the top cover, andwherein rotation of the top cover causes the threaded opening to engage the exterior thread of the base and move the base axially with respect to the top cover.
  • 17. The system of claim 12, wherein the valve cover includes a tapered channel extending from a bottom surface of the valve cover to the central opening of the valve cover, and wherein movement of the heart valve through the tapered channel converts the heart valve from its expanded configuration to its crimped configuration.
  • 18. A method of storing and crimping an expandable prosthetic heart valve, the method comprising: providing a prosthetic heart valve having a crimped configuration sized to be delivered to a site of implantation through a catheter and an expanded configuration sized to engage a heart valve annulus;storing the heart valve in a container in its expanded configuration, the container including: a container housing,a valve cover coupled to the container housing and including a central opening in communication with an interior of the container housing,a base received within the container housing, the base rotatably coupled to the valve cover and axially movable with respect to the valve cover and container housing, the heart valve received within a central cavity of the base; andconverting the heart valve from its expanded configuration to its crimped configuration as it passes through the central opening of the valve cover.
  • 19. The method of claim 18, wherein the step of converting further comprises compressing the heart valve through a tapered channel provided in the container.
  • 20. The method of claim 18, wherein the container includes: wherein the step of converting further comprises axially moving the base with respect to the valve cover to advance the heart valve from the central cavity of the base through the central opening of the valve cover.
  • 21. The method of claim 20, wherein the container includes: a top cover rotatably coupled to the valve cover and the container housing, the top cover having a threaded opening axially aligned with the central opening of the valve cover,the base including an exterior thread for engaging the threaded opening of the top cover,wherein the step of converting further comprises rotating the top cover to cause the threaded opening to engage the exterior thread of the base, thereby moving the base axially with respect to the top cover.
  • 22. The method of claim 20, further maintaining the valve in its crimped state using a constraint around the valve, and detaching the valve from the container after placing the constraint around the valve and mounting the valve on a delivery catheter.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/534,033, filed Jul. 18, 2017, which is incorporated by reference in its entirety for all purposes.

US Referenced Citations (299)
Number Name Date Kind
3409013 Berry Nov 1968 A
3548417 Kisher Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
RE30912 Hancock Apr 1982 E
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4441216 Ionescu et al. Apr 1984 A
4470157 Love Sep 1984 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4820299 Philippe et al. Apr 1989 A
4829990 Thuroff et al. May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5332402 Teitelbaum Jul 1994 A
5360444 Kusuhara Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554185 Block et al. Sep 1996 A
5558644 Boyd Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5584803 Stevens et al. Dec 1996 A
5591185 Kilmer et al. Jan 1997 A
5591195 Taheri et al. Jan 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5628792 Lentell May 1997 A
5639274 Fischell et al. Jun 1997 A
5665115 Cragg Sep 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5800508 Goicoechea et al. Sep 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
6027525 Suh et al. Feb 2000 A
6068635 Gianotti May 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6338740 Carpentier Jan 2002 B1
6350277 Kocur Feb 2002 B1
6352547 Brown et al. Mar 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440764 Focht et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6527979 Constantz et al. Mar 2003 B2
6569196 Vesely May 2003 B1
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6652578 Bailey et al. Nov 2003 B2
6689123 Pinchasik Feb 2004 B2
6716244 Klaco Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6767362 Schreck Jul 2004 B2
6769161 Brown et al. Aug 2004 B2
6783542 Eidenschink Aug 2004 B2
6830584 Seguin Dec 2004 B1
6878162 Bales et al. Apr 2005 B2
6893460 Spenser et al. May 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7096554 Austin et al. Aug 2006 B2
7225518 Eidenschink et al. Jun 2007 B2
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316710 Cheng et al. Jan 2008 B1
7318278 Zhang et al. Jan 2008 B2
7374571 Pease et al. May 2008 B2
7393360 Spenser et al. Jul 2008 B2
7462191 Spenser et al. Dec 2008 B2
7510575 Spenser et al. Mar 2009 B2
7563280 Anderson et al. Jul 2009 B2
7585321 Cribier Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7655034 Mitchell et al. Feb 2010 B2
7785366 Maurer et al. Aug 2010 B2
7959665 Pienknagura Jun 2011 B2
7959672 Salahieh et al. Jun 2011 B2
7993394 Hariton et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8075611 Millwee et al. Dec 2011 B2
8128686 Paul, Jr. et al. Mar 2012 B2
8167932 Bourang et al. May 2012 B2
8291570 Eidenschink et al. Oct 2012 B2
8348998 Pintor et al. Jan 2013 B2
8449606 Eliasen et al. May 2013 B2
8454685 Hariton et al. Jun 2013 B2
8652203 Quadri et al. Feb 2014 B2
8747463 Fogarty et al. Jun 2014 B2
9078781 Ryan et al. Jul 2015 B2
10245136 Ino Apr 2019 B2
20010021872 Bailey et al. Sep 2001 A1
20020026094 Roth Feb 2002 A1
20020032481 Gabbay Mar 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020143390 Ishii Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20030014105 Cao Jan 2003 A1
20030045928 Yang et al. Mar 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030135970 Thornton Jul 2003 A1
20030158597 Quiaction et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040024452 Kruse et al. Feb 2004 A1
20040039436 Spenser et al. Feb 2004 A1
20040078074 Anderson et al. Apr 2004 A1
20040186558 Pavcnik et al. Sep 2004 A1
20040186563 Lobbi Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040260389 Case et al. Dec 2004 A1
20050010285 Lambrecht et al. Jan 2005 A1
20050075725 Rowe Apr 2005 A1
20050075728 Nguyen et al. Apr 2005 A1
20050096736 Osse et al. May 2005 A1
20050096738 Cali et al. May 2005 A1
20050188525 Weber et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20060004469 Sokel Jan 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060074484 Huber Apr 2006 A1
20060108090 Ederer et al. May 2006 A1
20060149350 Patel et al. Jul 2006 A1
20060183383 Asmus et al. Aug 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070010876 Salahieh et al. Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070112422 Dehdashtian May 2007 A1
20070162102 Ryan et al. Jul 2007 A1
20070203503 Salahieh et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070203576 Lee et al. Aug 2007 A1
20070208550 Cao et al. Sep 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070233228 Eberhardt et al. Oct 2007 A1
20070260305 Drews et al. Nov 2007 A1
20070265700 Eliasen et al. Nov 2007 A1
20080021546 Patz et al. Jan 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125853 Bailey et al. May 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080183271 Frawley et al. Jul 2008 A1
20080208327 Rowe Aug 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080275537 Limon Nov 2008 A1
20080294248 Yang et al. Nov 2008 A1
20090054976 Tuval et al. Feb 2009 A1
20090118826 Khaghani May 2009 A1
20090125118 Gong May 2009 A1
20090143852 Chambers Jun 2009 A1
20090157175 Benichou Jun 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287296 Manasse Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090299452 Eidenschink et al. Dec 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100168844 Toomes et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100198347 Zakay et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100252470 Ryan et al. Oct 2010 A1
20110015729 Jimenez et al. Jan 2011 A1
20110022157 Essinger et al. Jan 2011 A1
20110066224 White Mar 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110178590 Zucker Jul 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110301703 Glazier Dec 2011 A1
20110319991 Hariton et al. Dec 2011 A1
20120089223 Nguyen et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120123529 Levi et al. May 2012 A1
20120259409 Nguyen et al. Oct 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130046373 Cartledge et al. Feb 2013 A1
20130150956 Yohanan et al. Jun 2013 A1
20130152659 Maimon Jun 2013 A1
20130166017 Cartledge et al. Jun 2013 A1
20130190857 Mitra et al. Jul 2013 A1
20130274873 Delaloye et al. Oct 2013 A1
20130310926 Hariton Nov 2013 A1
20130317598 Rowe et al. Nov 2013 A1
20130331929 Mitra et al. Dec 2013 A1
20140194981 Menk et al. Jul 2014 A1
20140200661 Pintor et al. Jul 2014 A1
20140209238 Bonyuet et al. Jul 2014 A1
20140222136 Geist et al. Aug 2014 A1
20140277417 Schraut et al. Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140277424 Oslund Sep 2014 A1
20140277563 White Sep 2014 A1
20140296962 Cartledge et al. Oct 2014 A1
20140330372 Weston et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140343671 Yohanan et al. Nov 2014 A1
20140350667 Braido et al. Nov 2014 A1
20150073545 Braido Mar 2015 A1
20150073546 Braido Mar 2015 A1
20150135506 White May 2015 A1
20150157455 Hoang et al. Jun 2015 A1
20160128819 Giordano et al. May 2016 A1
20170014229 Nguyen-Thien-Nhon et al. Jan 2017 A1
20180028310 Gurovich et al. Feb 2018 A1
20180153689 Maimon et al. Jun 2018 A1
20180325665 Gurovich et al. Nov 2018 A1
20180344456 Barash et al. Dec 2018 A1
Foreign Referenced Citations (71)
Number Date Country
2246526 Mar 1973 DE
0144167 Jun 1985 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049814 Apr 2002 DE
10049815 Apr 2002 DE
0103546 Mar 1984 EP
0850607 Jul 1998 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1570809 Sep 2005 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2056023 Mar 1981 GB
1271508 Nov 1986 SU
9117720 Nov 1991 WO
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9724080 Jul 1997 WO
9829057 Jul 1998 WO
9930646 Jun 1999 WO
9933414 Jul 1999 WO
0018333 Apr 2000 WO
0135878 May 2001 WO
0149213 Jul 2001 WO
0154624 Aug 2001 WO
0154625 Aug 2001 WO
0162189 Aug 2001 WO
0047139 Sep 2001 WO
0164137 Sep 2001 WO
0176510 Oct 2001 WO
0222054 Mar 2002 WO
0236048 May 2002 WO
0241789 May 2002 WO
0243620 Jun 2002 WO
0247575 Jun 2002 WO
0249540 Jun 2002 WO
03047468 Jun 2003 WO
2005034812 Apr 2005 WO
2005055883 Jun 2005 WO
2005084595 Sep 2005 WO
2005102015 Nov 2005 WO
2006014233 Feb 2006 WO
2006032051 Mar 2006 WO
2006034008 Mar 2006 WO
2006111391 Oct 2006 WO
2006127089 Nov 2006 WO
2006138173 Dec 2006 WO
2007047488 Apr 2007 WO
2007067942 Jun 2007 WO
2007097983 Aug 2007 WO
2008005405 Jan 2008 WO
2008015257 Feb 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008147964 Dec 2008 WO
2008150529 Dec 2008 WO
2009033469 Mar 2009 WO
2009042196 Apr 2009 WO
2009053497 Apr 2009 WO
2009061389 May 2009 WO
2009116041 Sep 2009 WO
2009149462 Dec 2009 WO
2010011699 Jan 2010 WO
2010121076 Oct 2010 WO
2013106585 Jul 2013 WO
2015085218 Jun 2015 WO
Non-Patent Literature Citations (9)
Entry
8483WO01—International Search Report for International Application No. PCT/US2018/042596, completed Nov. 5, 2018.
H.R. Andersen, et al. “Transluminal Implantation of Artificial Heart Valve. Description of a New Expandable Aortic Valve and Initial Results with implantation by Catheter Technique in Closed Chest Pig,” European Heart Journal, No. 13. pp. 704-708. 1992.
H.R. Andersen “History of Percutaneous Aortic Valve Prosthesis,” Herz No. 34. pp. 343-346. 2009.
Pavcnik, et al. “Development and initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology, vol. 183, No. 1. pp. 151-154. 1992.
Bailey, S. “Percutaneous Expandable Prosthetic Valves,” Textbook of Interventional Cardiology vol. 2, 2nd Ed. pp. 1268-1276. 1994.
Al-Khaja, et al. “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, vol. 3. pp. 305-311. 1989.
Ross, “Aortic Valve Surgery,” At a meeting of the Council on Aug. 4, 1966. pp. 192-197.
Sabbah, et al. “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Journal of Cardiac Surgery, vol. 4, No. 4. pp. 302-309. 1989.
Wheatley, “Valve Prostheses,” Operative Surgery, 4th ed. pp. 415-424. 1986.
Related Publications (1)
Number Date Country
20190021834 A1 Jan 2019 US
Provisional Applications (1)
Number Date Country
62534033 Jul 2017 US