The present disclosure relates to implantable prosthetic devices. The disclosure is particularly useful in prosthetic devices implantable by catheter for the treatment of mitral or tricuspid regurgitation. The cause of the regurgitation can be either functional or degenerative or any other reason. Certain disclosed embodiments may be used for other valvular lesions as well.
Mitral Regurgitation is a valvular dysfunction that causes blood volume to flow during systolic (during left ventricular contraction) from the left ventricle to the left atrium as opposed to a healthy heart where this direction of flow is blocked by the mitral valve. The reverse flow during systolic causes a pressure rise in the left atrium. Maintaining a normal cardiac output results in an increased left ventricle pressure.
Treating patients with MR or TR (mitral regurgitation or tricuspid regurgitation) could require valve replacement in order to reduce or eliminate the regurgitation. For many years, the acceptable common treatment was surgical repair or replacement of the native valve during open heart surgery. In recent years, a trans-vascular technique has been developed for introducing and implanting a prosthetic heart valve using a flexible catheter in a manner that is less invasive than open heart surgery.
In the trans-vascular technique, the prosthetic is delivered to the target site (aortic valve, mitral valve, tricuspid valve, or other valve) through a catheter while the device is crimped to a low diameter shaft. When the prosthetic device is located in the correct position, it is expanded/deployed to a functional size.
Advancing the catheter to the target site can be through: (a) The vascular system, where a catheter is advanced from the femoral vein/artery, or any other blood vessel that allows access to the target site; (b) Trans-apically where a catheter is advanced through a small incision made in the chest wall and then through the apex; or (c) Trans-atrially where a catheter is advanced through a small incision made in the chest wall and then through the left or right atrium.
A prosthesis secures a replacement valve in a heart. The prosthesis includes a radially expandable inflow section and outflow section and migration blocker rods. The inflow section has a tapered shape and is implanted within an atrium of a heart adjacent a native valve annulus. The outflow section couples to the inflow section and is configured to be implanted through the native valve annulus and at least partially within a ventricle of the heart. The migration blocker rods extend circumferentially around at least a portion of the outflow section and hold native leaflets of the heart valve. In a contracted configuration, the prosthesis may be implanted through a catheter into the heart. In an expanded configuration, the tapered shape of the inflow section in the atrium cooperates with the migration blockers in the ventricle to hold the prosthesis against the native valve annulus.
Additional aspects and advantages will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.
When used the singular form “a”, “an”, “the” refers to one or more than one, unless the context clearly dictates otherwise.
As used herein, the term “includes” means “comprise” for example, a device that includes or comprises A and B contains A and B but can optionally contain C or other components other than A and B. A device that includes or comprises A and B may contain A or B, or A and B, and optionally one or more other components such as C.
When the words “stent” and “frame” are used they refer to the same element (e.g., see stent 30 in
Inside the stent assembly, a prosthetic valve (not shown) may be added. The valve can be either bi-leaflet or tri-leaflet as long as it performs as required and can be made out of any tissue, polymer, or other material, as long as it is biocompatible. The stent 30 can be a self-expanding stent made of a shape memory material such as, for example, Nitinol. It can be cut from a tube, sheet, and/or a pattern that allows crimping and expanding like braided wires or any other technique that attaches wires.
In other embodiments, the stent 30 can be a combination of a self-expanding stent and a balloon expandable stent. For example,
The raw material of the stent 30 can be a metal of any kind that is biocompatible. The stent 30 may include a combination of two or more different materials. For example, the stent 30 may be one part stainless steel 316/316L and another part Nitinol. Other materials such as cobalt chrome may be used. The above materials are only examples, and other materials can be used as well.
The design of the frame 30, whether one part or more, is configured to allow crimping the prosthesis into a low profile shaft (equal to or less than 13 mm outer diameter (OD)). Patterns that allow this are known and crisscross patterns as shown for example in
The migration blocker rods 33 of the stent 30 lean against the native annulus of the tricuspid or mitral valve, in general. When used in the mitral position, the migration blocker rods 33 may lean, in particular, against the mitral groove 14 shown in
On the atrium side, the flared upper section 31 prevents any migration of the stent 30 into the ventricle 1 or 2 shown in
The combination of the migration blocker rods 33 from the ventricle side of the native annulus and the upper section 31 flared stent from the atrium side of the annulus create a clamping effect on the annulus and provide a positive axial anchoring of the stent 30 to its target site.
For the upper section 31, according to certain embodiments, an elliptical shape allows reducing the inflow section projection and therefore reduces the area that faces high pressure during systole. This feature reduces the axial forces that the prosthesis faces and needs to be anchored against. At the same time, an elliptical shape assures continuous contact between the upper section 31 and the atrium and prevents any para-valvular leakage (PVL). Any other shape that will at the same time prevent PVL and minimize the projection of the inflow may also be used.
The curvature that defines the transition zone and/or the inflow section profile may be configured to increase or decrease the clamping effect between migration blocker rods 33 and the inflow section 31.
In the area of connection between the upper section 31 and lower section 32 of the stent 30 are attached migration blocker rods 33 which prevent the valve from migrating into the left atrium. The migration blocker rods 33 go in between the chordae under the native commissures 19 and 20 shown in
In
In
The valve 52 can be composed from biological tissue such as pericardium or alternatively from a polymer, fabric, or the like.
In other embodiments, such as shown in the
In
The migration blocker rods 33 around the posterior leaflet 4 are configured to lean against the mitral groove 14 and prevent any migration and axial movement in the posterior side.
The migration blocker rods 33 around the anterior leaflet 5 are configured to lean against the left and right fibrous trigons 17 and 18 and prevent any migration and axial movement in the anterior side.
There are one, two, or more migration blocker rods 33 around the posterior leaflet 4. There are another one, two, or more migration blocker rods 33 around the anterior leaflet 5. The quantity of the migration blockers can vary from two to multiple rods and in the certain illustrated embodiments there are four of them only for visualization and as example. In other embodiments, the quantity of migration blocker rods 33 can be any number from two to eighteen.
The migration blocker rods 33 can have ends separated from one another, can meet each other behind the leaflets 4 and 5, may include a leading mechanism behind the leaflet to ensure the attachment of the rods to one another and may include a locking mechanism that prevents them from separating after deployment.
The migration blocker rods 33 can be in different lengths with different ends 81 and additional features can be added on them. The ends 81 of the migration blocker rods 33 can be seen in
In
In
The migration blocker rods 33 can be cut from the same tube and heat treated to the final shape. The migration blocker rods 33 can be cut from different tube and be attached to the main frame differently using a direct attachment such as welding or with additional members such as sutures, metallic parts, etc. The migration blocker rods 33 can be crimped distally to the main frame, proximally to the main frame and on top of it. The migration blocker rods 33 might be covered with a fabric, soft tissue, and/or polymer to prevent any damage to the annulus apparatus.
It will be understood by those having skill in the art that many changes may be made to the details of the above-described embodiments without departing from the underlying principles of the invention. The scope of the present invention should, therefore, be determined only by the following claims.
The present application is a divisional application of U.S. patent application Ser. No. 14/891,189 entitled, “TRANSCATHETER PROSTHETIC VALVE FOR MITRAL OR TRICUSPID VALVE REPLACEMENT,” filed on Nov. 13, 2015, which is a U.S. national stage filing under 35 U.S.C. § 371 of International Application No. PCT/US2013/042275 filed on May 22, 2013 entitled “TRANSCATHETER PROSTHETIC VALVE FOR MITRAL OR TRICUSPID VALVE REPLACEMENT,” each of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4602911 | Ahmadi et al. | Jul 1986 | A |
5236440 | Hlavacek | Aug 1993 | A |
5306296 | Wright et al. | Apr 1994 | A |
5695518 | Laerum | Dec 1997 | A |
5716370 | Williamson, IV et al. | Feb 1998 | A |
5855614 | Stevens et al. | Jan 1999 | A |
6113611 | Allen et al. | Sep 2000 | A |
6231602 | Carpentier et al. | May 2001 | B1 |
6619291 | Hlavka et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6669687 | Saadat | Dec 2003 | B1 |
6689048 | Vanden Hoek et al. | Feb 2004 | B2 |
6726704 | Loshakove et al. | Apr 2004 | B1 |
6776784 | Ginn | Aug 2004 | B2 |
6790229 | Berreklouw | Sep 2004 | B1 |
6797002 | Spence et al. | Sep 2004 | B2 |
6805711 | Quijano et al. | Oct 2004 | B2 |
6893459 | Macoviak | May 2005 | B1 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7114953 | Wagner | Oct 2006 | B1 |
7175660 | Cartledge et al. | Feb 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7285087 | Moaddeb et al. | Oct 2007 | B2 |
7297150 | Cartledge et al. | Nov 2007 | B2 |
7569072 | Berg et al. | Aug 2009 | B2 |
7594887 | Moaddeb et al. | Sep 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7655040 | Douk et al. | Feb 2010 | B2 |
7717954 | Solem et al. | May 2010 | B2 |
7722668 | Moaddeb et al. | May 2010 | B2 |
7758637 | Starksen et al. | Jul 2010 | B2 |
7837729 | Gordon et al. | Nov 2010 | B2 |
7988725 | Gross et al. | Aug 2011 | B2 |
8163014 | Lane et al. | Apr 2012 | B2 |
8182529 | Gordon et al. | May 2012 | B2 |
8236049 | Rowe et al. | Aug 2012 | B2 |
8287591 | Keidar et al. | Oct 2012 | B2 |
8518107 | Tsukashima et al. | Aug 2013 | B2 |
8579968 | Shannon et al. | Nov 2013 | B1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020151970 | Garrison et al. | Oct 2002 | A1 |
20020188170 | Santamore et al. | Dec 2002 | A1 |
20020198526 | Shaolian et al. | Dec 2002 | A1 |
20030050693 | Quijano et al. | Mar 2003 | A1 |
20030078465 | Pai et al. | Apr 2003 | A1 |
20030078671 | Lesniak et al. | Apr 2003 | A1 |
20030191528 | Quijano et al. | Oct 2003 | A1 |
20030198605 | Montgomery | Oct 2003 | A1 |
20030199974 | Lee et al. | Oct 2003 | A1 |
20040044364 | DeVries et al. | Mar 2004 | A1 |
20040068276 | Golden et al. | Apr 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20040138744 | Lashinski et al. | Jul 2004 | A1 |
20040148021 | Cartledge et al. | Jul 2004 | A1 |
20040193191 | Starksen et al. | Sep 2004 | A1 |
20040243230 | Navia et al. | Dec 2004 | A1 |
20040249391 | Cummins | Dec 2004 | A1 |
20040260393 | Rahdert et al. | Dec 2004 | A1 |
20040260394 | Douk et al. | Dec 2004 | A1 |
20050020696 | Montgomery et al. | Jan 2005 | A1 |
20050033325 | May et al. | Feb 2005 | A1 |
20050065550 | Starksen et al. | Mar 2005 | A1 |
20050090846 | Pedersen et al. | Apr 2005 | A1 |
20050096740 | Langberg et al. | May 2005 | A1 |
20050113910 | Paniagua et al. | May 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050203549 | Realyvasquez | Sep 2005 | A1 |
20050222678 | Lashinski et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050267572 | Schoon et al. | Dec 2005 | A1 |
20050283190 | Huitema et al. | Dec 2005 | A1 |
20050288778 | Shaoulian et al. | Dec 2005 | A1 |
20050288781 | Moaddeb et al. | Dec 2005 | A1 |
20060009737 | Whiting et al. | Jan 2006 | A1 |
20060129025 | Levine et al. | Jun 2006 | A1 |
20060155165 | Vanden Hoek et al. | Jul 2006 | A1 |
20060161169 | Nieminen et al. | Jul 2006 | A1 |
20060184240 | Jimenez et al. | Aug 2006 | A1 |
20060184242 | Lichtenstein | Aug 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060241748 | Lee et al. | Oct 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20070016287 | Cartledge et al. | Jan 2007 | A1 |
20070027533 | Douk | Feb 2007 | A1 |
20070038296 | Navia | Feb 2007 | A1 |
20070051377 | Douk et al. | Mar 2007 | A1 |
20070067027 | Moaddeb et al. | Mar 2007 | A1 |
20070073098 | Lenker et al. | Mar 2007 | A1 |
20070080188 | Spence et al. | Apr 2007 | A1 |
20070093854 | Kayan | Apr 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070128132 | Piergallini et al. | Jun 2007 | A1 |
20070135913 | Moaddeb et al. | Jun 2007 | A1 |
20070142907 | Moaddeb et al. | Jun 2007 | A1 |
20070213812 | Webler et al. | Sep 2007 | A1 |
20070233239 | Navia et al. | Oct 2007 | A1 |
20070239272 | Navia et al. | Oct 2007 | A1 |
20070244553 | Rafiee et al. | Oct 2007 | A1 |
20070244554 | Rafiee et al. | Oct 2007 | A1 |
20070244555 | Rafiee et al. | Oct 2007 | A1 |
20070244556 | Rafiee et al. | Oct 2007 | A1 |
20070250161 | Dolan | Oct 2007 | A1 |
20070293942 | Mirzaee | Dec 2007 | A1 |
20080177380 | Starksen et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080243220 | Barker | Oct 2008 | A1 |
20080262513 | Stahler et al. | Oct 2008 | A1 |
20080262609 | Gross et al. | Oct 2008 | A1 |
20080306586 | Cartledge et al. | Dec 2008 | A1 |
20090088838 | Shaolian et al. | Apr 2009 | A1 |
20090118747 | Bettuchi et al. | May 2009 | A1 |
20090149872 | Gross et al. | Jun 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090222083 | Nguyen et al. | Sep 2009 | A1 |
20090238778 | Mordas et al. | Sep 2009 | A1 |
20090299470 | Rao et al. | Dec 2009 | A1 |
20100010616 | Drews et al. | Jan 2010 | A1 |
20100030014 | Ferrazzi | Feb 2010 | A1 |
20100063586 | Hasenkam et al. | Mar 2010 | A1 |
20100121433 | Bolling et al. | May 2010 | A1 |
20100161047 | Cabiri | Jun 2010 | A1 |
20100185274 | Moaddeb et al. | Jul 2010 | A1 |
20100211166 | Miller et al. | Aug 2010 | A1 |
20100249920 | Bolling et al. | Sep 2010 | A1 |
20100266989 | Piergallilni et al. | Oct 2010 | A1 |
20100280605 | Hammer et al. | Nov 2010 | A1 |
20100286767 | Zipory et al. | Nov 2010 | A1 |
20110022168 | Cartledge | Jan 2011 | A1 |
20110027753 | Maurat et al. | Feb 2011 | A1 |
20110034953 | Milo | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110093062 | Cartledge et al. | Apr 2011 | A1 |
20110106245 | Miller et al. | May 2011 | A1 |
20110106247 | Miller et al. | May 2011 | A1 |
20110137397 | Chau | Jun 2011 | A1 |
20110166649 | Gross et al. | Jul 2011 | A1 |
20110190879 | Bobo et al. | Aug 2011 | A1 |
20110208298 | Tuval | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110257728 | Kuehn | Oct 2011 | A1 |
20110282361 | Miller et al. | Nov 2011 | A1 |
20110301698 | Miller et al. | Dec 2011 | A1 |
20110301699 | Saadat | Dec 2011 | A1 |
20120022557 | Cabiri et al. | Jan 2012 | A1 |
20120022644 | Reich et al. | Jan 2012 | A1 |
20120059458 | Buchbinder et al. | Apr 2012 | A1 |
20120095455 | Rodmond et al. | Apr 2012 | A1 |
20120123531 | Tsukashima et al. | May 2012 | A1 |
20120136436 | Cabin et al. | May 2012 | A1 |
20120165930 | Gifford, III et al. | Jun 2012 | A1 |
20120245604 | Tegzes | Sep 2012 | A1 |
20120310330 | Buchbinder et al. | Dec 2012 | A1 |
20130087598 | Surti | Apr 2013 | A1 |
20130116780 | Miller et al. | May 2013 | A1 |
20130204361 | Adams et al. | Aug 2013 | A1 |
20130226289 | Shaolian et al. | Aug 2013 | A1 |
20130226290 | Yellin et al. | Aug 2013 | A1 |
20130282114 | Schweich, Jr. et al. | Oct 2013 | A1 |
20130289718 | Tsukashima et al. | Oct 2013 | A1 |
20130289720 | Dobrilovic | Oct 2013 | A1 |
20130304197 | Buchbinder et al. | Nov 2013 | A1 |
20140005778 | Buchbinder et al. | Jan 2014 | A1 |
20140046433 | Kovalsky | Feb 2014 | A1 |
20140058505 | Bielefeld | Feb 2014 | A1 |
20140114407 | Rajamannan | Apr 2014 | A1 |
20150173897 | Raanani | Jun 2015 | A1 |
20150173987 | Albinmousa et al. | Jun 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20160022419 | Yellin et al. | Jan 2016 | A1 |
20160038286 | Yellin et al. | Feb 2016 | A1 |
20160089235 | Yellin | Mar 2016 | A1 |
20160106420 | Foerster et al. | Apr 2016 | A1 |
20160120642 | Shaolian et al. | May 2016 | A1 |
20160120645 | Alon | May 2016 | A1 |
20170042670 | Shaolian et al. | Feb 2017 | A1 |
20180042723 | Yellin et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
102014102653 | Sep 2015 | DE |
2600799 | Jun 2013 | EP |
10-2004-0095482 | Nov 2004 | KR |
125062 | Feb 2013 | RU |
1990009153 | Feb 1993 | WO |
2003017874 | Mar 2003 | WO |
2003047467 | Jun 2003 | WO |
2005046488 | May 2005 | WO |
2009052427 | Apr 2009 | WO |
2009120764 | Oct 2009 | WO |
2010004546 | Jan 2010 | WO |
2010085659 | Jul 2010 | WO |
2011011443 | Jan 2011 | WO |
2011097355 | Aug 2011 | WO |
2012004679 | Jan 2012 | WO |
2012019052 | Feb 2012 | WO |
2012063228 | May 2012 | WO |
2012095159 | Jul 2012 | WO |
2012106354 | Aug 2012 | WO |
2012167095 | Dec 2012 | WO |
2013095816 | Jun 2013 | WO |
2013128436 | Sep 2013 | WO |
2013130641 | Sep 2013 | WO |
2013175468 | Nov 2013 | WO |
2014145399 | Sep 2014 | WO |
2014189509 | Nov 2014 | WO |
2014190329 | Nov 2014 | WO |
2014210600 | Dec 2014 | WO |
2015132668 | Sep 2015 | WO |
Entry |
---|
European Search Report in EP 17155803.4 dated Aug. 9, 2017. |
Supplemental European Search Report and Written Opinion for EP 14762806.9 dated Jul. 29, 2016. |
International Search Report for PCT/US2014/044920 dated Dec. 24, 2014. |
International Search Report and Written Opinion for PCT/US2011/046659 dated Jun. 4, 2012. |
International Search Report and Written Opinion for PCT/US2012/040481 dated Dec. 6, 2012. |
International Search Report and Written Opinion for PCT/US2013/042275 dated Feb. 20, 2014. |
International Search Report and Written Opinion for PCT/US2013/073552 dated Mar. 6, 2014. |
International Search Report and Written Opinion for PCT/US2014/039545 dated Oct. 22, 2014. |
International Search Report and Written Opinion for PCT/US2014/030163 dated Aug. 27, 2014. |
International Search Report for PCT/US2013/058102 dated Apr. 21, 2014,. |
International Search Report for PCT/US2013/028065 dated Jun. 27, 2013. |
Lendlein et al., Biodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications (May 31, 2002), Science 296, pp. 1673-1676. |
Supplemental European Search Report and Written Opinion for EP 12793292.9 dated Dec. 1, 2014. |
Supplementary Partial European Search Report for EP 13755441 dated Nov. 3, 2015. |
International Search Report and Written Opinion for PCT/US2017/046933 dated Dec. 21, 2017. |
Communication pursuant to Article 94(3) EPC for EP 14801009.3 dated Sep. 27, 2018. |
International Search Report and Written Opinion for PCT/US2018/022910 dated May 23, 2018. |
International Search Report and Written Opinion for PCT2019/064289 dated Feb. 5, 2020. |
Number | Date | Country | |
---|---|---|---|
20170231763 A1 | Aug 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14891189 | US | |
Child | 15584110 | US |