The present invention relates in general to transcatheter valve prostheses, and more particularly to a transcatheter valve prosthesis having one or more components for preventing paravalvular leakage.
A human heart includes four heart valves that determine the pathway of blood flow through the heart: the mitral valve, the tricuspid valve, the aortic valve, and the pulmonary valve. The mitral and tricuspid valves are atrioventricular valves, which are between the atria and the ventricles, while the aortic and pulmonary valves are semilunar valves, which are in the arteries leaving the heart. Ideally, native leaflets of a heart valve move apart from each other when the valve is in an open position, and meet or “coapt” when the valve is in a closed position. Problems that may develop with valves include stenosis in which a valve does not open properly, and/or insufficiency or regurgitation in which a valve does not close properly. Stenosis and insufficiency may occur concomitantly in the same valve. The effects of valvular dysfunction vary, with regurgitation or backflow typically having relatively severe physiological consequences to the patient.
Recently, flexible prosthetic valves supported by stent structures that can be delivered percutaneously using a catheter-based delivery system have been developed for heart and venous valve replacement. These prosthetic valves may include either self-expanding or balloon-expandable stent structures with valve leaflets attached to the interior of the stent structure. The prosthetic valve can be reduced in diameter, by crimping onto a balloon catheter or by being contained within a sheath component of a delivery catheter, and advanced through the venous or arterial vasculature. Once the prosthetic valve is positioned at the treatment site, for instance within an incompetent native valve, the stent structure may be expanded to hold the prosthetic valve firmly in place. One example of a stented prosthetic valve is disclosed in U.S. Pat. No. 5,957,949 to Leonhardt et al. entitled “Percutaneous Placement Valve Stent”, which is incorporated by reference herein in its entirety. Another example of a stented prosthetic valve for a percutaneous pulmonary valve replacement procedure is described in U.S. Patent Application Publication No. 2003/0199971 A1 and U.S. Patent Application Publication No. 2003/0199963 A1, both filed by Tower et al., each of which is incorporated by reference herein in its entirety.
Although transcatheter delivery methods may provide safer and less invasive methods for replacing a defective native heart valve, leakage between the implanted prosthetic valve and the surrounding native tissue may occur if not accommodated for by a particular implant. For instance, leakage may occur due to the fact that deployment of a minimally invasive cardiac valve is intended to occur without actual physical removal of the diseased or injured heart valve. Rather, the replacement stented prosthetic valve is contemplated to be delivered in a compressed condition to the native valve site, where it is expanded to its operational state within the native valve. Calcified or diseased native leaflets are to be pressed to the side walls of the native valve by the radial force of the stent frame of the prosthetic valve. However, it has been shown that calcified leaflets do not allow complete conformance of a stent frame with a native valve and therefore this ill-fit within the native anatomy may be a source of paravalvular leakage (PVL), as significant pressure gradients across the implanted prosthetic valve may cause blood to leak through the gaps between the implanted prosthetic valve and the calcified anatomy.
Embodiments hereof are related to transcatheter valve prostheses having one or more components attached thereto or integrated thereon to address and prevent paravalvular leakage.
Embodiments hereof relate to a transcatheter valve prosthesis including a tubular stent having a compressed configuration for delivery within a vasculature and an expanded configuration for deployment within a native heart valve. The tubular stent includes a plurality of crowns and a plurality of struts with each crown being formed between a pair of opposing struts, the tubular stent having endmost crowns formed at an inflow end thereof. A skirt is coupled to the tubular stent, with a first portion of the skirt being attached to and covering an inner circumferential surface of the tubular stent and a second portion of the skirt being attached to and covering an outer circumferential surface of an inflow end of the tubular stent. The skirt is continuous from the first portion to the second portion such that the first and second portions do not overlap. A prosthetic valve component is disposed within and secured to the first portion of the skirt. When the tubular stent is in at least the compressed configuration at least one endmost crown is positioned radially inwards with respect to the remaining endmost crowns formed at the inflow end of the tubular stent.
According to another embodiment hereof, a transcatheter valve prosthesis includes a tubular stent having a compressed configuration for delivery within a vasculature and an expanded configuration for deployment within a native heart valve. The tubular stent includes a plurality of crowns and a plurality of struts with each crown being formed between a pair of opposing struts. The plurality of crowns and the plurality of struts define a plurality of openings of the tubular stent and the tubular stent has endmost crowns and endmost openings formed at an inflow end thereof. An interior skirt is coupled to and covers an inner circumferential surface of the tubular stent. A prosthetic valve component is disposed within and secured to the interior skirt. An exterior skirt is coupled to and covers an outer circumferential surface of the tubular stent. The exterior skirt longitudinally extends over at least the endmost openings of the tubular stent. When the tubular stent is in at least the compressed configuration at least one endmost crown is positioned radially inwards with respect to the remaining endmost crowns formed at the inflow end of the tubular stent, thereby forming a circumferentially-extending gap between the endmost crowns adjacent to the at least one endmost crown positioned radially inwards in order to provide a low profile while accommodating the exterior skirt.
According to another embodiment hereof, a transcatheter valve prosthesis includes a tubular stent having a compressed configuration for delivery within a vasculature and an expanded configuration for deployment within a native heart valve. A skirt is coupled to the tubular stent, with a first portion of the skirt being attached to and covering an inner circumferential surface of the tubular stent and a second portion of the skirt being attached to and covering an outer circumferential surface of an inflow end of the tubular stent. The skirt is continuous from the first portion to the second portion such that the first and second portions do not overlap. A prosthetic valve component is disposed within and secured to the first portion of the skirt.
The foregoing and other features and advantages of the invention will be apparent from the following description of embodiments hereof as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention. The drawings are not to scale.
Specific embodiments of the present invention are now described with reference to the figures, wherein like reference numbers indicate identical or functionally similar elements. If utilized herein, the terms “distal” or “distally” refer to a position or in a direction away from the heart and the terms “proximal” and “proximally” refer to a position near or in a direction toward the heart. The following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Although the description of the invention is in the context of treatment of heart valves, the invention may also be used where it is deemed useful in other valved intraluminal sites that are not in the heart. For example, the present invention may be applied to venous valves as well. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
Transcatheter valve prosthesis 100 includes an expandable stent or frame 102 that supports a prosthetic valve component including one or more valve leaflets 104 within the interior of stent 102. The prosthetic valve component is capable of blocking flow in one direction to regulate flow there-through via valve leaflets 104 that may form a bicuspid or tricuspid replacement valve. Valve leaflets 104 are attached to an interior skirt or graft material 106 which encloses or lines a portion of stent 102 as would be known to one of ordinary skill in the art of prosthetic tissue valve construction. Valve leaflets 104 are sutured or otherwise securely and sealingly attached along their bases 110 to the interior surface of interior skirt 106. Adjoining pairs of leaflets are attached to one another at their lateral ends to form commissures 120, with free edges 122 of the leaflets forming coaptation edges that meet in area of coaptation 114.
Leaflets 104 may be made of pericardial material; however, the leaflets may instead be made of another material. Natural tissue for replacement valve leaflets may be obtained from, for example, heart valves, aortic roots, aortic walls, aortic leaflets, pericardial tissue, such as pericardial patches, bypass grafts, blood vessels, intestinal submucosal tissue, umbilical tissue and the like from humans or animals. Synthetic materials suitable for use as leaflets 104 include DACRON® polyester commercially available from Invista North America S.A.R.L. of Wilmington, Del., other cloth materials, nylon blends, polymeric materials, and vacuum deposition nitinol fabricated materials. One polymeric material from which the leaflets can be made is an ultra-high molecular weight polyethylene material commercially available under the trade designation DYNEEMA from Royal DSM of the Netherlands. With certain leaflet materials, it may be desirable to coat one or both sides of the leaflet with a material that will prevent or minimize overgrowth. It is further desirable that the leaflet material is durable and not subject to stretching, deforming, or fatigue.
Delivery of transcatheter valve prosthesis 100 may be accomplished via a percutaneous transfemoral approach or a transapical approach directly through the apex of the heart via a thoracotomy, or may be positioned within the desired area of the heart via different delivery methods known in the art for accessing heart valves. During delivery, if self-expanding, the prosthetic valve remains compressed until it reaches a target diseased native heart valve, at which time transcatheter valve prosthesis 100 can be released from the delivery catheter and permitted to expand in situ via self-expansion. The delivery catheter is then removed and transcatheter valve prosthesis 100 remains deployed within the native target heart valve. Alternatively, transcatheter valve prosthesis 100 may be balloon-expandable and delivery thereof may be accomplished via a balloon catheter as would be understood by one of ordinary skill in the art.
Embodiments hereof relate to a transcatheter valve prosthesis having an exterior skirt that encircles or surrounds an outer surface of the transcatheter valve prosthesis in order to occlude or fill gaps between the perimeter of a transcatheter valve prosthesis and the native valve annulus, thereby reducing, minimizing, or eliminating leaks there-between. More particularly, with reference to
Conventionally when additional exterior skirt material is added to a transcatheter valve prosthesis, some portions of a self-expanding stent may be inadvertently pushed or displaced radially inward when the transcatheter valve prosthesis is compressed or contracted into a sheath for delivery. More particularly, when a transcatheter valve prosthesis without an exterior skirt, such as transcatheter valve prosthesis 100 described above, is compressed or contracted into a sheath of a delivery catheter, the struts of stent 102 are compressed to abut against each together in order to fit into the sheath and the outer surface of each strut presses against the inner surface of the sheath. The material of interior skirt 106 compresses or packs into the lumen of stent 102. However, when an exterior skirt is added to a transcatheter valve prosthesis, the extra material may cause a portion of the stent to be pushed inwardly and any portions of the stent that are pushed inwardly no longer press against the inner surface of the sheath of the delivery catheter. With the addition of an exterior skirt and no further modifications to either the valve prosthesis or the delivery system, such as using a delivery system with a wider lumen diameter and also a greater delivery profile, the delivery configuration is unpredictable and may lead to erratic loading forces, deployment forces, and/or recapture forces. In order to accommodate the addition of exterior skirt 434, stent 402 is formed such that at least one endmost crown thereof is positioned radially inwards with respect to the remaining endmost crowns as will be described in more detail herein.
Stent 402 will now be described in more detail. Stent 402 of valve prosthesis 400 has a deployed configuration including an enlarged or flared first end 416 and a second end 418. In the embodiment depicted in
Stent 402 is a unitary tubular component having a plurality of side openings 432, which may be formed by a laser-cut manufacturing method and/or another conventional stent forming method as would be understood by one of ordinary skill in the art. In an embodiment, side openings 432 may be diamond-shaped or of another shape. Stent 402 includes a plurality of crowns 430 and a plurality of struts 428 with each crown being formed between a pair of opposing struts. Each crown 430 is a curved segment or bend extending between opposing struts 428. The plurality of crowns 430 and the plurality of struts 428 define the plurality of side openings 432 of the tubular stent 402. More particularly, as best shown in
With reference to
In embodiments hereof, stent 402 is self-expanding to return to an expanded deployed state from a compressed or constricted delivery state and may be made from stainless steel, a pseudo-elastic metal such as a nickel titanium alloy or Nitinol, or a so-called super alloy, which may have a base metal of nickel, cobalt, chromium, or other metal. “Self-expanding” as used herein means that a structure/component has a mechanical memory to return to the expanded or deployed configuration. Mechanical memory may be imparted to the wire or tubular structure that forms stent 402 by thermal treatment to achieve a spring temper in stainless steel, for example, or to set a shape memory in a susceptible metal alloy, such as nitinol, or a polymer, such as any of the polymers disclosed in U.S. Pat. Appl. Pub. No. 2004/0111111 to Lin, which is incorporated by reference herein in its entirety. Alternatively, transcatheter valve prosthesis 400 may be made balloon-expandable as would be understood by one of ordinary skill in the art.
Exterior skirt 434 is coupled to the outer surface of transcatheter valve prosthesis 400 around inflow or distal end 418 thereof. Exterior skirt 434 may be attached to stent 402 by any suitable means known to those skilled in the art, for example and not by way of limitation, suture/stitches, welding, adhesive, or mechanical coupling. In an embodiment, stitches 435 surround or extend around the perimeter of each endmost side opening 432A in order to fully secure and fix exterior skirt 434 to the outer surface of transcatheter valve prosthesis 400. When deployed, exterior skirt 434 may be positioned in situ at the native valve annulus, slightly above the valve annulus, slightly below the valve annulus, or some combination thereof. Since the exterior skirt is coupled to the outer surface of transcatheter valve prosthesis 400, longitudinal placement and/or the size and shape thereof may be adjusted or adapted according to each application and to a patient's unique needs. For example, depending on the anatomy of the particular patient, the exterior skirt may be positioned on transcatheter valve prosthesis 400 so that in situ the exterior skirt is positioned between transcatheter valve prosthesis 400 and the interior surfaces of the native valve leaflets, between transcatheter valve prosthesis 400 and the interior surfaces of the native valve annulus, and/or between transcatheter valve prosthesis 400 and the interior surfaces of the left ventricular outflow track (LVOT).
Exterior skirt 434 longitudinally extends over at least endmost side openings 432A of stent 402 but the length of exterior skirt 434 may vary according to application. In an embodiment hereof, as shown in
Interior skirt 406 is coupled to the inner surface of transcatheter valve prosthesis 400. In the embodiment of
Although exterior and interior skirts 434, 406 are described herein as separate or individual components with exterior skirt 434 being coupled to an outer surface of stent 402 and interior skirt 406 being coupled to an inner surface of stent 402, in another embodiment hereof (not shown) the skirts may be formed from the same or single component. For example, exterior and interior skirts 434, 406 may be formed via a single folded component that is coupled to both the inner and outer surfaces of stent 402 with the fold thereof extending over or around inflow or distal end 418 of valve prosthesis 400.
In the embodiment of
Stent 402 has a compressed configuration for delivery within a vasculature as shown in
In the embodiment of
In order to configure offset endmost crowns 430AI of transcatheter valve prosthesis 400 to be positioned radially inwards with respect to the remaining endmost crowns 430A formed at inflow end 418 of stent 402, stent 402 is formed in the expanded or deployed configuration shown in
In another embodiment hereof, in addition to and/or as an alternative to positioning at least one endmost crown radially inward in order to accommodate an exterior skirt, a single layer skirt that passes through or traverses the stent may be utilized. Stated another way, in order to avoid a double layer of skirt material at the inflow end of the transcatheter valve prosthesis, another embodiment hereof is related to a single skirt component that includes an interior portion and an exterior portion. Since the first and second portions of the skirt do not overlap, only a single layer of skirt material covers either an inner surface or outer surface of the stent and thus there is sufficient room for the stent struts to be compressed together and packed into the delivery sheath without inadvertently pushing any struts/crowns radially inward.
More particularly, with reference to
Similar to previous embodiments described above, stent 802 includes a plurality of crowns 830 and a plurality of struts 828 with each crown being formed between a pair of opposing struts. The plurality of crowns 830 and the plurality of struts 828 define a plurality of side openings 832 of the tubular stent 802 as described above with respect to
Exterior portion 850B of skirt 850 longitudinally extends over or covers at least endmost side openings 832A of stent 802. In an embodiment hereof, as shown in
In order for skirt 850 to pass through or transverse stent 802, skirt 850 includes a plurality of cuts 852 therein that are positioned to permit exterior portion 850B of skirt 850 to extend from the inner surface to the outer surface of stent 802 through certain side openings 832 thereof. More particularly,
With additional reference to
Flaps 858 of exterior portion 850B of skirt 850 are then secured or attached to stent 802 such that each flap 858 sealingly covers or extends over an endmost side opening 832A of stent 802. More particularly, each flap 858 is sewn to three struts, i.e., both of endmost struts 828A and secured strut 828S, of each endmost side opening 832A. Notably, exterior portion 850B of skirt 850 extends or passes over the fourth strut of each endmost side opening 832A, i.e., overpassed strut 828O, but is not attached or sewn to overpassed strut 828O. Stated another way, there is no seam at overpass zones 854 in which skirt 850 passes or flows from an inner surface of stent 802 to an outer surface of stent 802. Rather, at overpass zones 854 as shown on
In addition, as best shown on
Although not required, transcatheter valve prosthesis 800 may also include one or more endmost crowns that are positioned radially inwards with respect to the remaining endmost crowns in order to accommodate the material of exterior skirt portion 850B and ensure that the delivery configuration of the transcatheter valve prosthesis is predictable and organized as described above with respect to the embodiments of
While various embodiments according to the present invention have been described above, it should be understood that they have been presented by way of illustration and example only, and not limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail can be made therein without departing from the spirit and scope of the invention. Thus, the breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, can be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
5571175 | Vanney et al. | Nov 1996 | A |
7276078 | Spenser et al. | Oct 2007 | B2 |
7331991 | Kheradvar et al. | Feb 2008 | B2 |
7628805 | Spenser et al. | Dec 2009 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7780725 | Haug et al. | Aug 2010 | B2 |
8002825 | Letac et al. | Aug 2011 | B2 |
8182528 | Salahieh et al. | May 2012 | B2 |
8231670 | Salahieh et al. | Jul 2012 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8603160 | Salahieh et al. | Dec 2013 | B2 |
8623078 | Salahieh et al. | Jan 2014 | B2 |
8628566 | Eberhardt et al. | Jan 2014 | B2 |
8641757 | Pintor et al. | Feb 2014 | B2 |
8668733 | Salahieh et al. | Mar 2014 | B2 |
8673000 | Tabor et al. | Mar 2014 | B2 |
8734484 | Ahlberg et al. | May 2014 | B2 |
8795357 | Yohanan | Aug 2014 | B2 |
8801706 | Rothstein et al. | Aug 2014 | B2 |
8802356 | Braido et al. | Aug 2014 | B2 |
20030199963 | Tower et al. | Oct 2003 | A1 |
20030199971 | Tower et al. | Oct 2003 | A1 |
20040030381 | Shu | Feb 2004 | A1 |
20040111111 | Lin | Jun 2004 | A1 |
20040122514 | Fogarty et al. | Jun 2004 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20070270944 | Bergheim et al. | Nov 2007 | A1 |
20070293944 | Spenser | Dec 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080243245 | Thambar | Oct 2008 | A1 |
20090099653 | Suri et al. | Apr 2009 | A1 |
20090112311 | Miles et al. | Apr 2009 | A1 |
20090192591 | Ryan et al. | Jul 2009 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100168844 | Toomes et al. | Jul 2010 | A1 |
20100198238 | Sorajja | Aug 2010 | A1 |
20100277413 | Wang et al. | Nov 2010 | A1 |
20100280589 | Styrc | Nov 2010 | A1 |
20110054466 | Rothstein et al. | Mar 2011 | A1 |
20110098802 | Braido et al. | Apr 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110172765 | Nguyen et al. | Jul 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110257721 | Tabor | Oct 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20120022633 | Olson et al. | Jan 2012 | A1 |
20120041549 | Salahieh et al. | Feb 2012 | A1 |
20120041550 | Salahieh et al. | Feb 2012 | A1 |
20130190857 | Mitra et al. | Jul 2013 | A1 |
20130190862 | Pintor et al. | Jul 2013 | A1 |
20130197622 | Mitra | Aug 2013 | A1 |
20130331929 | Mitra et al. | Dec 2013 | A1 |
20140046426 | Kovalsky | Feb 2014 | A1 |
20140114402 | Ahlberg et al. | Apr 2014 | A1 |
20140114406 | Salahieh et al. | Apr 2014 | A1 |
20140194975 | Quill et al. | Jul 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140222144 | Eberhardt et al. | Aug 2014 | A1 |
20140236287 | Clague et al. | Aug 2014 | A1 |
20140243966 | Garde et al. | Aug 2014 | A1 |
20140243969 | Venkatasubramanian et al. | Aug 2014 | A1 |
20140257475 | Gross et al. | Sep 2014 | A1 |
20140277388 | Skemp | Sep 2014 | A1 |
20140277417 | Schraut et al. | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140277423 | Alkhatib et al. | Sep 2014 | A1 |
20140277424 | Oslund | Sep 2014 | A1 |
20140277425 | Dakin | Sep 2014 | A1 |
20140277426 | Dakin et al. | Sep 2014 | A1 |
20140277428 | Skemp et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
0537487 | Apr 1993 | EP |
WO2009094501 | Jul 2009 | WO |
WO2011051043 | May 2011 | WO |
WO2012032187 | Mar 2012 | WO |
WO2013033791 | Mar 2013 | WO |
WO2013059747 | Apr 2013 | WO |
WO2014072439 | May 2014 | WO |
Entry |
---|
“Invitation to Pay Additional Fees”, International application No. PCT/US2014/010734, including annex with Partial International Search Report, dated Apr. 9, 2014. |
“International Search Report and Written Opinion”, International Application No. PCT/2014/014090, dated Apr. 14, 2014. |
PCT/US2015/056510 “The International Search Report and The Written Opinion” dated Jan. 21, 2016. |
Communication pursuant to Article 94(3) EPC dated May 31, 2018 in corresponding European Patent Application No. 15 788 307.5. |
Examination Report dated Sep. 21, 2017 in corresponding Australian Patent Application No. 2015343583. |
Number | Date | Country | |
---|---|---|---|
20160120646 A1 | May 2016 | US |