The present disclosure relates to expandable prosthetic heart valves, and more particularly, to apparatus and methods for stabilizing an expandable prosthetic heart valve within a native annulus of a patient.
Prosthetic heart valves that are collapsible to a relatively small circumferential size can be delivered into a patient less invasively than valves that are not collapsible. For example, a collapsible and expandable valve may be delivered into a patient via a tube-like delivery apparatus such as a catheter, a trocar, a laparoscopic instrument, or the like. This collapsibility can avoid the need for a more invasive procedure such as full open-chest, open-heart surgery.
Collapsible and expandable prosthetic heart valves typically take the form of a valve structure mounted on a stent. There are two types of stents on which the valve structures are ordinarily mounted: a self-expanding stent and a balloon-expandable stent. To place such valves into a delivery apparatus and ultimately into a patient, the valve must first be collapsed to reduce its circumferential size.
When a collapsed prosthetic valve has reached the desired implant site in the patient (e.g., at or near the native annulus of the patient's heart valve that is to be repaired by the prosthetic valve), the prosthetic valve can be deployed or released from the delivery apparatus and expanded to its full operating size. For balloon-expandable valves, this generally involves releasing the entire valve, assuring its proper location, and then expanding a balloon positioned within the valve stent. For self-expanding valves, on the other hand, the stent automatically expands as the stent is withdrawn from the delivery apparatus.
The clinical success of collapsible and expandable heart valves is dependent, in part, on the anchoring of the valve within the native valve annulus. Self-expanding valves typically rely on the radial force exerted by expanding the stent against the native valve annulus to anchor the prosthetic heart valve. However, if the radial force is too high, the heart tissue may be damaged. If, instead, the radial force is too low, the heart valve may move from its deployed position and/or migrate from the native valve annulus, for example, into the left ventricle.
Movement of the prosthetic heart valve may result in the leakage of blood between the prosthetic heart valve and the native valve annulus. This phenomenon is commonly referred to as paravalvular leakage (PVL). In mitral valves, paravalvular leakage enables blood to flow from the left ventricle back into the left atrium during ventricular systole, resulting in reduced cardiac efficiency and strain on the heart muscle.
Anchoring prosthetic heart valves within the native valve annulus of a patient, especially within the native mitral valve annulus, can be difficult. The native mitral valve annulus, for instance, has reduced calcification or plaque compared to the native aortic valve annulus which can make for a less stable surface to anchor the prosthetic heart valve. For this reason, collapsible and expandable prosthetic mitral valves often include additional anchoring features such as barbs that engage underneath the annulus and/or coils that capture native leaflets, or that wrap around chordae tendineae, thereby stabilizing the prosthetic heart valve within the native annulus.
Despite the improvements that have been made to anchoring collapsible and expandable prosthetic heart valves, shortcomings remain. For example, to accommodate the additional anchoring features, prosthetic heart valves often extend at least partially into the ventricle, which can impede blood flow to the Left Ventricular Outflow Tract (LVOT). The challenges of anchoring a prosthetic heart valve within a native mitral valve annulus of a patient, without impeding blood flow to the LVOT, is only exacerbated when a patient has a small native mitral anatomy.
In accordance with a first aspect of the present disclosure, a collapsible and expandable prosthetic heart valve having a low-ventricular profile is provided. Among other advantages, the prosthetic heart valve is designed to be securely anchored (e.g., tethered) within the native mitral valve annulus without projecting into the ventricle. As a result, the prosthetic heart valve disclosed herein minimizes the obstruction of blood flow to the LVOT.
One embodiment of the prosthetic heart valve includes a prosthetic heart valve having an expandable inner stent with an inflow end and an outflow end, a valve assembly disposed within the stent including a cuff and a plurality of leaflets, an outer stent secured to and at least partially surrounding the inner stent, and a tether. The outer stent defines an atrial end and a ventricular end and is expandable from a delivery condition in which the outer stent is axially elongated to a deployed condition in which a first portion of the outer stent is folded upon a second portion of the outer stent such that the first and second portions collectively form a flange sized to engage an atrial surface of a native valve annulus.
In another embodiment, the prosthetic heart valve includes an expandable inner stent defining an inflow end and an outflow end, a valve assembly disposed within the inner stent including a cuff and a plurality of leaflets, an outer stent secured to and at least partially surrounding the inner stent, and a tether. The outer stent defines a first foldable portion, a second foldable portion, a body portion, a first junction between the second foldable portion and body portion, and a second junction between the first foldable portion and the second foldable portion. The outer stent is expandable from a delivery condition in which the first foldable portion, the second foldable portion and the body portion are substantially aligned to a deployed condition in which the second foldable portion pivots outwardly about the first junction relative to the body portion and the first foldable portion curls about the second junction such that the first foldable portion and the second foldable portion collectively form a double walled flange sized to engage an atrial surface of a native valve annulus. A sealing cuff is disposed on a surface of the double walled flange to seal a space between the prosthetic heart valve and the native mitral valve annulus.
A method of implanting a prosthetic heart valve within a native heart valve annulus is provided herein and includes delivering a delivery device to a target site adjacent to a native valve annulus while the delivery device holds a prosthetic heart valve including an inner stent, a valve assembly disposed within the stent, an outer stent secured to and at least partially surrounding the inner stent and a tether; deploying the prosthetic heart valve from the delivery device and allowing a first portion of the outer stent to fold onto a second portion of the outer stent to define a flange; engaging the flange against an atrial surface of a native annulus; tensioning the tether; and securing the tether to the wall of the heart.
Various embodiments of the present disclosure are described herein with reference to the drawings, wherein:
Blood flows through the mitral valve from the left atrium to the left ventricle. As used herein in connection with a prosthetic heart valve, the term “inflow end” refers to the end of the heart valve through which blood enters when the valve is functioning as intended, and the term “outflow end” refers to the end of the heart valve through which blood exits when the valve is functioning as intended. Also as used herein, the terms “substantially,” “generally,” “approximately,” and “about” are intended to mean that slight deviations from absolute are included within the scope of the term so modified.
A dashed arrow, labeled “TA”, indicates a transapical approach of implanting a prosthetic heart valve, in this case to replace the mitral valve. In the transapical approach, a small incision is made between the ribs of the patient and into the apex of left ventricle LV to deliver the prosthetic heart valve to the target site. A second dashed arrow, labeled “TS”, indicates a transseptal approach of implanting a prosthetic heart valve in which the delivery device is inserted into the femoral vein, passed through the iliac vein and the inferior vena cava into right atrium RA, and then through the atrial septum into left atrium LA for deployment of the valve. Other approaches for implanting a prosthetic heart valve are also possible and may be used to implant the collapsible prosthetic heart valve described in the present disclosure.
Prosthetic heart valve 10 includes an inner stent 12 securing a valve assembly 14, an outer stent 16 attached to and disposed around the inner stent, and a tether 18 configured to be secured to an apical pad 20. Both the inner stent 12 and the outer stent 16 may be formed from biocompatible materials that are capable of self-expansion, for example, shape-memory alloys such as nitinol. Alternatively, inner stent 12 and/or outer stent 16 may be balloon expandable or expandable by another force exerted radially outward on the stent. When expanded, outer stent 16 folds upon itself to form a flange that engages an atrial surface of the native valve annulus and assists in anchoring inner stent 12 and valve assembly 14 within the native valve annulus when tether 18 is tensioned.
Referring to
With additional reference to
Referring now to
The first foldable portion 46, the second foldable portion 48 and the body portion 52 of outer stent 16 may include a plurality of struts 56 that form cells 58 extending about the outer stent in one or more annular rows. Cells 58 may be substantially the same size around the perimeter of stent 16 and along the length of the stent. Alternatively, cells 58 within the body portion 52 and closer to the atrial end 42 of outer stent 16 may be larger than the cells within the body portion near the ventricular end 44 of the stent. The attachment features 50 may extend from the struts 56 forming apices of adjacent cells 58 that lie within the ventricular-most row of cells of outer stent 16. Attachment features 50 may define an eyelet 60 that facilitates the suturing (or connection via another fastener or attachment mechanism) of outer stent 16 to the longitudinal posts 34 of inner stent 12, thereby securing the inner and outer stents together. In one example, attachment features 50 may be sutured to a single bore 36 of a longitudinal post 34, proximate to the outflow end 24 of inner stent 12.
With additional reference to
As shown in
In a preferred embodiment, a sealing cuff 66 is disposed on a surface of flange 54 that engages an atrial surface of the native mitral valve annulus when prosthetic heart valve 10 is implanted within the native mitral valve. Sealing cuff 66 may be formed of a fabric, or a biologic or synthetic tissue, to seal the space between prosthetic heart valve 10 and the native mitral valve annulus. In one example, the material of sealing cuff 66 may be segmented into a plurality of discrete pieces, each of which is sutured or otherwise secured to struts 56 forming a single cell 58 or, alternatively, to the struts forming a perimeter around a relatively few number of cells. In this regard, each of the discrete pieces can flex relative to one another so as to not inhibit the bending of first foldable portion 46 and second foldable portion 48 relative to body portion 52. Alternatively, sealing cuff 66 may be formed of a single piece of material if the material is stretchable or otherwise does not inhibit outer stent 16 from transitioning from the delivery condition to the deployed condition and the formation of flange 54.
With specific reference to
Systolic Anterior Motion (SAM) prevention features may optionally be provided, for example, on outer stent 16. SAM (e.g., the displacement of the free edge of native anterior leaflet AL toward left ventricular outflow tract LVOT) can result in severe left ventricular outflow tract LVOT obstruction and/or mitral regurgitation. To prevent the occurrence of SAM, or at least significantly reduce its likelihood, a pivot arm 68 (shown in
In a preferred embodiment, as shown in
Use of prosthetic heart valve 10 to repair a malfunctioning native heart valve, such as a native mitral valve, or a previously implanted and malfunctioning prosthetic heart valve, will now be described with reference to
With a first end of tether 18 secured to the clamp 32 of inner stent 12, a physician may pull the free end of the tether through a loading device (not shown), such as a funnel, to crimp or collapse inner stent 12 and transition outer stent 16 from the expanded or deployed condition to the collapsed or delivery condition. After prosthetic heart valve 10 has been collapsed, the prosthetic heart valve may be loaded within a delivery device 100 with the free end of tether 18 extending back towards the trailing end (not shown) of the delivery device such that it can be manipulated by a physician.
After an incision has been made between the ribs of the patient and into the apex of the heart, delivery device 100 may be introduced into the patient using a transapical approach and delivered to an implant site adjacent the native mitral valve annulus. Once delivery device 100 has reached the target site, with a leading end 102 of delivery sheath 104 disposed within left atrium LA, the delivery sheath may be retracted to expose the atrial end 42 of outer stent 16, thereby allowing outer stent 16 to expand and transition from the delivery condition to the deployed condition.
As shown in
In the event that the physician determines that the valve assembly 14 is malfunctioning or that prosthetic heart valve 10 is positioned incorrectly within the native mitral annulus, the physician may recapture the prosthetic heart valve. To recapture prosthetic heart valve 10, the physician may pull tether 18 toward the trailing end of delivery device 100 thereby retracting the prosthetic heart valve and engaging the strut portion 30 of inner stent 12 against the leading end 102 of delivery sheathe 104 to crimp the inner stent, and with it outer stent 16, to a diameter capable of being inserted into the leading end the delivery sheathe. If valve assembly 14 was working as intended, but prosthetic heart valve 10 was mispositioned within the native mitral valve annulus, the physician may only need to partially collapse the prosthetic heart valve within delivery device 100 before repositioning the delivery sheathe with respect to the native mitral annulus and redeploying the prosthetic heart valve as previously described. Alternatively, if valve assembly 14 was malfunctioning, prosthetic heart valve 10 may be completely recaptured and removed from the patient. The physician may then repeat the procedure described above with a different prosthetic heart valve 10.
In some instances, the physician may find it desirable to secure the native anterior leaflet AL of native mitral valve MV to the outer stent 16 of prosthetic mitral valve 10 to prevent SAM. When desired, the physician may use prosthetic heart valve 10 having a pivot arm 68, which when unsheathed and when tension is released from suture 73, will automatically pivot from the collapsed condition to an expanded condition to secure the native leaflet to prosthetic heart valve 10 and away from the left ventricular outflow tract.
After the physician has confirmed that prosthetic heart valve 10 has been properly positioned, and leaflets 40 are properly coapting, the physician may insert apical pad 20 through the incision before coupling tether 18 and apical pad 20 and tensioning the tether. As shown in
Apical pad 20, which may be positioned in contact with an exterior surface of left ventricle LV at the transapical puncture site, may then be locked to tether 18, preventing the tether from releasing the tension. The physician may then cut the tether located outside of the heart before removing the cut portion of the tether and delivery device 100 from the patient. With prosthetic heart valve 10 properly positioned and anchored within the native mitral valve annulus of a patient, the prosthetic heart valve may work as a one-way valve to restore proper function of the heart valve by allowing blood to flow in one direction (e.g., from the left atrium to the left ventricle) while preventing blood from flowing in the opposite direction.
Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.
This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 63/223,594 filed Jul. 20, 2021, the disclosure of which is hereby incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
63223594 | Jul 2021 | US |