1. Field of the Invention
The present invention relates to a transceiver, and more particularly, to a transceiver in a full duplex communication system.
2. Description of the Prior Art
As technology advances, network applications have become more and more popular. Network bandwidth requirements are also increasing as the transmission speed of data transmission standards such as Ethernet have raised from 10/110 Mps to above 1 Gbps. As is well known in the art, each port of a 1 Gbps gigabit Ethernet device has four channels, wherein each of the four channels has a transceiver.
Please refer to
As mentioned above, each channel of the gigabit Ethernet device simultaneously performs transmitting and receiving operations. When the channel is transmitting, the signals received from the channel are affected by the transmission, and this phenomenon is known as echo impairment. In order to reduce echo impairment in a communication system, an echo cancellation device 110 and an echo cancellation resistor Rp are usually employed in the conventional transceiver 100. The echo cancellation device 110 is usually a DAC for generating a cancellation signal that corresponds to the transmit signal output from the DAC 108 in order to cancel the effects of the transmit signal on the receiver section 106 and thereby achieve echo cancellation.
However, the unavoidable parasitic capacitance effect in practical implementations is not considered in the echo cancellation device 110 of the prior art. Therefore, the echo effect of the transceiver 100 cannot be effectively reduced to the lowest level using the echo cancellation device 110 and thereby results in echo residue on the receiver section 106.
It is therefore one of the objectives of the claimed invention to provide a transceiver in a full duplex communication system to minimize echo impairment by considering the parasitic capacitance effect of the transceiver.
According to a preferred embodiment of the present invention, a transceiver in a full duplex communication system is disclosed. The transceiver includes: a transmitting circuit coupled to a channel for transmitting a transmit signal to the channel; a cancellation signal generator coupled to the channel for generating a cancellation signal according to the transmit signal, wherein the cancellation signal corresponds to the transmit signal; and an echo cancellation circuit coupled to the transmitting circuit and the cancellation signal generator for attenuating an echo corresponding to the transmit signal with the cancellation signal.
One advantage of the present invention is that the parasitic capacitance effect is minimized with the echo cancellation circuit and the performance of echo cancellation is thereby improved.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
In
In general, the transceiver 200 of the embodiment of the present invention further configures an analog-to-digital converter (ADC) after the PGA 212 to convert the receive signal into digital form.
Since the capacitance of the parasitic capacitor Ce, the resistance of the channel's equivalent resistor Rc, or the impedance of the matching resistor Rm is possibly affected by the operating environment, temperature, manufacturing deviations, or the like, the values will fluctuate and change when transmitting/receiving data. In order to more precisely eliminate echo, the transceiver 200 of the present invention further utilizes an echo residue detector (not shown) for detecting the echo residue at the stages after the PGA 212. The echo residue detector generates a control signal according to the detected echo residue to control the plurality switches of the capacitor module of the adjusting circuit 220 in order to adjust the capacitance of the capacitor module. In practical implementations, the echo residue detector can be a phase error detector, such as a SNR monitor. In addition, the echo residue detector can also generate the control signal according to the signal-to-noise (SNR) of the signal outputted from the equalizer.
As can be inferred from the above, the echo residue detector adjusts the capacitance of the phase adjusting circuit 220 by utilizing feedback control with the echo residue on the following stages after the PGA 212. Thus, the transceiver 200 of the embodiment of the present invention can obtain an optimal performance of echo cancellation by dynamically adjusting the phase of the cancellation signal according to the different characteristics of circuit components and network environment.
Those skilled in the art will readily observe that numerous modifications and alterations of the device may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
93103106 A | Feb 2004 | TW | national |
This is a continuation-in-part of U.S. application Ser. No. 10/904,338, filed Nov. 4, 2004, entitled “ECHO CANCELLATION DEVICE FOR FULL DUPLEX COMMUNICATION SYSTEMS” and which is included herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5528687 | Tanaka et al. | Jun 1996 | A |
5694474 | Ngo et al. | Dec 1997 | A |
5812537 | Betts et al. | Sep 1998 | A |
5960077 | Ishii et al. | Sep 1999 | A |
6278785 | Thomasson | Aug 2001 | B1 |
6373908 | Chan | Apr 2002 | B2 |
6775529 | Roo | Aug 2004 | B1 |
6947478 | Hauptmann et al. | Sep 2005 | B1 |
6965578 | Kappes | Nov 2005 | B1 |
6980644 | Sallaway et al. | Dec 2005 | B1 |
7304961 | Huang et al. | Dec 2007 | B2 |
7307965 | Huang | Dec 2007 | B2 |
20020101983 | Lee | Aug 2002 | A1 |
20030169875 | Lee | Sep 2003 | A1 |
20030214903 | Lee | Nov 2003 | A1 |
20050084003 | Duron | Apr 2005 | A1 |
Number | Date | Country |
---|---|---|
318989 | Nov 1997 | TW |
507433 | Oct 2002 | TW |
Number | Date | Country | |
---|---|---|---|
20050185603 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10904338 | Nov 2004 | US |
Child | 10904453 | US |