The invention relates to communication devices and systems. In particular, the invention is directed to communications apparatus and transceiver interfaces having three terminals, namely a power terminal, ground terminal, and a signal terminal used for communication input/output.
It is known to provide transceiver systems having interfaces with at least three terminals for making connections with external circuits and systems. A positive terminal and a ground terminal are typically provided for connection to an external power source. A bidirectional signal terminal is provided for transmitting and receiving communication signals. A transceiver of common design can be damaged in the event one or more of the terminals is inadvertently connected improperly. An additional problem in some transceiver systems is that the transceiver circuitry can be abruptly shut off when the power from the supply side is interrupted or turned off. In some systems, not supplying power for a shut-down sequence can be detrimental.
Due to these and other problems and potential problems, improved transceivers with dynamically adaptable terminals and shut-down power circuitry would be would be useful and advantageous contributions to the arts.
In carrying out the principles of the present invention, in accordance with preferred embodiments, the invention provides advances in the arts with novel methods and apparatus directed to providing transceiver interfaces with terminals suitable for use as power, ground, and signal terminals depending upon how they are connected to associated circuitry. Additional circuitry can also be included to provide adequate power for operating a shut-down sequence when the transceiver power supply is abruptly interrupted.
According to one aspect of the invention, in an example of a preferred embodiment, a novel transceiver interface includes a true positive node and a true ground node coupled with three adaptive terminals. The adaptive terminals have pairs of isolation elements linking them to the true positive node and the true ground node. Each of the adaptive terminals is configured to function as a positive terminal, ground terminal, and transceiver terminal.
According to another aspect of the invention, in a presently preferred embodiment, diodes perform the function of isolation elements coupling the terminals to the power and ground nodes for controlled current flow.
According to still another aspect of the invention, in examples of preferred embodiments, the transceiver interface also includes a charge storage element for providing power during system shut-down.
According to additional aspects of the invention, preferred embodiment of the transceiver interface also include a detection circuit for monitoring the status of one or more of the terminals.
The invention has advantages including but not limited to one or more of the following, providing a robust, user-friendly, adaptable transceiver interface, and providing a transceiver interface with an improved shut-down power capability. These and other advantageous features and benefits of the present invention can be understood by one of skilled in the arts upon careful consideration of the detailed description of representative embodiments of the invention in connection with the accompanying drawings.
The present invention will be more clearly understood from consideration of the following detailed description and drawings in which:
References in the detailed description correspond to like references in the various drawings unless otherwise noted. Descriptive and directional terms used in the written description such as right, left, back, top, bottom, upper, side, et cetera, refer to the drawings themselves as laid out on the paper and not to physical limitations of the invention unless specifically noted. The drawings are not to scale, and some features of embodiments shown and discussed are simplified or amplified for illustrating principles and features, as well as anticipated and unanticipated advantages of the invention.
A transceiver interface is disclosed in a configuration by which signals may be transmitted over a single signal terminal, and separate power and ground terminals are also provided. The terminals are each configured to act as either a power, ground, or signal terminal, depending upon how it is connected to associated communication system equipment.
As shown in the exemplary embodiment of
In operation, the transceiver terminal 100 uses the diodes 108a-b to adaptively provide the appropriate electrical connections to the power node 102 and ground node 104 regardless of how connections are made at the terminal 106. These isolation elements, in this case diodes, correct the polarity for internal supplies within the transceiver 100, ensuring that the interface is robust and fault tolerant, regardless of how the terminals 106 are connected to external devices. The systems shown and described herein are typical of a three-wire I/O Link system for the purposes of example. It should be appreciated by those skilled in the arts that the interface may also be readily adapted for use with other communications systems as well.
Now referring primarily to
In addition, in this example of a preferred embodiment of a transceiver interface, the circuit 200 provides a supplemental charge storage element 210 electrically coupled to the power node 202 in an arrangement through which, when the power node 202 is grounded or turned-off, the transceiver side of the system, e.g., adaptive terminals 206, are provided power by the power storage element 210. This configuration 200 is useful and advantageous in that it provides supplemental power for shut-down procedures in the event that the main power node 202 abruptly stops supplying power. The power storage element 210 may be a storage capacitor, super-capacitor, battery, or other electrical component suitable for storing power. Also shown in
While the making and using of various exemplary embodiments of the invention are discussed herein, it should be appreciated that the present invention provides inventive concepts which can be embodied in a wide variety of specific contexts. It should be understood that the invention may be practiced with electronic apparatus and systems having additional terminals for additional signals, power supplies, and the like, in addition to the simplified three-terminal embodiments shown and described for illustration purposes. For example, additional terminals and nodes may be included in an interface in the manner described without departing form the invention. For purposes of clarity, detailed descriptions of functions, components, and systems familiar to those skilled in the applicable arts are not included. The methods and apparatus of the invention provide one or more advantages including but not limited to, dynamically adaptable electrical connections and supplemental stored power circuits for short-term use. While the invention has been described with reference to certain illustrative embodiments, those described herein are not intended to be construed in a limiting sense. For example, variations or combinations of steps or materials in the embodiments shown and described may be used in particular cases without departure from the invention. Various modifications and combinations of the illustrative embodiments as well as other advantages and embodiments of the invention will be apparent to persons skilled in the arts upon reference to the drawings, description, and claims.
This application is entitled to priority based on Provisional Patent Application Ser. No. 61/321,109 filed on Apr. 5, 2010, which is incorporated herein for all purposes by this reference. This application and the Provisional Patent Applications have at least one common inventor.
Number | Date | Country | |
---|---|---|---|
61321109 | Apr 2010 | US |