Transcranial doppler probe

Information

  • Patent Grant
  • 11207054
  • Patent Number
    11,207,054
  • Date Filed
    Monday, June 20, 2016
    8 years ago
  • Date Issued
    Tuesday, December 28, 2021
    2 years ago
Abstract
According to various embodiments, there is provided a headset mountable on a head, the headset including a probe for emitting energy into the head. The headset further includes a support structure coupled to the probe. The support structure includes translation actuators for translating the probe along two axes generally parallel to a surface of the head.
Description
FIELD

Subject matter described herein relates generally to medical devices, and more particularly to a headset including a probe for diagnosing medical conditions.


BACKGROUND

Transcranial Doppler (TCD) is used to measure the cerebral blood flow velocity (CBFV) in the major conducting arteries of the brain (e.g., the Circle of Willis) non-invasively. It is used in the diagnosis and monitoring a number of neurologic conditions, such the assessment of arteries after a subarachnoid hemorrhage (SAH), aiding preventative care in children with sickle cell anemia, and risk assessment in embolic stroke patients.


Traditionally, a TCD ultrasound includes the manual positioning of a probe relative to a patient by a technician. The probe emits energy into the head of a patient. The technician identifies the CBFV waveform signature of a cerebral artery or vein in the head. Identification of the signal requires integration of probe insonation depth, angle, and placement within one of several ultrasound windows as well as characteristics from the ultrasound signal which include waveform spectrum, sounds, M-Mode, and velocity. For devices utilizing a probe (e.g., an automated Transcranial Doppler device), there exist concerns related to alignment and pressure that the probe exerts during use (e.g., for comfortability and safety when held against a human being or for ensuring the effectiveness of the probe). In some devices, a spring is incorporated within a probe, but such devices may not be effective for pressure control due to lateral slippage and shifting of the spring within the probe.


SUMMARY

According to various embodiments, there is provided a headset mountable on a head, the headset including a probe for emitting energy into the head. The headset may further include a support structure coupled to the probe, with the support structure including translation actuators for translating the probe along at least two axes generally parallel to a surface of the head.


In some embodiments, the headset may further include at least a perpendicular translation actuator for translating the probe along a perpendicular axis generally perpendicular to the surface of the head. In some embodiments, the headset may further include at least one rotation actuator for rotating the probe about at least one rotation axis. The headset may further include a tilt axis generally orthogonal to the perpendicular axis. The headset may further include a pan axis generally orthogonal to the perpendicular axis.


In some embodiments, the headset may provide exactly five degrees of freedom of movement of the probe including translation through the two axes generally parallel to the surface of the head, one degree of freedom through the perpendicular axis generally perpendicular to the surface of the head, one degree of freedom along the tilt axis, and one degree of freedom along the pan axis.


According to various embodiments, there is provided a device configured to interact with a target surface, the device including a probe configured to interact with the target surface. The device may further include a support structure coupled to the probe for moving the probe relative to the target surface. The support structure may be configured to translate the probe along both a translation plane generally parallel to the target surface. The support structure may be further configured to rotate the probe about at least one rotation axis.


In some embodiments, the support structure is configured to translate the probe along a translation axis generally perpendicular to the translation plane. In some embodiments, the support structure includes a tilt axis different than the translation axis. In some embodiments, the support structure includes a pan axis different than the translation axis and the tilt axis. In some embodiments, the support structure is further configured to rotate the probe towards and away from the target surface about the tilt axis and the pan axis. In some embodiments, the support structure has a stiffness along each of the translation plane and the translation axis, and the stiffness along the translation plane is greater than the stiffness along the translation axis. In some embodiments, the probe is configured to emit ultrasound waves into the target surface.


In some embodiments, the device further includes a first actuator configured to translate the probe along a first direction along the translation plane. In some embodiments, the device further includes a second actuator configured to translate the probe along a second direction perpendicular to the first direction along the translation plane. In some embodiments, the device further includes a third actuator configured to translate the probe along the translation axis. In some embodiments, the first actuator and the second actuator are configured with a stiffness of the translation plane, and the third actuator is configured with a stiffness of the translation axis. In some embodiments, the first, second, and third actuators are a servo motor.


In some embodiments, an input force of each of the first, second, and third actuators is determined by a method including determining a configuration of the support structure for the probe and each of the first, second, and third actuators for the support structure. In some embodiments, the method further includes determining a stiffness matrix for the support structure based on the configuration of the support structure and a desired conditional stiffness of the support structure. In some embodiments, the method further includes determining a force vector by multiplying the stiffness matrix and a vector of a difference of the desired and actual translational and rotational position of the probe. In some embodiments, the method further includes calculating a Jacobian for the support structure. In some embodiments, the method further includes determining the input forces for each of the first, second, and third actuators by multiplying the force vector and a transpose of the Jacobian.


According to various embodiments, there is provided a method of manufacturing a device configured to interact with a target surface, including providing a probe configured to interact with the target surface. In some embodiments, the method further includes coupling a support structure to the probe for moving the probe relative to the target surface, wherein the support structure configured to translate the probe along both a translation plane generally parallel to the target surface and along a translation axis generally perpendicular to the translation plane and rotate the probe about at least one rotation axis. In some embodiments, the one rotation axis includes a tilt axis different than the translation axis. In some embodiments the one rotation axis includes a pan axis different than the translation axis and the tilt axis.





BRIEF DESCRIPTION OF THE DRAWINGS

Features, aspects, and advantages of the present invention will become apparent from the following description and the accompanying exemplary embodiments shown in the drawings, which are briefly described below.



FIG. 1 is a diagram of a virtual support structure for manipulating a medical probe, according to an exemplary embodiment.



FIG. 2 is an perspective view of a medical probe and a gimbal structure, according to an exemplary embodiment.



FIG. 3 is a perspective view of a two-link revolute support structure for the medical probe of FIG. 2, according to an exemplary embodiment.



FIG. 4 is front elevation view of the support structure of FIG. 3.



FIG. 5 is a right side elevation view of the support structure of FIG. 3.



FIG. 6 is a perspective view of a prismatic support structure for the medical probe of FIG. 2, according to an exemplary embodiment.



FIG. 7 is front elevation view of the support structure of FIG. 6.



FIG. 8 is a right side elevation view of the support structure of FIG. 6.



FIG. 9 is a schematic front view diagram of the support structure of FIG. 3.



FIG. 10 is a schematic front view diagram of the support structure of FIG. 6.



FIG. 11 is a flowchart of a method for determining the input force, or torque, for an actuator, according to an exemplary embodiment.



FIG. 12 is a perspective view of a 5-bar parallel mechanism (revolute-revolute) support structure for the medical probe of FIG. 2, according to an exemplary embodiment.



FIG. 13 is front elevation view of the support structure of FIG. 12.



FIG. 14 is a right side elevation view of the support structure of FIG. 12.





DETAILED DESCRIPTION

The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.


According to various embodiments, a five degree of freedom (DOF) kinematic mechanism is used that fully automates evaluation of the temporal window quality and can rediscover the temporal window even after complete loss of signal. In some embodiments, a computer generates and directs the mechanism to translate and reorient the probe along the surface of the head until a candidate signal is located. Once located, the probe is reoriented to increase signal strength. In some embodiments, reducing the search time of the automated system to discover the temporal window is accomplished by aligning the mechanism and probe at a known anatomical feature. In some embodiments, the alignment is performed with a visual window guide for the user to place the probe at an initial starting point along the zygomatic arch between ear and the eye.


In some embodiments, after the probe is properly aligned, the compliance of the probe is held normal to the surface at a high enough level to keep the probe seated, but low enough so to be comfortable to the user, as the probe moves in and out following the surface of the head. In some embodiments, the X and Y axes can retain a higher servo stiffness in order to maintain precision control of probe location. In some embodiments, since the normal force of the probe is determined by the Z-axis stiffness, the sliding force encounter by the X and Y axes will be limited to a comfortable level, and the probe can be directed to perform a search for the TCD window. In some embodiments, if the orientation of the probe needs to be changed, the orientation stiffnesses can be increased via software.


In some embodiments, the kinematic mechanism of the probe includes five motor degrees of freedom, Q={J1, J2, J3, J4, J5) (i.e., motor or joint space) to effect five degrees of freedom in position and orientation X={x, y, z, pan, tilt} (i.e., task space). As such, the forward kinematics may be written as the relationship between motor coordinates and probe coordinates: X=fwd_kin(Q), where fwd_kin is a function representing a series of equations based on the mechanism design and typically analyzed by Denavit-Hartenberg parameters.


In some embodiments, placement of the TCD probe is specified via the inverse kinematics with either an analytic inverse solution: Q=inv_kin(X), or by using a numerical differential such as the Jacobian inverse solution dQcmd(n)=J−1 (Xerr(n)), where J is the Jacobian, relating differential motion of the motors to the differential motion of the probe, Xerr(n) is the probe position and orientation error at time n, and dQcmd(n) is the differential motor command at time n.



FIG. 1 is a diagram of a model of a virtual support structure 10 for a probe 20, according to an exemplary embodiment. The support structure 10 is configured to position the probe 20 relative to a target surface 22. In some embodiments, the probe 20 is a medical probe, such as a medical probe for use with a transcranial Doppler (TCD) apparatus to emit ultrasound wave emissions directed to the target surface 22. In other embodiments, the probe 20 is configured to emit other types of waves during operation, such as, but not limited to, infrared waves, x-rays, and so on.


In some embodiments, the probe 20 has a first end 20a and a second end 20b. In some embodiments, the first end 20a interfaces with the support structure 10. In some embodiments, the second end 20b contacts the target surface 22 on which the probe 20 operates at a contact point 21. In some embodiments, the second end 20b is a concave structure such that the contact point 21 is a ring shape (i.e., the second end 20b contacts the target surface 22 along a circular outer edge of the concave second end 20b). The support structure 10 controls the relative position of the probe 20 (e.g., z-axis pressure, y-axis pressure, x-axis pressure, normal alignment, etc.). The support structure 10 is shown as a virtual structure including a first virtual spring 11 coupled between the probe 20 and a virtual surface 12 and exerting a force along a z-axis 13, a second virtual spring 14 coupled between the probe 20 and a virtual surface 15 and exerting a force along a y-axis 16, and a third virtual spring 17 coupled between the probe 20 and a virtual surface 19 and exerting a force along the x-axis 18. The virtual support structure 10 further includes a torsional spring 23 exerting a torque about a tilt axis 27 and a second torsional spring 25 exerting a torque about a pan axis 29. In some embodiments, the virtual support structure 10 includes other virtual elements, such as virtual dampers (not shown). Virtual dampers represent elements that improve the stability of the system and are useful for tuning the dynamic response of the system.


The virtual support structure 10 represents a variety of mechanical structures that may be utilized to position the probe 20 relative to the target surface 22, as described in more detail below. In some embodiments, the second end 20b of the probe 20 is caused to contact a relatively delicate surface, such as the skin of the patient. The support structure is configured to adjust its stiffness (e.g., impedance, compliance, etc.) to provide variable linear forces and rotational forces on the probe 20, and may be relatively stiff in some directions and may be relatively compliant in other directions. For example, the support structure 10 may apply minimal force and may be relatively compliant along the z-axis 13 to minimize forces applied to the patient (e.g., if the patient moves relative to the support structure) in a direction generally normal to the target surface 22 and may be relatively stiff along the y-axis 16 and the x-axis 18 to improve the positional accuracy and precision of the probe 20 along a plane generally parallel to the target surface 22. Further, the desired stiffness of the support structure 10 along various axes may vary over time, depending on the task at hand. For example, the support structure may be configured to be relatively compliant in scenarios in which the support structure 10 is being moved relative to the patient (e.g., during initial set-up of the probe structure, removal of the probe structure, etc.), or when it is advantageous to be relatively free-moving (e.g., during maintenance/cleaning, etc.), and may be configured to be relatively stiff, in some directions, in scenarios in which accuracy and precision of the positioning of the probe 20 is advantageous (e.g., during the TCD procedure or other procedure being performed with the probe 20).


As described in more detail below, a kinematic model of the support structure 10 can be utilized to calculate the relationship between the forces applied to the target surface 22 by the probe 20 and the forces (e.g., torques) applied by actuators actuating the support structure 10. The forces applied to the target surface 22 by the probe 20 in the idealized system can therefore be determined theoretically, without direct force sensing, thereby eliminating the need for a load cell disposed in-line with the probe 20 and/or a torque sensor coupled to the probe 20. In a physical system, static friction, along with other unmodeled physical effects, may introduce some uncertainty.


Referring to FIG. 2, the probe 20 is shown according to an exemplary embodiment mounted to a portion of a support structure, shown as a gimbal structure 24, which can rotate about multiple axes, at the first end 20a. The gimbal structure 24 includes a first frame member 26 that is able to rotate about the tilt axis 27 and a second frame member 28 that is able to rotate about the pan axis 29. The target surface 22 may be uneven (e.g., non-planar). The gimbal structure 24 allows the probe 20 to be oriented such that it is normal to the target surface 22 at the contact point 21.


Referring now to FIGS. 3-5, a support structure 30 for the probe 20 is shown according to an exemplary embodiment as a two-link revolute (e.g., revolute-revolute) robot. The support structure 30 includes a first frame member 32, a second frame member 34, a third frame member 36, a fourth frame member 38, and the gimbal structure 24. The first frame member 32 is configured to be a static member. The first frame member 32 may, for example, be mounted to a halo or headset 33 worn on the patient's head or other structure that attaches the first frame member 32 to the patient or fixes the position of the first frame member 32 relative to the patient. The probe 20 is configured to emit energy into the head of the patient.


The second frame member 34 is a link configured to rotate about the z-axis 13. The z-axis 13 is generally perpendicular to the surface of the head. A first end 40 of the second frame member 34 is coupled to the first frame member 32. According to an exemplary embodiment, the rotation of the second frame member 34 relative to the first frame member 32 is controlled by an actuator 42, shown as an electric motor and gearbox that is attached through the first frame member 32. Actuator 42 acts as a perpendicular translation actuator for translating the probe along a perpendicular axis generally perpendicular to the surface of the head.


The third frame member 36 is a link configured to rotate about the z-axis 13. A first end 44 of the third frame member 36 is coupled to a second end 46 of the second frame member 34. According to an exemplary embodiment, the rotation of the third frame member 36 relative to the second frame member 34 is controlled by an actuator 48, shown as an electric motor and gearbox that is attached through the second frame member 34.


The fourth frame member 38 is configured to translate along the z-axis 13 (e.g., in and out, in and away from the head, etc.). According to an exemplary embodiment, the fourth frame member 38 slides along rail members 50 that are fixed to a second end 52 of the third frame member 36. The position of the fourth frame member 38 relative to the third frame member 36 is controlled by an actuator, such as an electric motor and a lead screw (not shown for clarity).


The gimbal structure 24 and the probe 20 are mounted to the fourth frame member 38. The gimbal structure 24 controls the orientation of the probe 20 about the tilt axis 27 and the pan axis 29 (e.g., pan and tilt). The position of the probe 20 about the tilt axis 27 is controlled by an actuator 54, shown as an electric motor and gearbox. Actuator 54 acts as a rotation actuator to rotate the probe. The position of the probe 20 about the pan axis 29 is controlled by an actuator 56, shown as an electric motor and gearbox. Actuator 56 acts as a rotation actuator to rotate the probe. In one embodiment, the rotation of the probe 20 about the tilt axis 27 and the pan axis 29 is different than the z-axis 13, regardless of the rotation of the frame members 34 and 36.


The probe 20 is able to move on the x-y plane, i.e., the translation plane, which is defined by the x-axis 18 and the y-axis 16, through the rotation of the second frame member 34 and the third frame member 36. The probe 20 is able to move along the z-axis 13, i.e., the translation axis, through the translation of the fourth frame member 38. Further, the probe 20 is able to rotate about tilt axis 27 and the pan axis 29 through the gimbal structure 24. Combining these five degrees of freedom allows the position and orientation of the probe 20 relative to the target surface 22 to be completely described and controlled, discounting rotation about a third axis that is orthogonal to the pan axis 29 and the tilt axis 27.


According to an exemplary embodiment, the actuators utilized to position the support structure 30 are servo motors. The use of servo motors to control the support structure allow for a more precise control, compared to a stepper motor, for the torque output, rotational position, and angular speed of the motor, as well as the corresponding position of the probe 20 and the interaction between the probe 20 and the target surface 22. Of course, other suitable motors known to those of ordinary skill in the art could also be used.


Referring now to FIGS. 6-8, a support structure 60 for the probe 20 and the gimbal structure 24 is shown according to another exemplary embodiment as a prismatic (e.g., Cartesian, rectilinear, etc.) robot. The support structure 60 includes a first frame member 62, a second frame member 64, a third frame member 66, a fourth frame member 68, and the gimbal structure 24. The first frame member 62 is configured to be a static member. The first frame member 62 may, for example, be mounted to a halo or headset 33 worn on the patient's head or other structure that fixes the position of the first frame member 62 relative to the patient.


The second frame member 64 is configured to translate along the y-axis 16 (e.g., up and down, bottom of ear to top of ear, etc). According to an exemplary embodiment, the second frame member 64 slides along rail members 70 that are fixed to the first frame member 62. The position of the second frame member 64 relative to the first frame member 62 is controlled by an actuator, such as an electric motor and a lead screw (not shown for clarity).


The third frame member 66 is configured to translate along the x-axis 18 (e.g., forward and backward, ear to eye, etc.). According to an exemplary embodiment, the third frame member 66 slides along rail members 72 that are fixed to the second frame member 64. The rail members 72 are orthogonal to the rail members 70. The position of the third frame member 66 relative to the second frame member 64 is controlled by an actuator, such as an electric motor and a lead screw (not shown for clarity).


The fourth frame member 68 is configured to translate along the z-axis 13 (e.g., in and out, in and away from the head, etc.). According to an exemplary embodiment, the fourth frame member 68 slides along rail members 74 that are fixed to the third frame member 66. The position of the fourth frame member 68 relative to the third frame member 66 is controlled by an actuator, such as an electric motor and a lead screw (not shown for clarity).


The gimbal structure 24 and the probe 20 are mounted to the fourth frame member 68. The gimbal structure 24 controls the orientation of the probe 20 about the tilt axis 27 and the pan axis 29 (e.g., tilt and pan). The position of the probe 20 about the tilt axis 27 is controlled by an actuator 84, shown as an electric motor and gearbox. The position of the probe 20 about the pan axis 29 is controlled by an actuator 86, shown as an electric motor and gearbox.


The probe 20 is able to move on the x-y plane through the translation of the second frame member 64 and the third frame member 66, move along the z-axis 13 through the translation of the fourth frame member 68, and rotate about tilt axis 27 and the pan axis 29 through the gimbal structure 24. Combining these five degrees of freedom allows the position and orientation of the probe 20 relative to the target surface 22 to be completely described and controlled, discounting rotation about a third axis that is orthogonal to the pan axis 29 and the tilt axis 27.


A kinematic model can be developed for any embodiment of a support structure for the probe 20 to determine the relationship between the forces exerted at the probe 20 and the forces applied by the actuators controlling the support structure.


A stiffness matrix for the support structure is first determined. The stiffness matrix is determined using a multitude of variables, including the physical properties of the support structure (e.g., the geometry of the frame members, the stiffness of the individual frame members etc.), the system stiffness along the chosen coordinate system axis, and a velocity-based term for system damping. According to an exemplary embodiment, the desired stiffness of the support structure is defined in the z direction (Kz), the y direction (Ky), and the x direction (Kx)(e.g., as represented by the virtual springs 11, 14, and 17 in FIG. 1), and about the pan axis 29 (Kωx) and about the tilt axis 27 (Kωy)(e.g., as represented by the virtual torsional springs 23 and 25 in FIG. 1). As described above, in some embodiments, the virtual stiffnesses vary over time and are based on the task being accomplished with the probe 20. For example, stiffness in the y direction and in the x direction may have a lower bound corresponding to a relatively low lateral stiffness during a set-up or removal procedure, in which the support structure is configured to be relatively compliant; and an upper bound corresponding to a relatively high stiffness during a scanning procedure, in which the support structure is configured to be relatively stiff, allowing for a more accurate positioning of the probe 20. Likewise, stiffness in the z direction may have a lower bound corresponding to a relatively low stiffness during initial positioning of the probe 20 in the z direction, in which the support structure is configured to be relatively compliant to allow the probe 20 to self-align (e.g., to minimize discomfort for the patient); and an upper bound corresponding to a relatively high stiffness during a scanning procedure, in which the support structure is configured to more stiff, to overcome friction forces between the probe 20 and the target surface 22 and to maintain the orientation of the probe 20. Further, rotational stiffnesses about the y axis and the x axis may have a lower bound corresponding to a relatively low rotational stiffness during positioning of the probe 20 to conform to the contour of the target surface 22 (e.g., the head of the patient), in which the support structure (e.g., the gimbal structure 24) is configured to be relatively compliant (e.g., to minimize discomfort for the patient); and an upper bound corresponding to a relatively high rotational stiffness when a more accurate positioning (e.g., panning, tilting, etc.) of the probe 20 is desired.


A force vector is then derived using the following equation:

{right arrow over (F)}=KΔ{right arrow over (x)}  (Eq. 1)

where K is the stiffness matrix and Δ{right arrow over (x)} is the vector of the difference of the desired and actual translational position in the x, y, and z directions and rotational position about the x-axis 18 and y-axis 16 of the probe 20.


The force applied by the actuators (e.g., the torque applied by rotational actuators) controlling the position of the support structure may then be determined using the following equation:

τ=JT{right arrow over (F)}  (Eq. 2)


where JT is the Jacobian transpose determined by the kinematics of the specific support structure. The Jacobian is the differential relationship between the joint positions and the end-effector position and orientation (e.g., the position of the probe 20). The joint positions are either in units of radians (e.g., for rotational joints), or in units of length (e.g., for prismatic or linear joints). The Jacobian is not static and changes as the support structure position articulates.


Referring now to FIG. 9, a schematic front view diagram of the support structure 30 is shown. The second frame member 34 is represented by a first link 90, having a length l1. The first link 90 is articulated by a rotary actuator 94, the rotation of which is shown as q1. The third frame member 36 is represented by a second link 92, having a length l2. The second link 92 is articulated by a rotary actuator 96, the rotation of which is shown as q2. The actuators 94 and 96 move the probe 20 in the x-y plane.


The forward kinematics of this device are:

c1=cos(q1),s1=sin(q1)
c12=cos(q1+q2),s12=sin(q1+q2)
x=l1c1+l2c12  (Eq. 3)
y=l1s1+l2s12  (Eq. 4)


The Jacobian for such a revolute-revolute robot is derived by taking the partial derivative of the forward kinematics with respect to both q1 and q2.









J
=

[






-

l
1




s
1


-


l
2



s
12







-

l
2




s
12









l
1



c
1


+


l
2



c
12







l
2



c
12





]





(

Eq
.




5

)








The Jacobian shown in Equation 5 is the Jacobian for the Cartesian movement of the revolute-revolute robot on the x-y plane (e.g., translation along the y-axis 16 and the x-axis 18), describing the differential relationship between joint motion and probe motion. One of ordinary skill in the art would understand that in other embodiments, additional terms may be included in the Jacobian to describe the differential relationship between the motion of the probe 20 and other motions of the robot (e.g., rotation of the probe 20 about the tilt axis 27 and the pan axis 29 and translation along the z-axis 13).


Referring now to FIG. 10, a schematic front view diagram of the support structure 60 is shown. The probe 20 is moved in the y direction by a first linear actuator 100 (e.g., an electric motor and lead screw) and is moved in the x direction by a second linear actuator 102 (e.g., an electric motor and lead screw). The actuators 100 and 102 move the probe 20 in the x-y plane. Because each joint is orthogonal to the other, and has a one to one mapping of joint motion to Cartesian motion, the Jacobian for such a prismatic robot becomes the identity matrix:









J
=

[



1


0




0


1



]





(

Eq
.




6

)








The Jacobian shown in Equation 6 is the Jacobian for the Cartesian movement of the prismatic robot on the x-y plane (e.g., translation along the y-axis 16 and the x-axis 18), describing the differential relationship between joint motion and probe motion. In other embodiments, additional terms may be included in the Jacobian to describe the differential relationship between the motion of the probe 20 and other motions of the robot (e.g., rotation of the probe 20 about the tilt axis 27 and the pan axis 29 and translation along the z-axis 13).


The support structure 30 controls the position of the probe 20 in the z direction with the translation of the fourth frame member 38 with a single linear actuator (e.g., an electric motor and lead screw). Similarly, the support structure 60 controls the position of the probe 20 in the z direction with the translation of the fourth frame member 68 with a single linear actuator (e.g., an electric motor and lead screw). For either support structure, there is a direct correlation between the position of the actuator and the position of the probe 20.


Referring now to FIG. 11, a method 110 of determining the input force, or torque, for an actuator for a probe support structure is shown according to an exemplary embodiment. The configuration of the support structure for a probe is first determined (step 112). The configuration may include any number of revolute joints and/or prismatic joints. In some embodiments, the support structure provides translation of the probe along one or more axis (e.g., the x, y, and z axis in a Cartesian coordinate system; the r, θ, and z axis in a polar coordinate system, etc.) and/or rotation about one or more axis.


Based on the configuration of the support structure and the desired variable stiffness of the support structure, a stiffness matrix for the support structure is determined (step 114). The stiffness matrix includes terms based on the physical properties of the support structure, including the geometry of the frame members and the stiffness of the individual frame members, the desired stiffness of the support structure in the z direction (Kz), the y direction (Ky), and the x direction (Kx), the desired rotational stiffness of the support structure (Kωx, Kωy), and a velocity-based term for system damping.


Based on the stiffness matrix and the desired translational and rotational position of the probe, a force vector is determined (step 116). The desired position of the probe may be determined using any coordinate system. According to an exemplary embodiment, the force vector is derived from the product of the stiffness matrix and a matrix of the desired translational and rotational position of the probe, as shown in Equation 1.


The Jacobian for the support structure is then calculated (step 118). The Jacobian is determined by the kinematics of the specific support structure. The Jacobian is the differential relationship between the joint positions and the end-effector position. The joint positions are either in units of radians (e.g., for rotational joints), or in units of length (e.g., for prismatic or linear joints). The Jacobian is not static and changes as the support structure position articulates.


Based on the force vector and the Jacobian, the input force for the actuator is determined (step 120). According to an exemplary embodiment, the input force for the actuator is derived from the product of the Jacobian and the force vector, as shown in Equation 2.


Referring now to FIGS. 12-14, a support structure 130 for the probe 20 is shown according to another exemplary embodiment as a five-link revolute robot. The support structure 130 includes a first frame member 132; a pair of proximal members coupled to the first frame member 132, shown as a second frame member 134a and a third frame member 134b; a pair of distal members coupled to the respective proximal frame members and to each other, shown as a fourth frame member 136a and a fifth frame member 136b; a sixth frame member 138 coupled to the distal frame members; and the gimbal structure 24. The first frame member 132 is configured to be a static member. The first frame member 132 may, for example, be mounted to a halo or headset 33 worn on the patient's head or other structure that fixes the position of the first frame member 132 relative to the patient.


The second frame member 134a and the third frame member 134b are links configured to rotate about the z-axis 13. A first end 140a of the second frame member 134a is coupled to the first frame member 132. Similarly, a first end 140b of the third frame member 134b is coupled to a separate portion of the first frame member 132. According to an exemplary embodiment, the rotation of the second frame member 134a relative to the first frame member 132 is controlled by an actuator 142a, shown as an electric motor and gearbox that is attached through the first frame member 132. According to an exemplary embodiment, the rotation of the third frame member 134b relative to the first frame member 132 is controlled by an actuator 142b, shown as an electric motor and gearbox that is attached through the first frame member 132.


The fourth frame member 136a and the fifth frame member 136b are links configured to rotate about the z-axis 13. A first end 144a of the fourth frame member 136a and a second end 146a of the second frame member 134a are each coupled to a hub member 148a via bearings (e.g., press fit bearings, etc.). Similarly, a first end 144b of the fifth frame member 136b and a second end 146b of the third frame member 134b are each coupled to a hub member 148b via bearings (e.g., press fit bearings, etc.).


The fourth frame member 136a and the fifth frame member 136b are coupled together via a bearing (e.g., a press fit bearing, etc.) to form a five-bar linkage. The hub members 148a and 148b offset the proximal members from the distal members along the z-axis 13, which allows the proximal frame members (e.g., second frame member 134a and third frame member 134b) to move freely past the distal frame members (e.g., fourth frame member 136a and fifth frame member 136b) as the links are rotated by the actuators 142a and 142b.


The gimbal structure 24 and the probe 20 are mounted to the sixth frame member 138. The sixth frame member 138 is coupled to one of the distal members (e.g., fourth frame member 136a or fifth frame member 136b) and is configured to translate the gimbal structure 24 and the probe 20 along the z-axis 13 (e.g., in and out, in and away from the head, etc.). The sixth frame member 138 may translate, for example, on rails, as described above in regards to the fourth frame member 38 of the support structure 30 (see FIGS. 3-5). The gimbal structure 24 controls the orientation of the probe 20 about the tilt axis 27 and the pan axis 29 (e.g., pan and tilt). The position of the probe 20 about the tilt axis 27 is controlled by an actuator (not shown), such as an electric motor and gearbox. The position of the probe 20 about the pan axis 29 is controlled by an actuator (not shown), such as an electric motor and gearbox. In one embodiment, the rotation of the probe 20 about the tilt axis 27 and the pan axis 29 is different than the z-axis 13, regardless of the rotation of the frame members 134 and 136.


The probe 20 is able to move on the x-y plane through the movement of the five-bar linkage formed by the first frame member 132, the second frame member 134a, the third frame member 134b, the fourth frame member 136a, and the fifth frame member 136b. The probe 20 is able to move along the z-axis 13 through the translation of the sixth frame member 138. Further, the probe 20 is able to rotate about tilt axis 27 and the pan axis 29 through the gimbal structure 24. Combining these five degrees of freedom allows the position and orientation of the probe 20 relative to the target surface 22 (See FIGS. 1-2) to be completely described and controlled, discounting rotation about a third axis that is orthogonal to the pan axis 29 and the tilt axis 27.


According to an exemplary embodiment, the actuators utilized to position the support structure 130 are servo motors. Of course, any suitable motors could be used instead of servo motors. The use of servo motors to control the support structure allow for a more precise control, compared to a stepper motor, over the rotational position and angular speed of the motor, as well as the corresponding position of the probe 20 and the interaction between the probe 20 and the target surface 22.


The input forces for the actuators 142a and 142b can be calculated in a manner similar to that described above by determining the force vector, determining the forward kinematics of the support structure 130, and calculating the Jacobian by taking the partial derivative of the forward kinematics with respect to the rotations of each of the actuators 142a and 142b.


In some embodiments, for probe 20 contact and seating, instead of trying to predict and control the exact position and orientation of the probe 20, the impedance of the probe 20 is selectively controlled, whether by mechanical design or through software. As such, the orientation degrees of freedom of the probe 20 can be compliant so that they rotate against contact and seat the probe 20 flush with the head, while the translation degrees of freedom are stiff enough to move the probe 20 and keep it placed against the head. In some embodiments, each of the directions has different impedances.


In some embodiments, software is implemented to limit motor torque and motor servo stiffness of the probe 20. In some embodiments, there may be different limits for each direction, creating different stiffnesses in different directions. In some embodiments, the pan and tilt are very compliant, while the translational motions are moderately stiffer. In some embodiments, stiffness through the probe 20 is more compliant than the X, Y translational degrees of freedom.


In some embodiments, software is implemented for task space impedance control. In other words, there can be considered the probe 20 orientation to define a local coordinate system with the Z axis through the center of the probe 20. Instead of manipulating the impedance of the probe 20 by adjusting motor servo stiffness and torque limiting, in some embodiments, the kinematics of the entire robot can be considered to set the impedance of each of the five directions, X, Y, Z, pan, and tilt, local to the probe's 20 coordinate frame. As such, the probe 20 can be more compliant through the center line of the probe 20, but still maintain contact with the surface of the skin, but have local X and Y stiffness sufficient to control the location of the probe 20 with precision.


According to various embodiments, the probe 20 includes a series elastic actuator. In some embodiments, the impedance of the device is altered by adding a compliant member into the mechanical design, either as a spring element into the motor or as a structural member of the robot. In some embodiments, measurement of the amount of deflection is implemented in order to measure the exact position and orientation of the probe 20. A series elastic actuator has the benefit of being designed to an exact compliance, and even has a damping element added, while avoiding computational nonlinearities and instabilities associated with programming the impedance.


In some embodiments, the interaction force and torque between the probe 20 and the head is controlled by placing a force/torque sensing mechanism behind the probe 20. Using that information the impedance of the probe 20 in software is programmed using closed loop control.


In some embodiments, the force is indirectly measured by monitoring the applied current of the motor. For the static case, taking into account the kinematics of the robot, the force/torque vector of the system is computed from the Jacobian: F=(JT)−1τ, where τ is the vector of motor torques as predicted by the applied current to the motor.


While only a few configurations of a support structure for the probe 20 have been described above and shown in the figures, a person of ordinary skill in the art will understand that many other configurations are possible and that a similar methodology can be used to determine the input forces for the actuators of the support system to achieve a desired variable stiffness in any direction.


The above used terms, including “attached,” “connected,” “secured,” and the like are used interchangeably. In addition, while certain embodiments have been described to include a first element as being “coupled” (or “attached,” “connected,” “fastened,” etc.) to a second element, the first element may be directly coupled to the second element or may be indirectly coupled to the second element via a third element.


The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” Unless specifically stated otherwise, the term “some” refers to one or more. All structural and functional equivalents to the elements of the various aspects described throughout the previous description that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”


It is understood that the specific order or hierarchy of steps in the processes disclosed is an example of illustrative approaches. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the processes may be rearranged while remaining within the scope of the previous description. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented.


The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the disclosed subject matter. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the spirit or scope of the previous description. Thus, the previous description is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims
  • 1. A headset mountable on a head, the headset comprising: a probe for emitting energy into the head;a support structure coupled to the probe, the support structure comprising: translation actuators configured to translate the probe along two axes parallel to a surface of the head;at least a perpendicular translation actuator configured to translate the probe along a perpendicular axis, wherein the perpendicular axis is perpendicular to the two axes;at least one rotation actuator configured to rotate the probe about a tilt axis and about a pan axis, wherein the tilt axis is orthogonal to the perpendicular axis, the pan axis is orthogonal to the perpendicular axis, and the two axes, the perpendicular axis, the tilt axis, and the pan axis are different axis;a first dampener exerting a force along the perpendicular axis;a second dampener exerting a torque about the tilt axis; anda third dampener exerting a torque about the pan axis.
  • 2. The headset of claim 1, wherein the headset provides exactly five degrees of freedom of movement of the probe including translation through the two axes generally parallel to the surface of the head, one degree of freedom through the perpendicular axis generally perpendicular to the surface of the head, one degree of freedom along the tilt axis, and one degree of freedom along the pan axis.
  • 3. The headset of claim 1, the at least one rotation actuator configured to rotate the probe about the tilt axis and about the pan axis comprises a first rotation actuator configured to rotate the probe about the tilt axis and a second rotation actuator configured to rotate the probe about the pan axis.
  • 4. The headset of claim 3, wherein the first rotation actuator comprises a first motor mounted on the support structure; andthe second rotation actuator comprises a second motor mounted on the support structure.
  • 5. The headset of claim 1, wherein the pan axis, the tilt axis, and the perpendicular axis are orthogonal to each other.
  • 6. The headset of claim 1, wherein the two axes define a translation plane parallel to the surface of the head;the support structure has a first stiffness along the translation plane;the support structure has a second stiffness along the perpendicular axis;the first stiffness and the second stiffness are different.
  • 7. The headset of claim 6, wherein the first stiffness is greater than the second stiffness.
  • 8. A device configured to interact with a target surface, the device comprising: a probe configured to interact with the target surface; anda support structure coupled to the probe for moving the probe relative to the target surface, the support structure comprising:translation actuators configured to translate the probe along two axes parallel to a surface of the head;at least a perpendicular translation actuator configured to translate the probe along a perpendicular axis, wherein the perpendicular axis is perpendicular to the two axes;at least one rotation actuator configured to rotate the probe about a tilt axis and about a pan axis, wherein the tilt axis is orthogonal to the perpendicular axis, the pan axis is orthogonal to the perpendicular axis, and the two axes, the perpendicular axis, the tilt axis, and the pan axis are different axis;a first dampener exerting a force along the perpendicular axis;a second dampener exerting a torque about the tilt axis; anda third dampener exerting a torque about the pan axis.
  • 9. The device of claim 8, wherein an input force of each of the translation actuators, the perpendicular translator, and the at least one rotation actuator is determined by a method comprising: determining a configuration of the support structure for the probe and each of the translation actuators, the perpendicular translator, and the at least one rotation actuator for the support structure;determining a stiffness matrix for the support structure based on the configuration of the support structure and a desired conditional stiffness of the support structure;determining a force vector by multiplying the stiffness matrix and a vector of a difference of the desired and actual translational and rotational position of the probe;calculating a Jacobian for the support structure; anddetermining the input forces for each of the translation actuators, the perpendicular translator, and the at least one rotation actuator by multiplying the force vector and a transpose of the Jacobian.
  • 10. The device of claim 8, wherein the two axes define a translation plane parallel to the surface of the head;the support structure has a first stiffness along the translation plane;the support structure has a second stiffness along the perpendicular axis;the first stiffness and the second stiffness are different.
  • 11. The device of claim 10, wherein the first stiffness is greater than the second stiffness.
  • 12. The device of claim 8, wherein the headset provides exactly five degrees of freedom of movement of the probe including translation through the two axes generally parallel to the surface of the head, one degree of freedom through the perpendicular axis generally perpendicular to the surface of the head, one degree of freedom along the tilt axis, and one degree of freedom along the pan axis.
  • 13. A method of manufacturing a device configured to interact with a target surface, the method comprising: providing a probe configured to interact with the target surface; andcoupling a support structure to the probe for moving the probe relative to the target surface, the support structure comprising: translation actuators configured to translate the probe along two axes parallel to a surface of the head;at least a perpendicular translation actuator configured to translate the probe along a perpendicular axis, wherein the perpendicular axis is perpendicular to the two axes;at least one rotation actuator configured to rotate the probe about a tilt axis and about a pan axis, wherein the tilt axis is orthogonal to the perpendicular axis, the pan axis is orthogonal to the perpendicular axis, and the two axes, the perpendicular axis, the tilt axis, and the pan axis are different axis;a first dampener exerting a force along the perpendicular axis;a second dampener exerting a torque about the tilt axis; anda third dampener exerting a torque about the pan axis.
  • 14. The method of claim 13, wherein the two axes define a translation plane parallel to the surface of the head;the support structure has a first stiffness along the translation plane;the support structure has a second stiffness along the perpendicular axis;the first stiffness and the second stiffness are different.
  • 15. The method of claim 14, wherein the first stiffness is greater than the second stiffness.
  • 16. The method of claim 13, wherein the headset provides exactly five degrees of freedom of movement of the probe including translation through the two axes generally parallel to the surface of the head, one degree of freedom through the perpendicular axis generally perpendicular to the surface of the head, one degree of freedom along the tilt axis, and one degree of freedom along the pan axis.
  • 17. A headset mountable on a head, the headset comprising: a probe for emitting energy into the head;a support structure coupled to the probe, the support structure comprising:
  • 18. The headset of claim 17, wherein the first stiffness is greater than the second stiffness.
  • 19. The headset of claim 17, wherein the support structure comprises: a first dampener exerting a force along the perpendicular axis;a second dampener exerting a torque about the tilt axis; anda third dampener exerting a torque about the pan axis.
  • 20. The headset of claim 17, wherein the headset provides exactly five degrees of freedom of movement of the probe including translation through the two axes generally parallel to the surface of the head, one degree of freedom through the perpendicular axis generally perpendicular to the surface of the head, one degree of freedom along the tilt axis, and one degree of freedom along the pan axis.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

The present disclosure claims priority to, and the benefit of, U.S. provisional patent application Ser. No. 62/181,859, titled AUTOMATIC DISCOVERY OF TRANSCRANIAL DOPPLER WINDOW, and filed on Jun. 19, 2015, which is incorporated herein by reference in its entirety. The present disclosure claims priority to, and the benefit of, U.S. provisional patent application Ser. No. 62/181,862, titled INITIAL PLACEMENT OF TRANSCRANIAL DOPPLER SENSORS, and filed on Jun. 19, 2015, which is incorporated herein by reference in its entirety. The present disclosure claims priority to, and the benefit of, U.S. provisional patent application Ser. No. 62/347,527, titled PROBE SUPPORT STRUCTURE WITH VARIABLE STIFFNESS, and filed on Jun. 8, 2016, which is incorporated herein by reference in its entirety.

US Referenced Citations (273)
Number Name Date Kind
3841308 Tate Oct 1974 A
3872858 Hudson et al. Mar 1975 A
4204547 Allocca May 1980 A
4205687 White et al. Jun 1980 A
4413629 Durley, III Nov 1983 A
4483344 Atkov et al. Nov 1984 A
4559952 Angelsen et al. Dec 1985 A
4759374 Kierney et al. Jul 1988 A
4815705 Kasugai et al. Mar 1989 A
4819648 Ko Apr 1989 A
4841986 Marchbanks Jun 1989 A
4930513 Mayo et al. Jun 1990 A
4951653 Fry et al. Aug 1990 A
4984567 Kageyama et al. Jan 1991 A
5040540 Sackner Aug 1991 A
5074310 Mick Dec 1991 A
5094243 Puy et al. Mar 1992 A
5156152 Yamazaki et al. Oct 1992 A
5197019 Delon-Martin et al. Mar 1993 A
5348015 Moehring et al. Sep 1994 A
5379770 Van Veen Jan 1995 A
5388583 Ragauskas et al. Feb 1995 A
5409005 Bissonnette Apr 1995 A
5409010 Beach et al. Apr 1995 A
5411028 Bonnefous May 1995 A
5421565 Harkrader et al. Jun 1995 A
5514146 Lam May 1996 A
5522392 Suorsa et al. Jun 1996 A
5526299 Coifman et al. Jun 1996 A
5617873 Yost et al. Apr 1997 A
5840018 Michaeli Nov 1998 A
5860929 Rubin et al. Jan 1999 A
5871445 Bucholz Feb 1999 A
5899864 Arenson et al. May 1999 A
5919144 Bridger et al. Jul 1999 A
5951477 Ragauskas et al. Sep 1999 A
5993398 Alperin Nov 1999 A
6027454 Low Feb 2000 A
6117089 Sinha Sep 2000 A
6120446 Ji et al. Sep 2000 A
6129682 Borchert et al. Oct 2000 A
6135957 Cohen-Bacrie et al. Oct 2000 A
6139499 Wilk Oct 2000 A
6200267 Burke Mar 2001 B1
6231509 Johnson et al. May 2001 B1
6261231 Damphousse et al. Jul 2001 B1
6309354 Madsen et al. Oct 2001 B1
6358239 Rake et al. Mar 2002 B1
6364869 Bonaldo Apr 2002 B1
6387051 Ragauskas et al. May 2002 B1
6403056 Unger Jun 2002 B1
6413227 Yost et al. Jul 2002 B1
6423003 Ustuner et al. Jul 2002 B1
6425865 Salcudean et al. Jul 2002 B1
6454715 Teo Sep 2002 B2
6488717 McColl et al. Dec 2002 B1
6491647 Bridger et al. Dec 2002 B1
6503202 Hossack et al. Jan 2003 B1
6547731 Coleman et al. Apr 2003 B1
6547734 Madsen et al. Apr 2003 B2
6547737 Njemanze Apr 2003 B2
6589189 Meyerson et al. Jul 2003 B2
6618493 Torp et al. Sep 2003 B1
6627421 Unger et al. Sep 2003 B1
6653825 Munniksma Nov 2003 B2
6656125 Misczynski et al. Dec 2003 B2
6682488 Abend Jan 2004 B2
6702743 Michaeli Mar 2004 B2
6716412 Unger Apr 2004 B2
6740048 Yost et al. May 2004 B2
6746422 Noriega et al. Jun 2004 B1
6875176 Mourad et al. Apr 2005 B2
6887199 Bridger et al. May 2005 B2
6955648 Mozayeni et al. Oct 2005 B2
7122007 Querfurth Oct 2006 B2
7128713 Moehring et al. Oct 2006 B2
7147605 Ragauskas Dec 2006 B2
7302064 Causevic et al. Nov 2007 B2
7338450 Kristoffersen et al. Mar 2008 B2
7403805 Abreu Jul 2008 B2
7452551 Unger et al. Nov 2008 B1
7534209 Abend et al. May 2009 B2
7537568 Moehring May 2009 B2
D594127 Causevic et al. Jun 2009 S
7547283 Mourad et al. Jun 2009 B2
D603051 Causevic et al. Oct 2009 S
7674229 Hynynen et al. Mar 2010 B2
7720530 Causevic May 2010 B2
7771358 Moehring et al. Aug 2010 B2
7815574 Mourad et al. Oct 2010 B2
7854701 Stergiopoulos et al. Dec 2010 B2
7857763 Tai Dec 2010 B2
7904144 Causevic et al. Mar 2011 B2
7912269 Ikeda et al. Mar 2011 B2
7938780 Ragauskas et al. May 2011 B2
7942820 Njemanze May 2011 B2
D641886 Causevic et al. Jul 2011 S
7998075 Ragauskas et al. Aug 2011 B2
RE42803 Lipson et al. Oct 2011 E
8036856 Pan et al. Oct 2011 B2
8041136 Causevic Oct 2011 B2
8062224 Ragauskas et al. Nov 2011 B2
8075488 Burton Dec 2011 B2
8109880 Pranevicius et al. Feb 2012 B1
8162837 Moehring et al. Apr 2012 B2
8206303 Ragauskas et al. Jun 2012 B2
8211023 Swan et al. Jul 2012 B2
8235907 Wilk et al. Aug 2012 B2
8254654 Yen et al. Aug 2012 B2
8265291 Bridger et al. Sep 2012 B2
8353853 Kyle et al. Jan 2013 B1
8364254 Jacquin et al. Jan 2013 B2
8364255 Isenhart et al. Jan 2013 B2
8366627 Kashif et al. Feb 2013 B2
8391948 Causevic et al. Mar 2013 B2
8394024 Miyama et al. Mar 2013 B2
8394025 Ragauskas et al. Mar 2013 B2
8414539 Kuracina et al. Apr 2013 B1
8453509 Oberdorfer et al. Jun 2013 B2
8473024 Causevic et al. Jun 2013 B2
8603014 Alleman et al. Dec 2013 B2
8613714 Alleman et al. Dec 2013 B2
8622912 Chin et al. Jan 2014 B2
8647278 Ji et al. Feb 2014 B2
8706205 Shahaf et al. Apr 2014 B2
8834376 Stergiopoulos et al. Sep 2014 B2
8905932 Lovoi et al. Dec 2014 B2
8926515 Ragauskas et al. Jan 2015 B2
8998818 Pranevicius et al. Apr 2015 B2
9005126 Beach et al. Apr 2015 B2
9028416 De Viterbo May 2015 B2
9042201 Tyler et al. May 2015 B2
9066679 Beach et al. Jun 2015 B2
9125616 Bredno et al. Sep 2015 B2
9138154 Weinberg et al. Sep 2015 B2
9192359 Flynn et al. Nov 2015 B2
9196037 Jung Nov 2015 B2
9630028 Browning et al. Apr 2017 B2
RE46614 Lipson et al. Nov 2017 E
20010053879 Mills et al. Dec 2001 A1
20020103436 Njemanze Aug 2002 A1
20030050607 Gagnieux et al. Mar 2003 A1
20040267127 Abend et al. Dec 2004 A1
20050004457 Moilanen et al. Jan 2005 A1
20050004468 Abend et al. Jan 2005 A1
20050015009 Mourad et al. Jan 2005 A1
20050049515 Misczynski et al. Mar 2005 A1
20050119573 Vilenkin et al. Jun 2005 A1
20050124901 Misczynski et al. Jun 2005 A1
20050147297 McLaughlin et al. Jul 2005 A1
20050148895 Misczynski et al. Jul 2005 A1
20060025801 Lulo et al. Feb 2006 A1
20060030777 Liang et al. Feb 2006 A1
20060049721 Kuehnicke Mar 2006 A1
20060173307 Amara et al. Aug 2006 A1
20060173337 Chen et al. Aug 2006 A1
20060184070 Hansmann et al. Aug 2006 A1
20060206037 Braxton Sep 2006 A1
20060241462 Chou et al. Oct 2006 A1
20070016046 Mozayeni et al. Jan 2007 A1
20070016050 Moehring et al. Jan 2007 A1
20070078345 Mo et al. Apr 2007 A1
20070161891 Moore et al. Jul 2007 A1
20070232918 Taylor Oct 2007 A1
20070239019 Richard et al. Oct 2007 A1
20070244398 Lo et al. Oct 2007 A1
20080015478 Bose Jan 2008 A1
20080058861 Cooper et al. Mar 2008 A1
20080065099 Cooper et al. Mar 2008 A1
20080132790 Burton Jun 2008 A1
20080208060 Murkin Aug 2008 A1
20080262350 Unger Oct 2008 A1
20090062813 Prisco et al. Mar 2009 A1
20090074151 Henderson et al. Mar 2009 A1
20090198137 Ragauskas et al. Aug 2009 A1
20090264786 Jacquin Oct 2009 A1
20090275836 Fujii et al. Nov 2009 A1
20090287084 Ragauskas et al. Nov 2009 A1
20090306515 Matsumura et al. Dec 2009 A1
20090326379 Daigle et al. Dec 2009 A1
20100016707 Amara et al. Jan 2010 A1
20100069757 Yoshikawa et al. Mar 2010 A1
20100081893 Jarvik et al. Apr 2010 A1
20100087728 Jarvik et al. Apr 2010 A1
20100121192 Nogata et al. May 2010 A1
20100125206 Syme May 2010 A1
20100130866 Main et al. May 2010 A1
20100160779 Browning et al. Jun 2010 A1
20100274303 Bukhman Oct 2010 A1
20100298821 Garbagnati Nov 2010 A1
20110112426 Causevic May 2011 A1
20110137182 Bellezza et al. Jun 2011 A1
20110144518 Causevic Jun 2011 A1
20110251489 Zhang Oct 2011 A1
20110275936 Cho et al. Nov 2011 A1
20110301461 Anite Dec 2011 A1
20120108967 Weng et al. May 2012 A1
20120108972 Miyama et al. May 2012 A1
20120123272 Lam et al. May 2012 A1
20120123590 Halsmer May 2012 A1
20120153580 Soma Jun 2012 A1
20120157840 Syme Jun 2012 A1
20120165675 Syme Jun 2012 A1
20120165676 Njemanze Jun 2012 A1
20120226163 Moehring et al. Sep 2012 A1
20120238875 Savitsky et al. Sep 2012 A1
20130006106 O'Reilly et al. Jan 2013 A1
20130018277 Liu Jan 2013 A1
20130047452 McMurtry et al. Feb 2013 A1
20130080127 Shahaf et al. Mar 2013 A1
20130197401 Sato et al. Aug 2013 A1
20130239687 Nakabayashi Sep 2013 A1
20130274607 Anand et al. Oct 2013 A1
20130289411 Barnard et al. Oct 2013 A1
20140031690 Toji et al. Jan 2014 A1
20140031693 Solek Jan 2014 A1
20140081142 Toma et al. Mar 2014 A1
20140081144 Moehring et al. Mar 2014 A1
20140094701 Kwartowitz et al. Apr 2014 A1
20140163328 Geva et al. Jun 2014 A1
20140163379 Bukhman Jun 2014 A1
20140171820 Causevic Jun 2014 A1
20140194740 Stein et al. Jul 2014 A1
20140276059 Sheehan Sep 2014 A1
20140316269 Zhang et al. Oct 2014 A1
20140323857 Mourad et al. Oct 2014 A1
20140343431 Vajinepalli et al. Nov 2014 A1
20150051489 Caluser et al. Feb 2015 A1
20150065871 Konofagou et al. Mar 2015 A1
20150065916 Maguire et al. Mar 2015 A1
20150094582 Tanaka et al. Apr 2015 A1
20150151142 Tyler et al. Jun 2015 A1
20150157266 Machon et al. Jun 2015 A1
20150190111 Fry Jul 2015 A1
20150216500 Mano et al. Aug 2015 A1
20150245771 Wang et al. Sep 2015 A1
20150245776 Hirohata et al. Sep 2015 A1
20150245820 Tamada Sep 2015 A1
20150250446 Kanayama Sep 2015 A1
20150250448 Tamada Sep 2015 A1
20150297176 Rincker Oct 2015 A1
20150297177 Boctor et al. Oct 2015 A1
20150302584 Brauner et al. Oct 2015 A1
20150351718 Vollmer et al. Dec 2015 A1
20150356734 Ooga et al. Dec 2015 A1
20150359448 Beach Dec 2015 A1
20160000367 Lyon Jan 2016 A1
20160000411 Raju et al. Jan 2016 A1
20160000516 Cheng et al. Jan 2016 A1
20160030001 Stein et al. Feb 2016 A1
20160094115 Okawa et al. Mar 2016 A1
20160151618 Powers et al. Jun 2016 A1
20160256130 Hamilton et al. Sep 2016 A1
20160278736 Hamilton et al. Sep 2016 A1
20160310006 Aguero Villarreal et al. Oct 2016 A1
20160310023 Chachisvilis et al. Oct 2016 A1
20160317129 Seip et al. Nov 2016 A1
20160324585 Noonan et al. Nov 2016 A1
20160367217 Flores et al. Dec 2016 A1
20170119347 Flores et al. May 2017 A1
20170188992 O'Brien et al. Jul 2017 A1
20170188993 Hamilton et al. Jul 2017 A1
20170188994 Flores et al. Jul 2017 A1
20170196465 Browning et al. Jul 2017 A1
20170307420 Flores et al. Oct 2017 A1
20180021021 Zwierstra et al. Jan 2018 A1
20180093077 Harding et al. Apr 2018 A1
20180103927 Chung et al. Apr 2018 A1
20180103928 Costa et al. Apr 2018 A1
20180177487 Deffieux et al. Jun 2018 A1
20180214124 O'Brien et al. Aug 2018 A1
20180220991 O'Brien et al. Aug 2018 A1
20190150895 Tian et al. May 2019 A1
Foreign Referenced Citations (32)
Number Date Country
104605889 May 2015 CN
0 403 807 Dec 1990 EP
1 750 804 Feb 2007 EP
2 034 901 Mar 2009 EP
2 111 787 Oct 2009 EP
2 858 619 Apr 2015 EP
2606625 May 1988 FR
S52-126979 Oct 1977 JP
H02-114008 Apr 1990 JP
H05-143161 Jun 1993 JP
H571763 Sep 1993 JP
07-299066 Nov 1995 JP
10-328189 Dec 1998 JP
2003-225239 Aug 2003 JP
2003-230558 Aug 2003 JP
2003-245280 Sep 2003 JP
2004-237082 Aug 2004 JP
2006-025904 Feb 2006 JP
2007-143704 Jun 2007 JP
2010-500084 Jan 2010 JP
2010-200844 Sep 2010 JP
2013-503681 Feb 2013 JP
2015-533299 Nov 2015 JP
WO-9502361 Jan 1995 WO
WO-9956625 Nov 1999 WO
WO-2009138882 Nov 2009 WO
WO-2010042146 Apr 2010 WO
WO-2013155537 Oct 2013 WO
WO-2014070993 May 2014 WO
WO-2015073903 May 2015 WO
WO-2015092604 Jun 2015 WO
WO-2016001548 Jan 2016 WO
Non-Patent Literature Citations (79)
Entry
International Search Report and Written Opinion dated May 4, 2017, from application No. PCT/US2017/012395.
M.H. Raibert et al., “Hybrid Position/Force Control of Manipulators”, Journal of Dynamic Systems, Measurement, and Control, vol. 102, Jun. 1981, pp. 126-133, abstract.
Final Office Action dated Jun. 15, 2020, from U.S. Appl. No. 15/399,735.
Final Office Action dated Jun. 9, 2020, from U.S. Appl. No. 15/399,648.
Final Office Action dated Aug. 28, 2019, from U.S. Appl. No. 15/399,440.
Non-Final Office Action dated Oct. 1, 2019, from U.S. Appl. No. 15/399,735.
Chinese Office Action dated Aug. 18, 2020, from application No. 201780005508.2.
Chinese Office Action dated Jun. 30, 2020, from application No. 201780005447.X.
Final Office Action dated Sep. 18, 2020, from U.S. Appl. No. 15/399,710.
Non-Final Office Action dated Jul. 16, 2020, from U.S. Appl. No. 15/497,039.
Extended European Search Report dated Jul. 16, 2019, from application No. 17736353.8.
Extended European Search Report dated Jul. 19, 2019, from application No. 17736375.1.
Extended European Search Report dated Jul. 24, 2019, from application No. 17735919.7.
Final Office Action dated Aug. 2, 2019, from U.S. Appl. No. 15/399,648.
Ni, et al., “Serial Transcranial Doppler Sonography in Ischemic Strokes in Middle Cerebral Artery Territory”, Journal of Neruoimaging, Oct. 1, 1994, pp. 232-236.
Non-Final Office Action dated Aug. 14, 2019, from U.S. Appl. No. 15/497,039.
International Search Report and Written Opinion dated Aug. 14, 2017, from international application No. PCT/US2017/029483.
Chinese Office Action dated Mar. 24, 2020, from application No. 201680034144.6.
Japanese Office Action dated Apr. 24, 2018, from application No. 2016-554529.
International Search Report and Written Opinion dated Oct. 13, 2016, from related international application No. PCT/US2016/038433.
Extended European Search Report dated Nov. 12, 2019, from application No. 17736371.0.
Extended European Search Report dated Nov. 21, 2019, from application No. 17790294.7.
Non-Final Office Action dated Dec. 11, 2019, from U.S. Appl. No. 15/399,710.
Non-Final Office Action dated Dec. 13, 2019, from U.S. Appl. No. 15/036,776.
Non-Final Office Action dated Nov. 19, 2019, from U.S. Appl. No. 15/399,648.
Notice of Allowance dated Dec. 9, 2019, from U.S. Appl. No. 15/399,440.
Aaslid, R., et al., “Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries”, Journal of Neurosurgery, 1982, 57(6): p. 769-774.
Baldwin, K., et al., “Subpeak Regional Analysis of Intracranial Pressure Waveform Morphology based on Cerebrospinal Fluid Hydrodynamics in the Cerebral Aqueduct and Prepontine Cistern”, 34th Annual International Conference of the IEEE EMBS, 2012, p. 3935-3938.
Bashford, G., et al..“Monitoring Cerebral Hemodynamics with Transcranial Doppler Ultrasound during Cognitive and Exercise Testing in Adults following Unilateral Stroke”, 34th Annual International Conference of the IEEE EMBS, 2012, p. 2310-2313.
Chen, W., et al., “Intracranial Pressure Level Prediction in Traumatic Brain Injury by Extracting Features from Multiple Sources and Using Machine Learning Methods”, 2010 IEEE International Conference on Bioinformatics and Biomedicine, 2010, p. 510-515.
Cheng, Y. & Zhao, R., “Self-training classifier via local learning regularization”, Proceedings of the Eighth International Conference on Machine Learning and Cybernetics, 2009, p. 454-459.
Ekroth, R., et al., “Transcranial Doppler-estimated versus thermodilution estimated cerebral blood flow during cardiac operations. Influence of temperature and arterial carbon dioxide tension.” Journal Thoracic Cardiovascular Surgery, 1991, 102(1): p. 95-102.
Gomez, C., et al., Transcranial Doppler Ultrasonographic Assessment of Intermittent Light Stimulation at Different Frequencies, Stroke, 1990, 21, p. 1746-1748.
Harrison, M. & Markus, H., “Estimation of cerebrovascular reactivity using transcranial Doppler, including the use of breath-holding as the vasodilatory stimulus”, Stroke, 1992, 23(5) p. 668-73.
International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/US2017/012395.
International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/US2017/012365.
International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/US2017/012402.
International Preliminary Report on Patentability dated Jul. 19, 2018, from application No. PCT/IB2017/050349.
International Preliminary Report on Patentability dated Nov. 8, 2018, from application No. PCT/US2017/029483.
Jaffres, P., et al., “Transcranial Doppler to detection admission patients at risk for neurological deterioration following mild and moderate brain trauma”, Intensive Care Med, 2005, 31 (6): p. 785-790.
Japanese Office Action dated Aug. 28, 2018, from application No. 2016-554529.
Len, T.K., et al., “Cerebrovascular reactivity impairment after sport-induced concussion”, Med Sci Sports Exerc, 2011, 43(12): p. 2241-2248.
Non-Final Office Action dated Sep. 17, 2018, from U.S. Appl. No. 15/156,175.
Uguz, H., “A hybrid system based on information gain and principal component analysis for the classification of transcranial Doppler signals”, Computer Methods and Programs in Biomedicine, 2010, 107(2012) p. 598-609.
Zhu, X., “Semi-supervised Learning Literature Survey”, Computer Sciences TR 1530, University of Wisconsin-Madison, 2008.
International Search Report and Written Opinion dated Jun. 1, 2017, from application No. PCT/IB2017/050349.
International Search Report and Written Opinion dated Jun. 8, 2017, from application No. PCT/US2017/012402.
Tatasurya, Samuel Radiant, “Multimodal Graphical User Interface for Ultrasound Machine Control via da Vinci Surgeon Console: Design, Development, and Initial Evaluation,” The University of British Columbia, Vancouver, Aug. 2015, p. 33, paragraph 1.
International Preliminary Report on Patentability dated Dec. 28, 2017, from international application No. PCT/US2016/038433.
Chatelain et al. “Confidence-Driven Control of an Ultrasound Probe: Target-Specific Acoustic Window Optimization.” IEEE ICRA May 16-21, 2016, pp. 3441-3446.
Chatelain et al. “Optimization of ultrasound image quality via visual servoing.” IEEE INCRA May 26-30, 2015, pp. 5997-6002.
Mckinnon et al. “Long-Term Ambulatory Monitoring for Cerebral Emboli Using Transcranial Doppler Ultrasound.” Stroke(35), 2004; pags 73-78.
Nadeau et al. “Intensity-Based Ultrasound Visual Servoing: Modeling and Validation with 2-D and 3-D Probes.” IEEE Trans on Robotics (29:4), Aug. 2013, pp. 1003-1015.
Non-Final Office Action dated Jun. 27, 2018, from U.S. Appl. No. 15/942,368.
Qiu et al, “A Robotic Holder of Transcranial Doppler Probe for CBFV Auto-Searching.” Proc of IEEE ICIA, Aug. 2013, pp. 1284-1289.
Souza-Daw et al. “Towards Ultrasonic Detection of Acoustic Windows for Transcranial Doppler Ultrasound and related Procedures.” IEEE Proc INDS'11 & ISTET'11. Jul. 25-27, 2011. 6 pages.
Aggarwal, et al., “Noninvasive Monitoring of Cerebral Perfusion Pressure in Patients with Acute Liver Failure Using Transcranial Doppler Ultrasonography”, Liver Transplantation, vol. 14, 2008, pp. 1048-1057.
Non-Final Office Action dated Jul. 8, 2019, from U.S. Appl. No. 15/156,175.
Almeida, V., et al., “Machine Learning Techniques for Arterial Pressure Waveform Analysis”. Journal of Personalized Medicine, 2013. vol. 2, p. 82-101 (Year: 2013).
Baykal, N., et al., “Feature Discovery and Classification of Doppler Umbilical Artery Blood Flow Velocity Waveforms”. Comput. Biol. Med., 1996. vol. 26. p. 451-462 (Year: 1996).
Extended European Search Report dated Jan. 4, 2019, from application No. 16812644.9.
Final Office Action dated Feb. 21, 2019, from U.S. Appl. No. 15/156,175.
Final Office Action dated Jan. 28, 2019, from U.S. Appl. No. 15/942,368.
Seker, H., et al., “Compensatory Fuzzy Neural Networks-Based Intelligent Detection of Abnormal Neonatal Cerebral Doppler Ultrasound Waveforms”. IEEE Transactions on Information Technology in Biomedicine, 2001. vol. 5. p. 187-194 (Year: 2001).
Japanese Decision of Rejection dated Dec. 18, 2018, from application No. 2016-554529.
Non-Final Office Action dated Apr. 2, 2019, from U.S. Appl. No. 15/399,440.
Non-Final Office Action dated Mar. 19, 2019, from U.S. Appl. No. 15/399,648.
Final Office Action dated Jan. 30, 2020, from U.S. Appl. No. 15/497,039.
Japanese Office Action dated Jan. 27, 2020, from application No. 2018-534127.
Notice of Allowance dated Mar. 4, 2020, from U.S. Appl. No. 15/942,368.
Chinese Office Action dated Aug. 27, 2020, from application No. 201780005528.X.
Chinese Office Action dated Sep. 23, 2020, from application No. 201780005865.9.
Japanese Office Action dated Dec. 10, 2020, from application No. 2018-534916.
Japanese Office Action dated Mar. 11, 2021, from application No. 2018-555541.
Japanese Office Action dated Nov. 5, 2020, from application No. 2018-534904.
Japanese Office Action dated Oct. 22, 2020, from application No. 2018-534131.
Notice of Allowance dated Mar. 19, 2021, from U.S. Appl. No. 15/399,710.
European Office Action dated Sep. 24, 2021, from application No. 17735919.7.
European Office Action dated Sep. 28, 2021, from application No. 17736375.1.
Related Publications (1)
Number Date Country
20160367217 A1 Dec 2016 US
Provisional Applications (3)
Number Date Country
62181862 Jun 2015 US
62181859 Jun 2015 US
62347527 Jun 2016 US