BACKGROUND
The production of recombinant proteins and protein domains as reagents is extremely valuable to biomedical researchers and the entire biotechnology industry. Escherichia coli expression systems are the most cost effective and widely utilized expression systems for this task. However, production of certain proteins can be challenging in this bacterial system. Often proteins or protein domains fail to express at sufficient levels to allow for the purification of the protein reagents. This is especially true of the protein coding sequences derived from higher eukaryotes (such as humans). For example, using a standard pET E. coli expression system (Acton et al., 2011), nearly one-third of human protein targets produced in a large scale screen of protein expression had no detectable expression levels.
Thus, there is a need for agents and methods for high-level production of recombinant proteins and protein domains that do not require RNA optimization for each individual target gene.
SUMMARY OF CERTAIN EMBODIMENTS OF THE INVENTION
This invention relates to a system for high-level production of recombinant proteins and protein domains that does not require RNA optimization for each individual target gene.
Certain embodiments of the invention provide a method of preparing an expression vector, wherein the expression vector comprises, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the method comprises specifically modifying the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag to minimize RNA secondary structure both within and/or between these two regions of the mRNA.
Certain embodiments of the invention provide an expression vector designed using the methods described herein.
Certain embodiments of the invention provide an expression vector comprising, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag has been specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA.
Certain embodiments of the invention provide a host cell comprising an expression vector as described herein.
The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a set of diagrams showing sequences of Avi-tag and Nano-tag based Transcript-Optimized Expression Enhancement Technology (TOEET) expression vectors. The pNESG_Avi6HT Avi-tag sequence (top) (DNA, RNA and protein sequence), the His-tag sequences and the TEV Protease Recognition Site sequences are shown as indicated. Similarly, for pNESG_Nano6HT (bottom) the Nano-tag sequences, the His-tag sequences and TEV Protease Recognition Site sequences are shown as indicated. The T7 RNA transcript produced by each vector is shown under each vector with untranslated sequences indicated with brackets. The Multiple Cloning Site (MCS) is also shown after the tag sequences, including the positions and identity of restriction sites available for cloning.
FIG. 2 is a diagram showing the predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pNESG_Avi6HT T7 promoter. Numbering of the transcript from nucleotides 1-156 is indicated; negative numbers (in italics) show the estimated strength, in kcal/mole, of the predicted base-paired regions. The arrow indicates a predicted open structure (lack of base pairing) at the RBS/translation initiation region. RNA secondary structure predictions were done using GeneBee-NET (http://www.genebee.msu.su/services/rna2_reduced.html).
FIG. 3 is a set of photographs showing representative SDS-PAGE analysis of expression and solubility for two human protein domains cloned into each of the three vectors pET15_NESG, pNESG_Nano6HT and pNESG_Avi6HT. Left Panel shows the expression and solubility of HR7724C (HUGO ID: ZNF281) residues 291-374. Right Panel shows the expression and solubility of HR8241 (HUGO ID: NR4A21) residues 261-342. Total cell lysate (Tot) and the soluble portion (Sol) of the cell lysate are run in adjacent lanes for each of the two protein domains and the three expression vectors. An asterisk (*) indicates an overexpressed band of the correct size. Note the lack of protein expression in the case of pET15_NESG constructs.
FIG. 4. Wild-Type and TOEET-Optimized Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP). The sequences at the top corresponds to the first 30 residues of the wild-type PfR-MBP DNA sequence lacking the native secretion signal. The protein open reading frame (DNA sequence) is shown above the corresponding protein sequence. Directly below is the T7 RNA polymerase mediated RNA transcript resulting from the cloning of the PfR-MBP into the pET15_NESG backbone. The Ribosome Binding Site (RBS) is underlined and highlighted in bold, the translation initiation codon is shown in bold-italics. The lower set of sequences correspond to TOEET-optimized PfR-MBP. Bold nucleotides with arrows indicate positions where silent mutations were introduced for codon optimization, predicted decrease in RNA secondary structure in the regions of the RBS and translation initiation codon, or both. The RNA transcript for the TOEET optimized sequence is also shown following the parameters outlined above. The silent mutations were introduced using primers incorporating the nucleotide changes and 5 successive rounds of PCR, negating the need for expensive total gene synthesis.
FIG. 5. The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) without TOEET optimization. The arrows indicate significant secondary structure (base pairing) at both the Ribosome Binding Site (RBS) and the translation initiation site (Initiation Codon). RNA secondary structure predictions were performed using GeneBee-NET (http://www.genebee.msu.su/services/rna2_reduced.html).
FIG. 6. The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) after TOEET optimization. The arrows indicates the Ribosome Binding Site (RBS) and the translation initiation site (Initiation Codon) and the prediction of significantly greater open structure (lack of base pairing) after TOEET optimization. RNA secondary structure predictions were done using GeneBee-NET (http://www.genebee.msu.su/services/rna2_reduced.html).
FIG. 7. Histogram plots comparing Expression scores (E ranging from 0 to 5) using the TOEET technology (E_TOEET) compared to expression scores for the same target protein using a pET vector lacking TOEET technology (E_pET). The data shown in FIG. 7a is for 98 protein target genes cloned into the pNESG_Avi6HT TOEET vector compared with the exact same genes cloned into the pET15_NESG vector (lacking TOEET). The data shown in FIG. 7b is for 94 protein target genes cloned into the pNESG_Nano6HT TOEET vector compared with the exact same genes cloned into pET15_NESG vector (lacking TOEET). In these histogram plots, a value E_TOEET−E_pET=0 indicates that the expression levels for both vectors were identical; values E_TOEET−E_pET>0 indicate that the TOEET technology provided higher level expression, values E_TOEET−E_pET<0 indicate that the TOEET technology provided lower level expression.
DETAILED DESCRIPTION
mRNA stem-loop structures often inhibit translation initiation and therefore reduce recombinant protein expression (Nomura et al., 1984). High level expression of proteins is affected by a lack of mRNA secondary structure near the translation start site (Kudla et al., 2009; Rocha et al., 1999). In addition, rare codons present within the first ten residues of a protein have deleterious effects on protein expression levels (Gonzalez de Valdivia and Isaksson, 2004). E. coli, like all organisms, prefers to use a subset of the possible codons. The codons that an organism utilizes only infrequently are termed “rare codons” of that organism.
Heterologous genes from other organisms, which generally have a different codon bias, often contain E. coli rare codons. Decreasing or minimizing mRNA secondary structure near the Ribosome Binding Site (RBS) and translation initiation site, and separately that a lack of rare codons near the start of translation, are important for high level E. coli protein expression (Gonzalez de Valdivia and Isaksson, 2004; Kudla et al., 2009). However, the DNA coding sequence of a target gene destined for heterologous expression in E. coli has evolved under different conditions and may intrinsically contain deleterious rare codons and mRNA secondary structure when cloned into an expression vector. Deleterious rare codons and mRNA secondary structure features are particularly problematic when expressing domains or specific segments of target proteins; e.g., gene segments coding for fragments other than the native N-terminal region of the protein have not evolved to provide for efficient translation initiation. Total gene synthesis, or the chemical synthesis of a protein coding region, may address these problems to some extent, since the DNA sequence can be optimized to reduce these issues (Quan et al., 2011). However, the costs of total gene synthesis are prohibitive for large sets of protein targets, and generally is not suitable for large-scale screening or projects involving expression of many different proteins.
This invention is based, at least in part, on an unexpected discovery of a new methodology for achieving high-level production of recombinant proteins and protein domains. RNA sequence optimization is a well-known approach for improving protein expression. A feature of the system described herein is that RNA sequence optimization is required only in DNA comprising the vector backbone, including the DNA coding for the 5′-UTR and a common N-terminal polypeptide tag. Each target gene, coding for various target proteins, that is cloned into this vector backbone, need not be optimized individually. Hence, the optimized vector backbone can be used to enhance expression of many different target proteins without the need for target-protein-specific gene sequence optimization. Unlike certain previous methods, gene-by-gene RNA transcript sequence optimization is not required in certain embodiments of the methods described herein. The methodology includes, among others, jointly designing and optimizing sequences encoding 5′ untranslated and 5′ translated regions of the mRNA transcript produced by an expression vector so as to minimize RNA secondary structure and/or optimize codon usage in the mRNA transcript.
In one aspect, this invention addresses, among others, the problems associated with mRNA secondary structure and codon bias. Accordingly, the invention provides systems for high-level production of recombinant proteins and protein domains based on the Transcript-Optimized Expression Enhancement Technology (TOEET). As disclosed herein, TOEET is used to design expression vectors that produce mRNA transcripts with minimal RNA secondary structure and optimum codon usage in the nucleotide region around the Ribosomal Binding Site (RBS) and the translation initiation site, as well as minimal RNA secondary structure and optimal codon usage in a region of the transcript coding for an N-terminal polypeptide tag that is encoded directly downstream of the translation initiation site. Optimization can extend up to approximately 100 or more nucleotides on each of the 5′ and 3′ sides of the RBS. This generally will involve producing a protein with an N-terminal polypeptide tag, which is called an Expression Enhancement Tag (EET). This EET may be designed with other features that support protein production, such as solubility enhancing properties or affinity purification sequence motifs. Solubility enhancing tags known from the literature include the maltose-binding protein, the B1 domain of protein G, and domain of myxococcus protein S, to name a few representative examples. Expression vectors designed with TOEET allow most genes of interest to be produced with enhanced expression.
An advantage of the TOEET strategy over target gene optimization by total gene synthesis is that unless the 5′ end of the synthetic gene is optimized in the context of the untranslated vector sequences, detrimental mRNA secondary structure may form near or around the RBS/translation initiation site. More specifically, even if the 5′ translated region of the target gene is optimized by gene synthesis or by specific mutations, enhanced expression may not be realized unless the 5′-translated and 5′-untranslated regions of the transcript are jointly optimized, as described herein. Furthermore, by using a sufficiently long N-terminal EET tag, translated from an optimized RNA sequence that is encoded by the vector itself, there is no need to optimize the sequence of the target gene, avoiding the need for gene-specific synthesis or modification. This feature allows the TOEET technology to be used for target protein expression enhancement in high throughput applications, including expression screening studies and projects involving expression of many different proteins, where gene-specific synthesis or modification would be costly or impractical. The roughly 30 amino-acid residue (or larger) EETs effectively shift any deleterious RNA features of the target gene transcript significantly downstream of the RBS/translation initiation site, so that any potential RNA secondary structure formation with the 5′ end of the transcript is avoided, and any RNA secondary structure within the RNA coded for by the target gene itself will likely have little or no effect on expression. This TOEET strategy, which is independent of the target gene sequence, could be used more generally to enhance the expression levels of proteins produced with almost any expression vector or system.
Accordingly, certain embodiments of the invention provide a method of preparing an expression vector, wherein the expression vector comprises, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region (UTR) of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag (i.e., at the N-terminal end of the expressed target protein); and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the method comprises specifically modifying the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag to minimize RNA secondary structure both within and/or between these two regions of the mRNA.
As used herein, a vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. The vector can be capable of autonomous replication or integrate into a host DNA. Examples of the vector include a plasmid, cosmid, or viral vector. The vector of this invention includes a nucleic acid in a form suitable for expression of the nucleic acid in a host cell. Preferably the vector includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. A “regulatory sequence” includes promoters, enhancers, repressor binding sites, and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. For example, in certain embodiments of the invention, an expression vector described herein comprises a 5′ upstream sequence encoding an operable promoter and associated regulatory sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like.
As used herein, the 5′UTR of the encoded messenger RNA is transcribed from a promoter and includes a ribosome binding site several nucleotides preceding the start codon.
As used herein, a “cloning site” enables a sequence, such as, e.g., a target protein coding sequence, to be inserted into an expression vector. For example, the cloning site may be a multiple cloning site (MCS), also known as a polylinker, which is a short nucleic acid sequence that contains many restriction sites. For example, FIG. 1 shows a multiple cloning site, comprising a series of restriction enzyme recognition sites. In certain embodiments, the sequence is inserted in-frame, enabling expression of the inserted sequence. In certain embodiments, after the sequence, such as, e.g., the target protein coding sequence, has been inserted into the cloning site of the vector, a portion of the cloning site remains as flanking sequence on one or both sides of the inserted sequence. In other embodiments, the cloning site no longer remains after the insertion of the sequence into the cloning site of the vector.
As described herein, the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag may be specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA. In certain embodiments, one feature of the method described herein is that RNA optimization is required only in DNA comprising the vector backbone, including the DNA coding for the 5′-UTR and a common N-terminal polypeptide tag, and each gene coding for various target proteins, that is cloned into this vector backbone, need not be optimized individually. Accordingly, nucleic acids within the specific sequence encoding the 5′ untranslated region and the adjacent polypeptide tag are replaced with different nucleic acids to minimize RNA secondary structure of the expressed mRNA as described herein. In particular, in certain embodiments, the RNA secondary structure is minimized in the region surrounding the RBS and/or translation initiation site of the expressed mRNA. For example, nucleic acids are replaced to reduce base pairing with the RBS and/or translation initiation site of the expressed mRNA. In certain embodiments, the nucleic acid sequence directly surrounding the RBS site and/or the translation initiation site (e.g., the consensus sequences and sequences between these two sites) is minimally modified or not modified. For example, after modification the RBS site and the translation initiation site remain functionally active. In certain embodiments, nucleotides within the nucleic acid sequence encoding the polypeptide tag are modified in a manner that results in silent mutations.
Prediction of RNA secondary structure can be readily determined by one skilled in the art using techniques and tools known in the art. For example, a skilled artisan may use RNA structure prediction software, including CentroidFold (Hamada et al., 2009), CentroidHomfold (Hamada et al., 2009), CONTRAfold (Do et al., 2006), CyloFold (Bindewald et al.), KineFold (Xayaphoummine et al., 2005; Xayaphoummine et al., 2003), Mfold (Zuker and Stiegler, 1981), GeneBee-NET (Brodskii et al., 1995), (Pknots (Rivas and Eddy, 1999), PknotsRG (Reeder et al., 2007), RNAl23 (www.rna123.com), RNAfold (Gruber et al., 2008), RNAshapes (Voss et al., 2006), RNAstructure (Mathews et al., 2004), Sfold (Ding et al., 2004), UNAFold (Markham and Zuker, 2008), Crumple (Schroeder et al., 2011), and Sliding Windows & Assembly (Schroeder et al., 2011) among others.
As described herein, a target protein may refer to any of the following non-limiting embodiments: a full-length naturally occurring protein, a polypeptide sequence corresponding to a fragment or domain of a naturally occurring protein sequence, a mutant or modified form of a full-length protein or protein fragment, or a polypeptide sequence coding for a non-natural protein, such as proteins that have been engineered or designed by artificial methods.
Certain embodiments of the invention provide a method of preparing an expression vector, wherein the expression vector comprises, in order of position, a 5′ upstream sequence encoding an operable promoter and associated regulatory signals, a sequence encoding the 5′ untranslated region of the messenger RNA transcribed from the promoter including a ribosome binding site several nucleotides preceding the translation start codon, a sequence beginning with the start codon encoding a polypeptide tag, and a cloning site that enables “target protein” coding sequences to be inserted into the vector in-frame with the polypeptide tag thus allowing their expression as fusions to the polypeptide tag, wherein the method comprises specifically modifying the entire sequence encoding the 5′ untranslated region of the messenger RNA through and including the sequence encoding the polypeptide tag sequence in order to minimize RNA secondary structure upstream of the target insertion site.
In certain embodiments, the method further comprises specifically modifying the second nucleic acid sequence to reduce the presence of rare codons (i.e. mRNA codons for which the corresponding tRNAs are in low abundance in the host cell). For example, rare codons are replaced with high frequency codons to increase expression of any target protein expressed by the vector. Codons that are considered rare are dependent on the selected host cell that is used for expression of the vector and are known to and/or can be readily determined by one skilled in the art. For example, rare codons may be identified using computer software programs known in the art, for example, the Rare Codon Calculator (RaCC) for E. coli (http://nihserver.mbi.ucla.edu/RACC/), http://www.jcat.de/, or http://genomes.urv.es/OPTIMIZER/.
In certain embodiments, the modified region of the nucleic acid sequence spans from the first 5′ nucleotide in the expressed mRNA to the last nucleotide of the polypeptide tag.
In certain embodiments, nucleotides within about the last 20 nucleotides of the first nucleic acid sequence are modified (i.e., from the nucleotide that directly precedes the encoded start codon to 20 nucleotides upstream). In certain embodiments, nucleotides within about the last, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the first nucleic acid sequence are modified.
In certain embodiments, nucleotides within about the first 20 nucleotides of the second nucleic acid sequence are modified (i.e., from the first nucleotide within the encoded start codon to 20 nucleotides downstream). In certain embodiments, nucleotides within about the first, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the second nucleic acid sequence are modified.
In certain embodiments, the expression vector further comprises a target protein coding sequence inserted into the vector in-frame with the nucleic acid tag sequence to encode a fusion protein comprising the polypeptide tag and the target protein.
In certain embodiments, the target protein coding sequence is not modified to minimize RNA secondary structure.
In certain embodiments, the target protein coding sequence is not modified to reduce the presence of rare codons.
In certain embodiments, the target protein coding sequence is modified to minimize RNA secondary structure.
In certain embodiments, the target protein coding sequence is modified to reduce the presence of rare codons.
As used herein, the second nucleic acid sequence encodes at least one polypeptide tag. In certain embodiments, the second nucleic acid sequence encodes more than one polypeptide tag. As used herein, when the second nucleic acid sequence encodes more than one polypeptide tag, the respective sequences that encode each polypeptide tag are joined in-frame to result in a fusion protein that comprises each polypeptide tag. In certain embodiments, the second nucleic acid sequence encodes, e.g., two, three, four, five, etc. polypeptide tags.
As used herein, the second nucleic acid sequence may encode any polypeptide tag appropriate to the particular chosen application or selected target protein (e.g., an affinity purification tag and/or a solubility enhancement tag). Polypeptide tags are known to those skilled in the art. For example, the encoded polypeptide tag may be an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein G B1 domain tag, a myxococcus protein S tag or Protein A tag.
Accordingly, in certain embodiments, the at least one encoded polypeptide tag is selected from an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein G B1 domain tag, a myxococcus protein S tag or Protein A tag.
In certain embodiments, the second nucleic acid sequence encodes at least one affinity purification tag.
In certain embodiments, the second nucleic acid sequence encodes more than one affinity purification tag.
In certain embodiments, the second nucleic acid sequence encodes two affinity purification tags.
In certain embodiments, the encoded affinity purification tag(s) is/are selected from a Streptavidin binding moiety, a maltose binding protein moiety, and a HIS tag.
In certain embodiments, the Streptavidin binding moiety is a Nano-tag or a biotinylated Avi-tag.
In certain embodiments, the second nucleic acid sequence encodes no affinity purification tags.
In certain embodiments, the second nucleic acid sequence encodes at least one solubility enhancement tag.
In certain embodiments, the second nucleic acid sequence encodes more than one solubility enhancement tag.
In certain embodiments, the second nucleic acid sequence encodes two solubility enhancement tags.
In certain embodiments, the encoded solubility enhancement tag(s) is/are selected from a maltose binding protein tag, a protein G B1 domain tag, and a myxococcus protein S tag.
In certain embodiments, the second nucleic acid sequence encodes no solubility enhancement tags.
In certain embodiments, the second nucleic acid sequence further encodes at least one protease recognition site. In certain embodiments, the second nucleic acid sequence encodes more than one protease recognition site.
As used herein, when the second nucleic acid sequence further encodes a protease recognition site(s), the sequence that encodes this/these site(s) is/are inserted in-frame with the sequence(s) that encode the at least one polypeptide tag to result in a fusion protein that comprises the polypeptide tag(s) and the protease recognition site(s). In certain embodiments, the encoded protease recognition site(s) is/are downstream of the encoded polypeptide tag(s). In certain embodiments, the encoded protease recognition site is/are between a series of encoded polypeptide tag(s).
In certain embodiments, the protease recognition site(s) is/are a Tobacco Etch Virus (TEV), Thrombin, Factor Xa and/or a human rhinovirus (HRV) 3C (e.g., PreScission Protease, GE Healthcare Life Sciences, Pittsburgh, Pa.) protease recognition site.
As described herein, the PreScission Protease is a genetically engineered protein consisting of human rhinovirus 3C protease. It is often produced as a fusion protein with a hexaHis or GST affinity purification tag. It specifically cleaves between the Gln and Gly residues of the recognition sequence of LeuGluValLeuPheGln/GlyPro.
In certain embodiments, the second nucleic acid sequence is at least about 21 nucleotides in length. In certain embodiments, the second nucleic acid sequence is at least about, e.g., 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 201, 252, 303, 354, 405, 456, 507, 558, 609, 660, 711, 762, 813, 864, 915, 966, or 1,017 nucleotides in length.
In certain embodiments, the target protein coding sequence encodes a transcription factor, a transcription factor domain, an epigenetic regulatory factor, or an epigenetic regulatory factor domain.
In certain embodiments, the target protein coding sequence encodes a polypeptide sequence described in Table 2. As described herein, the target protein coding sequence may also encode a polypeptide sequence that has substantial identity to or is a functional equivalent of a polypeptide sequence described in Table 2.
In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an affinity capture reagent.
In certain embodiments, the affinity capture reagent is an antibody, an antibody fragment, or an aptamer.
In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an antibody or Fab by phage display.
In certain embodiments, the expression of the target protein is about 1.5 fold greater than the expression of a target protein generated from an expression vector that was not modified as described herein. In certain embodiments, the expression of the target protein is, e.g., about 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, or 20, etc., fold greater than the expression of a target protein generated from an expression vector that was not modified as described herein.
As described herein, in certain embodiments, expression of a target protein from a vector that is not TOEET modified as described herein is undetectable, whereas expression of the same target protein from a vector that has been modified as described herein is detectable.
Certain embodiments of the invention provide an expression vector prepared using a method as described herein.
Certain embodiments of the invention provide a target protein expression vector (e.g. a target protein expression vector) comprising, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag has been specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA.
In certain embodiments, the second nucleic acid sequence has been specifically modified to reduce the presence of rare codons.
In certain embodiments, the modified region of the nucleic acid sequence spans from the first 5′ nucleotide in the expressed mRNA to the last nucleotide of the polypeptide tag.
In certain embodiments, nucleotides within about the last 20 nucleotides of the first nucleic acid sequence have been modified (i.e., from the nucleotide that directly precedes the encoded start codon to 20 nucleotides upstream). In certain embodiments, nucleotides within about the last, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the first nucleic acid sequence have been modified.
In certain embodiments, nucleotides within about the first 20 nucleotides of the second nucleic acid sequence have been modified (i.e., from the first nucleotide within the encoded start codon to 20 nucleotides downstream). In certain embodiments, nucleotides within about the first, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the second nucleic acid sequence have been modified.
In certain embodiments, an expression vector as described herein, further comprises a target protein coding sequence inserted into the vector in-frame with the nucleic acid tag sequence to encode a fusion protein comprising the polypeptide tag and the target protein.
In certain embodiments, the target protein coding sequence has not been modified to minimize RNA secondary structure.
In certain embodiments, the target protein coding sequence has not been modified to eliminate rare codons.
In certain embodiments, the target protein coding sequence has been modified to minimize RNA secondary structure.
In certain embodiments, the target protein coding sequence has been modified to eliminate rare codons.
In certain embodiments, the second nucleic acid sequence encodes at least one affinity purification tag.
In certain embodiments, the second nucleic acid sequence encodes more than one polypeptide tag. As used herein, when the second nucleic acid sequence encodes more than one polypeptide tag, the respective sequences that encode each polypeptide tag are joined in-frame to result in a fusion protein that comprises each polypeptide tag. In certain embodiments, the second nucleic acid sequence encodes, e.g., two, three, four, five, etc. polypeptide tags.
As used herein, the second nucleic acid sequence may encode any polypeptide tag appropriate to the particular chosen application or selected target protein (e.g., an affinity purification tag or a solubility enhancement tag). Polypeptide tags are known to those skilled in the art. For example, the encoded polypeptide tag may be an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein G B1 domain tag, a myxococcus protein S tag or Protein A tag.
Accordingly, in certain embodiments, the at least one encoded polypeptide tag is selected from an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein. G B1 domain tag, a myxococcus protein S tag or Protein A tag.
In certain embodiments, the second nucleic acid sequence encodes more than one affinity purification tag.
In certain embodiments, the second nucleic acid sequence encodes two affinity purification tags.
In certain embodiments, the encoded affinity purification tag(s) is/are selected from a Streptavidin binding moiety, a maltose binding protein moiety, and a HIS tag.
In certain embodiments the Streptavidin binding moiety is a Nano-tag or a biotinylated Avi-tag.
In certain embodiments, the second nucleic acid sequence encodes no affinity purification tags.
In certain embodiments, the second nucleic acid sequence encodes at least one solubility enhancement tag.
In certain embodiments, the second nucleic acid sequence encodes more than one solubility enhancement tag.
In certain embodiments, the second nucleic acid sequence encodes two solubility enhancement tags.
In certain embodiments, the encoded solubility enhancement tag(s) is/are selected from a maltose binding protein tag, a protein G B1 domain tag, and a myxococcus protein S tag.
In certain embodiments, the second nucleic acid sequence encodes at least one protease recognition site.
As used herein, when the second nucleic acid sequence further encodes a protease recognition site(s), the sequence that encodes this/these site(s) is/are inserted in-frame with the sequence(s) that encode the at least one polypeptide tag to result in a fusion protein that comprises the polypeptide tag(s) and the protease recognition site(s). In certain embodiments, the encoded protease recognition site(s) is/are downstream of the encoded polypeptide tag(s). In certain embodiments, the encoded protease recognition site is/are between a series of encoded polypeptide tag(s).
In certain embodiments, the protease recognition site(s) is/are a Tobacco Etch Virus (TEV), Thrombin, Factor Xa and/or a HRV 3C protease recognition site.
In certain embodiments, the second nucleic acid sequence is at least about 21 nucleotides in length. In certain embodiments, the second nucleic acid sequence is at least about, e.g., 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 201, 252, 303, 354, 405, 456, 507, 558, 609, 660, 711, 762, 813, 864, 915, 966, or 1,017 nucleotides in length.
In certain embodiments, the target protein coding sequence encodes a transcription factor, a transcription factor domain, an epigenetic regulatory factor, or an epigenetic regulatory factor domain.
In certain embodiments, the target protein coding sequence encodes a polypeptide sequence described in Table 2. As described herein, the target protein coding sequence may also encode a polypeptide sequence that has substantial identity to or is a functional equivalent of a polypeptide sequence described in Table 2.
In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an affinity capture reagent.
In certain embodiments, the affinity capture reagent is an antibody, an antibody fragment, or an aptamer.
In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an antibody or Fab by phage display.
In certain embodiments, the target protein is expressed at about a 1.5 fold higher level than a target protein generated from an expression vector that was not modified as described herein. In certain embodiments, the target protein is expressed at about, e.g., a 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, or 20, etc., higher level than a target protein generated from an expression vector that was not modified as described herein.
As described herein, in certain embodiments, expression of a target protein from a vector not modified as described herein is undetectable, whereas expression of the same target protein from a vector that has been modified as described herein is detectable.
Certain embodiments of the invention provide a host cell comprising the expression vector as described herein. Host cells are used for the expression of vectors and are known in the art. For example, a host cell may be a bacterial cell, such as E. coli.
Certain embodiments of the invention provide a method for expressing a target protein in a host cell, comprising culturing the host cell as described herein for a period of time under conditions permitting expression of the target protein.
In certain embodiments, the target protein is a protein antigen for producing an affinity capture reagent.
In certain embodiments, the affinity capture reagent is an antibody, an antibody fragment, or an aptamer.
In certain embodiments, the target protein is a protein antigen for producing an antibody or Fab by phage display.
In one aspect, the invention features a method of designing an expression vector for expressing a recombinant protein in a host cell, e.g., bacterial cell (such as E. coli. cell). The method includes steps of: obtaining a first sequence encoding the recombinant protein; obtaining an expression vector containing an insertion site for the first sequence, wherein once inserted at the insertion site, the first sequence is joined in frame with a 5′ sequence from the expression vector to form a first fusion sequence that encodes a RNA sequence, the RNA sequence having a Ribosomal Binding Site (RBS) and a translation initiation site; modifying the RNA sequence by (i) designing the RNA sequence so as to minimize RNA secondary structure in a region around the RBS site or translation initiation site, or (ii) optimizing codon usage in the RNA sequence based on codon usage of the host cell, to obtain a second fusion sequence; and cloning the second fusion sequence into the expression vector in such a way to replace the first fusion sequence.
In one embodiment, the designing step or optimizing step is carried out using Transcript-Optimized Expression Enhancement Technology (TOEET) as shown and described herein. In another, the designing step or optimizing step is carried out by introducing a third sequence encoding a N-terminal polypeptide expression-enhancement tag (EET) directly downstream of the initiation site.
The expression-enhancement tag can be an affinity purification tag, such as one having the sequence of an Avi tag, a Nano-tag, or a 6×His tag.
In a second aspect, the invention provides an expression vector that is designed using the method described above. In the expression vector, the second fusion sequence can have a sequence selected from the sequences shown in FIG. 1. In one example, the expression vector is selected from the group consisting of pNESG_Avi6HT and pNESG_Nano6HT. The invention also provides a host cell having the expression vector.
In a third aspect, the invention features a method for increasing the expression and solubility of a recombinant protein in a host cell. The method includes obtaining the just described host cell; culturing the host cell in a culture for period of time; and recovering the recombinant protein from the host cell or the culture. To that end, the recombinant protein can be a protein antigen for producing an affinity capture reagent (such as an antibody, an antibody fragment, or an aptamer) or a protein antigen for producing antibody or Fab by phage display.
In a fourth aspect, the invention provides an immunogenic composition having the recombinant protein produced by the method described above. The composition can be administered to a subject in need thereof for generating an immune response in the subject.
In a fifth aspect, the invention provides a method of generating an antibody (either polyclonal or monoclonal) by, among others, administrating to a subject the immunogenic composition described above.
The invention also provides an isolated polypeptide, a nucleic acid encoding it, a high throughput method for identifying a soluble protein or protein domain, and a high throughput method for isolating a soluble protein or protein domain substantially as shown and described herein.
The term “nucleic acid” refers to deoxyribonucleotides (DNA, e.g., a cDNA or genomic DNA), ribonucleotides (RNA, e.g., an mRNA), or a DNA or RNA analog and polymers thereof, in either single- or double-stranded form, but preferably is double-stranded DNA, made of monomers (nucleotides) containing a sugar, phosphate and a base that is either a purine or pyrimidine. A DNA or RNA analog can be synthesized from nucleotide analogs. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues.
The term “nucleotide sequence” refers to a polymer of DNA or RNA which can be single-stranded or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases capable of incorporation into DNA or RNA polymers. The terms “nucleic acid,” “nucleic acid molecule,” or “polynucleotide” are used interchangeably.
Certain embodiments of the invention encompass isolated or substantially purified nucleic acid compositions. An “isolated nucleic acid” is a nucleic acid the structure of which is not identical to that of any naturally occurring nucleic acid or to that of any fragment of a naturally occurring genomic nucleic acid. The term therefore covers, for example, (a) a DNA which has the sequence of part of a naturally occurring genomic DNA molecule but is not flanked by both of the coding sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein. Specifically excluded from this definition are nucleic acids present in mixtures of different (i) DNA molecules, (ii) transfected cells, or (iii) cell clones, e.g., as these occur in a DNA library such as a cDNA or genomic DNA library. The nucleic acid described above can be used to express a fusion protein of this invention. For this purpose, one can operatively link the nucleic acid to suitable regulatory sequences to generate an expression vector. The following terms are used to describe the sequence relationships between two or more nucleotide sequences: (a) “reference sequence,” (b) “comparison window,” (c) “sequence identity,” (d) “percentage of sequence identity,” and (e) “substantial identity.”
(a) As used herein, “reference sequence” is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.
(b) As used herein, “comparison window” makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.
Methods of alignment of sequences for comparison are well-known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (Myers and Miller, CABIOS, 4, 11 (1988)); the local homology algorithm of Smith et al. (Smith et al., Adv. Appl. Math., 2, 482 (1981)); the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, JMB, 48, 443 (1970)); the search-for-similarity-method of Pearson and Lipman (Pearson and Lipman, Proc. Natl. Acad. Sci. USA, 85, 2444 (1988)); the algorithm of Karlin and Altschul (Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 87, 2264 (1990)), modified as in Karlin and Altschul (Karlin and Altschul, Proc. Natl. Acad. Sci. USA 90, 5873 (1993)).
Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (Higgins et al., CABIOS, 5, 151 (1989)); Corpet et al. (Corpet et al., Nucl. Acids Res., 16, 10881 (1988)); Huang et al. (Huang et al., CABIOS, 8, 155 (1992)); and Pearson et al. (Pearson et al., Meth. Mol. Biol., 24, 307 (1994)). The ALIGN program is based on the algorithm of Myers and Miller, supra. The BLAST programs of Altschul et al. (Altschul et al., JMB, 215, 403 (1990)) are based on the algorithm of Karlin and Altschul supra.
Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold. These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when the cumulative alignment score falls off by the quantity X from its maximum achieved value, the cumulative score goes to zero or below due to the accumulation of one or more negative-scoring residue alignments, or the end of either sequence is reached.
In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a test nucleic acid sequence is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid sequence to the reference nucleic acid sequence is less than about 0.1, less than about 0.01, or even less than about 0.001.
To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=−4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix. Alignment may also be performed manually by inspection.
For purposes of the present invention, comparison of nucleotide sequences for determination of percent sequence identity to the promoter sequences disclosed herein may be made using the BlastN program (version 1.4.7 or later) with its default parameters or any equivalent program. By “equivalent program” is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by the program.
(c) As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to a specified percentage of residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window, as measured by sequence comparison algorithms or by visual inspection. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity.” Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).
(d) As used herein, “percentage of sequence identity” means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
(e)(i) The term “substantial identity” of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, or 94%, or even at least 95%, 96%, 97%, 98%, or 99% sequence identity, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 70%, 80%, 90%, or even at least 95%.
Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1° C. to about 20° C., depending upon the desired degree of stringency as otherwise qualified herein. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.
(e)(ii) The term “substantial identity” in the context of a peptide indicates that a peptide comprises a sequence with at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, or 94%, or even 95%, 96%, 97%, 98% or 99%, sequence identity to the reference sequence over a specified comparison window. In certain embodiments, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, JMB, 48, 443 (1970)). An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Thus, certain embodiments of the invention provide nucleic acid molecules that are substantially identical to the nucleic acid molecules described herein.
For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.
As noted above, another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions. The phrase “hybridizing specifically to” refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA. “Bind(s) substantially” refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target nucleic acid sequence.
“Stringent hybridization conditions” and “stringent hybridization wash conditions” in the context of nucleic acid hybridization experiments such as Southern and Northern hybridizations are sequence dependent, and are different under different environmental parameters. Longer sequences hybridize specifically at higher temperatures. The thermal melting point (Tm) is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the Tm can be approximated from the equation of Meinkoth and Wahl (1984); Tm 81.5° C.+16.6 (log M)+0.41 (% GC)−0.61 (% form)−500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. Tm is reduced by about 1° C. for each 1% of mismatching; thus, Tm, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the Tm can be decreased 10° C. Generally, stringent conditions are selected to be about 5° C. lower than the Tm for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4° C. lower than the Tm; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10° C. lower than the Tm; low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20° C. lower than the Tm. Using the equation, hybridization and wash compositions, and desired temperature, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a temperature of less than 45° C. (aqueous solution) or 32° C. (formamide solution), the SSC concentration is increased so that a higher temperature can be used. Generally, highly stringent hybridization and wash conditions are selected to be about 5° C. lower than the Tm for the specific sequence at a defined ionic strength and pH.
An example of highly stringent wash conditions is 0.15 M NaCl at 72° C. for about 15 minutes. An example of stringent wash conditions is a 0.2×SSC wash at 65° C. for 15 minutes. Often, a high stringency wash is preceded by a low stringency wash to remove background probe signal. An example medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is 1×SSC at 45° C. for 15 minutes. For short nucleotide sequences (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.5 M, less than about 0.01 to 1.0 M, Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30° C. and at least about 60° C. for long probes (e.g., >50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. In general, a signal to noise ratio of 2× (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.
Very stringent conditions are selected to be equal to the Tm for a particular probe. An example of stringent conditions for hybridization of complementary nucleic acids that have more than 100 complementary residues on a filter in a Southern or Northern blot is 50% formamide, e.g., hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1×SSC at 60 to 65° C. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37° C., and a wash in 1× to 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55° C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37° C., and a wash in 0.5× to 1×SSC at 55 to 60° C.
In addition to the chemical optimization of stringency conditions, analytical models and algorithms can be applied to hybridization data-sets (e.g. microarray data) to improve stringency.
An expression vector as described herein can be introduced into host cells to produce a fusion protein of this invention. Also within the scope of this invention is a host cell that contains the above-described nucleic acid. Examples include E. coli cells, insect cells (e.g., using baculovirus expression vectors), yeast cells, plant cells, or mammalian cells. See e.g., Goeddel, (1990) Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. To produce a fusion protein of this invention, one can culture a host cell in a medium under conditions permitting expression of the protein encoded by a nucleic acid of this invention, and isolate the protein from the cultured cell or the medium of the cell. The presence of the fusion protein in an occlusion body allows one to prepare the protein from the host cell by simply separating the occlusion body from the host cell. Alternatively, the nucleic acid of this invention can be transcribed and translated in vitro, for example, using T7 promoter regulatory sequences and T7 polymerase.
The terms “peptide,” “polypeptide,” and “protein” are used herein interchangeably to describe the arrangement of amino acid residues in a polymer. A peptide, polypeptide, or protein can be composed of the standard 20 naturally occurring amino acid, in addition to rare amino acids and synthetic amino acid analogs. They can be any chain of amino acids, regardless of length or post-translational modification (for example, glycosylation or phosphorylation). The peptide, polypeptide, or protein “of this invention” includes recombinantly or synthetically produced fusion versions having the particular domains or portions that are soluble. The term also encompasses polypeptides that have an added amino-terminal methionine (useful for expression in prokaryotic cells).
A “recombinant” peptide, polypeptide, or protein refers to a peptide, polypeptide, or protein produced by recombinant DNA techniques; i.e., produced from cells transformed by an exogenous DNA construct encoding the desired peptide. A “synthetic” peptide, polypeptide, or protein refers to a peptide, polypeptide, or protein prepared by chemical synthesis. The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified.
Within the scope of this invention are fusion proteins containing one or more of the afore-mentioned sequences and a heterologous sequence. A heterologous polypeptide, nucleic acid, or gene is one that originates from a foreign species, or, if from the same species, is substantially modified from its original form. Two fused domains or sequences are heterologous to each other if they are not adjacent to each other in a naturally occurring protein or nucleic acid.
An “isolated” peptide, polypeptide, or protein refers to a peptide, polypeptide, or protein that has been separated from other proteins, lipids, and nucleic acids with which it is naturally associated. The polypeptide/protein can constitute at least 10% (i.e., any percentage between 10% and 100%, e.g., 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, and 99%) by dry weight of the purified preparation. Purity can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis. An isolated polypeptide/protein described in the invention can be purified from a natural source, produced by recombinant DNA techniques, or by chemical methods.
A functional equivalent of a peptide, polypeptide, or protein of this invention refers to a polypeptide derivative of the peptide, polypeptide, or protein, e.g., a protein having one or more point mutations, insertions, deletions, truncations, a fusion protein, or a combination thereof. It retains substantially the activity of the corresponding unmodified peptide/polypeptide/protein (e.g., the activity of transcription factor). The isolated polypeptide can contain a sequence of a protein as listed in Table 1 or 2 or a functional fragment thereof. In general, the functional equivalent is at least 75% (e.g., any number between 75% and 100%, inclusive, e.g., 70%, 80%, 85%, 90%, 95%, and 99%) identical to the corresponding unmodified peptide/polypeptide/protein.
The amino acid composition of the above-mentioned peptide/polypeptide/protein may vary without disrupting their biological activity, e.g., a transcription factor activity, i.e., ability to bind to a DNA element and/or trigger or inhibit the respective cellular response. For example, it can contain one or more conservative amino acid substitutions. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a polypeptide is preferably replaced with another amino acid residue from the same side chain family. Alternatively, mutations can be introduced randomly along all or part of the sequences, such as by saturation mutagenesis, and the resultant mutants can be screened for the respective biological activities.
A polypeptide described in this invention can be obtained as a recombinant polypeptide. To prepare a recombinant polypeptide, a nucleic acid encoding it can be linked to another nucleic acid encoding a fusion partner, e.g., the tags disclosed herein, glutathione-s-transferase (GST), 6×-His epitope tag (or Hexa-His), 8×-His (or Octa-His) epitope tag, or M13 Gene 3 protein. The resultant fusion nucleic acid expresses in suitable host cells a fusion protein that can be isolated by methods known in the art. The isolated fusion protein can be further treated, e.g., by enzymatic digestion (e.g., TEV protease digestion), to remove the fusion partner and obtain the recombinant polypeptide of this invention.
The peptide/polypeptide/protein of this invention covers chemically modified versions. Examples of chemically modified peptide/protein include those subjected to conformational change, addition or deletion of a sugar chain, and those to which a compound such as polyethylene glycol has been bound. Once purified and tested by standard methods or according to the methods described in the examples below, the peptide/polypeptide/protein can be included in a composition, e.g., a pharmaceutical composition or an immunogenic composition.
The term “immunogenic” refers to a capability of producing an immune response in a host animal against an antigen or antigens. This immune response forms the basis of the protective immunity elicited by a vaccine against a specific infectious organism. “Immune response” refers to a response elicited in an animal, which may refer to cellular immunity (CMI); humoral immunity or both. “Antigenic agent,” “antigen,” or “immunogen” means a substance that induces a specific immune response in a host animal. The antigen can be a protein described above, a vector encoding it, a cell having the vector or protein, or any combination thereof.
The term “animal” includes all vertebrate animals including humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages. In particular, the term “vertebrate animal” includes, but not limited to, humans, canines (e.g., dogs), felines (e.g., cats); equines (e.g., horses), bovines (e.g., cattle), porcine (e.g., pigs), as well as in avians. The term “avian” refers to any species or subspecies of the taxonomic class ava, such as, but not limited to, chickens (breeders, broilers and layers), turkeys, ducks, a goose, a quail, pheasants, parrots, finches, hawks, crows and ratites including ostrich, emu and cassowary.
The immunogenic composition can be used to generate antibodies against the peptide/polypeptide/protein of this invention. As used herein, “antibody” is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity.
As used herein, “antibody fragments”, may comprise a portion of an intact antibody, generally including the antigen binding or variable region of the intact antibody, the Fab region of the antibody, or the Fc region of an antibody which retains FcR binding capability. Examples of antibody fragments include linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. The antibody fragments preferably retain at least part of the hinge and optionally the CH1 region of an IgG heavy chain. More preferably, the antibody fragments retain the entire constant region of an IgG heavy chain, and include an IgG light chain.
As used herein, Affinity Capture Reagents are cognate molecules capable or recognizing and binding to a protein antigen, including protein antigens produced by TOEET-optimized expression vectors. Affinity Capture reagents include (but are not limited to) monoclonal and polyclonal antibodies, Fab or Fab fragments generated by phage and related antigen display methods, RNA aptamers, and various protein binding scaffolds which can be used to generate antigen-recognizing molecules.
As used herein, the term “Fc fragment” or “Fc region” is used to define a C-terminal region of an immunoglobulin heavy chain. The “Fc region” may be a native sequence Fc region or a variant Fc region. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof.
A “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. A “variant Fc region” as appreciated by one of ordinary skill in the art comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one “amino acid modification.” Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g., from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide. The variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and more preferably at least about 90% homology therewith, more preferably at least about 95% homology therewith, even more preferably, at least about 99% homology therewith.
Within the scope of this invention is a composition that contains a suitable carrier and one or more of the agents described above. The composition can be a pharmaceutical composition that contains a pharmaceutically acceptable carrier. The term “pharmaceutical composition” refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vivo or ex vivo. A “pharmaceutically acceptable carrier,” after administered to or upon a subject, does not cause undesirable physiological effects. The carrier in the pharmaceutical composition must be “acceptable” also in the sense that it is compatible with the active ingredient and can be capable of stabilizing it. One or more solubilizing agents can be utilized as pharmaceutical carriers for delivery of an active compound. Examples of a pharmaceutically acceptable carrier include, but are not limited to, biocompatible vehicles, adjuvants, additives, and diluents to achieve a composition usable as a dosage form. Examples of other carriers include colloidal silicon oxide, magnesium stearate, cellulose, and sodium lauryl sulfate.
As used herein, a “subject” refers to a human and a non-human animal. Examples of a non-human animal include all vertebrates, e.g., mammals, such as non-human mammals, non-human primates (particularly higher primates), dog, rodent (e.g., mouse or rat), guinea pig, cat, and rabbit, and non-mammals, such as birds, amphibians, reptiles, etc. In one embodiment, the subject is a human. In another embodiment, the subject is an experimental, non-human animal or animal suitable as a disease model.
The composition of this invention can include an adjuvant agent or adjuvant. As used herein, the term “adjuvant agent” or “adjuvant” means a substance added to an immunogenic composition or a vaccine to increase the immunogenic composition or the vaccine's immunogenicity. Examples of an adjuvant include a cholera toxin, Escherichia coli heat-labile enterotoxin, liposome, unmethylated DNA (CpG) or any other innate immune-stimulating complex. Various adjuvants that can be used to further increase the immunological response depend on the host species and include Freund's adjuvant (complete and incomplete), mineral gels such as aluminum hydroxide, surface-active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Useful human adjuvants include BCG (bacille Calmette-Guerin) and Corynebacterium parvum.
Pharmaceutical compositions comprising an adjuvant and an antigen may be manufactured by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Pharmaceutical compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients or auxiliaries which facilitate processing of the antigens of the invention into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.
A pharmaceutical composition of this invention can be administered parenterally, orally, nasally, rectally, topically, or buccally. The term “parenteral” as used herein refers to subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, infrasternal, intrathecal, intralesional, or intracranial injection, as well as any suitable infusion technique. For injection, immunogenic or vaccine preparations may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, phosphate buffered saline, or any other physiological saline buffer. The solution may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the peptides, polypeptides, or proteins may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.
Determination of an effective amount of the immunogenic or vaccine formulation for administration is well within the capabilities of those skilled in the art, especially in light of the detailed disclosure provided herein. An effective dose can be estimated initially from in vitro assays. For example, a dose can be formulated in animal models to achieve an induction of an immune response using techniques that are well known in the art. One having ordinary skill in the art could readily optimize administration to all animal species based on results described herein. Dosage amount and interval may be adjusted individually. For example, when used as a vaccine, the vaccine formulations of the invention may be administered in about 1 to 3 doses for a 1-36 week period. Preferably, 1 or 2 doses are administered, at intervals of about 3 weeks to about 4 months, and booster vaccinations may be given periodically thereafter. Alternative protocols may be appropriate for individual animals. A suitable dose is an amount of the vaccine formulation that, when administered as described above, is capable of raising an immune response in an immunized animal sufficient to protect the animal from an infection for at least 4 to 12 months. In general, the amount of the antigen present in a dose ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 pg. Suitable dose range will vary with the route of injection and the size of the patient, but will typically range from about 0.1 ml to about 5 ml.
This invention also provides methods for making antibodies against the above-described proteins. The antibodies can be either polyclonal or monoclonal.
Polyclonal antibodies against a protein of the invention can be obtained as follows. After verifying that a desired serum antibody level has been reached, blood is withdrawn from the mammal sensitized with the antigen. Serum is isolated from this blood using well-known methods. The serum containing the polyclonal antibody may be used as the polyclonal antibody, or according to needs, the polyclonal antibody-containing fraction may be further isolated from the serum. For instance, a fraction of antibodies that specifically recognize the protein of the invention may be prepared by using an affinity column to which the protein is coupled. Then, the fraction may be further purified by using a Protein A or Protein G column in order to prepare immunoglobulin G or immunoglobulin M.
To obtain monoclonal antibodies, after verifying that the desired serum antibody level has been reached in the mammal sensitized with the above-described antigen, immunocytes are taken from the mammal and used for cell fusion. For this purpose, splenocytes can be preferable immunocytes. As parent cells fused with the above immunocytes, mammalian myeloma cells are preferably used. More preferably, myeloma cells that have acquired the feature, which can be used to distinguish fusion cells by agents, are used as the parent cell.
The cell fusion between the above immunocytes and myeloma cells can be conducted according to known methods, for example, the method of Milstein et al. (Methods Enzymol., 73:3-46, 1981). The hybridoma obtained from cell fusion is selected by culturing the cells in a standard selective culture medium, for example, HAT culture medium (hypoxanthine, aminopterin, thymidine-containing culture medium). The culture in this HAT medium is continued for a period sufficient enough for cells (non-fusion cells) other than the objective hybridoma to perish, usually from a few days to a few weeks. Next, the usual limiting dilution method is carried out, and the hybridoma producing the objective antibody is screened and cloned.
Other than the above method for obtaining hybridomas, by immunizing an animal other than humans with the antigen, a hybridoma producing the objective human antibodies having the activity to bind to proteins can be obtained by the method of sensitizing human lymphocytes, for example, human lymphocytes infected with the EB virus, with proteins, protein-expressing cells, or lysates thereof in vitro, fusing the sensitized lymphocytes with myeloma cells derived from human having a permanent cell division ability.
The obtained monoclonal antibodies can be purified by, for example, ammonium sulfate precipitation, protein A or protein G column, DEAE ion exchange chromatography, an affinity column to which the protein of the present invention is coupled, and so on. The antibody may be useful for the purification or detection of a protein of the invention. It may also be a candidate for an agonist or antagonist of the protein. Furthermore, it is possible to use it for the antibody treatment of diseases in which the protein is implicated. For in vivo administration (in such antibody treatment), human antibodies or humanized antibodies may be favorably used because of their reduced antigenicity.
For example, a human antibody against a protein can be obtained using hybridomas made by fusing myeloma cells with antibody-producing cells obtained by immunizing a transgenic animal comprising a repertoire of human antibody genes with an antigen such as a protein, protein-expressing cells, or a cell lysate thereof. Other than producing antibodies by using hybridoma, antibody—producing immunocytes, such as sensitized lymphocytes that are immortalized by oncogenes, may also be used.
Such monoclonal antibodies can also be obtained as recombinant antibodies produced by using the genetic engineering technique. Recombinant antibodies are produced by cloning the encoding DNA from immunocytes, such as hybridoma or antibody-producing sensitized lymphocytes, incorporating this into a suitable vector, and introducing this vector into a host to produce the antibody. The present invention encompasses such recombinant antibodies as well.
Moreover, the antibody of the present invention may be an antibody fragment or a modified-antibody, so long as it binds to a protein of the invention. For example, Fab, F (ab′)2, Fv, or single chain Fv in which the H chain Fv and the L chain Fv are suitably linked by a linker (scFv, Huston et al., Proc. Natl. Acad. Sci. USA, 85:5879-5883, 1988) can be given as antibody fragments. Specifically, antibody fragments are produced by treating antibodies with enzymes, for example, papain, pepsin, and such, or by constructing a gene encoding an antibody fragment, introducing this into an expression vector, and expressing this vector in suitable host cells (for example, Co et al., J. Immunol., 152:2968-2976, 1994; Better et al., Methods Enzymol., 178:476-496, 1989; Pluckthun et al., Methods Enzymol., 178:497-515, 1989; Lamoyi, Methods Enzymol., 121:652-663, 1986; Rousseaux et al., Methods Enzymol., 121:663-669, 1986; Bird et al., Trends Biotechnol., 9:132-137, 1991).
As modified antibodies, antibodies bound to various molecules such as polyethylene glycol (PEG) can be used. The antibody of the present invention encompasses such modified antibodies as well. To obtain such a modified antibody, chemical modifications are done to the obtained antibody. These methods are already established in the field.
The antibody of the invention may be obtained as a chimeric antibody, comprising non-human antibody-derived variable region and human antibody-derived constant region, or as a humanized antibody comprising non-human antibody-derived complementarity determining region (CDR), human antibody-derived framework region (FR), and human antibody-derived constant region by using conventional methods.
Antibodies thus obtained can be purified to uniformity. The separation and purification methods used in the present invention for separating and purifying the antibody may be any method usually used for proteins. For instance, column chromatography, such as affmity chromatography, filter, ultrafiltration, salt precipitation, dialysis, SDS-polyacrylamide gel electrophoresis, isoelectric point electrophoresis, and so on, may be appropriately selected and combined to isolate and purify the antibodies (Antibodies: a laboratory manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988), but is not limited thereto. Antibody concentration of the above mentioned antibody can be assayed by measuring the absorbance, or by the enzyme-linked immunosorbent assay (ELISA), etc. Protein A or Protein G column can be used for the affmity chromatography. Protein A column may be, for example, Hyper D, POROS, Sepharose F.F., and so on.
Other chromatography may also be used, such as ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A laboratory Course Manual. Ed. by Marshak D.R. et al., Cold Spring Harbor Laboratory Press, 1996). These may be performed on liquid chromatography such as HPLC or FPLC.
Examples of methods that assay the antigen-binding activity of the antibodies of the invention include, for example, measurement of absorbance, enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), radio immunoassay (RIA), or fluorescent antibody method. For example, when using ELISA, a protein of the invention is added to a plate coated with the antibodies of the invention, and next, the objective antibody sample, for example, culture supernatants of antibody-producing cells, or purified antibodies are added. Then, secondary antibody recognizing the antibody, which is labeled by alkaline phosphatase and such enzymes, is added, the plate is incubated and washed, and the absorbance is measured to evaluate the antigen-binding activity after adding an enzyme substrate such as p-nitrophenyl phosphate. As the protein, a protein fragment, for example, a fragment comprising a C-terminus, or a fragment comprising an N-terminus may be used. To evaluate the activity of the antibody of the invention, BIAcore may be used.
The following non-limiting examples set forth herein below illustrate certain aspects of the invention.
Example 1
This example describes two specific EET tags designed utilizing TOEET. These EETs were engineered and subcloned into the pET15_NESG expression vector (Acton et al., 2011). They contain dual tandem protein purification tags and a protease cleavage site to facilitate purification of the resulting proteins. These include the 6×-His tag (Crowe et al., 1994), and one of two Streptavidin binding moieties, either the Avi-tag (Scholle et al., 2004) or the Nano-tag (Lamla and Erdmann, 2004). The Nano-tag binds directly to streptavidin (Lamla and Erdmann, 2004); the Avi-tag is a substrate for the enzyme BirA which can be used to catalyze the covalent attachment of biotin to the Avi Tag (Scholle et al., 2004). These tandem tags allow for two separate affinity purification steps, (i) Ni-based immobilized metal affinity chromatography (IMAC) and (ii) high-affinity Streptavidin-based chromatography. This dual purification strategy allows preparation of highly purified proteins using high-throughput affinity purification methods. The Tobacco Etch Virus (TEV) protease recognition site (Kapust et al., 2002) engineered into these EETs allows removal of the affinity tags, if required, after expression and purification of the protein target.
Briefly, in designing the DNA sequences coding for these EETs, the coding sequence of one of the two Streptavidin binding moieties i.e., Avi-tag (SEQ ID NO:1—MSGLNDIFEAQKIEWHE) or Nano-tag (SEQ ID NO:2—MDVEAWLDERVPLVET) (Lamla and Erdmann, 2004; Scholle et al., 2004), a 6×-His tag (Crowe et al., 1994), and a TEV protease recognition site (Kapust et al., 2002) were fused in frame and optimized to have a high Codon Adaptation Index (Sharp and Li, 1987) (FIG. 1). The DNA sequence coding for the EET was optimized with TOEET, together with the 5′-untranslated region of the pET15-NESG expression vector, to generate the expression vectors pNESG_Avi6HT and pNESG_Nano6HT, shown in FIG. 1. These features functioned together to enhance translation initiation and protein expression levels.
Using these expression vectors (FIG. 1), protein expression resulted in T7 RNA Polymerase mediated transcription producing an mRNA transcript consisting of (i) vector sequence (pET15_NESG-5′-untranslated region), (ii) nucleotides coding for the EET, and (iii) nucleotides coding for the target protein sequence. Both the untranslated region of the vector upstream of the EET-coding region, and the RNA coding for the EET itself were optimized to avoid secondary structure formation within and between these regions of the mRNA transcript. In this particular implementation, the length of the optimized nucleotide sequence coding for the EET was about 90 nucleotides. Together with the 70 upstream 5′-untranslated nucleotides of the transcript driven by the T7 promoter of the vector, the 5′-region of the transcript was optimized as a unit of about 160 nucleotides. Longer optimized nucleotide sequences, and potentially somewhat shorter optimized nucleotide sequences may also be effective in creating TOEET-based expression-enhanced vectors.
The optimized regions of the pNESG_Avi6HT and pNESG_Nano6HT based TOEET vectors are shown in FIG. 1. The figure shows the DNA sequences, RNA sequences, and the translated protein tag (SEQ ID NO:3—MSGLNDIFEAQKIEWHEHHHHHHENLYFQSH and SEQ ID NO:4—MDVEAWLDERVPLVETHHHHHHENLYFQSH, respectively) sequences of the expression vectors, along with the DNA sequence coding for the multiple cloning site (MCS), a series of restriction endonuclease sites used for cloning into the expression plasmids. FIG. 2 shows, as an example, the predicted RNA secondary structure in transcripts generated from the pNESG_Avi6HT vector, highlighting the lack of predicted RNA secondary structure near the RBS/translation initiation site.
A third vector comprising the Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) was also constructed and optimized using TOEET. The MBP from Pyrococcus furiosus is much more thermally stable than that of E. coli, and is expected to provide a more robust solubilization enhancement tag and affinity purification tag. Proteins that are expressed but not soluble in cell extracts can be solubilized and used successfully as antigens using various methods of solublization, including urea and guanidine denaturtants (Agaton et al, 2003). The PfR MBP provides improved purification of target proteins under such partially denaturing conditions or other harsh conditions. The sequences shown at the top of FIG. 4 correspond to the first 30 residues of the wild-type PfR-MBP DNA sequence lacking the native secretion signal. The protein open reading frame (DNA sequence) is shown above the corresponding protein sequence and directly below is the T7 RNA polymerase mediated RNA transcript resulting from the cloning of the PfR-MBP into the pET15_NESG backbone. The lower set of sequences shown in FIG. 4 correspond to TOEET optimized PfR-MBP. Silent mutations were introduced for codon optimization or to decrease the predicted RNA secondary structure in the regions of the RBS and translation initiation codon, or both. The silent mutations were introduced using primers incorporating the nucleotide changes and 5 successive rounds of PCR, negating the need for expensive total gene synthesis.
The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) without TOEET optimization is shown in FIG. 5. Significant secondary structure (base pairing) at both the Ribosome Binding Site (RBS) and the translation initiation site (Initiation Codon) is predicted. The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) after TOEET optimization is shown in FIG. 6. As illustrated by FIG. 6, significantly greater open structure (lack of base pairing) after TOEET optimization is predicted.
Example 2
The results obtained from expression studies with the above-described new vectors demonstrated that the TOEET strategy is both extremely successful and robust. In this example, similar expression and solubility studies were carried out using a high throughput methodology for the identification and isolation of soluble proteins and protein domains.
As mentioned above, the isolation of soluble, well-folded proteins and protein domains is of great use and importance to the biotechnology industry and biological researchers as a whole. However, the production of such protein reagents remains extremely challenging, especially in the cost effective, commonly used bacterial expression systems. These Escherichia coli expression systems are often successful in the production of simple bacterial proteins but are far less amenable to the production of eukaryotic, mulitdomain proteins or protein complexes, often resulting in no or low levels of expression and/or solubility (greatly complicating or thwarting their production as a protein reagent). There are a variety of reasons that contribute to the lower success rate of these proteins in bacterial expression systems including the fact that eukaryotic proteins are frequently multidomain in nature, this often results in misfolding when expressed using simple prokaryotic expression systems (Netzer and Hartl, 1997). Another major reason for the higher attrition rate relates to the increased levels of disordered regions in human and other eukaryotic proteins in comparison to simpler organisms (Lui et al., 2002). These disordered regions likely cause aggregation and misfolding in E. coli expression systems leading to proteins or domains with low expression and/or solubility, again, greatly interfering with their production.
To circumvent these issues, the NESG Construct Optimization Software and High ThroughPut (HTP) Molecular Cloning and Expression Screening Platform and Automated Purification Pipeline methods were developed for assaying multiple alternative constructs to identify soluble proteins or domains (Methods in Enzymology, Vol. 493, Burlington: Academic Press, 2011, pp. 21-60.). Briefly, the NESG Construct Optimization Software used reports from the from the DisMeta Server (http://www-nmr.cabm.rutgers.edu/bioinformatics/disorder), a metaserver that generated a consensus analysis of eight sequence-based disorder predictors to identify protein regions that are likely to be disordered. In addition, secondary structure, transmembrane and signal peptides among others were also predicted. This data along with multiple sequence alignments of homologous proteins were used to predict possible structural domain boundaries. Based on this information, the NESG Construct Optimization software generated nested sets of alternative constructs, for full-length proteins, multidomain constructs, and single domain constructs. Primers for cloning were then designed using the software Primer Primer (Everett, J.K.; Acton, T.B.; Montelione, G.T.J. Struct. Funct. Genomics 2004, 5: 13-21. Primer Prim′r: A web based server for automated primer design.). Thus for a single targeted region, multiple open reading frames were generally designed varying the N and/or C-terminal sequences. These alternative constructs often possessed significantly better expression, solubility and biophysical behavior than their full-length parent sequences, increasing the possibility of successfully producing a protein reagent.
Although the NESG Construct Optimization Software identified protein subsequences that were more likely to produce soluble well-behaved samples, several variants of each were assayed to identify constructs amenable to protein sample production. Therefore the high-throughput NESG Molecular Cloning and Expression Screening Platform was developed utilizing 96-well parallel cloning/E. coli expression and Qiagen BioRobotS000-based liquid handling. Briefly, protein target sequences (constructs) were PCR amplified from Reverse Transcriptase (RT) generated cDNA pools or genomic DNA, gel purified and extracted in 96-well format (robotic liquid handling) and subcloned into pET_NESG, a series of T7 based (Novagen) bacterial expression vectors generated at Rutgers, using InFusion (Clonetech) Ligation Independent Cloning (LIC). The RT generated cDNA pools were derived from normal and disease tissue (tumor cells and cell lines) allowing for the isolation of wild-type and polymorphic proteins. Correct clones (containing the desired protein open reading frame) were identified using plate based-PCR assays. An automated DNA Miniprep Protocol isolated the nascent expression vectors and a 96-well transformation protocol was used to introduce the plasmids into the BI21(DE3) pMgK E. coli expression strain. Following overnight growth, a single representative colony from each well (96) was transferred to LB in a 96-well S-Block and incubated for 6 hours. Automated liquid handling was then utilized to produce a 500 microliter overnight subculture of each of the 96 constructs in a single 96-well S-block. An aliquot of each well was then subcultured into the corresponding well of one of four 24-well blocks containing 2 ml of fresh media and incubated at 37° C. until mid-log phase growth. Protein expression is induced with IPTG (Isopropyl13-D-1-thiogalactopyranoside) and incubated overnight at 17° C. The cells were harvested using automated liquid handling and sonicated in 96-well format. The expression and solubility of each construct was visualized by SDS-PAGE analysis and constructs suitable for protein production were identified.
The soluble expression constructs were then fermented in large volume using parallel fermentation system, consisting of 2.5-L baffled Ultra Yield™ Fembach flasks, low-cost platform shakers, controlled temperature rooms and specialized MJ9 media (Jansson et al. 1996). This generally produced 10-100 mg of protein per liter of culture. The resulting proteins were then purified using high-throughput AKTAxpress-based parallel protein purification system. This consisted of a two-step automated Ni-affinity purification (pET_NESG imparts a 6×-His tag) followed by gel filtration chromatography. The purified proteins were then analyzed for quality including molecular weight validation by MALDI-TOF mass spectrometry, homogeneity analysis by SDS-PAGE, aggregation screening by analytical gel filtration with static light scattering, and finally concentration determination was performed.
Together the NESG Construct Optimization Software, Molecular Cloning and Expression Screening Platform and Automated Purification Pipeline allow for identification and isolation of large numbers of soluble well-behaved protein reagents in a time efficient and cost effective manner. Without this technology, many of the proteins would prove elusive in regard to production as a protein reagent.
In this process, target protein expression constructs were designed using proprietary bioinformatics methods, cloning was done using robotic methods and protocols, and Expression (E, ranging from 0 to 5) and Solubility (S, ranging from 0 to 5) screening were performed in a high throughput fashion and assessed using SDS-PAGE analysis. The read out (ES score=E score×S score, ranging from 0 to 25) provided a measure of the usability of a particular target construct and expression vector system combination for large-scale protein sample production. In general, constructs providing ES scores≧9 in this high throughout expression and solubility assay provided milligram-per-liter (or tens-of-milligram per liter) quantities of protein samples in medium scale (0.5-3 L) shake flask fermentations.
As a demonstration of the TOEET technology, a set of approximately 96 human transcription factor genes and epigenetic regulatory factor genes were cloned into the pET15_NESG vector (Acton et al., 2011) lacking a TOEET sequence, and into both the pNESG_Avi6HT and pNESG_Nano6HT vectors. These expression vectors were constructed, and the expression and solubility of target proteins assessed, using the technology outlined above. The results of this study are summarized in Table 1.
It was found that, using the pET15_NESG vector, only 20 of 99 constructs provided expression and solubility levels that can support scale-up protein sample production (ES score≧9; highlighted in grey shade in Table 1). In contrast, using the pNESG_Nano6HT or pNESG_Avi6HT on this same set of target genes provided a significant increase in the number of highly-expressed and soluble targets suitable for scale-up production. As shown in Table 1, 42 of 98 tested, and 34 of 94 tested protein targets exhibited an ES score≧9 (highlighted in grey shade in Table 1) in the pNESG_Avi6HT and pNESG_Nano6HT vectors, respectively. Several SDS-PAGE gels illustrating these expression and solubility enhancements are shown in FIG. 3. Not only were more of these 99 human protein target genes expressed using TOEET, but both expression levels and solubility were generally increased. For example, while about half of the 99 protein targets had expression value E=0 (i.e. no detectable expression) in the pET15_NESG vector (lacking TOEET), 95 of the 99 protein targets had expression values E≧2 in either the pNESG_Nano6HT and pNESG_Avi6HT vectors (Table 1); many have E values E=5 (the maximum level typically observed) in the expression vectors using TOEET.
Construct designs for a larger set of more than 2,000 human transcription factor proteins and domains are listed in Table 2. A large number of the proteins listed in Table 2 have been cloned into vectors optimized by TOEET, such as the pNESG_Nano6HT and pNESG_Avi6HT vectors, and exhibit high levels expression and solubility. Analysis of these data indicates that both the pNESG_Nano6HT vector and pNESG_Avi6HT vectors produced greater expression and solubility levels than a standard pET15_NESG vector that has not been optimized using the TOETT technology described in this disclosure.
Overall, TOEET allows for the production of a significantly greater number of human proteins and protein domains. The higher ES values obtained using TOETT also allow for simpler production and purification of the target proteins, since high ES scores mean that the cell extract has a larger amount of the target protein relative to background proteins.
The pNESG_Avi6HT also allows for the production of protein samples that can be readily biotinylated in the EET tag sequence. The pNESG_Nano6HT tag also provides a means for simple production of a streptavidin-binding protein (Scholle et al., 2004). Such biotinylated or Nano-tagged protein samples can be used for a variety of processes, including phage display antibody production, as well as for screening and discovering protein-protein and protein—nucleic acid interactions.
Example 3
In certain applications, proteins that are expressed but not soluble in cell extracts can be solubilized and used successfully as antigens using various methods of solubilization, including urea and guanidine denaturants (Agaton et al. 2003). Accordingly, the ability to express a protein target, even it is not soluble in the high throughput Expression-Solubility screen described above [NESG High ThroughPut (HTP) Molecular Cloning and Expression Screening Platform methods] is critical, since if the protein cannot be expressed at all it is not possible to generate a suitable antigen. Accordingly, a particularly important value of the TOEET technology is enhancement of protein expression (E), regardless of the resulting solubility. To illustrate this point, histogram plots are presented in FIGS. 7a and 7b comparing Expression scores (E ranging from 0 to 5) using the TOEET technology (E_TOEET) compared to expression scores for the same target protein using a pET vector lacking TOEET technology (E_pET). The data shown in FIG. 7a is for 98 protein target genes cloned into the pNESG_Avi6HT TOEET vector compared with the exact same genes cloned into the pET15_NESG vector (lacking TOEET). The data shown in FIG. 7b is for 94 protein target genes cloned pNESG_Nano6HT TOEET vectors compared with the exact same genes cloned into pET15_NESG vector (lacking TOEET). In these histogram plots, a value E_TOEET−E_pET=0 indicates that the expression levels for both vectors were identical; values E_TOEET−E_pET>0 indicate that the TOEET technology provided higher level expression, values E_TOEET−E_pET<0 indicate that the TOEET technology provided lower level expression. For both target sets, the vast majority of genes exhibit much higher expression in the pNESG_Avi6HT TOEET and pNESG_Nano6HT TOEET vectors compared with the pET15_NESG vector (lacking TOEET). In many cases, E_TOEET−E_pET is 4 or 5, indicating that the expression in the non-TOEET vector was 0 or 1, which is too low to be useful for antigen production. Thus the TOEET vectors often provide high level expression of proteins which cannot be expressed at all, or those with are otherwise expressed as such marginal levels as to be useless for antigen production.
Example 4
A representative method for practicing certain embodiments of the invention is described below.
The first step in the method is to identify the residues of the chosen tag/protein and the corresponding DNA sequences to be modified, for example, the 1st 30 residues of the tag/protein. Low usage codons are identified and are changed to optimal codons either manually or using servers, for example, such as http://www.jcat.de/ or http://genomes.urv.es/OPTIMIZER/, among others (Step 2). The transcription start site of vector and the resulting 5′ untranslated region is then identified (Step 3). The 5′ UTR RNA sequence is fused in silico with the optimized RNA sequence encoding the tag/protein (e.g., the first 30 residues of the tag/protein) (Step 4). Various RNA secondary structure prediction methods may then be used to analyze the fused sequence, such as, for example: http://www.genebee.msu.su/services/rna2_reduced.html, http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi (Maximum Free Energy with partition function) or http://www.ncrna.org/centroidfold/ (Centroid Estimators-Statistical Decision Theory) (Step 5). The RBS and Initiation codon (IC) are then identified in the secondary structure prediction and the RNA positions in the first, e.g., 30 residues of the tag/protein that pair to the RBS/IC regions are determined (Step 6). Subsequently, alternative high frequency codons for the given residues base pairing with the RBS/IC are substituted and secondary structure is recalculated (Step 7). Steps 5 through 7 may be repeated until the secondary structure in RBS/IC is minimized and there is general agreement with the between the prediction servers (e.g., multiple predication servers may be used, such as the three servers listed above). This information is then used to design and produce the TOEET-optimized expression vector. Target proteins may then be cloned and expressed into the resulting expression system using the NESG Construct Optimization Software and High ThroughPut (HTP) Molecular Cloning and Expression Screening Platform and Automated Purification Pipeline methods, as outlined above.
TABLE 1
|
|
Expression Results
|
![embedded image]()
|
|
|
![embedded image]()
|
|
E = Expression; E = 0-5 (no to high expression)
|
S = Solubility; S = 0-5 (no to high solubility)
|
ES = E * S = (0-25) ES ≧ 9 usability (highlighted with grey fill)
|
ES ≧ 9 (typically results in ≧5 milligrams of protein per one liter of E. coli Fermentation)
|
TABLE 2
|
|
Human transcription factor protein and domain constructs designed using the NESG Construct
|
Optimization Software for production using TOEET technologies. Each line in the table
|
describes a unique protein construct for RT-PCR cloning, defined by the NESG Vector ID,
|
the HUGO protein identifier, the Uniprot protein identifier, the first 15 amino acid
|
residues in the targeted construct, the last 15 amino acid residues in the target
|
construct, and the length of the targeted gene. The actual length of the targeted
|
gene obtained by RT-PCR may be shorter or longer than indicated in the table
|
due RNA spicing variations.
|
Construct
|
Vector
HUGO
Uniprot
First 15aa
Last 15aa
Length
|
|
HR7152A-140-202-TEV
ADAR
P55265
PVHYNGPSKAGYVDF
YSHGLPRCSPYKKLT
63
|
|
HR7675A-754-849-NHT
ADNP
Q9H2P0
LDPKGHEDDSYEARK
KHEMDFDAEWLFENH
96
|
|
HR7633A-1032-1131-NHT
ADNP2
Q6IQ32
KDEALQILALDPKKY
ELKNVKHRLNFEYEP
100
|
|
HR4425-1-595-15
AHR
P35869
MNSSSANITYASRKR
ILTYVQDSLSKSPFI
595
|
|
HR4425B-277-391-14
AHR
P35869
MILEIRTKNFIFRTK
DYIIVTQRPLTDEEG
116
|
|
HR4425B-277-406-14
AHR
P35869
MILEIRTKNFIFRTK
TEHLRKRNTKLPFMF
131
|
|
HR4425B-282-386-14
AHR
P35869
MTKNFIFRTKHKLDF
KNGRPDYIIVTQRPL
106
|
|
HR4425B-282-403-14
AHR
P35869
MTKNFIFRTKHKLDF
EEGTEHLRKRNTKLP
123
|
|
HR4425C-102-179-15
AHR
P35869
MRAANFREGLNLQEG
EDRAEFQRQLHWALN
79
|
|
HR4425C-108-178-14
AHR
P35869
MEGLNLQEGEFLLQA
TEDRAEFQRQLHWAL
72
|
|
HR4425C-97-184-15
AHR
P35869
MGQDNCRAANFREGL
FQRQLHWALNPSQCT
89
|
|
HR4425D-318-386-14
AHR
P35869
MRGSGYQFIHAADML
KNGRPDYIIVTQRPL
70
|
|
HR6398A-1-104-15
AIRE
O43918
MATDAALRRLLRLHR
YGRLQPILDSFPKDV
104
|
|
HR6398A-1-91-15
AIRE
O43918
MATDAALRRLLRLHR
FWRVLFKDYNLERYG
91
|
|
HR6398A-1-96-15
AIRE
O43918
MATDAALRRLLRLHR
FKDYNLERYGRLQPI
96
|
|
HR4766B-14-107-14
AKAP8
O43823
MGPANTQGAYGTGVA
IAKINQRLDMMSKEG
95
|
|
HR4766B-19-107-14
AKAP8
O43823
MQGAYGTGVASWQGY
IAKINQRLDMMSKEG
90
|
|
HR8040A-384-551-Av6HT
AKAP8L
Q9ULX6
VERIQFVCSLCKYRT
KKLERYLKGENPFTD
168
|
|
HR6457-14
ALX1
Q15699
MEFLSEKFALKSPPS
RMKAKEHTANISWAM
326
|
|
HR7916A-159-235-Av6HT
ALX3
O95076
TFSTFQLEELEKVFQ
RNPFTAAYDISVLPR
77
|
|
HR4490C-209-280-NHT
ALX4
Q9H161
SNKGKKRRNRTTFTS
RAKWRKRERFGQMQQ
72
|
|
HR6941A-510-703-NHT
ANAPC2
Q9UJX6
GSKDLFINEYRSLLA
VALLRRRMSVWLQQG
194
|
|
HR6941A-511-695-Av6HT
ANAPC2
Q9UJX6
SKDLEINEYRSLLAD
LSKAVKMPVALLRRR
185
|
|
HR6941B-732-822-Av6HT
ANAPC2
Q9UJX6
SDDESDSGMASQADQ
LVYSAGVYRLPKNCS
91
|
|
HR6941B-765-822-Av6HT
ANAPC2
Q9UJX6
LESLSLDRIYNMLRM
LVYSAGVYRLPKNCS
58
|
|
HR6941C-498-713-Av6HT
ANAPC2
Q9UJX6
SSDIISLLVSIYGSK
WLQQGVLREEPPGTF
216
|
|
HR6941C-510-713-Av6HT
ANAPC2
Q9UJX6
GSKDLFINEYRSLLA
WLQQGVLREEPPGTF
204
|
|
HR8423A-486-593-Av6HT
ANKZF1
Q9H8Y5
AKAPGQPELWNALLA
STRNEFRRFMEKNPD
108
|
|
HR5083-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
DPSSRCNFFLWSRPS
518
|
|
HR5083A-1-319-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
CPVGAVLSVSSVPAK
319
|
|
HR5083A-1-323-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
AVLSVSSVPAKQCPP
323
|
|
HR5083A-1-352-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
KILRFLVPLEQSPVL
352
|
|
HR5083A-1-357-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
LVPIEQSPVLEQSTL
357
|
|
HR8294A-15-116-TEV
APTX
Q7Z2E3
RVCWLVRQDSRHQRI
HMVNELYPYIVEFEE
100
|
|
HR7650B-267-331-TEV
ARHGAP35
Q9NRY4
SQQIATAKDKYEWLV
AKKLFLQHIHRLKHE
65
|
|
HR7542A-507-616-NHT
ARID2
Q68CP9
QHVAPPPGIVEIDSE
RAIPLPIQMYYQQQP
110
|
|
HR4394C-14
ARID3A
Q99856
MPDHGDWTYEEQFKQ
ELQAAIDSNRREGRR
135
|
|
HR4394C-15
ARID3A
Q99856
MPDHGDWTYEEQFKQ
ELQAAIDSNRREGRR
135
|
|
HR4394C-218-351-Av6HT
ARID3A
Q99856
MPDHGDWTYEEQFKQ
ELQAAIDSNRREGRR
135
|
|
HR4394C-218-351-TEV
ARID3A
Q99856
PDHGDWTYEEQFKQL
ELQAAIDSNRREGRR
134
|
|
HR8410A-318-424-TEV
ARID5B
Q14865
RADEQAFLVALYKYM
KGEEDKPLPPIKPRK
107
|
|
HR7845A-354-470-TEV
ARNT
P27540
SNVCQPTEFISRHNI
YIICTNTNVKNSSQE
116
|
|
HR7821A-334-439-TEV
ARNT2
Q9HBZ2
PTEFLSRHNSDGIIT
SDEIEYIICTNTNVK
106
|
|
HR7274A-178-295-NHT
ARNTL2
Q8WYA1
QDNELRHLILKTAEG
SFFCRIKSCKISVKE
118
|
|
HR6915A-334-389-TEV
ARX
Q96Q53
TFTSYQLEELERAFQ
WFQNRRAKWRKREKA
56
|
|
HR4461B-112-194-14
ASCL1
P50553
MLPQQQPAAVARRNE
VSAAFQAGVLSPTIS
84
|
|
HR4461B-112-210-14
ASCL1
P50553
MLPQQQPAAVARRNE
NYSNDLNSMAGSPVS
100
|
|
HR4461B-132-189-14
ASCL1
P50553
MKLVNLGFATLREHV
DEHDAVSAAFQAGVL
59
|
|
HR4461B-132-206-14
ASCL1
P50553
MKLVNLGFATLREHV
TISPNYSNDLNSMAG
76
|
|
HR4461B-146-206-14
ASCL1
P50553
MPNGAANKKMSKVET
TISPNYSNDLNSMAG
62
|
|
HR4510B-64-138-14
ASCL2
Q99929
MKLVNLGFQALRQHV
AVRPSAPRGPPGTTP
76
|
|
HR7137A-2665-2824-TEV
ASH1L
Q9NR48
YLMRDSRRTPDGHPV
PKKLTPKKDFSPHYV
160
|
|
HR3149-106-270-14
ATF1
P18846
SGQYIAIAPNGALQL
IEELKTLKDLYSNKS
165
|
|
HR3149-14
ATF1
P18846
MEDSHKSTTSETAPQ
EELKTLKDLYSNKSV
271
|
|
HR3149-15
ATF1
P18846
MEDSHKSTTSETAPQ
EELKTLKDLYSNKSV
271
|
|
HR3149-21
ATF1
P18846
MEDSHKSTTSETAPQ
EELKTLKDLYSNKSV
271
|
|
HR3149-87-270-14
ATF1
P18846
GVSAAVTSMSVPTPI
IEELKTLKDLYSNKS
184
|
|
HR3149-96-270-14
ATF1
P18846
SVPTPIYQTSSGQYI
IEELKTLKDLYSNKS
175
|
|
HR4498B-354-414-TEV
ATF2
P15386
KRRKFLERNRAAASR
LLRNEVAQLKQLLLA
61
|
|
HR4572-21-181-14
ATF3
P18847
MPCLSPPGSLVFEDF
RNLFIQQIKEGTLQS
162
|
|
HR4572B-103-170-14
ATF3
P18847
MCRNKKKEKTECLQK
RAQNGRTPEDERNLF
69
|
|
HR4572B-103-181-14
ATF3
P18847
MCRNKKKEKTECLQK
RNLFIQQIKEGTLQS
80
|
|
HR4572B-77-181-14
ATF3
P18847
MTKAEVAPEEDERKK
RNLFIQQIKEGTLQS
106
|
|
HR6914A-280-341-Av6HT
ATF4
P18848
MKKLKKMEQNKTAAT
LAKEIQYLKDLIEEV
63
|
|
HR6914A-280-341-TEV
ATF4
P18848
KKLKKMEQNKTAATR
LAKEIQYLKDLIEEV
62
|
|
HR4531-39-469-14
ATF7
P17544
MPARTDSVIIADQTP
SAAEAVATSVLTQMA
432
|
|
HR8374A-151-218-Av6HT
ATOH1
Q92858
KQVNGVQKQRRLAAN
AQIYINALSELLQTP
68
|
|
HR7270A-225-288-NHT
ATOH8
Q96SQ7
KALQQTRRLLANARE
IACNYILSLARLADL
64
|
|
HR7350A-7-128-TEV
BACH1
O14867
SVFAYESSVHSTNVI
SVHNIEESCFQFLKF
122
|
|
HR8413A-12-132-Av6HT
BACH2
Q9BYV9
YVYESTVHCTNILLG
MHNLEDSCFSFLQTQ
121
|
|
HR7112A-169-265-NHT
BARHL1
Q9BZE3
DSPPVRLKKPRKART
SALQRMFPSPYFYPQ
97
|
|
HR7390A-223-314-NHT
BARHL2
Q9NY43
ESPPVRAKKPRKART
EAGNYSALQRMFPSP
92
|
|
HR7183A-133-199-TEV
BARX1
Q9HBU1
GEPGTKAKKGRRSRT
QVKTWYQNRRMKWKK
67
|
|
HR7561-1-174-Av6HT
BARX2
Q9UMQ3
HCHAELRLSSPGQLK
TPDRLDLAQSLGLTQ
173
|
|
HR7561-1-187-Av6HT
BARX2
Q9UMQ3
HCHAELRLSSPGQLK
TQLQVKTWYQNRRMK
186
|
|
HR7561-1-196-Av6HT
BARX2
Q9UMQ3
HCHAELRLSSPGQLK
QNRRMKWKKMVLKGG
195
|
|
HR7561A-118-196-Av6HT
BARX2
Q9UMQ3
SSESETEQPTPRQKK
QNRRMKWKKMVLKGG
79
|
|
HR6459-34-125-14
BATF
Q16520
EKNRIAAQKSRQRQT
HAFHQPHVSSPRFQP
92
|
|
HR6459-34-125-15
BATF
Q16520
EKNRIAAQKSRQRQT
HAFHQPHVSSPRFQP
92
|
|
HR6459A-19-125-14
BATF
Q16520
GKQDSSDDVRRVQRR
HAFHQPHVSSPRFQP
107
|
|
HR6459A-34-118-14
BATF
Q16520
EKNRIAAQKSRQRQT
PEVVYSAHAFHQPHV
85
|
|
HR7115A-1107-1202-NHT
BAZ1A
Q9NRL2
RSYKTVLDRWRESLL
GDWFCPECRPKQRSR
96
|
|
HR7115B-420-468-Av6HT
BAZ1A
Q9NRL2
LPPEIFGDALMVLEF
LEVLEEALVGNDSEG
49
|
|
HR7115B-420-486-Av6HT
BAZ1A
Q9NRL2
LPPEIFGDALMVLEF
ELLFFFLTAIFQAIA
67
|
|
HR7115C-1408-1534-Av6HT
BAZ1A
Q9NRL2
CRKRQSPEPSPVTLG
TRLQAFFHIQAQKLG
127
|
|
HR7115D-1420-1534-Av6HT
BAZ1A
Q9NRL2
TLGRRSSGRQGGVHE
TRLQAFFHIQAQKLG
115
|
|
HR7115D-1432-1534-Av6HT
BAZ1A
Q9NRL2
VHELSAFEQLVVELV
TRLQAFFHIQAQKLG
103
|
|
HR7115E-1-122-Av6HT
BAZ1A
Q9NRL2
PLLHRKPFVRQKPPA
IFAYVKDRYFVEETV
121
|
|
HR7115E-1-129-Av6HT
BAZ1A
Q9NRL2
PLLHRKPFVRQKPPA
RYFVEETVEVIRNNG
128
|
|
HR7115E-1-142-Av6HT
BAZ1A
Q9NRL2
PLLHRKPFVRQKPPA
NGARLQCRILEVLPP
141
|
|
HR7115E-22-122-Av6HT
BAZ1A
Q9NRL2
EEVFYCKVTNEIFRH
IFAYVKDRYFVEETV
101
|
|
HR7115E-22-129-Av6HT
BAZ1A
Q9NRL2
EEVFYCKVTNEIFRH
RYFVEETVEVIRNNG
108
|
|
HR7115E-22-142-Av6HT
BAZ1A
Q9NRL2
EEVFYCKVTNEIFRH
NGARLQCRILEVLPP
121
|
|
HR7190A-1634-1742-NHT
BAZ2A
Q9UIF9
SYEITPRIRVWRQTL
VEGEFTQKPGFPKRG
109
|
|
HR8090A-2062-2166-TEV
BAZ2B
Q9UIF8
DSKDLALCSMILTEM
NMRKYFEKKWTDTFK
105
|
|
HR7285A-80-154-TEV
BBX
Q8WY36
ARRPMNAFLLFCKRH
FMKANPGYKWCPTTN
75
|
|
HR4436B-523-602-14
BCL6
P41182
MCDCRFSEEASLKRH
NLKTHTRIHSGEKPY
81
|
|
HR4436B-523-606-14
BCL6
P41182
MCDCRFSEEASLKRH
HTRIHSGEKPYKCET
85
|
|
HR4436B-528-601-14
BCL6
P41182
MSEEASLKRHTLQTH
ANLKTHTRIHSGEKP
75
|
|
HR4436B-540-602-14
BCL6
P41182
MTHSDKPYKCDRCQA
NLKTHTRIHSGEKPY
64
|
|
HR4436B-542-598-14
BCL6
P41182
MSDKPYKCDRCQASF
NRPANLKTHTRIHSG
58
|
|
HR4436C-5-129-TEV
BCL6
P41182
ADSCIQFTRHASDVL
EHVVDTCRKFIKASE
125
|
|
HR7156A-284-387-Av6HT
BDP1
A6H8Y1
ERGSTTTYSSFRKNY
KVLAEEEKRKQKSVK
104
|
|
HR8401A-71-161-Av6HT
BHLHA15
Q7RTS1
DSSIQRRLESNERER
PKLYQHYQQQQQVAG
91
|
|
HR7639A-64-125-Av6HT
BHLHA9
Q7RTU4
KARRMAANVRERKRI
IHRIAALSLVLRASP
62
|
|
HR8288A-236-314-Av6HT
BHLHE22
Q8NFJ8
KSKEQKALRLNINAR
LEEMRRLVAYLNQGQ
79
|
|
HR7576A-47-183-NHT
BHLHE4
O14503
EDSKETYKLPHRLIE
SQLVTHLHRVVSELL
137
|
|
HR7576B-142-174-Av6HT
BHLHE40
O14503
FCSGFQTCAREVLQY
HENTRDLKSSQLVTH
33
|
|
HR7576B-142-181-Av6HT
BHLHE40
O14503
FCSGFQTCAREVLQY
KSSQLVTHLHRVVSE
40
|
|
HR7518A-44-116-NHT
BHLHE41
Q9C0J9
TYKLPHRLIEKKRRD
LTEQQHQKIIALQNG
73
|
|
HR3082 1-125 pET15TEV_NESG (in
BLOC1S1
P78537
MLSRLLKEHQAKQNE
ALEYVYKGQLQSAPS
125
|
progress)
|
|
HR3082-1-119-14
BLOC1S1
P78537
MLSRLLKEHQAKQNE
MRTIATALEYVYKGQ
119
|
|
HR3082-14
BLOC1S1
P78537
MLSRLLKEHQAKQNE
ALEYVYKGQLQSAPS
125
|
|
HR3082-MBP3
BLOC1S1
P78537
MLSRLLKEHQAKQNE
LEYVYKGQLQSAPS*
126
|
|
HR3082A-32-125-14
BLOC1S1
P78537
TCLTEALVDHLNVGV
ALEYVYKGQLQSAPS
94
|
|
HR3082B-43-125-15
BLOC1S1
P78537
MNVGVAQAYMNQRKL
ALEYVYKGQLQSAPS
84
|
|
HR7816A-294-396-NHT
BMP2
P12643
SSCKRHPLYVDFSDV
LKNYQDMVVEGCGCR
103
|
|
HR7816A-294-396-TEV
BMP2
P12643
SSCKRHPLYVDFSDV
LKNYQDMVVEGCGCR
103
|
|
HR7409A-9-128-TEV
BOLA1
Q9Y3E2
GLVSMAGRVCLCQGS
WRENSQIDTSPPCLG
120
|
|
HR8185-1-86-TEV
BOLA2B
Q9H3K6
ASAKSLDRWKARLLE
EYLREKLQRDLEAEH
85
|
|
HR7562-8-107-Av6HT
BOLA3
Q53533
AAAPLLRGIRGLPLH
KEMHGLRIFTSVPKR
100
|
|
HR7886A-6-308-TEV
BPNT1
O95861
TVLMRLVASAYSIAQ
YASRVPESIKNALVP
303
|
|
HR7955A-134-243-TEV
BRD9
Q9H8M2
KDKIVANEYKSVTEF
EPEGNACSLTDSTAE
110
|
|
HR6995B-633-746-TEV
BRPF1
P55201
FLILLRKTLEQLQEK
GAVLRQARRQAEKMG
114
|
|
HR8142A-104-176-Av6HT
BSX
Q3C1V8
PGKHGRRRKARTVFS
RMKHKKQLRKSQDEP
73
|
|
HR1875-14
C12orf28
Q96LU7
MAFCALTIVALYILS
IFFTDYFFYFYRRCA
275
|
|
HR7476A-824-884-NHT
C14orf43
Q6PIG2
TYHYTGSDQWKMAER
FYYTYKKQVKIGRNG
61
|
|
HR7019A-867-954-TEV
CAMTA1
Q9Y6Y1
SGRVFMVTDYSPEWS
NNQIISNSVVFEYKA
88
|
|
HR7019B-108-183-TEV
CAMTA1
Q9Y6Y1
ILYNRKKVKYRKDGY
LQNPDIVLVHYLNVP
76
|
|
HR7019B-69-183-TEV
CAMTA1
Q9Y6Y1
KERHRWNTNEEIAAY
LQNPDIVLVHYLNVP
115
|
|
HR7019B-73-183-TEV
CAMTA1
Q9Y6Y1
RWNTNEEIAAYLITF
LQNPDIVLVHYLNVP
111
|
|
HR7019C-1029-1162-Av6HT
CAMTA1
Q9Y6Y1
ALGSCFESRVVVVCE
LGIARSRGHVKLAEC
134
|
|
HR7019C-1029-1168-Av6HT
CAMTA1
Q9Y6Y1
ALGSCFESRVVVVCE
RGHVKLAECLEHLQR
140
|
|
HR7019C-1058-1162-Av6HT
CAMTA1
Q9Y6Y1
IHSKTFRGMTLLHLA
LGIARSRGHVKLAEC
105
|
|
HR7019C-1058-1168-Av6HT
CAMTA1
Q9Y6Y1
IHSKTFRGMTLLHLA
RGHVKLAECLEHLQR
111
|
|
HR7019D-1486-1624-Av6HT
CAMTA1
Q9Y6Y1
KPNLPSAADWSEFLS
CGKRRQARRTAVIVQ
139
|
|
HR7019D-1486-1660-Av6HT
CAMTA1
Q9Y6Y1
KPNLPSAADWSEFLS
FLRRCRHSPLVDHRL
175
|
|
HR7019D-1501-1673-Av6HT
CAMTA1
Q9Y6Y1
ASTSEKVENEFAQLT
RLYKRSERIEKGQGT
173
|
|
HR7019D-1513-1624-Av6HT
CAMTA1
Q9Y6Y1
QLTLSDHEQRELYEA
CGKRRQARRTAVIVQ
112
|
|
HR7019D-1513-1660-Av6HT
CAMTA1
Q9Y6Y1
QLTLSDHEQRELYEA
FLRRCRHSPLVDHRL
148
|
|
HR7295A-60-130-Av6HT
CARHSP1
Q9Y2V2
GPVYKGVCKCFCRSK
PKNEKLQAVEVVITH
71
|
|
HR8150A-1916-1982-Av6HT
CASP8AP2
Q9UKL3
KNVIKKKGEIIILWT
RFQQLMKLFEKSKCR
67
|
|
HR7269A-2-135-Av6HT
CBFB
Q13951
MPRVVPDQRSKFENE
GMGCLEFDEERAQQE
135
|
|
HR7269A-2-135-TEV
CBFB
Q13951
PRVVPDQRSKFENEE
GMGCLEFDEERAQQE
134
|
|
HR7615A-104-190-NHT
CBLL1
Q75N03
TPVHFCDKCGLPIKI
YLSQRDLQAHINHRH
87
|
|
HR6520A-9-62-Av6HT
CBX2
Q14781
MEQVFAAECILSKRL
NILDPRLLLAFQKKE
55
|
|
HR6520A-9-62-TEV
CBX2
Q14781
EQVFAAECILSKRLR
NILDPRLLLAFQKKE
54
|
|
HR8494A-624-717-Av6HT
CCDC79
Q8NA31
IVEAEDRYKSELRKS
QQGRKAVDLAHKYHK
94
|
|
HR8086A-57-112-TEV
CDC5L
Q99459
SIKKIEWSREEEEKL
EHYEFLLDKAAQRDN
56
|
|
HR7252A-160-214-Av6HT
CDX1
P47902
VYTDHQRLELEKEFH
IWFQNRRAKERKVNK
55
|
|
HR7064A-185-251-Av6HT
CDX2
Q99626
TKDKYRVVYTDHQRL
RRAKERKINKKKLQQ
67
|
|
HR7957A-172-246-Av6HT
CDX4
O14627
TKEKYRVVYTDHQRL
IKKKISQFENSGGSV
75
|
|
HR7823A-281-340-TEV
CEBPA
P49715
NSNEYRVRRERNNIA
KRVEQLSRELDTLRG
60
|
|
HR4764B-273-336-TEV
CEBPB
P17676
EYKIRRERNNIAVRK
RELSTLRNLFKQLPE
64
|
|
HR7557A-190-272-15
CEBPE
Q15744
MAGPLHKGKKAVNKD
DTLRNLFRQIPEAAN
84
|
|
HR7557A-195-268-15
CEBPE
Q15744
MKGKKAVNKDSLEYR
TQELDTLRNLFRQIP
75
|
|
HR7557A-195-281-15
CEBPE
Q15744
MKGKKAVNKDSLEYR
IPEAANLIKGVGGCS
88
|
|
HR7557A-203-281-15
CEBPE
Q15744
MDSLEYRLRRERNNI
IPEAANLIKGVGGCS
80
|
|
HR6439-59-150-Av6HT
CEBPG
P53567
DRNSDEYRQRRERNN
ISTENTTADGDNAGQ
92
|
|
HR8022A-431-525-Av6HT
CENPT
Q96BT3
EPAEPLLVRHPPRPR
KPEDLELLMRRQGLV
95
|
|
HR7210A-268-373-Av6HT
CHD1
O14646
MEEEFETIERFMDCR
TKRWLKNASPEDVEY
107
|
|
HR7210A-268-373-TEV
CHD1
O14646
EEEFETIERFMDCRI
TKRWLKNASPEDVEY
106
|
|
HR7330A-260-394-NHT
CHD2
O14647
SETIEKVLDSRLGKK
VERVIAVKTSKSTLG
135
|
|
HR7397A-371-431-TEV
CHD6
Q8TD26
NPDYVEVDRILEVAH
DVDPAKVKEFESLQV
61
|
|
HR7397B-679-941-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
LDKAVLQDINRKGGT
262
|
|
HR7397B-679-968-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
DLLRKGAYGALMDEE
289
|
|
HR7397B-679-974-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
AYGALMDEEDEGSKF
295
|
|
HR7397B-679-997-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
LQRRTHTITIQSEGK
318
|
|
HR8217A-2631-2715-TEV
CHD7
Q9P2D1
RNPNKLDINTLTGEE
DRLLTGPVVRGEGAS
85
|
|
HR8217B-2561-2614-TEV
CHD7
Q9P2D1
GQLDPDTRIPVINLE
TYTVDMPSYVPKNAD
54
|
|
HR7629A-1-98-NHT
CHRAC1
Q9NRG0
ADVVVGKDKGGEQRL
SETFQFLADILPKKI
97
|
|
HR7688A-98-186-NHT
CLOCK
O15516
QDWKPTFLSNEEFTQ
THLLESDSLTPEYLK
89
|
|
HR7654A-1987-2362-TEV
CNOT1
A5YKK6
QLPYHRIFIMLLLEL
EIEKLFQSVAQCCMG
376
|
|
HR7654B-1987-2369-TEV
CNOT1
A5YKK6
QLPYHRIFIMLLLEL
SVAQCCMGQKQAQQV
383
|
|
HR7654B-1987-2376-TEV
CNOT1
A5YKK6
QLPYHRIFIMLLLEL
GQKQAQQVMEGTGAS
390
|
|
HR2981-28-443-15
COPS2
P61201
MPNVDLENQYYNSKA
NQLNSLNQAVVSKLA
417
|
|
HR2981-301-418-14
COPS2
P61201
PYKNDPEILAMTNLV
QVNQLLELDHQKRGG
118
|
|
HR2981-45-443-15
COPS2
P61201
MDDPKAALSSFQKVL
NQLNSLNQAVVSKLA
400
|
|
HR2981A-306-415-14
COPS2
P61201
PEILAMTNLVSAYQN
RIDQVNQLLELDHQK
110
|
|
HR2981B-339-418-14
COPS2
P61201
DDPFIREHIEELLRN
QVNQLLELDHQKRGG
80
|
|
HR2981C-45-163-15
COPS2
P61201
MDDPKAALSSFQKVL
FKTNTKLGKLYLERE
120
|
|
HR2981C-45-184-15
COPS2
P61201
MDDPKAALSSFQKVL
KILRQLHQSCQTDDG
141
|
|
HR2981C-45-210-15
COPS2
P61201
MDDPKAALSSFQKVL
EIYALEIQMYTAQKN
167
|
|
HR3016-1-411-14
COPS3
Q9UNS2
MASALEQFVNSVRQL
ITVNPQFVQKSMGSQ
411
|
|
HR3016-14
COPS3
Q9UNS2
MASALEQFVNSVRQL
GSQEDDSGNKPSSYS
423
|
|
HR3016A-49-114-15
COPS3
Q9UNS2
LDVQEHSLGVLAVLF
FAGLCHQLTNALVER
66
|
|
HR3016B-88-154-15
COPS3
Q9UNS2
CNGEHIRYATDTFAG
SIHADLCQLCLLAKC
67
|
|
HR3016C-270-368-15
COPS3
Q9UNS2
NNPSELRNLVNKHSE
KDGMVSFHDNPEKYN
99
|
|
HR3016C-270-396-15
COPS3
Q9UNS2
NNPSELRNLVNKHSE
KCIELDERLKAMDQE
127
|
|
HR3016C-270-411-15
COPS3
Q9UNS2
NNPSELRNLVNKHSE
ITVNPQFVQKSMGSQ
142
|
|
HR3016D-352-413-15
COPS3
Q9UNS2
NQKDGMVSFHDNPEK
VNPQFVQKSMGSQED
62
|
|
HR3016D-358-409-15
COPS3
Q9UNS2
VSFHDNPEKYNNPAM
QEITVNPQFVQKSMG
52
|
|
HR3105-1-292-15
COPS4
Q9BT78
MAAAVRQDLAQLMNS
LQEFAAMLMPHQKAT
292
|
|
HR3105-1-297-15
COPS4
Q9BT78
MAAAVRQDLAQLMNS
AMLMPHQKATTADGS
297
|
|
HR3105-15
COPS4
Q9BT78
MAAAVRQDLAQLMNS
APEWTAQAMEAQMAQ
406
|
|
HR6309A-15
CPSF4
O95639
MSGEKTVVCKHWLRG
NKECPFLHIDPESKI
62
|
|
HR7458A-62-130-NHT
CPSF4L
A6NMK7
GEKMVVCKHWLRGLC
KPAFKSQDCPWYDQG
69
|
|
HR3140-21
CREB1
P16220
MTMESGAENQQSGDA
EELKALKDLYCHKSD
341
|
|
HR6927-139-461-Av6HT
CREB3L3
Q68CJ9
PVIQVPEASVTIDLE
TGSGRAGLEAAGDEL
323
|
|
HR7960-1-298-Av6HT
CREB3L4
Q8TEY5
DLGIPDLLDAWLEPP
IAQTSNKAAQTSTCV
297
|
|
HR6873A-34-89-Av6HT
CRX
O43186
SAPRKQRRERTTFTR
KINLPESRVQVWFKN
56
|
|
HR6873A-45-103-Av6HT
CRX
O43186
TFTRSQLEELEALFA
NRRAKCRQQRQQQKQ
59
|
|
HR8272A-84-160-NHT
CSDA
P16989
KKVLATKVLGTVKWF
VEGEKGAEAANVTGP
77
|
|
HR7792B-673-744-TEV
CSDE1
O75534
LRRATVECVKDQFGF
CSACNVWRVCEGPKA
72
|
|
HR7173A-399-462-TEV
CTCF
P49711
RTHSGEKPYECYICH
RKSDLGVHLRKQHSY
64
|
|
HR7173B-515-592-Av6HT
CTCF
P49711
MRTHTGEKPYACSHC
AGPDGVEGENGGETK
79
|
|
HR7173B-515-592-TEV
CTCF
P49711
RTHTGEKPYACSHCD
AGPDGVEGENGGETK
78
|
|
HR7558A-411-776-TEV
CUL1
Q13616
AQSSSKSPELLARYC
LERVDGEKDTYSYLA
365
|
|
HR7558B-15-410-Av6HT
CUL1
Q13616
IGLDQIWDDLRAGIQ
DKACGRFINNNAVTK
396
|
|
HR3327B-643-745-14
CUL2
Q13617
NFSSKRTKFKITTSM
IERSQASADEYSYVA
103
|
|
HR3327B-655-745-14
CUL2
Q13617
TSMQKDTPQEMEQTR
IERSQASADEYSYVA
91
|
|
HR3327C-1-408-15
CUL2
Q13617
MSLKPRVVDFDETWN
YCDNLLKKSAKGMTE
408
|
|
HR3327D-4-745-TEV
CUL2
Q13617
KPRVVDFDETWNKLL
IERSQASADEYSYVA
742
|
|
HR3437D-677-768-TEV
CUL3
Q13618
VAAKQGESDPERKET
LARTPEDRKVYTYVA
92
|
|
HR3342C-672-759-TEV
CUL4A
Q13619
IQMKETVEEQVSTTE
MERDKDNPNQYHYVA
88
|
|
HR7263A-808-895-TEV
CUL4B
Q13620
IQMKETVEEQASTTE
MERDKENPNQYNYIA
88
|
|
HR3340C-7-395-Av6HT
CUL5
Q93034
LKNKGSLQFEDKWDF
TIFKLELPLKQKGVG
389
|
|
HR8510A-825-917-TEV
CUX2
O14529
PRGDEAPVPPEDEAA
RQVKEKLAKNGICQR
93
|
|
HR7807A-15-94-Av6HT
CXXC1
Q9P0U4
EDSKSENGENAPIYC
LEIRYRHKKSRERDG
80
|
|
HR7690A-184-282-TEV
DACH1
Q9UI36
TPQNNECKMVDLRGA
LISRKDFETLYNDCT
99
|
|
HR6867A-61-162-TEV
DACH2
Q96NX9
GNTNTNECRMVDMHG
TRKDFETLFTDCTNA
102
|
|
HR7176A-249-325-Av6HT
DBP
Q10586
VPEEQKDEKYWSRRY
YRAVLSRYQAQHGAL
77
|
|
HR7176A-254-325-Av6HT
DBP
Q10586
KDEKYWSRRYKNNEA
YRAVLSRYQAQHGAL
72
|
|
HR7911A-178-244-Av6HT
DBX2
Q6ZNG2
DSNSKARRGILRRAV
VKIWFQNRRMKWRNS
67
|
|
HR7702A-201-279-NHT
DEAF1
O75398
SELPVRCRNISGTLY
CLIQDGILNPHAASG
79
|
|
HR7922A-11-108-TEV
DEPDC1A
Q5TB30
YRATKLWNEVTTSFR
SENVDDNNQLFRFPA
98
|
|
HR7073A-153-209-TEV
DLX2
Q07687
RKPRTIYSSFQLAAL
QVKIWFQNRRSKFKK
57
|
|
HR8208A-130-186-TEV
DLX3
O60479
RKPRTIYSSYQLAAL
QVKIWFQNRRSKFKK
57
|
|
HR7595A-138-194-TEV
DLX5
P56178
RKPRTIYSSFQLAAL
QVKIWFQNKRSKIKK
57
|
|
HR8524A-46-106-TEV
DLX6
P56179
GKKIRKPRTIYSSLQ
QVKIWFQNKRSKFKK
61
|
|
HR4696-44-404-15
DMAP1
Q9NPF5
MTLTFKRPEGMHREV
MLRHRHEALARAGVL
362
|
|
HR4696-49-403-15
DMAP1
Q9NPF5
MRPEGMHREVYALLY
QMLRHRHEALARAGV
356
|
|
HR4696B-208-404-15
DMAP1
Q9NPF5
MVPGTDLKIPVFDAG
MLRHRHEALARAGVL
198
|
|
HR4696B-213-404-15
DMAP1
Q9NPF5
MLKIPVFDAGHERRR
MLRHRHEALARAGVL
193
|
|
HR4696B-236-403-15
DMAP1
Q9NPF5
MRTPEQVAEEEYLLQ
QMLRHRHEALARAGV
169
|
|
HR7582A-79-146-Av6HT
DMBX1
Q8NFW5
TAQQLEALEKTFQKT
SLQKEQLQKQKEAEG
68
|
|
HR7142-1-340-TEV
DMC1
Q14565
KEDQVVAEEPGFQDE
ATFAITAGGIGDAKE
339
|
|
HR8371A-114-182-Av6HT
DMRT2
Q9Y5R5
PRKLSRTPKCARCRN
LRRQQATEDKKGLSG
69
|
|
HR7805A-20-88-NHT
DMRT3
Q9NQL9
RAPLQRTPKCARCRN
LRRQQANESLESLIP
69
|
|
HR6947A-318-361-NHT
DMRTA1
Q5VZB9
SLPTVSSRPRDPLDI
GILRFCKGDVVQAIE
44
|
|
HR7753A-1-53-NHT
DMRTB1
Q96MA1
ADKMVRTPKCSRCRN
KCYLISERQKIMAAQ
52
|
|
HR7387A-44-84-Av6HT
DMRTC2
Q8IXT2
RCRNHGVTAHLKGHK
KCVLILERRRVMAAQ
41
|
|
HR8011A-205-276-15
DMTF1
Q9Y222
MSTEPGDIVTQGVSW
RIAELDVADENDINW
78
|
|
HR8011A-205-293-15
DMTF1
Q9Y222
MSTEPGDIVTQGVSW
LAEGWSSVRSPQWLR
90
|
|
HR8011B-255-339-15
DMTF1
Q9Y22
MDEINLILRIAELDV
QKNNPTLLENKSGSG
86
|
|
HR8011B-255-356-15
DMTF1
Q9Y222
MDEINLILRIAELDV
NSNTNSSVQHVQIRV
103
|
|
HR8011B-268-339-15
DMTF1
Q9Y222
MVADENDINWDLLAE
QKNNPTLLENKSGSG
73
|
|
HR8011B-268-356-15
DMTF1
Q9Y222
MVADENDINWDLLAE
NSNTNSSVQHVQIRV
90
|
|
HR6887A-327-385-TEV
DNAIC1
Q96KC8
APEWTEEDLSQLTRS
AKQLKDSVTCSPGMV
59
|
|
HR7581A-1-76-NHT
DNAJC21
Q5F1R6
KCHYEALGVRRDASE
RAWYDNHREALLKGG
75
|
|
HR8109A-314-391-Av6HT
DPF2
Q92785
AAVKTYRWQCIECKC
LLKEKASIYQNQNSS
77
|
|
HR8202A-15-83-Av6HT
DPRX
A6NFQ7
HSHRKRTMFTKKQLE
AKLKKAKCKHIHQKQ
69
|
|
HR7601-1-176-Av6HT
DR1
Q01658
MASSSGNDDDLTIPR
NQAGSSQDEEDDDDI
176
|
|
HR7601-1-176-TEV
DR1
Q01658
ASSSGNDDDLTIPRA
NQAGSSQDEEDDDDI
175
|
|
HR6975A-1-77-TEV
DRAP1
Q14919
PSKKKKYNARFPPAR
KTMTTSHLKQCIELE
76
|
|
HR7517A-25-174-NHT
DUSP12
Q9UNI6
GQMLEVQPGLYFGGA
WQLKLYQAMGYEVDT
150
|
|
HR7523A-86-164-NHT
DUXA
A6NLW8
SQGQDQPGVEFQSRE
QNRRSRLLLQRKREP
79
|
|
HR4713B-251-345-TEV
DVL1
O14640
TVTLNMERHHFLGIS
ISLTVAKCWDPTPRS
95
|
|
HR5191A-15
DVL1L1
P54792
MTVTLNMERHHFLGI
ISLTVAKAWDPTPRS
96
|
|
HR4606C-408-551-14
DVL2
O14641
MLPDGCEGRGLSVHT
APLPGATPWPLLPTF
145
|
|
HR4606C-412-526-14
DVL2
O14641
MCEGRGLSVHTDMAS
CESYLVNLSLNDNDG
116
|
|
HR4606C-417-519-14
DVL2
O14641
MLSVHTDMASVTKAM
FGDLSGGCESYLVNL
104
|
|
HR4606C-417-551-14
DVL2
O14641
MLSVHTDMASVTKAM
APLPGATPWPLLPTF
136
|
|
HR4606D-260-358-TEV
DVL2
O14641
TMSLNIITVTLNMEK
PGPIVLTVAKCWDPS
99
|
|
HR5528A-14
DVL2
O14641
MTITSGSSLPDGCEG
SEQCYYVFGDLSGGC
113
|
|
HR5528A-15
DVL2
O14641
MTITSGSSLPDGCEG
SEQCYYVFGDLSGGC
113
|
|
HR7051A-248-338-TEV
DVL3
Q92997
ITVTLNMEKYNFLGI
HKPGPITLTVAKGWD
91
|
|
HR7051B-397-504-15
DVL3
Q92997
MDTERLDDFHLSIHS
CYYIFGDLCGNMANL
109
|
|
HR7051B-397-511-15
DVL3
Q92997
MDTERLDDFHLSIHS
LCGNMANLSLHDHDG
116
|
|
HR7051B-397-530-15
DVL3
Q92997
MDTERLDDFHLSIHS
SDQDTLAPLPHPGAA
135
|
|
HR7051B-403-504-15
DVL3
Q92997
MDFHLSIHSDMAAIV
CYYIFGDCGGNMANL
103
|
|
HR7051B-403-530-15
DVL3
Q92997
MDFHLSIHSDMAAIV
SDQDTLAPLPHPGAA
129
|
|
HR7051C-1-79-TEV
DVL3
Q92997
GETKIIYHLDGQETP
AKLPCFNGRVVSWLV
78
|
|
HR4672B-14
E2F1
Q01094
PGEKSRYETSLNLTT
QGPIDVFLCPEETVG
183
|
|
HR4672C-116-196-14
E2F1
Q01094
MGKGVKSPGEKSRYE
KKSKNHIQWLGSHTT
82
|
|
HR4672C-121-192-14
E2F1
Q01094
MSPGEKSRYETSLNL
QLIAKKSKNHIQWLG
73
|
|
HR4672C-122-196-14
E2F1
Q01094
MPGEKSRYETSLNLT
KKSKNHIQWLGSHTT
76
|
|
HR4672C-127-192-14
E2F1
Q01094
MRYETSLNLTTKRFL
QLIAKKSKNHIQWLG
67
|
|
HR4672C-147-192-14
E2F1
Q01094
MADGVVDLNWAAEVL
QLIAKKSKNHIQWLG
47
|
|
HR4672D-192-301-TEV
E2F1
Q01094
GSHTTVGVGGRLEGL
KSKQGPIDVFLCPEE
110
|
|
HR6383-65-437-14
E2F2
Q14209
ATPHGPEGQVVRCLP
SDLFDSYDLGDLLIN
373
|
|
HR6383-70-437-14
E2F2
Q14209
PEGQVVRCLPAGRLP
SDLFDSYDLGDLLIN
368
|
|
HR6383A-195-308-15
E2F2
Q14209
RGMFEDPTRPGKQQQ
TQGPIEVYLCPEEVQ
114
|
|
HR6383A-198-296-15
E2F2
Q14209
FEDPTRPGKQQQLGQ
RTEDNLQIYLKSTQG
99
|
|
HR6383B-114-200-15
E2F2
Q14209
MGLPSPKTPKSPGEK
AKNNIQWVGRGMFED
88
|
|
HR6383B-114-204-15
E2F2
Q14209
MGLPSPKTPKSPGEK
IQWVGRGMFEDPTRP
92
|
|
HR6383B-119-195-15
E2F2
Q14209
MKTPKSPGEKTRYDT
LIRKKAKNNIQWVGR
78
|
|
HR6383B-119-195-Av6HT
E2F2
Q14209
KTPKSPGEKTRYDTS
LIRKKAKNNIQWVGR
77
|
|
HR6383B-119-115-TEV
E2F2
Q14209
KTPKSPGEKTRYDTS
LIRKKAKNNIQWVGR
77
|
|
HR6383C-126-200-15
E2F2
Q14209
MEKTRYDTSLGLLTK
AKNNIQWVGRGMFED
76
|
|
HR6383C-131-195-15
E2F2
Q14209
MDTSLGLLTKKFIYL
LIRKKAKNNIQWVGR
66
|
|
HR6383C-131-202-15
E2F2
Q14209
MDTSLGLLTKKFIYL
NNIQWVGRGMFEDPT
73
|
|
HR4418C-14
E2F3
O00716
KTRYDTSLGLLTKKF
QGPIEVYLCPEETET
182
|
|
HR4418D-14
E2F3
O00716
NNVQWMGCSLSEDGG
LCPEETETHSPMKTN
128
|
|
HR4470C-84-203-14
E2F4
Q16254
MVGPGCNTREIADKL
PIEVLLVNKEAWSSP
121
|
|
HR4470C-89-200-14
E2F4
Q16254
MNTREIADKLIELKA
VSGPIEVLLVNKEAW
113
|
|
HR4470D-11-86-TEV
E2F4
Q16254
PPGTPSRHEKSLGLL
EKKSKNSIQWKGVGP
76
|
|
HR4678B-113-232-14
E2F5
Q15329
MQWKGVGAGCNTKEV
KSHSGPIHVLLINKE
121
|
|
HR4678B-119-232-14
E2F5
Q15329
MAGCNTKEVIDRLRY
KSHSGPIHVLLINKE
115
|
|
HR4622-1-237-15
E2F6
O75461
MSQQRPARKLPSLLL
HIRSTNGPIDVYLCE
237
|
|
HR4622-1-242-15
E2F6
O75461
MSQQRPARKLPSLLL
NGPIDVYLCEVEQGQ
242
|
|
HR4622-19-242-15
E2F6
O75461
MEETVRRRCRDPINV
NGPIDVYLCEVEQGQ
225
|
|
HR4622-19-281-15
E2F6
O75461
MEETVRRRCRDPINV
EENPQQSEELLEVSN
264
|
|
HR4622-24-237-15
E2F6
O75461
MRRCRDPINVEGLLP
HIRSTNGPIDVYLCE
215
|
|
HR4622-24-281-15
E2F6
O75461
MRRCRDPINVEGLLP
EENPQQSEELLEVSN
259
|
|
HR4622-24-281-Av6HT
E2F6
O75461
RRCRDPINVEGLLPS
EENPQQSEELLEVSN
258
|
|
HR4622-24-281-TEV
E2F6
O75461
RRCRDPINVEGLLPS
EENPQQSEELLEVSN
258
|
|
HR4622B-128-247-15
E2F6
O75461
GSDLSNFGAVPQQKK
VYLCEVEQGQTSNKR
120
|
|
HR46228-133-243-15
E2F6
O75461
NFGAVPQQKKLQEEL
GPIDVYLCEVEQGQT
111
|
|
HR4622C-127-242-15
E2F6
O75461
IGSDLSNFGAVPQQK
NGPIDVYLCEVEQGQ
116
|
|
HR4622C-132-237-15
E2F6
O75461
SNFGAVPQQKKLQEE
HIRSTNGPIDVYLCE
106
|
|
HR4622D-54-137-15
E2F6
O75461
RKALKVKRPRFDVSL
HIRWIGSDLSNFGAV
84
|
|
HR4622D-54-180-15
E2F6
O75461
RKALKVKRPSFDVSL
QQLFELTDDKENERL
127
|
|
HR4622D-54-242-15
E2F6
O75461
RKALKVKRPRFDVSL
NGPIDVYLCEVEQGQ
189
|
|
HR4622D-58-132-15
E2F6
O75461
KVKRPRFDVSLVYLT
KKSKNHIRWIGSDLS
75
|
|
HR4622D-58-175-15
E2F6
O75461
KVKRPRFDVSLVYLT
IKDCAQQLFELTDDK
118
|
|
HR4622D-58-237-15
E2F6
O75461
KVKRPRFDVSLVYLT
HIRSTNGPIDVYLCE
180
|
|
HR8499A-141-251-Av6HT
E2F7
Q96AV8
SRKQKSLGLLCQKFL
YLQQKELDLIDYKFG
111
|
|
HR7611A-112-223-NHT
E2F8
A0AVK6
SRKEKSLGLLCHKFL
IKKKEYEQEFDFIKS
112
|
|
HR8342-1-508-Av6HT
E4F1
Q66K89
EGAMAVRVTAAHTAE
GDCGKLYKTIAHVRG
507
|
|
HR8342-1-600-Av6HT
E4F1
Q66K89
EGAMAVRVTAAHTAE
EHGTLNRHLRTKGGC
599
|
|
HR8342A-522-586-15
E4F1
Q66K89
MPKCGKRYKTKNAQQ
EKPFKCYKCGRGFAE
66
|
|
HR8342A-523-600-15
E4F1
Q66K89
MKCGKRYKTKNAQQV
EHGTLNRHLRTKGGC
79
|
|
HR8342A-527-581-15
E4F1
Q66K89
MRYKTKNAQQVHFRT
RHHTGEKPFKCYKCG
56
|
|
HR8342A-527-600-15
E4F1
Q66K89
MRYKTKNAQQVHFRT
EHGTLNRHLRTKGGC
75
|
|
HR8342B-51-219-15
E4F1
Q66K89
MEEDEDDVHRCGRCQ
SILKAHMVTHSSRKD
170
|
|
HR8342B-51-231-15
E4F1
Q66K89
MEEDEDDVHRCGRCQ
RKDHECKLCGASFRT
182
|
|
HR8342B-51-249-15
E4F1
Q66K89
MEEDEDDVHRCGRCQ
LIRHHRRHTDERPYK
200
|
|
HR8342B-56-214-15
E4F1
Q66K89
MDVHRCGRCQAEFTA
TFKTGSILKAHMVTH
160
|
|
HR8342B-56-226-15
E4F1
Q66K89
MDVHRCGRCQAEFTA
VTHSSRKDHECKLCG
172
|
|
HR8342B-56-244-15
E4F1
Q66K89
MDVHRCGRCQAEFTA
RTKGSLIRHHRRHTD
190
|
|
HR3014A-10-250-TEV
EBF1
Q9UH73
RSGSSMKEEPLGSGM
NNSKHGRRARRLDPS
241
|
|
HR7745A-10-250-TEV
EBF3
Q9H4W6
RGGTTMKEEPLGSGM
NNSKHGRRARRLDPS
241
|
|
HR6883A-10-251-TEV
EBF4
Q9BQW3
NLKEEPLLPAGLGSV
HGRRARRLDPSEAAT
242
|
|
HR7307A-71-148-Av6HT
EDF1
O60869
MDRVTLEVGKVIQQG
GKDIGKPIEKGPRAK
79
|
|
HR7307A-71-148-TEV
EDF1
O60869
DRVTLEVGKVIQQGR
GKDIGKPIEKGPRAK
78
|
|
HR7944A-1347-1411-TEV
EEA1
Q15075
RKWAEDNEVQNCMAC
KPVRVCDACFNDLQG
65
|
|
HR4555D-366-418-Av6HT
EGR1
P18146
MKPFQCRICMRNFSR
KFARSDERKRHTKIH
54
|
|
HR4555D-366-418-TEV
EGR1
P18146
KPFQCRICMRNFSRS
KFARSDERKRHTKIH
53
|
|
HR8206A-368-420-TEV
EGR2
P11161
KPFQCRICMRNFSRS
KFARSDERKRHTKIH
53
|
|
HR8198A-273-328-TEV
EGR3
Q06889
RPHACPAEGCDRRFS
FSRSDHLTTHIRTHT
56
|
|
HR8048A-204-299-TEV
EHF
Q9NZC4
PRGTHLWEFIRDILL
VYKFGKNARGWRENE
96
|
|
HR7395A-770-879-NHT
EIF3C
Q99613
PEADKVRTMLVRKIQ
SLVENNERVFDHKQG
110
|
|
HR2095-14
EIF3K
Q9UBQ5
MAMFEQMRANVGKLL
KIDFDSVSSIMASSQ
218
|
|
HR564-14
EIF3K
Q9UBQ5
MAMFEQMRANVGKLL
KIDFDSVSSIMASSQ
218
|
|
HR6332A-198-348-15
ELF1
P32519
KKNKDGKGNTIYLWE
SPGVKGGATTVLKPG
151
|
|
HR6332A-198-353-15
ELF1
P32519
KKNKDGKGNTIYLWE
GGATTVLKPGNSKAA
156
|
|
HR6332A-203-348-15
ELF1
P32519
GKGNTIYLWEFLLAL
SPGVKGGATTVLKPG
146
|
|
HR6332B-152-304-15
ELF1
P32519
ETQQVQEKYADSPGA
KEMPKDLIYINDEDP
153
|
|
HR6332B-157-299-15
ELF1
P32519
QEKYADSPGASSPEQ
LVYQFKEMPKDLIYI
143
|
|
HR6332B-157-304-15
ELF1
P32519
QEKYADSPGASSPEQ
KEMPKDLIYINDEDP
148
|
|
HR6332B-198-304-15
ELF1
P32519
KKNKDGKGNTIYLWE
KEMPKDLIYINDEDP
107
|
|
HR6332C-203-353-15
ELF1
P32519
GKGNTIYLWEFLLAL
GGATTVLKPGNSKAA
151
|
|
HR7067A-150-308-15
ELF2
Q15723
MLWEFLLDLLQDKNT
GVARVVNITSPGHDA
160
|
|
HR7067A-157-303-15
ELF2
Q15723
MLLQDKNTCPRYIKW
SRAEKGVARVVNITS
148
|
|
HR7067A-200-308-15
ELF2
Q15723
MNYETMGRALRYYYQ
GVARVVNITSPGHDA
110
|
|
HR7867A-45-132-TEV
ELF3
P78545
SNPQMSLEGTEKASW
GDQLHAQLRDLTSSS
88
|
|
HR7867B-269-371-TEV
ELF3
P78545
APRGTHLWEFIRDIL
NSSGWKEEEVLQSRN
103
|
|
HR8186A-1-104-TEV
ELF4
Q99607
AITLQPSDLIFEFAS
HTMSTAEVLLNMESP
103
|
|
HR8186A-1-87-TEV
ELF4
Q99607
AITLQPSDLIFEFAS
QILEGSFLLTDDNEA
86
|
|
HR8186A-1-94-TEV
ELF4
Q99607
AITLQPSDLIFEFAS
LLTDDNEATSHTMST
93
|
|
HR7396A-166-265-TEV
ELF5
Q9UKW6
SRTSLQSSHLWEFVR
YKFGKNAHGWQEDKL
100
|
|
HR7616A-1-93-TEV
ELF3
P41970
ESAITLWQFLLQLLL
KFVYKFVSFPEILKM
92
|
|
HR4449C-1-93-TEV
ELK4
P28324
DSAITLWQFLLQLLQ
KFVYKFVSYPEILNM
92
|
|
HR8153A-249-313-Av6HT
EN2
P19622
TAFTAEQLQRLKAEF
IKKATGNKNTLAVHL
66
|
|
HR7174A-264-457-Av6HT
EOMES
O95936
GFRAHVYLCNRPLWL
LKIDHNPFAKGFRDN
194
|
|
HR4540F-1221-1288-14
EP300
Q09472
MQPQTTINKEQFSKR
GCLKKSARTRKENKF
69
|
|
HR4540F-1226-1281-14
EP300
Q09472
MINKEQFSKRKNDTL
PAGFVCDGCLKKSAR
57
|
|
HR4540F-1236-1281-14
EP300
Q09472
MNDTLDPELFVECTE
PAGFVCDGCLKKSAR
47
|
|
HR4540G-323-423-TEV
EP300
Q09472
GSGAHTADPEKRKLI
HDCPVCLPLKNAGDK
100
|
|
HR4540H-1045-1161-Av6HT
EP300
Q09472
KKKIFKPEELRQALM
EVFEQEIDPVMQSLG
117
|
|
HR4540I-1726-1817-Av6HT
EP300
Q09472
SPGDSRRLSIQRCIQ
VPFCLNIKQKLRQQQ
92
|
|
HR4540J-1135-1205-15
EP300
Q09472
MTSRVYKYCSKLSEV
YYSYQNRYHFCEKCF
72
|
|
HR4540J-1135-1220-15
EP300
Q09472
MTSRVYKYCSKLSEV
NEIQGESVSLGDDPS
87
|
|
HR4540J-1165-1205-15
EP300
Q09472
MGRKLEFSPQTLCCY
YYSYQNRYHFCEKCF
42
|
|
HR4540J-1165-1220-15
EP300
Q09472
MGRKLEFSPQTLCCY
NEIQGESVSLGDDPS
57
|
|
HR7040A-1285-1379-Av6HT
EP400
Q96L91
HVLKCRLSNRQKALY
RDFWKEADLSMFDLI
95
|
|
HR8188A-239-350-TEV
EPAS1
Q99814
LDSKTFLSRHSMDMK
CIMCVNYVLSEIEKN
112
|
|
HR6944A-8-123-Av6HT
ERF
P50548
GFAFPDWAYKPESSP
NKLVLVNYPFIDVGL
116
|
|
HR6944A-8-160-NHT
ERF
P50548
GFAFPDWAYKPESSP
PSTPSEVLSPTEDPR
153
|
|
HR6944B-24-123-Av6HT
ERF
P50548
SRQIQLWHFILELLR
NKLVLVNYPFIDVGL
109
|
|
HR6944B-24-160-Av6HT
ERF
P50548
SRQIQLWHFILELLR
PSTPSEVLSPTEDPR
137
|
|
HR4801B-180-254-TEV
ESR1
P03372
KETRYCAVCNDYASG
CRLRKGYEVGMMKGG
75
|
|
HR4685B-144-218-TEV
ESR2
Q92731
RDAHFCAVCSDYASG
CRLRKCYEVGMVKCG
75
|
|
HR7097A-77-146-15
ESRRA
P11474
MRLCLVCGDVASGYH
QACRFTKCLRVGMLK
71
|
|
HR7097A-77-146-Av6HT
ESRRA
P11474
RLCLVCGDVASGYHY
QACRFTKCLRVGMLK
70
|
|
HR7097A-77-146-TEV
ESRRA
P11474
RLCLVCGDVASGYHY
QACRFTKCLRVGMLK
70
|
|
HR7097A-77-168-15
ESRRA
P11474
MRLCLVCGDVASGYH
VRGGRQKYKRRPEVD
93
|
|
HR7097A-77-168-Av6HT
ESRRA
P11474
RLCLVCGDVASGYHY
VRGGRQKYKRRPEVD
92
|
|
HR7097A-77-168-TEV
ESRRA
P11474
RLCLVCGDVASGYHY
VRGGRQKYKRRPEVD
92
|
|
HR7097B-179-423-15
ESRRA
P11474
MGPLAVAGGPRKTAA
PMHKLFLEMLEAMMD
246
|
|
HR7097B-179-423-Av6HT
ESRRA
P11474
GPLAVAGGPRKTAAP
PMHKLFLEMLEAMMD
245
|
|
HR7097B-179-423-TEV
ESRRA
P11474
GPLAVAGGPRKTAAP
PMHKLFLEMLEAMMD
245
|
|
HR7097C-193-423-15
ESRRA
P11474
MPVNALVSHLLVVEP
PMHKLFLEMLEAMMD
232
|
|
HR7097C-193-423-Av6HT
ESRRA
P11474
PVNALVSHLLVVEPE
PMHKLFLEMLEAMMD
231
|
|
HR7097C-193-423-TEV
ESRRA
P11474
PVNALVSHLLVVEPE
PMHKLFLEMLEAMMD
231
|
|
HR8438A-101-433-15
ESRRB
O95718
MRLCLVCGDIASGYH
VPMHKLFLEMLEAKA
334
|
|
HR8438A-78-435-15
ESRRB
O95718
MDCASGIMEDSAIKC
MHKLFLEMLEAKAWA
359
|
|
HR8438B-169-433-15
ESRRB
O95718
MLKEGVRLDRVRGGR
VPMHKLFLEMLEAKA
266
|
|
HR8438B-182-433-15
ESRRB
O95718
MRQKYKRRLDSESSP
VPMHKLFLEMLEAKA
253
|
|
HR8438B-203-433-15
ESRRB
O95718
MPPAKKPLTKIVSYL
VPMHKLFLEMLEAKA
232
|
|
HR7566D-122-219-Av6HT
ESRRG
P62508
MSMPKRLCLVCGDIA
GGRQKYKRRIDAENS
99
|
|
HR7566D-122-219-TEV
ESRRG
P62508
SMPKRLCLVCGDIAS
GGRQKYKRRIDAENS
98
|
|
HR6900A-130-214-NHT
ESX1
Q8N693
AEGPQPPERKRRRRT
VLMLRNTATADLAHP
85
|
|
HR8013A-320-415-Av5HT
ETS1
P14921
VIPAAALAGYTGSGP
IIHKTAGKRYVYRFV
96
|
|
HR8013A-320-415-TEV
ETS1
P14921
VIPAAALAGYTGSGP
IIHKTAGKRYVYRFV
96
|
|
HR5529-1-329-15
ETS2
P15036
MNDFGIKNMDQVAPV
EDDCSQSLCLNKPTM
329
|
|
HR5529A-14
ETS2
P15036
MHDSANCELPLLTPC
EHLEQMIKENQEKTE
116
|
|
HR5529A-15
ETS2
P15036
MHDSANCELPLLTPC
EHLEQMIKENQEKTE
116
|
|
HR8505A-240-333-Av6HT
ETV2
O00321
IQLWQFLLELLHDGA
FGGRVPSLAYPDCAG
94
|
|
HR7364A-15-174-NHT
ETV3
P41162
GGYQFPDWAYKTESS
PTNDVQPGRFSASSL
160
|
|
HR6967A-1-136-NHT
ETV3L
Q6ZN32
HCSCLAEGIPANPGN
SKLIVVNYPLWEVRA
135
|
|
HR5533A-14
ETV4
P43268
MREGPPYQRRGALQL
QRPALKAEFDRPVSE
122
|
|
HR5533A-15
ETV4
P43268
MREGPPYQRRGALQL
QRPALKAEFDRPVSE
122
|
|
HR8084A-311-445-Av6HT
ETV4
P43268
CVVPEKFEGDIKQEG
AFPDNQRPALKAEFD
135
|
|
HR7423A-333-470-NHT
ETV5
P41161
LYFDDTCVVPERLEG
SMAFPDNQRPFLKAE
138
|
|
HR6884A-338-443-TEV
ETV6
P41212
CRLLWDYVYQLLSDS
GRTDRLEHLESQELD
106
|
|
HR6884B-47-129-TEV
ETV6
P41212
SIRLPAHLRLQPIYW
ELLQHILKQRKPRIL
83
|
|
HR7437A-8-133-NHT
ETV7
Q9Y603
ISPISPVAAMPPLGT
ALVCGPFFGGIFRLK
126
|
|
HR7509A-183-242-TEV
EVX1
P49640
RRYRTAFTREQIARL
KVWFQNRRMKDKRQR
59
|
|
HR7284A-188-247-TEV
EVX2
Q03828
VRRYRTAFTREQIAR
KVWFQNRRMKDKRQR
60
|
|
HR7802A-349-453-TEV
EWSR1
Q01844
PPVDPDEDSDNSAIY
LKVSLARKKPPMNSM
105
|
|
HR7511A-1-99-TEV
EXOC2
Q96KP1
SRSRQPPLVTGISPN
TSTVSFKLLKPEKIG
98
|
|
HR6516A-463-729-NHT
EZH1
Q92800
KTCKQVFQFAVKESL
RAIQAGEELFFDYRY
267
|
|
HR6323-214-746-14
EZH2
Q15910
PPRKFPSDKIFEAIS
DALKYVGIEREMEIP
533
|
|
HR7273-1-589-TEV
FARSB
Q9NSD9
PTVSVKRDLLFQALG
TMPCSSLEINVGPFL
588
|
|
HR8271C-2054-2125-NHT
FBN1
P35555
QDLRMSYCYAKFEGG
CPYGSGIIVGPDDSA
72
|
|
HR6868A-99-166-NHT
FERD3L
Q96RJ6
TYAQRQAANIRERKR
FMTELLESCEKKESG
68
|
|
HR6882A-43-139-TEV
FEV
Q99581
GSGQIQLWQFLLELL
RFDFQGLAQACQPPP
97
|
|
HR6968A-258-310-NHT
FEZF1
A0PJY2
KVFTCEVCGKVFNAH
GFRQASTLCRHKIIH
53
|
|
HR7661A-275-327-NHT
FEZF2
Q8TBJ5
KNFTCEVGGKVFNAH
GFRQASTLCRHKIIH
53
|
|
HR3605C-806-930-14
FGD1
P98174
MRRRSILEKQASVAA
LGRAGRGDTFCPGPT
126
|
|
HR3605C-811-925-14
FGD1
P98174
MLEKQASVAAENSVI
RWMAVLGRAGRGDTF
116
|
|
HR8434A-55-150-Av6HT
FIGLA
Q6QHK4
SSTENLQLVLERRRV
SYSNNSSESHTSSAR
96
|
|
HR8078A-77-129-Av6HT
FIZ1
Q96SL8
RPYRCSACPKGFRDS
RFSSRSSLGRHLKRQ
53
|
|
HR4739B-114-198-Av6HT
FLI1
Q01543
MPPNMTTNERRVIVP
TEVLLSHLSYLRESS
86
|
|
HR4739B-114-198-TEV
FLI1
Q01543
PPNMTTNERRVIVPA
TEVLLSHLSYLRESS
85
|
|
HR6395-41-355-15
FOS
P01100
MGSPVNAQDFCTDLA
FVFTYPEADSFPSCA
316
|
|
HR6395-41-361-15
FOS
P01100
MGSPVNAQDFCTDLA
EADSFPSCAAAHRKG
322
|
|
HR6395-46-350-15
FOS
P01100
MAQDFCTDLAVSSAN
AYTSSFVFTYPEADS
306
|
|
HR6395-46-361-15
FOS
P01100
MAQDFCTDLAVSSAN
EADSFPSCAAAHRKG
317
|
|
HR3160-41-293-15
FOSL2
P15408
MPGSGSAFIPTINAI
NLVFTYPSVLEQESP
254
|
|
HR3160-44-288-15
FOSL2
P15408
MGSAFIPTINAITTS
TPGTSNLVFTYPSVL
246
|
|
HR7662A-167-264-NHT
FOXA1
P55317
PHAKPPYSYISLITM
SGNMFENGCYLRRQK
98
|
|
HR7840A-114-211-NHT
FOXA3
P55318
AHAKPPYSYISLITM
SGNMFENGCYLRRQK
98
|
|
HR7656A-11-100-NHT
FOXB1
Q99853
DQKPPYSYISLTAMA
FWALHPSCGDMFENG
90
|
|
HR7565A-15-100-NHT
FOXB2
Q5VYV0
PYSYISLTAMAIQHS
FWALHPDCGDMFENG
86
|
|
HR8399A-76-168-TEV
FOXC1
Q12948
VKPPYSYIALITMAI
LDPDSYNMFENGSFL
92
|
|
HR6945A-70-162-TEV
FOXC2
Q99958
LVKPPYSYIALITMA
LDPDSYNMFENGSFL
93
|
|
HR8366A-126-222-NHT
FOXD2
O60548
VKPPYSYIALITMAI
ADMFDNGSFLRRRKR
97
|
|
HR8366A-126-222-TEV
FOXD2
O60548
VKPPYSYIALITMAI
ADMFDNGSFLRRRKR
97
|
|
HR7150A-140-236-Av6HT
FOXD3
Q9UJU5
VKPPYSYIALITMAI
EDMFDNGSFLRRRKR
97
|
|
HR7150A-140-236-TEV
FOXD3
Q9UJU5
VKPPYSYIALITMAI
EDMFDNGSFLRRRKR
97
|
|
HR7841A-104-204-TEV
FOXD4
Q12950
KPPSSYIALITMAIL
NGSFLRRRKRFQRHQ
101
|
|
HR6889A-107-207-TEV
FOXD4L1
Q9NU39
KPPSSYIALITMAIL
NGSFLRRRKRFKRHQ
101
|
|
HR8496-108-208-Av6HT
FOXD4L3
Q6VB84
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101
|
|
HR7982-108-208-Av6HT
FOXD4L4
Q6VB85
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101
|
|
HR7029A-108-208-TEV
FOXD4L5
Q5VV16
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101
|
|
HR7874-108-208-Av6HT
FOXD4L6
Q3SYB3
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101
|
|
HR5544A-14
FOXE1
O00358
MAGAGVPGEATGRGA
FLRRRKRFKRSDLST
131
|
|
HR5544A-15
FOXE1
O00358
MAGAGVPGEATGRGA
FLRRRKRFKRSDLST
131
|
|
HR6991A-51-146-NHT
FOXE1
O00358
RGKPPYSYIALIAMA
NAEDMFESGSFLRRR
96
|
|
HR7179A-69-165-NHT
FOXE3
Q13461
RGKPPYSYIALIAMA
AADMFDNGSFLRRRK
97
|
|
HR8233A-48-138-15
FOXF1
Q12946
MKPPYSYIALIVMAI
IDPASEFMFEEGSFR
92
|
|
HR8233A-48-138-Av6HT
FOXF1
Q12946
KPPYSYIALIVMAIQ
IDPASEFMFEEGSFR
91
|
|
HR7975A-101-190-Av6HT
FOXF2
Q12947
PPYSYIALIVMAIQS
IDPASEFMFEEGSFR
90
|
|
HR4505B-182-298-14
FOXG1
P55316
PPFSYNALIMMAIRQ
LAFKRGARLTSTGLT
117
|
|
HR4505B-183-294-14
FOXG1
P55316
PFSYNALIMMAIRQS
SRAKLAFKRGARLTS
112
|
|
HR4505C-183-276-Av6HT
FOXG1
P55316
PFSYNALIMMAIRQS
DDVFIGGTTGKLRRR
94
|
|
HR5526A-14
FOXH1
O75593
MYLRHDKPPYTYLAM
RLQNTALCRRWQNGG
109
|
|
HR5526A-15
FOXH1
O75593
MYLRHDKPPYTYLAM
RLQNTALCRRWQNGG
109
|
|
HR8014A-138-239-Av6HT
FOXI3
A8MTJ6
EDLMKMVRPPYSYSA
CEKMFDNGNFRRKRK
102
|
|
HR6903A-121-211-NHT
FOXJ1
Q92949
KPPYSYATLICMAMQ
IDPQYAERLLSGAFK
91
|
|
HR8000A-64-153-Av6HT
FOXJ2
Q9P0K8
DGKPRYSYATLITYA
YWTIDTCPDISRKRR
90
|
|
HR7453A-82-173-NHT
FOXJ3
Q9UPW0
SYASLITFAINSSPK
KEDVLPTRPKKRARS
92
|
|
HR7148A-303-403-TEV
FOXK1
P85037
ESKPPFSYAQLIVQA
LVEQAFRKRRQRGVS
101
|
|
HR8426A-256-353-Av6HT
FOXK2
Q01167
MDSKPPYSYAQLIVQ
ESKLIEQAFRKRRPR
99
|
|
HR8426A-256-353-TEV
FOXK2
Q01167
DSKPPYSYAQLIVQA
ESKLIEQAFRKRRPR
98
|
|
HR8426B-34-133-Av6HT
FOXK2
Q01167
GWAVARLEGREFEYL
NGVFVDGVFQRRGAP
100
|
|
HR8426B-34-153-Av6HT
FOXK2
Q01167
GWAVARLEGREFEYL
RVCTFRFPSTNIKIT
120
|
|
HR8426B-58-139-TEV
FOXK2
Q01167
RNSSQGSVDVSMGHS
GVFQRRGAPPLQLPR
82
|
|
HR8426B-58-143-TEV
FOXK2
Q01167
RNSSQGSVDVSMGHS
RRGAPPLQLPRVCTF
86
|
|
HR8426B-63-133-TEV
FOXK2
Q01167
GSVDVSMGHSSFISR
NGVFVDGVFQRRGAP
71
|
|
HR8426B-63-139-TEV
FOXK2
Q01167
GSVDVSMGHSSFISR
GVFQRRGAPPLQLPR
77
|
|
HR8426B-63-153-Av6HT
FOXK2
Q01167
GSVDVSMGHSSFISR
RVCTFRFPSTNIKIT
91
|
|
HR8426B-70-133-Av6HT
FOXK2
Q01167
GHSSFISRRHLEIFT
NGVFVDGVFQRRGAP
64
|
|
HR8426B-70-153-Av6HT
FOXK2
Q01167
GHSSFISRRHLEIFT
RVCTFRFPSTNIKIT
84
|
|
HR7608A-10-139-Av6HT
FOXL1
Q12952
PALAASPMLYLYGPE
LDPRCLDMFENGNYR
130
|
|
HR7608A-43-139-15
FOXL1
Q12952
MRAETPQKPPYSYIA
LDPRCLDMFENGNYR
98
|
|
HR7608A-48-111-15
FOXL1
Q12952
MQKPPYSYIALIAMA
IRHNLSLNDCFVKVP
65
|
|
HR7608A-48-139-15
FOXL1
Q12952
MQKPPYSYIALIAMA
LDPRCLDMFENGNYR
93
|
|
HR7608B-10-134-Av6HT
FOXL1
Q12952
PALAASPMLYLYGPE
GSYWTLDPRCLDMFE
125
|
|
HR7608B-50-164-Av6HT
FOXL1
Q12952
PPYSYIALIAMAIQD
GAPEAKRPRAETHQR
115
|
|
HR7161A-56-143-NHT
FOXL2
P58012
PYSYVALIAMAIRES
TLDPACEDMFEKGNY
88
|
|
HR6909A-222-360-Av6HT
FOXM1
Q08050
MPSRPSASWQNSVSE
NPELRRNMTIKTELP
140
|
|
HR6909A-222-360-TEV
FOXM1
Q08050
PSRPSASWQNSVSER
NPELRRNMTIKTELP
139
|
|
HR7300A-268-368-NHT
FOXN1
Q15353
LFPKPIYSYSILIFM
DKMQEELQKWKRKDP
101
|
|
HR7988A-110-208-Av6HT
FOXN2
P32314
TSKPPYSFSLLIYMA
KPNLIQALKKQPFSS
99
|
|
HR6979A-111-207-NHT
FOXN3
Q00409
PNCKPPYSFSCLIFM
PEYRQNLIQALKKTP
97
|
|
HR7465A-193-285-NHT
FOXN4
Q96NZ1
KPIYSYSCLIAMALK
NLARIDKMEEEMHKW
93
|
|
HR4552B-151-249-TEV
FOXO1
Q12778
KSSSSRRNAWGNLSY
SWWMLNPEGGKSGKS
99
|
|
HR5548A-14
FOXO1
Q12778
MPPAAAGPLAGQPRK
SKFAKSRSRAAKKKA
139
|
|
HR5548A-15
FOXO1
Q12778
MPPAAAGPLAGQPRK
SKFAKSRSRAAKKKA
139
|
|
HR5549A-14
FOXO3
O43524
MLPPPQPGAAGGSGQ
NKYTKSRGRAAKKKA
141
|
|
HR5549A-15
FOXO3
O43524
MLPPPQPGAAGGSGQ
NKYTKSRGRAAKKKA
141
|
|
HR4610C-102-197-TEV
FOXO4
P98177
GNQSYAELISQAIES
EGGKSGKAPRRRAAS
96
|
|
HR7590A-462-548-TEV
FOXP1
Q9H334
AEVRPPFTYASLIRQ
WTVDEVEFQKRRPQK
87
|
|
HR7934A-501-587-TEV
FOXP2
O15409
DVRPPFTYATLIRQA
TVDEVEYQKRRSQKI
87
|
|
HR6897A-464-550-TEV
FOXP4
Q8IVH2
ADVRPPFTYASLIRQ
WTVDEREYQKRRPPK
87
|
|
HR8323A-118-217-NHT
FOXQ1
Q9C009
PKPPYSYIALIAMAI
TFADGVFRRRRKRLS
100
|
|
HR8323A-118-217-TEV
FOXQ1
Q9C009
PKPPYSYIALIAMAI
TFADGVFRRRRKRLS
100
|
|
HR7058A-170-271-NHT
FOXR1
Q6PIV2
LWSRPPLNYFHLIAL
GHRRFAEEARALAST
102
|
|
HR8252A-189-311-Av6HT
FOXR2
Q6PJQ5
SWQRPPLNCSHLIAL
ECMSQPELLTSLFDL
123
|
|
HR7804A-20-110-NHT
FOXS1
O43638
PYSYIALIAMAIQSS
PDCHDMFEHGSFLRR
91
|
|
HR8359A-35-121-TEV
GABPA
Q06546
AECVSQAIDINEPIG
KLNILEIVKPADTVE
87
|
|
HR7128A-251-311-TEV
GATA1
P15976
SKRAGTQCTNCQTTT
MRKDGIQTRNRKASG
61
|
|
HR4414D-340-402-TEV
GATA2
P23769
SAARRAGTCCANCQT
MKKEGIQTRNRKMSN
63
|
|
HR7641A-308-370-TEV
GATA3
P23771
LSAARRAGTSCANCQ
TMKKEGIQTRNRKMS
63
|
|
HR4783B-262-321-TEV
GATA4
P43694
SASRRVGLSCANCQT
PLAMRKEGIQTRKRK
60
|
|
HR8231A-242-324-15
GBX1
Q14549
MTGAEEGAPVTAGVT
QNRRAKWKRIKAGNV
84
|
|
HR8231A-242-324-Av6HT
GBX1
Q14549
TGAEEGAPVTAGVTA
QNRRAKWKRIKAGNV
83
|
|
HR6959A-1-173-TEV
GCM1
Q9NP62
EPDDFDSEDKEILSW
TKLEAEARRAMKKVN
172
|
|
HR8430A-6-165-Av6HT
GCM2
O75603
VQEAVGVCSYGMQLS
FQAKGVHDHPRPESK
160
|
|
HR4429D-233-303-14
GFI1
Q99684
MKGAGVKVESELLCT
CGKTFGHAVSLEQHK
72
|
|
HR4429D-233-315-14
GFI1
Q99684
MKGAGVKVESELLCT
QHKAVHSQERSFDCK
84
|
|
HR4429D-238-298-14
GFI1
Q99684
MKVESELLCTRLLLG
FACEMCGKTFGHAVS
62
|
|
HR4429D-238-310-14
GFI1
Q99684
MKVESELLCTRLLLG
AVSLEQHKAVHSQER
74
|
|
HR4429E-311-392-TEV
GFI1
Q99684
SFDCKICGKSFKRSS
SQSSNLITHSRKHTG
82
|
|
HR7937A-234-388-TEV
GLI1
P08151
YVCKLPGCTKRYTDP
RLDQLHQLRPIGTRG
155
|
|
HR7924A-436-590-TEV
GLI2
P10070
ETNCHWEDCTKEYDT
TDPSSLRKHVKTVHG
155
|
|
HR7118A-479-633-TEV
GLI3
P10071
ETNCHWEGCAREFDT
TDPSSLRKHVKTVHG
155
|
|
HR7155A-189-350-NHT
GLIS1
Q8NBF1
RVVAGRQACRWVDCC
PSSLRKHVKAHSAKE
162
|
|
HR7416A-116-298-Av6HT
GLIS2
Q9BZE0
DFQPLRYLDGVPSSF
TRTHYVDKPYYCKMP
183
|
|
HR7416A-116-318-Av6HT
GLIS2
Q9BZE0
DFQPLRYLDGVPSSF
YTDPSSLRKHIKAHG
203
|
|
HR7416A-150-318-Av6HT
GLIS2
Q9BZE0
LTPPKDKCLSPDLPL
YTDPSSLRKHIKAHG
169
|
|
HR7416A-163-298-Av6HT
GLIS2
Q9BZE0
PLPKQLVCRWAKCNQ
TRTHYVDKPYYCKMP
136
|
|
HR7416A-163-318-Av6HT
GLIS2
Q9BZE0
PLPKQLVCRWAKCNQ
YTDPSSLRKHIKAHG
156
|
|
HR7200A-261-553-TEV
GLYR1
Q49A26
GSITPTDKKIGFLGL
QSDNDMSAVYRAYIH
293
|
|
HR7763A-87-182-TEV
GMEB1
Q9Y692
ANEDMEIAYPITCGE
YQHDKVCSNTCRSTK
96
|
|
HR7418A-64-203-NHT
GMEB2
Q9UKD1
AFTASSQLKEAVLVK
LSSPTSAEYIPLTPA
140
|
|
HR7418A-87-176-Av6HT
GMEB2
Q9UKD1
EAEIVYPITCGDSRA
LDFYQHDKVCSNTCR
90
|
|
HR7418A-87-203-Av6HT
GMEB2
Q9UKD1
EAEIVYPITCGDSRA
LSSPTSAEYIPLTPA
117
|
|
HR7418B-64-179-Av6HT
GMEB2
Q9UKD1
AFTASSQLKEAVLVK
YQHDKVCSNTCRSTK
116
|
|
HR7418B-83-179-Av6HT
GMEB2
Q9UKD1
GENLEAEIVYPITCG
YQHDKVCSNTCRSTK
97
|
|
HR7418B-83-203-Av6HT
GMEB2
Q9UKD1
GENLEAEIVYPITCG
LSSPTSAEYIPLTPA
121
|
|
HR8221A-2125-2211-NHT
GON4L
Q3T8J9
PEGEQQPKAAEATVC
RELMQLFHTACEASS
87
|
|
HR7528A-714-848-NHT
GPR155
Q7Z3F1
DKHLIILPFKRRLEF
LQKSPEQSPPAINAN
135
|
|
HR7997A-174-442-Av6HT
GRHL1
Q9NZI5
VYHPEPTERVVVFDR
KIRDEERKQSKRKVS
269
|
|
HR7758A-219-444-Av6HT
GRHL2
Q6ISB3
SFKDAATEKFRSASV
RKQNRKKGKGQASQT
226
|
|
HR7267A-161-223-TEV
GSC
P56915
RRHRTIFTDEQLEAL
KNRRAKWRRQKRSSS
63
|
|
HR8103A-123-177-Av6HT
GSC2
O15499
QRRTRRHRTIFSEEQ
IRLREERVEVWFKNR
55
|
|
HR7705A-139-207-NHT
GSX1
Q9H4S2
SSSNQLPSSKRMRTA
IWFQNRRVKHKKEGK
69
|
|
HR8308A-66-146-TEV
GTF2E2
P29084
ALSGSSGYKFGVLAK
VIDGKYAFKPKYNVR
81
|
|
HR8128A-449-517-Av6HT
GTF2F1
P35269
SGDVQVTEDAVRRYL
ERKMINDKMHFSLKE
69
|
|
HR8128A-449-517-TEV
GTF2F1
P35269
SGDVQVTEDAVRRYL
ERKMINDKMHFSLKE
69
|
|
HR7967A-175-243-TEV
GTF2F2
P13984
RARADKQHVLDMLFS
HKNTWELKPEYRHYQ
69
|
|
HR7205-1-238-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
DESHYKELLTHHLSP
238
|
|
HR7205-1-327-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
VSAPHLARSYHHLFP
327
|
|
HR7205-1-332-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
LARSYHHLFPLDAFQ
332
|
|
HR7205-10-327-15
GTF2H2C
Q6P1K8
MRWEGGYERTWEILK
VSAPHLARSYHHLFP
319
|
|
HR7205-10-395-15
GTF2H2C
Q6P1K8
MRWEGGYERTWEILK
CCPGCIHKIPAPSGV
387
|
|
HR7205-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
CPGCIHKIPAPSGV*
396
|
|
HR7205A-328-386-TEV
GTF2H2C
Q6P1K8
LDAFQEIPLEEYNGE
DVFVHDSLHCCPGCI
59
|
|
HR7205B-10-216-15
GTF2H2C
Q6P1K8
MRWEGGYERTWEILK
SAEVRVCTVLARETG
208
|
|
HR7205B-48-220-15
GTF2H2C
Q6P1K8
MEHHGQVRLGMMRHL
RVCTVLARETGGTYH
174
|
|
HR7205B-48-238-15
GTF2H2C
Q6P1K8
MEHHGQVRLGMMRHL
DESHYKELLTHHLSP
192
|
|
HR7205B-53-216-15
GTF2H2C
Q6P1K8
MVRLGMMRHLYVVVD
SAEVRVCTVLARETG
165
|
|
HR7205B-53-236-15
GTF2H2C
Q6P1K8
MVRLGMMRHLYVVVD
ILDESHYKELLTHHL
185
|
|
HR7205C-1-216-TEV
GTF2H2C
Q6P1K8
DEEPERTKRWEGGYE
SAEVRVCTVLARETG
215
|
|
HR7205C-1-255-TEV
GTF2H2C
Q6P1K8
DEEPERTKRWEGGYE
ASSSSECSLIRMGFP
254
|
|
HR7205C-10-236-TEV
GTF2H2C
Q6P1K8
RWEGGYERTWEILKE
ILDESHYKELLTHHL
227
|
|
HR7205C-10-255-TEV
GTF2H2C
Q6P1K8
RWEGGYERTWEILKE
ASSSSECSLIRMGFP
246
|
|
HR7820A-107-194-TEV
GTF2IRD2
Q86UP8
LRKAVEDYFCFCYGK
NRPFLGPESQLGGPG
88
|
|
HR7355A-318-415-TEV
GTF2IRD2B
Q6EKJ0
NEKERLSSIEKIKQL
KFTVIRPLPGLELSN
98
|
|
HR7357A-130-188-NHT
GTF3A
Q92664
KQYICSFEDCKKTFK
ASPSKLKRHAKAHEG
59
|
|
HR7579A-1-143-NHT
GZF1
Q9H116
ESGAVLLESKSSPFN
KKQMLESVLLELQNF
142
|
|
HR7057A-44-107-Av6HT
H1FX
Q92522
QPGKYSQLVVETIRR
IKALVQNDTLLQVKG
64
|
|
HR7057A-44-123-Av6HT
H1FX
Q92522
QPGKYSQLVVETIRR
GANGSFKLNRKKLEG
80
|
|
HR7057A-61-123-Av6HT
H1FX
Q92522
ERNGSSLAKIYTEAK
GANGSFKLNRKKLEG
63
|
|
HR4599B-103-162-14
HAND2
P61296
MTANRKERRRTQSIN
IAYLMDLLAKDDQNG
61
|
|
HR4798B-422-503-TEV
HBP1
Q50381
SSGTVSATSPNKCKR
ALAEEQKRLNPDCWK
82
|
|
HR7788A-435-507-TEV
HDX
Q7Z353
KYRLMGIEVPPPRGG
SSQEEPNEVVPNDAR
73
|
|
HR7299A-109-148-Av6HT
HES1
Q14469
KYRAGFSECMNEVTR
EVRTRLLGHLANCMT
40
|
|
HR7299A-109-153-Av6HT
HES1
Q14469
KYRAGFSECMNEVTR
LLGHLANCMTQINAM
45
|
|
HR7306A-7-75-NHT
HES2
Q9Y543
AGDAAELRKSLKPLL
EMTVRFLQELPASSW
69
|
|
HR8387-1-122-Av6HT
HES3
Q5TGS1
EKKRRARINVSLEQL
GLGQEAPALFRPCTP
121
|
|
HR6986-1-108-TEV
HES5
Q5TA89
APSTVAVELLSPKEK
WCLQEAVQFLTLHAA
107
|
|
HR6986-1-122-TEV
HES5
Q5TA89
APSTVAVELLSPKEK
ASDTQMKLLYHFQRP
121
|
|
HR6986-49-166-TEV
HES5
Q5TA89
RHQPNSKLEKADILE
AAAAHQPACGLWRPW
118
|
|
HR6986A-11-108-Av6HT
HES5
Q5TA89
LSPKEKNRLRKPVVE
WCLQEAVQFLTLHAA
98
|
|
HR6986A-11-80-Av6HT
HES5
Q5TA89
LSPKEKNRLRKPVVE
VSYLKHSKAFVAAAG
70
|
|
HR6986A-21-108-Av6HT
HES5
Q5TA89
KPVVEKMRRDRINSS
WCLQEAVQFLTLHAA
88
|
|
HR6986A-25-108-Av6HT
HES5
Q5TA89
EKMRRDRINSSIEQL
WCLQEAVQFLTLHAA
84
|
|
HR6872A-108-174-TEV
HESX1
Q9UBX0
GRRPRTAFTQNQIEV
RAKLKRSHRESQFLM
67
|
|
HR7863A-111-167-TEV
HEY1
Q9Y5J3
AGGKGYFDAHALAMD
PLRVRLVSHLNNYAS
57
|
|
HR7070A-110-166-TEV
HEY2
Q9UBP5
GYFDAHALAMDFMSI
RLVSHLSTCATQREA
57
|
|
HR7572A-104-158-15
HEYL
Q9NQ87
MTGFFDARALAVDFR
PVRIRLLSHLNSYAA
56
|
|
HR7572A-77-163-15
HEYL
Q9NQ87
MQGSSKLEKAEVLQM
LLSHLNSYAAEMEPS
88
|
|
HR7572A-82-158-15
HEYL
Q9NQ87
MLEKAEVLQMTVDHL
PVRIRLLSHLNSYAA
78
|
|
HR7851A-138-194-Av6HT
HHEX
Q03014
MKGGQVRFSNDQTIE
QVKTWFQNRRAKWRR
58
|
|
HR7851A-138-194-TEV
HHEX
Q03014
KGGQVRFSNDQTIEL
QVKTWFQNRRAKWRR
57
|
|
HR7402A-1-153-NHT
HIC1
Q14526
TFPEADILLKSGECA
PDLVALCKKRLKRHG
152
|
|
HR7195A-20-139-NHT
HIC2
Q96JB3
GPDMELPSHSKQLLL
YLQLPELAALCRRKL
120
|
|
HR3603B-775-826-TEV
HIF1A
Q16665
PSDLACRLLGQSMDE
LLQGEELLRALDQVN
52
|
|
HR7384A-39-112-TEV
HIST1H1A
Q02339
AGPSVSELIVQAASS
QTKGTGASGSFKLNK
74
|
|
HR7165A-40-112-TEV
HIST1H1B
P16401
GPPVSELITKAVAAS
QTKGTGASGSFKLNK
73
|
|
HR7583A-36-109-TEV
HIST1H1C
P16403
SGPPVSELITKAVAA
QTKGTGASGSFKLNK
74
|
|
HR7583A-37-110-TEV
HIST1H1C
P16403
GPPVSELITKAVAAS
TKGTGASGSFKLNKK
74
|
|
HR8248A-2087-2143-TEV
HIVEP1
P15822
KYICEECGIRCKKPS
GNLTKHMKSKAHSKK
57
|
|
HR7166A-1798-1854-TEV
HIVEP2
P31629
KYICEECGIRCKKPS
GNLTKHMKSKAHMKK
57
|
|
HR7042A-1753-1809-TEV
HIVEP3
Q5T1R4
KYVCEECGIRCKKPS
GNLTKHMKSKAHSKK
57
|
|
HR7786A-523-577-NHT
HKR1
P10072
KPFVCAECGRGFNDK
RQKPNLFRHKRAHSG
55
|
|
HR7711A-33-224-TEV
HLA-DQB1
P01920
RDSPEDFVFQFKGMC
PSLQSPITVEWRAQS
192
|
|
HR7053A-30-228-TEV
HLA-DRB1
P01911
GDTRPRFLWQPKREC
TVEWRARSESAQSKM
199
|
|
HR8520A-30-221-TEV
HLA-DRB1
P04229
GDTRPRFLWQLKFEC
PSVTSPLTVEWRARS
192
|
|
HR7721A-30-219-TEV
HLA-DRB3
P79483
GDTRPRFLELRKSEC
EHPSVTSALTVEWRA
190
|
|
HR7380A-30-221-TEV
HLA-DRB5
Q30154
GDTRPRFLQQDKYEC
PSVTSPLTVEWRAQS
192
|
|
HR7352A-219-295-TEV
HLF
Q16534
IPDDLKDDKYWARRR
CKNILAKYEARHGPL
77
|
|
HR8006A-269-334-Av6HT
HLX
Q14774
PQTYKRKRSWSRAVF
VKVWFQNRRMKWRHS
66
|
|
HR7519A-268-352-TEV
HMBOX1
Q6NT76
RGSRFTWRKECLAVM
KRRANIEAAILESHG
85
|
|
HR1506-15
HMG20A
Q9NP66
MENLMTSSTLPPLFA
SSNAAEGNEQRHEDE
79
|
|
HR1506-15.2wt
HMG20A
Q9NP66
MENLMTSSTLPPLFA
SSNAAEGNEQRHEDE
79
|
|
HR7093A-68-149-TEV
HMG20B
Q9P0W2
NGPKAPVTGYVRFLN
RAYQQSEAYKMCTEK
82
|
|
HR7828-30
HMGB1
P09429
MGKGDPKKPRGKMSS
EDEEDEDEEEDDDDE
215
|
|
HR7828A-8-78-Av6HT
HMGB1
P09429
KPRGKMSSYAFFVQT
AKADKARYEREMKTY
71
|
|
HR7828A-8-78-TEV
HMGB1
P09429
KPRGKMSSYAFFVQT
AKADKARYEREMKTY
71
|
|
HR7828B-30
HMGB1
P09429
KKKFKDPNAPKRPPS
LKEKYEKDIAAYRAK
80
|
|
HR8516A-8-78-TEV
HMGB1P1
B2RPK0
KPRGKMSSYAFFVQT
AKADKTHYERQMKTY
71
|
|
HR8015A-1-77-Av6HT
HMGB2
P26583
MGKGDPNKPRGKMSS
MAKSDKARYDREMKN
77
|
|
HR8015A-1-77-TEV
HMGB2
P26583
GKGDPNKPRGKMSSY
MAKSDKARYDREMKN
76
|
|
HR8319A-1-79-TEV
HMGB3
Q15347
AKGDPKKPKGKMSAY
KADKVRYDREMKDYG
78
|
|
HR8540A-11-186-Av6HT
HMGB4
Q8WW32
ANVSSYVHFLLNYRN
MSARNRCRGKRVRQS
176
|
|
HR7956-381-466-Av6HT
HMGXB4
Q9UGU5
LHTDGHSEKKKKKEE
DKLIWKQKAQYLQHK
86
|
|
HR7411A-1-264-TEV
HMOX2
P30519
SAEVETSEGVDESEK
EDGFPVHDGKGDMRK
263
|
|
HR7000A-188-261-NHT
HMX1
Q9NP08
AAGETRGGVGVGGGR
VKIWFQNRRNKWKRQ
74
|
|
HR8029A-131-216-Av6HT
HMX2
A2RU54
PGSERPRDGGAERQA
NKWKRQLSAELEAAN
86
|
|
HR6871A-218-296-NHT
HMX3
A6NHT5
SPEKKPACRKKKTRT
WKRQLAAELEAANLS
79
|
|
HR8251A-233-325-NHT
HNF1B
P35680
RNRFKWGPASQQILY
QKLAMDAYSSNQTHS
93
|
|
HR8251A-233-325-TEV
HNF1B
P35680
RNRFKWGPASQQILY
QKLAMDAYSSNQTHS
93
|
|
HR7522A-142-391-15
HNF4A
P41235
MSSYEDSSLPSINAL
GSPSDAPHAHHPLHP
251
|
|
HR7522A-142-391-Av6HT
HNF4A
P41235
SSYEDSSLPSINALL
GSPSDAPHAHHPLHP
250
|
|
HR7522A-142-391-TEV
HNF4A
P41235
SSYEDSSLPSINALL
GSPSDAPHAHHPLHP
250
|
|
HR7522B-142-378-15
HNF4A
P41235
MSSYEDSSLPSINAL
AKIDNLLQEMLLGGS
238
|
|
HR7522B-142-378-Av6HT
HNF4A
P41235
SSYEDSSLPSINALL
AKIDNLLQEMLLGGS
237
|
|
HR7522B-142-378-TEV
HNF4A
P41235
SSYEDSSLPSINALL
AKIDNLLQEMLLGGS
237
|
|
HR7522C-148-377-15
HNF4A
P41235
MSLPSINALLQAEVL
MAKIDNLLQEMLLGG
231
|
|
HR7522C-148-377-Av6HT
HNF4A
P41235
SLPSINALLQAEVLS
MAKIDNLLQEMLLGG
230
|
|
HR7522C-148-377-TEV
HNF4A
P41235
SLPSINALLQAEVLS
MAKIDNLLQEMLLGG
230
|
|
HR7522D-58-135-15
HNF4A
P41235
MALCAICGDRATGKH
FRAGMKKEAVQNERD
79
|
|
HR7522D-58-135-Av6HT
HNF4A
P41235
ALCAICGDRATGKHY
FRAGMKKEAVQNERD
78
|
|
HR7522D-58-135-TEV
HNF4A
P41235
ALCAICGDRATGKHY
FRAGMKKEAVQNERD
78
|
|
HR7469A-9-77-15
HNF4G
Q14541
MVLDPTYTTLEFETM
ASSCDGCKGFFRRSI
70
|
|
HR7469A-9-91-15
HNF4G
Q14541
MVLDPTYTTLEFETM
IRKSHVYSCRFSRQC
84
|
|
HR7469A-9-91-Av6HT
HNF4G
Q14541
VLDPTYTTLEFETMQ
IRKSHVYSCRFSRQC
83
|
|
HR7469A-9-91-TEV
HNF4G
Q14541
VLDPTYTTLEFETMQ
IRKSHVYSCRFSRQC
83
|
|
HR7469A-9-95-15
HNF4G
Q14541
MVLDPTYTTLEFETM
HVYSCRFSRQCVVDK
88
|
|
HR7469A-9-95-Av6HT
HNF4G
Q14541
VLDPTYTTLEFETMQ
HVYSCRFSRQCVVDK
87
|
|
HR7469A-9-95-TEV
HNF4G
Q14541
VLDPTYTTLEFETMQ
HVYSCRFSRQCVVDK
87
|
|
HR7469B-103-328-15
HNF4G
Q14541
MYCRLRKCFRAGMKK
RQYDSRGRFGELLLL
227
|
|
HR7469B-103-328-Av6HT
HNF4G
Q14541
YCRLRKCFRAGMKKE
RQYDSRGRFGELLLL
226
|
|
HR7469B-103-328-TEV
HNF4G
Q14541
YCRLRKCFRAGMKKE
RQYDSRGRFGELLLL
226
|
|
HR8063A-429-485-TEV
HOMEZ
Q8IX15
SFQDPAIPTPPPSTR
AAHQQLRETDIPQLS
57
|
|
HR6881-1-73-TEV
HOPX
Q9BPY8
SAETASGPTEDQVEI
RRSEGLPSECRSVTD
72
|
|
HR7310A-197-291-TEV
HOXA1
P49639
ETSSPAQTFDWMKVK
FQNRRMKQKKREKEG
95
|
|
HR4742B-299-369-14
HOXA10
P31260
MKDSLGNSKGENAAN
SVHLTDRQVKIWFQN
72
|
|
HR4742B-299-393-14
HOXA10
P31260
MKDSLGNSKGENAAN
RENRIRELTANFNFS
96
|
|
HR4742C-309-369-14
HOXA10
P31260
MNAANWLTAKSGRKK
SVHLTDRQVKIWFQN
62
|
|
HR4742C-314-393-14
HOXA10
P31260
MLTAKSGRKKRCPYT
RENRIRELTANFNFS
81
|
|
HR4742C-320-393-14
HOXA10
P31260
MRKKRCPYTKHQTLE
RENRIRELTANFNFS
75
|
|
HR8427A-342-397-Av6HT
HOXA10
P31260
PYTKHQTLELEKEFL
WFQNRRMKLKKMNRE
56
|
|
HR8104A-227-302-Av6HT
HOXA11
P31270
GHTEDKAGGSSGQRT
WFQNRRMKEKKINRD
76
|
|
HR8104A-227-313-Av6HT
HOXA11
P31270
GHTEDKAGGSSGQRT
INRDRLQYYSANPLL
87
|
|
HR8104B-227-296-Av6HT
HOXA11
P31270
GHTEDKAGGSSGQRT
DRQVKIWFQNRRMKE
70
|
|
HR7749A-317-379-TEV
HOXA13
P31271
SSYRRGRKKRVPYTK
QVTIWFQNRRVKEKK
63
|
|
HR7478A-131-205-NHT
HOXA2
O43364
ESLEIADGSGGGSRR
FQNRRMKHKRQTQCK
75
|
|
HR7187A-190-266-Av6HT
HOXA3
O43365
SSKRARTAYTSAQLV
GKGMLTSSGGQSPSR
77
|
|
HR7193A-222-275-TEV
HOXA4
Q00056
YTRQQVLELEKEFHF
IWFQNRRMKWKKDHK
54
|
|
HR7149A-201-257-TEV
HOXA5
P20719
AYTRYQTLELEKEFH
FQNRRMKWKKDNKLK
57
|
|
HR7149A-202-258-TEV
HOXA5
P20719
YTRYQTLELEKEFHF
QNRRMKWKKDNKLKS
57
|
|
HR7925A-156-215-TEV
HOXA6
P31267
RRGRQTYTRYQTLEL
IWFQNRRMKWKKENK
60
|
|
HR4674B-194-270-TEV
HOXA9
P31269
NNPAANWLHARSTRK
NRRMKMKKINKDRAK
77
|
|
HR8367A-171-266-TEV
HOXB1
P14653
EPNTPTARTFDWMKV
QNRRMKQKKREREEG
96
|
|
HR8236A-216-273-TEV
HOXB13
Q92826
GRKKRIPYSKGQLRE
QITIWFQNRRVKEKK
58
|
|
HR7791A-149-216-Av6HT
HOXB2
P14652
AYTNTQLLELEKEFH
TQHREPPDGEPACPG
68
|
|
HR8135A-187-244-Av6HT
HOXB3
P14651
ASKRARTAYTSAQLV
RQIKIWFQNRRMKYK
58
|
|
HR8135A-196-252-Av6HT
HOXB3
P14651
TSAQLVELEKEFHFN
NRRMKYKKDQKAKGL
57
|
|
HR8135B-179-239-Av6HT
HOXB3
P14651
DKSPPGSAASKRART
LNLSERQIKIWFQNR
61
|
|
HR8135B-179-244-Av6HT
HOXB3
P14651
DKSPPGSAASKRART
RQIKIWFQNRRMKYK
66
|
|
HR8335A-169-222-Av6HT
HOXB4
P17483
MYTRQQVLELEKEFH
IWFQNRRMKWKKDHK
55
|
|
HR8335A-169-222-NHT
HOXB4
P17483
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHK
54
|
|
HR8335A-169-222-TEV
HOXB4
P17483
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHK
54
|
|
HR8261-201-257-Av6HT
HOXB5
P09067
YTRYQTLELEKEFHF
QNRRMKWKKDNKLKS
57
|
|
HR7319A-147-206-Av6HT
HOXB6
P17509
MRRGRQTYTRYQTLE
IWFQNRRMKWKKESK
61
|
|
HR7319A-147-206-TEV
HOXB6
P17509
RRGRQTYTRYQTLEL
IWFQNRRMKWKKESK
60
|
|
HR8504A-143-202-TEV
HOXB7
P09629
TYTRYQTLELEKEFH
RRMKWKKENKTAGPG
60
|
|
HR7846A-146-205-TEV
HOXB8
P17481
RRRGRQTYSRYQTLE
KIWFQNRRMKWKKEN
60
|
|
HR7230A-174-249-TEV
HOXB9
P17482
NPSANWLHARSSRKK
NRRMKMKKMNKEQGK
76
|
|
HR4478B-250-312-14
HOXC10
Q9NYD6
MKEEIKAENTTGNWL
RLEISKTINLTDRQV
64
|
|
HR4478B-255-342-14
HOXC10
Q9NYD6
MAENTTGNWLTAKSG
RENRIRELTSNFNFT
89
|
|
HR4478B-263-312-14
HOXC10
Q9NYD6
MLTAKSGRKKRCPYT
RLEISKTINLTDRQV
51
|
|
HR4478B-268-342-14
HOXC10
Q9NYD6
MGRKKRCPYTKHQTL
RENRIRELTSNFNFT
76
|
|
HR4478C-247-342-14
HOXC10
Q9NYD6
MNEAKEEIKAENTTG
RENRIRELTSNFNFT
97
|
|
HR7286A-240-304-Av6HT
HOXC11
O43248
SKFQIRELEREFFFN
LSRDRLQYFSGNPLL
65
|
|
HR7847A-205-271-NHT
HOXC12
P31275
APWYPINSRSRKKRK
QVKIWFQNRRMKKKR
67
|
|
HR7251A-255-316-Av6HT
HOXC13
P31276
SSYRRGRKKRVPYTK
RQVTIWFQNRRVKEK
62
|
|
HR8257A-163-216-NHT
HOXC4
P09017
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHR
54
|
|
HR8257A-163-216-TEV
HOXC4
P09017
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHR
54
|
|
HR7011A-156-219-TEV
HOXC5
Q00444
KRSRTSYTRYQTLEL
NRRMKWKKDSKMKSK
64
|
|
HR7839A-148-201-TEV
HOXC6
P09630
YSRYQTLELEKEFHF
IWFQNRRMKWKKESN
54
|
|
HR6394A-149-208-TEV
HOXC8
P31273
RRSGRQTYSRYQTLE
KIWFQNRRMKWKKEN
60
|
|
HR7283A-180-255-TEV
HOXC9
P31274
SNPVANWIHARSTRK
QNRRMKMKKMNKEKT
76
|
|
HR8256A-200-280-Av6HT
HOXD1
Q9GZZ0
AAFSTFEWMKVKRNA
LHLNDTQVKIWFQNR
81
|
|
HR8148A-269-340-15
HOXD10
P28358
MKRCPYTKHQTLELE
RENRIRELTANLTFS
73
|
|
HR8148A-274-327-Av6HT
HOXD10
P28358
TKHQTLELEKEFLFN
WFQNRRMKLKKMSRE
54
|
|
HR8148A-274-340-15
HOXD10
P28358
MTKHQTLELEKEELF
RENRIRELTANLTFS
68
|
|
HR8017A-257-326-Av6HT
HOXD11
P31277
SSSAVAPQRSRKKRC
IWFQNRRMKEKKLNR
70
|
|
HR7443A-276-333-TEV
HOXD13
P35453
GRKKRVPYTKLQLKE
QVTIWFQNRRVKDKK
58
|
|
HR7220A-181-257-Av6HT
HOXD3
P31249
GESCEDKSPPGPASK
QNRRMKYKKDQKAKG
77
|
|
HR7700A-161-220-TEV
HOXD4
P09016
YTRQQVLELEKEFHF
RMKWKKDHKLPNTKG
60
|
|
HR7832A-197-256-TEV
HOXD8
P13378
RRRGRQTYSRFQTLE
KIWFQNRRMKWKKEN
60
|
|
HR6999A-263-337-TEV
HOXD9
P28356
SQPQQQQLDPNNPAA
NLTERQVKIWFQNRR
75
|
|
HR7031A-153-237-TEV
HP1BP3
Q5SSJ5
ASSPRPKMDAILTEA
GASGSFVVVQKSRKT
84
|
|
HR7031B-249-3355-15
HP1BP3
Q5SSJ5
MSAVDPEPQVKLEDV
GASGTFQLKKSGEKP
88
|
|
HR7031B-254-330-15
HP1BP3
Q5SSJ5
MEPQVKLEDVLPLAF
QITGKGASGTFQLKK
78
|
|
HR7031B-262-330-Av6HT
HP1BP3
Q5SSJ5
VLPLAFTRLCEPKEA
QITGKGASGTFQLKK
69
|
|
HR7031C-332-407-15
HP1BP3
Q5SSJ5
MGEKPLLGGSLMEYA
KNGWMEQISGKGFSG
77
|
|
HR7031C-332-418-15
HP1BP3
Q5SSJ5
MGEKPLLGGSLMEYA
GFSGTFQLCFPYYPS
88
|
|
HR7031C-337-403-15
HP1BP3
Q5SSJ5
MLGGSLMEYAILSAI
QKCEKNGWMEQISGK
68
|
|
HR7031C-337-413-15
HP1BP3
Q5SSJ5
MLGGSLMEYAILSAI
QISGKGFSGTFQLCF
78
|
|
HR3023-1-506-15
HSF1
Q00613
MDLPVGPGAAGPSNV
FELGEGSYFSEGDGF
506
|
|
HR3023-1-506-Av6HT
HSF1
Q00613
DLPVGPGAAGPSNVP
FELGEGSYFSEGDGF
505
|
|
HR3023-1-506-TEV
HSF1
Q00613
DLPVGPGAAGPSNVP
FELGEGSYFSEGDGF
505
|
|
HR3023A-14
HSF1
Q00613
MDLPVGPGAAGPSNV
PERDDTEFQHPCFLR
106
|
|
HR3023A-15
HSF1
Q00613
MDLPVGPGAAGPSNV
PERDDTEFQHPCFLR
106
|
|
HR3023C-1-123-15
HSF1
Q00613
MDLPVGPGAAGPSNV
EQLLENIKRKVTSVS
123
|
|
HR3023C-10-123-15
HSF1
Q00613
MAGPSNVPAFLTKLW
EQLLENIKRKVTSVS
115
|
|
HR3023C-15-118-15
HSF1
Q00613
MVPAFLTKLWTLVSD
FLRGQEQLLENIKRK
105
|
|
HR3023C-7-118-15
HSF1
Q00613
MPGAAGPSNVPAFLT
FLRGQEQLLENIKRK
113
|
|
HR8180A-12-124-15
HSF4
Q9ULV5
MPGPSPVPAFLGKLW
REQLLERVRRKVPAL
114
|
|
HR8180A-12-97-15
HSF4
Q9ULV5
MPGPSPVPAFLGKLW
VVSIEQGGLLRPERD
87
|
|
HR8180A-17-119-15
HSF4
Q9ULV5
MVPAFLGKLWALVGD
SFVRGREQLLERVRR
104
|
|
HR8180A-17-93-15
HSF4
Q9ULV5
MVPAFLGKLWALVGD
GFRKVVSIEQGGLLR
78
|
|
HR8170A-9-94-Av6HT
HSF5
Q4G112
INPNNFPAKLWRLVN
FIRQLNLYGFRKVVL
86
|
|
HR7245A-97-218-NHT
HSFX1
Q9UBD0
LPFPQKLWRLVSSNQ
LLVRMKRRVGVKSAP
122
|
|
HR3123-1-116-15
ID1
P41134
MKVASGSTATAAAGP
IRDLQLELNSESEVG
116
|
|
HR3123-1-121-15
ID1
P41134
MKVASGSTATAAAGP
LELNSESEVGTPGGR
121
|
|
HR3123-15
ID1
P41134
MKVASGSTATAAAGP
AEAACVPADDRILCR
155
|
|
HR3123-21
ID1
P41134
MKVASGSTATAAAGP
AEAACVPADDRILCR
155
|
|
HR3123A-14
ID1
P41134
ALKAGKTASGAGEVV
RDLQLELNSESEVGT
100
|
|
HR3123B-14
ID1
P41134
ALKAGKTASGAGEVV
AEAACVPADDRILCR
138
|
|
HR3123C-14
ID1
P41134
KTASGAGEVVRCLSE
RDLQLELNSESEVGT
95
|
|
HR3123D-14
ID1
P41134
KTASGAGEVVRCLSE
AEAACVPADDRILCR
133
|
|
HR3123E-14
ID1
P41134
AGEVVRCLSEQSVAI
RDLQLELNSESEVGT
90
|
|
HR3123F-14
ID1
P41134
AGEVVRCLSEQSVAI
AEAACVPADDRILCR
128
|
|
HR3123G-54-145-15
ID1
P41134
MPALLDEQQVNVLLY
TLNGEISALTAEAAC
93
|
|
HR3123G-59-139-15
ID1
P41134
MEQQVNVLLYDMNGC
VRAPLSTLNGEISAL
82
|
|
HR2921-14
ID2
Q02363
MKAFSPVRSVRKNSL
FPSELMSNDSKALCG
134
|
|
HR2921-15
ID2
Q02363
MKAFSPVRSVRKNSL
FPSELMSNDSKALCG
134
|
|
HR2921-17-85-14
ID2
Q02363
DHSLGISRSKTPVDD
YILDLQIALDSHPTI
69
|
|
HR2921-21
ID2
Q02363
MKAFSPVRSVRKNSL
FPSELMSNDSKALCG
134
|
|
HR2921-22-134-15
ID2
Q02363
MISRSKTPVDDPMSL
FPSELMSNDSKALCG
114
|
|
HR2921-22-85-14
ID2
Q02363
ISRSKTPVDDPMSLL
YILDLQIALDSHPTI
64
|
|
HR2921-27-124-15
ID2
Q02363
MTPVDDPMSLLYNMN
ISILSLQASEFPSEL
99
|
|
HR2921-27-134-15
ID2
Q02363
MTPVDDPMSLLYNMN
FPSELMSNDSKALCG
109
|
|
HR2921-27-85-14
ID2
Q02363
TPVDDPMSLLYNMND
YILDLQIALDSHPTI
59
|
|
HR2921-40-134-15
ID2
Q02363
MNDCYSKLKELVPSI
FPSELMSNDSKALCG
96
|
|
HR3111-14
ID3
Q712G9
MKALSPVRGCYEAVC
APELVISNDKRSFCH
119
|
|
HR3111-15
ID3
Q712G9
MKALSPVRGCYEAVC
APELVISNDKRSFCH
119
|
|
HR3111-21
ID3
Q712G9
MKALSPVRGCYEAVC
APELVISNDKRSFCH
119
|
|
HR3111A-27-83-15
ID3
Q712G9
MGRGKGPAAEEPLSL
ILQRVIDYILDLQVV
58
|
|
HR3111A-32-83-15
ID3
Q712G9
MPAAEEPLSLLDDMN
ILQRVIDYILDLQVV
53
|
|
HR4584C-53-112-14
ID4
P47928
DEPALCLQCDMNDCY
IDYILDLQLALETHP
55
|
|
HR4626B
IFI16
Q16666
QVTPRRNVLQKRPVI
ISEMHSFIQIKKKTN
202
|
|
HR3005-100-519-15
IKZF1
Q13422
MGSSALSGVGGIRLP
FSSHITRGEHRFHMS
421
|
|
HR3005-108-519-15
IKZF1
Q13422
MGGIRLPNGKLKCDI
FSSHITRGEHRFHMS
413
|
|
HR3005-93-519-15
IKZF1
Q13422
MNGSHRDQGSSALSG
FSSHITRGEHRFHMS
428
|
|
HR3005A-IDT-14
IKZF1
Q13422
HARNGLSLKEEHRAY
FSSHITRGEHRFHMS
99
|
|
HR3005B-IDT-14
IKZF1
Q13422
EKMNGSHRDQGSSAL
DRLASNVAKRKSSMP
190
|
|
HR3064-99-509-15
IKZF3
Q9UKT9
IKLERHVVSFDSSRP
FSSHIARGEHRALLK
411
|
|
HR6479A-436-509-NHT
IKZF3
Q9UKT9
RDSVKVINKEGEVMD
FSSHIARGEHRALLK
74
|
|
HR7992A-150-221-15
IKZF4
Q9H2S9
MGGIRLPNGKLKCDV
KLHSGEKPFKCPFCN
73
|
|
HR7992A-150-232-15
IKZF4
Q9H2S9
MGGIRLPNGKLKCDV
PFCNYACRRRDALTG
84
|
|
HR7992A-150-246-15
IKZF4
Q9H2S9
MGGIRLPNGKLKCDV
GHLRTHSVSSPTVGK
98
|
|
HR7992A-155-216-15
IKZF4
Q9H2S9
MPNGKLKCDVCGMVC
LLRHIKLHSGEKPFK
63
|
|
HR7992A-155-216-15.7-15TEV
IKZF4
Q9H2S9
MPNGKLKCDVCGMVC
LLRHIKLHSGEKPFK
63
|
|
HR7992A-155-239-15
IKZF4
Q9H2S9
MPNGKLKCDVCGMVC
RRRDALTGHLRTHSV
86
|
|
HR7992B-513-585-15
IKZF4
Q9H2S9
MSKEVLRVVGESGEP
YEFSSHIVRGEHKVG
74
|
|
HR7992B-518-585-15
IKZF4
Q9H2S9
MRVVGESGEPVKAFK
YEFSSHIVRGEHKVG
69
|
|
HR7992B-523-585-15
IKZF4
Q9H2S9
MSGEPVKAFKCEHCR
YEFSSHIVRGEHKVG
64
|
|
HR7992B-528-585-15
IKZF4
Q9H2S9
MKAFKCEHCRILFLD
YEFSSHIVRGEHKVG
59
|
|
HR7992C-155-272-Av6HT
IKZF4
Q9H2S9
PNGKLKCDVCGMVCI
KQQSTLEEHKERCHN
118
|
|
HR7992C-159-272-Av6HT
IKZF4
Q9H2S9
LKCDVCGMVCIGPNV
KQQSTLEEHKERCHN
114
|
|
HR7992C-159-283-Av6HT
IKZF4
Q9H2S9
LKCDVCGMVCIGPNV
RCHNYLQSLSTEAQA
125
|
|
HR7992D-197-260-Av6HT
IKZF4
Q9H2S9
TQKGNLLRHIKLHSG
KPYKCNYCGRSYKQQ
64
|
|
HR7992D-208-283-Av6HT
IKZF4
Q9H2S9
LHSGEKPFKCPFCNY
RCHNYLQSLSTEAQA
76
|
|
HR7992D-210-260-Av6HT
IKZF4
Q9H2S9
SGEKPFKCPFCNYAC
KPYKCNYCGRSYKQQ
51
|
|
HR7630A-358-419-NHT
IKZF5
Q9H5V7
QDPQLLHHCQHCDMY
YDFACHFARGQHNQH
62
|
|
HR7614A-263-300-15
INSM1
Q01101
MPLGEFICQLCKEEY
KCSRIVRVEYRCPEC
39
|
|
HR7614A-263-319-15
INSM1
Q01101
MPLGEFICQLCKEEY
SCPANLASHRRWHKP
58
|
|
HR7614B-424-497-15
INSM1
Q01101
MGDGEGAGVLGLSAS
GLTRHINKCHPSENR
75
|
|
HR7614B-429-493-15
INSM1
Q01101
MAGVLGLSASAECHL
YSSPGLTRHINKCHP
66
|
|
HR7614B-432-497-15
INSM1
Q01101
MLGLSASAECHLCPV
GLTRHINKCHPSENR
67
|
|
HR8043A-261-315-Av6HT
INSM2
Q96T92
GEFICQLCKEQYADP
SCPANLASHRRWHKP
55
|
|
HR6405A-1-113-TEV
IRF1
P10914
PITRMRMRPWLEMQI
RNKGSSAVRVYRMLP
112
|
|
HR7043A-1-113-Av6HT
IRF2
P14316
MPVERMRMRPWLEEQ
IKKGNNAFRVYRMLP
113
|
|
HR7043A-1-113-TEV
IRF2
P14316
PVERMRMRPWLEEQI
IKKGNNAFRVYRMLP
112
|
|
HR7278A-1-113-TEV
IRF3
Q14653
GTPKPRILPWLVSQL
DPHDPHKIYEFVNSG
112
|
|
HR7278B-196-386-TEV
IRF3
Q14653
LVPGEEWEFEVTAFY
LRALVEMARVGGASS
191
|
|
HR3173-1-119-14
IRF5
Q13568
MNQSIPVAPTRPRRV
DGPRDMPPQPYKIYE
119
|
|
HR3173A-14
IRF5
Q13568
MNQSIPVAPTPPRRV
PPQPYKIYEVCSNGP
125
|
|
HR3173A-15
IRF5
Q13568
MNQSIPVAPTPPRRV
PPQPYKIYEVCSNGP
125
|
|
HR3173F-8-114-14
IRF5
Q13568
APTPPRRVRLKPWLV
FRLIYDGPRDMPPQP
107
|
|
HR3173G-232-477-TEV
IRF5
Q13568
EQLLPDLLISPHMLP
HIWQSQQRLQPVAQA
246
|
|
HR7755A-198-455-Av6HT
IRF6
O14896
LEMEVPQAPIQPFYS
RILQTQESWQPMQPT
258
|
|
HR5527A-14
IRF7
Q92985
MALAPERAAPRVLFG
RRFVMLRDNSGDPAD
117
|
|
HR5527A-15
IRF7
Q92985
MALAPERAAPRVLFG
RRFVMLRDNSGDPAD
117
|
|
HR8215A-8-154-TEV
IRF7
Q92985
AAPRVLFGEWLLGEI
EAEAPAAVPPPQGGP
147
|
|
HR7337A-9-115-TEV
IRF8
Q02556
RLRQWLIEQIDSSMY
LDISEPYKVYRIVPE
107
|
|
HR7302A-205-393-Av6HT
IRF9
Q00978
QRSLEFLLPPEPDYS
LEQTPEQQAAILSLV
189
|
|
HR7302A-209-393-Av6HT
IRF9
Q00978
EFLLPPEPDYSLLLT
LEQTPEQQAAILSLV
185
|
|
HR7431A-121-188-NHT
IRX1
P78414
GQFQYGDPGRPKNAT
VSTWFANARRRLKKE
68
|
|
HR7304A-126-209-NHT
IRX6
P78412
PYERTLGQYQYERYG
TWFANARRRLKKENK
84
|
|
HR8326A-180-244-TEV
ISL1
P61371
KTTRVRTVLNEKQLH
QNKRCKDKKRSIMMK
65
|
|
HR8291A-190-254-TEV
ISL2
Q96A47
KTTRVRTVLNEKQLH
QNKRCKDKKKSILMK
65
|
|
HR8400A-617-732-TEV
JARID2
Q92833
LGRRWGPNVQRLACI
RLEKEVLMEKEILEK
116
|
|
HR8400B-804-1099-Av6HT
JARID2
Q92833
KGVLNDFHKCIYKGR
LDELRDTELRQRRQL
296
|
|
HR8400B-809-1099-Av6HT
JARID2
Q92833
DFHKCIYKGRSVSLT
LDELRDTELRQRRQL
291
|
|
HR8400B-809-1104-Av6HT
JARID2
Q92833
DFHKCIYKGRSVSLT
DTELRQRRQLFEAGL
296
|
|
HR8400C-900-1086-Av6HT
JARID2
Q92833
GSILRHLGAVPGVTI
KENGPTLSTISALLD
187
|
|
HR8400C-900-1104-Av6HT
JARID2
Q92833
GSILRHLGAVPGVTI
DTELRQRRQLFEAGL
205
|
|
HR7951-28-149-Av6HT
IDP2
Q8WYK2
SALTVEELKYADIRN
HRPTCIVRTDSVKTP
122
|
|
HR4484C-253-308-Av6HT
JUN
P05412
MIKAERKRMRNRIAA
LASTANMLREQVAQL
57
|
|
HR4484C-253-308-TEV
JUN
P05412
IKAERKRMRNRIAAS
LASTANMLREQCAQL
56
|
|
HR4765B-273-324-TEV
JUNB
P17275
RKRLRNRLAATKCRK
LSSTAGLLREQVAQL
52
|
|
HR4754B-269-324-TEV
JUND
P17535
IKAERKRLRNRIAAS
LASTASLLREQVAQL
56
|
|
HR2962A-5-79-Av6HT
KAT5
Q92993
GEIIEGCRLPVLRRN
LKKIQFPKKEAKTPT
75
|
|
HR7375A-94-208-TEV
KDM5B
Q9UGL1
EAQTRVKLNFLDQIA
LQKPNLTTDTKDKEY
115
|
|
HR7375B-685-750-Av6HT
KDM5B
Q9UGL1
LPDDERQCVKCKTTC
YTLDDLYPMMNALKL
66
|
|
HR7375B-696-750-Av6HT
KDM5B
Q9UGL1
KTTCFMSAISCSCKP
YTLDDLYPMMNALKL
55
|
|
HR7375C-1487-1544-Av6HT
KDM5B
Q9UGL1
CPAVSCLQPEGDEVD
YICVRCTVKDAPSRK
58
|
|
HR7375D-1485-1536-Av6HT
KDM5B
Q9UGL1
AICPAVSCLQPEGDE
PEMAEKEDYICVRCT
52
|
|
HR7375E-1123-1227-Av6HT
KDM5B
Q9UGL1
ESLSDLERALTESKE
LRIWLCPHCRRSEKP
105
|
|
HR7375E-1123-1241-Av6HT
KDM5B
Q9UGL1
ESLSDLERALTESKE
PPLEKILPLLASLQR
119
|
|
HR7375E-1132-1230-Av6HT
KDM5B
Q9UGL1
LTESKETASAMATLG
WLCPHCRRSEKPPLE
99
|
|
HR7375E-1134-1241-Av6HT
KDM5B
Q9UGL1
ESKETASAMATLGEA
PPLEKILPLLASLQR
108
|
|
HR7375E-1143-1230-Av6HT
KDM5B
Q9UGL1
ATLGEARLREMEALQ
WLCPHCRRSEKPPLE
88
|
|
HR7375E-1143-1241-Av6HT
KDM5B
Q9UGL1
ATLGEARLREMEALQ
PPLEKILPLLASLQR
99
|
|
HR7188A-306-385-TEV
KDM5D
Q9BY66
HSSAQFIDSYICQVC
EAFGFEQATQEYSLQ
80
|
|
HR7714A-77-157-Av6HT
KIAA1683
Q9H0B3
RRVPRLRAVVESQAF
RHILHSSKSLVKKTR
81
|
|
HR7682A-10-80-Av6HT
KIAA2018
Q68DE3
PTKKQHRKKNRETHN
ITELKRQNDELLLNG
71
|
|
HR8201A-51-160-TEV
KIN
Q60870
QRQLLLASENPQQFM
PETIRRQLELEKKKK
110
|
|
HR7553A-272-338-15
KLF1
Q13351
MARKRQAAHTCAHPG
DELTRHYRKHTGQRP
68
|
|
HR7553A-292-335-Av6HT
KLF1
Q13351
KSSHLKAHLRTHTGE
ARSDELTRHYRKHTG
44
|
|
HR7553B-319-362-Av6HT
KLF1
Q13351
RFARSDELTRHYRKH
FSRSDHLALHMKRHL
44
|
|
HR6400A-353-423-TEV
KLF10
Q13118
SAAKVTPQIDSSRIR
REARSDELSRHRRTH
71
|
|
HR6390-1-497-15
KLF11
O14901
MHTPDFAGPDDARAV
PGWQAEVGKLNRIAS
497
|
|
HR6390-1-501-15
KLF11
O14901
MHTPDFAGPDDARAV
AEVGKLNRIASAESP
501
|
|
HR6390-12-512-15
KLF11
O14901
ARAVDIMDICESILE
AESPGSPLVSMPASA
501
|
|
HR6390-123-512-15
KLF11
O14901
VSPQVTDSKACTATD
AESPGSPLVSMPASA
390
|
|
HR6390-128-512-15
KLF11
O14901
TDSKACTATDVLQSS
AESPGSPLVSMPASA
385
|
|
HR6390-15
KLF11
O14901
MHTPDEAGPDDARAV
AESPGSPLVSMPASA
512
|
|
HR6390-7-512-15
KLF11
O14901
AGPDDARAVDIMDIC
AESPGSPLVSMPASA
506
|
|
HR6390A-379-501-15
KLF11
O14901
SQNCVPQVDFSRRRN
AEVGKLNRIASAESP
123
|
|
HR6390A-384-497-15
KLF11
O14901
PQVDFSRRRNYVCSF
PGWQAEVGKLNRIAS
114
|
|
HR6390B-397-462-15
KLF11
O14901
SFPGCRKTYFKSSHL
HTGEKKFVCPVCDRR
66
|
|
HR6390B-402-457-15
KLF11
O14901
RKTYFKSSHLKAHLR
RHRRTHTGEKKFVCP
56
|
|
HR7238A-306-400-TEV
KLF12
Q9Y4X4
SESPDSRKRRIHRCD
FSRSDHLALHRRRHM
95
|
|
HR8436A-125-193-Av6HT
KLF16
Q9BXK1
KSHRCPFPDCAKAYY
RTHTGEKRFSCPLCS
69
|
|
HR7123A-272-355-TEV
KLF2
Q9Y5W3
HTCSYAGCGKTYTKS
FSRSDHLALHMKRHM
84
|
|
HR7880A-251-343-TEV
KLF3
P57682
PDTQRKRRIHRCDYD
FSRSDHLALHRKRHM
93
|
|
HR4433-1-347-14
KLF5
Q13887
MATRVLSMSARLGPV
ASKLAIHNPNLPTTL
347
|
|
HR4433-9-342-14
KLF5
Q13887
MSARLGPVPQPPAPQ
YAATIASKLAIHNPN
335
|
|
HR4668C-168-283-21
KLF6
Q99612
MELPSPGKVRSGTSG
FSRSDHLALHMKRHL
117
|
|
HR4668C-173-283-21
KLF6
Q99612
MGKVRSGTSGKPGDK
FSRSDHLALHMKRHL
112
|
|
HR4668C-173-283-Av6HT
KLF6
Q99612
GKVRSGTSGKPGDKG
FSRSDHLALHMKRHL
111
|
|
HR4668C-173-283-TEV
KLF6
Q99612
GKVRSGTSGKPGDKG
FSRSDHLALHMKRHL
111
|
|
HR4668C-191-283-21
KLF6
Q99612
MASPDGRRRVHRCHF
FSRSDHLALHMKRHL
94
|
|
HR4668C-196-283-21
KLF6
Q99612
MRRRVHRCHFNGCRK
FSRSDHLALHMKRHL
89
|
|
HR4668D-205-283-21
KLF6
Q99612
MNGCRKVYTKSSHLK
FSRSDHLALHMKRHL
80
|
|
HR4668D-210-283-21
KLF6
Q99612
MVYTKSSHLKAHQRT
FSRSDHLALHMKRHL
75
|
|
HR8165A-231-302-Av6HT
KLF7
O75840
TKSSHLKAHQRTHTG
FSRSDHLALHMKRHL
72
|
|
HR8376A-270-332-Av6HT
KLF8
O95600
RRRIHQCDFAGCSKV
SDELTRHFRKHTGIK
63
|
|
HR7597A-181-244-NHT
KLF9
Q13886
LKKFSRSDELTRHYR
PSMIKRSKKALANAL
64
|
|
HR6918A-877-937-TEV
KNL2
Q6P0N0
DKEWNEKELQKLHCA
MENPRGKGSQKHVTK
61
|
|
HR6489A-15
L3MBTL3
Q96JM7
RRKRRGDSAVLKQGL
QPPLSPLELMEASEH
346
|
|
HR6489A-Av6HT
L3MBTL3
Q96JM7
RRKRRGDSAVLKQGL
QPPLSPLELMEASEH
346
|
|
HR6489A-TEV
L3MBTL3
Q96JM7
RRKRRGDSAVLKQGL
QPPLSPLELMEASEH
346
|
|
HR6490A-15
L3MBTL4
Q8NA19
MKQPNRKRKLNMDSK
SAFGCPYSDMNLKKE
414
|
|
HR6490A-30-371-15
L3MBTL4
Q8NA19
MEKKPKDSTTPLSHV
TGHPLEVPQRTNDLK
343
|
|
HR6490A-30-371-Av6HT
L3MBTL4
Q8NA19
EKKPKDSTTPLSHVP
TGHPLEVPQRTNDLK
342
|
|
HR6490A-30-371-Na6HT
L3MBTL4
Q8NA19
EKKPKDSTTPLSHVP
TGHPLEVPQRTNDLK
342
|
|
HR6490A-30-371-TEV
L3MBTL4
Q8NA19
EKKPKDSTTPLSHVP
TGHPLEVPQRTNDLK
342
|
|
HR6490A-Av6HT
L3MBTL4
Q8NA19
KQPNRKRKLNMDSKE
SAFGCPYSDMNLKKE
413
|
|
HR6490A-TEV
L3MBTL4
Q8NA19
KQPNRKRKLNMDSKE
SAFGCPYSDMNLKKE
413
|
|
HR2473-14
LARP1
Q6PKG0
MNTLFRFWSFFLRDH
AKWTSQHSNTQTLGK
185
|
|
HR7995A-377-483-Av6HT
LARP1
Q6PKG0
ISLIFAALKDSKVVE
SASLPDLDSENWIEV
107
|
|
HR6994A-210-292-NHT
LARP1B
Q659C4
VEEALLKEYIKRQIE
EVEIVDEKMRKKIEP
83
|
|
HR7969A-107-200-TEV
LARP4
Q71RC2
SGESNSAVSTEDLKE
DEKGEKVRPSHKRCI
94
|
|
HR6949A-152-237-NHT
LARP4B
Q92615
SQEDPREVLKKTLEF
DEKGEKVRPNQNRCI
86
|
|
HR7099A-69-134-NHT
LASS2
Q96G23
NIKEKTRLRAPPNAT
RRRNQDRPSLLKKFR
66
|
|
HR8001A-86-135-TEV
LASS5
Q8N5B7
AQPNAILEKVFISIT
KIQCWFRHRRNQDKP
50
|
|
HR6906A-77-127-TEV
LASS6
Q6ZMG9
APPNAILEKVFTAIT
IQRWFRQRRNQEKPS
51
|
|
HR6954A-124-198-NHT
LBX1
P52954
KRRKSRTAFTNHQIY
LEEMKADVESAKKLG
75
|
|
HR8118A-343-405-TEV
LCOR
Q96JN0
RGRYRQYNSEILEEA
GTLKNPPKKKMKLMR
63
|
|
HR7552A-519-579-TEV
LCORL
Q8N3X6
RGRYRQYDHEIMEEA
RSGTLKTPPKKKLRL
61
|
|
HR7767A-314-501-Av6HT
LENG9
Q96B70
APCQPRPTHFVALMV
RTGGPFQPLAEIRLE
188
|
|
HR8129A-23-126-Av6HT
LHX1
P48742
AWHVKCVQCCECKCN
FVCKEDYLSNSSVAK
104
|
|
HR7637A-262-334-TEV
LHX2
P50458
SSQKTKRMRTSFKHH
KFRRNLLRQENTGVD
73
|
|
HR7663A-23-150-TEV
LHX3
Q9UBR4
LARRADLRREIPLCA
FYLMEDSRLVCKADY
128
|
|
HR7789A-16-91-NHT
LHX4
Q969G2
LPEMLGVPMQQIPQC
CKEDFFKRFGTKCTA
76
|
|
HR7587A-24-119-NHT
LHX5
Q9H2C1
AWHIKCVQCCECKTN
LYVIDENKFVCKDDY
96
|
|
HR7172-1-267-TEV
LHX9
Q9NQ69
LNGTTLEAAMLFHGI
PPSQKTKRMRTSFKH
266
|
|
HR7172-1-270-15
LHX9
Q9NQ69
MLNGTTLEAAMLFHG
QKTKRMRTSFKHHQL
270
|
|
HR7525A-134-187-Av6HT
LIN28A
Q9H9Z2
MSKGDRCYNCGGLDH
SCPLKAQQGPSAQGK
55
|
|
HR7525A-134-187-TEV
LIN28A
Q9H9Z2
SKGDRCYNCGGLDHH
SCPLKAQQGPSAQGK
54
|
|
HR7198A-25-103-NHT
LIN28B
Q6ZN17
SQVLRGTGHCKWFNV
KSSKGLESIRVTGPG
79
|
|
HR7658-1-237-Av6HT
LMX1A
Q8TE12
LDGLKMEENFQSAID
KVRETLAAETGLSVR
236
|
|
HR7658-1-247-Av6HT
LMX1A
Q8TE12
LDGLKMEENFQSAID
GLSVRVVQVWFQNQR
246
|
|
HR7658-1-257-Av6HT
LMX1A
Q8TE12
LDGLKMEENFQSAID
FQNQRAKMKKLARRQ
256
|
|
HR7658-13-303-Av6HT
LMX1A
Q8TE12
SAIDTSASFSSLLGR
PYTALPTPQQLLAIE
291
|
|
HR7658A-61-153-NHT
LMX1A
Q8TE12
QCASCKEPLETTCFY
EGQLLCKGDYEKERE
93
|
|
HR7658B-13-153-Av6HT
LMX1A
Q8TE12
SAIDTSASFSSLLGR
EGQLLCKGDYEKERE
141
|
|
HR7658B-32-153-Av6HT
LMX1A
Q8TE12
KSVCEGCQRVILDRF
EGQLLCKGDYEKERE
122
|
|
HR6403A-128-207-15
LYL1
P12980
RLKRRPSHCELDLAE
RLAMKYIGFLVRLLR
80
|
|
HR6403A-133-207-15
LYL1
P12980
PSHCELDLAEGHQPQ
RLAMKYIGFLVRLLR
75
|
|
HR6403A-146-207-15
LYL1
P12980
PQKVARRVFTNSRER
RLAMKYIGFLVRLLR
62
|
|
HR6403A-146-226-15
LYL1
P12980
PQKVARRVFTNSRER
ALAAGPTPPGPRKRP
81
|
|
HR7569A-1-80-TEV
MAEL
Q96JY0
PNRKASRNAYYFFVQ
GKDPGPSEKQKPVFT
79
|
|
HR4779B-255-300-14
MAF
O75444
MLHFDDRFSDEQLVT
VIRLKQKRRTLKNRG
47
|
|
HR7214A-221-319-Av6HT
MAFA
Q8NHW3
VRLEERFSDDQLVSM
KERDLYKEKYEKLAG
99
|
|
HR7214A-225-319-Av6HT
MAFA
Q8NHW3
ERFSDDQLVSMSVRE
KERDLYKEKYEKLAG
95
|
|
HR7214A-228-313-Av6HT
MAFA
Q8NHW3
SDDQLVSMSVRELNR
EVGRLAKERDLYKEK
86
|
|
HR7214A-236-319-Av6HT
MAFA
Q8NHW3
SVRELNRQLRGFSKE
KERDLYKEKYEKLAG
84
|
|
HR7214A-246-319-Av6HT
MAFA
Q8NHW3
GFSKEEVIRLKQKRR
KERDLYKEKYEKLAG
74
|
|
HR6931A-209-305-Av6HT
MAFB
Q9Y5Q3
DRFSDDQLVSMSVRE
RDAYKVKCEKLANSG
97
|
|
HR6931B-210-236-Av6HT
MAFB
Q9Y5Q3
RFSDDQLVSMSVREL
RELNRHLRGFTKDEV
27
|
|
HR6931B-210-251-Av6HT
MAFB
Q9Y5Q3
RFSDDQLVSMSVREL
IRLKQKRRTLKNRGY
42
|
|
HR8265A-31-74-Av6HT
MAFF
Q9ULX9
GLSVRELNRHLRGLS
KNRGYAASCRVKRVC
44
|
|
HR7795A-21-123-TEV
MAFG
Q15525
GTSLTDEELVTMSVR
SKYEALQTFARTVAR
103
|
|
HR7958A-24-123-TEV
MAFK
O60675
LSDDELVSMSVRELN
SKYEALQTFARTVAR
100
|
|
HR8183A-390-479-Av6HT
MATR3
P43243
MQKGRVETSRVVHIM
PVRVHLSQKYKRIKK
91
|
|
HR8183A-390-479-TEV
MATR3
P43243
QKGRVETSRVVHIMD
PVRVHLSQKYKRIKK
90
|
|
HR8110A-22-107-TEV
MAX
P61244
ADKRAHHNALERKRR
ALLEQQVRALEKARS
86
|
|
HR8332A-230-361-NHT
MAZ
P56270
ACEMCGKAFRDVYHL
SRPDHLNSHVRQVHS
82
|
|
HR8332A-280-361-TEV
MAZ
P56270
ACEMCGKAFRDVYHL
SRPDHLNSHVRQVHS
82
|
|
HR8039A-131-243-TEV
MBD1
Q9UIS9
GCCENCGISFSGDGT
RGCQTQEDCGHCPIC
113
|
|
HR8039A-131-262-TEV
MBD1
Q9UIS9
GCCENCGISFSGDGT
RPGLRRQWKCVQRRC
132
|
|
HR5530A-14
MBD2
Q9UBB5
MEPVPFPSGSAGPGP
NDPLNQNKGKPDLNT
118
|
|
HR5530A-15
MBD2
Q9UBB5
MEPVPFPSGSAGPGP
NDPLNQNKGKPDLNT
118
|
|
HR6416-1-220-15
MBD3
O95983
MERKRWECPALPQGW
VWLNTTQPLCKAFMV
220
|
|
HR6416-1-226-15
MBD3
O95983
MERKRWECPALPQGW
QPLCKAFMVTDEDIR
226
|
|
HR6416-1-261-15
MBD3
O95983
MERKRWECPALPQGW
MLAHVEELARDGEAP
261
|
|
HR6416-15
MBD3
O95983
MERKRWECPALPQGW
EEEEEPDPDPEMEHV
291
|
|
HR6416-33-291-15
MBD3
O95983
VFYYSPSGKKFRSKP
EEEEEPDPDPEMEHV
259
|
|
HR6416-55-291-15
MBD3
O95983
MGSMDLSTFDFRTGK
EEEEEPDPDPEMEHV
238
|
|
HR6416A-1-106-15
MBD3
O95983
MERKRWECPALPQGW
KPDLNTALPVRQTAS
106
|
|
HR6416A-1-111-15
MBD3
O95983
MERKRWECPALPQGW
TALPVRQTASIFKQP
111
|
|
HR6416A-1-117-15
MBD3
O95983
MERKRWECPALPQGW
QTASIFKQPVTKITN
117
|
|
HR6416B-1-72-15
MBD3
O95983
MERKRWECPALPQGW
DLSTFDFRTGKMLMS
72
|
|
HR6416B-1-77-15
MBD3
O95983
MERKRWECPALPQGW
DFRTGKMLMSKMNKS
77
|
|
HR4635B-14
MBD4
O95243
MTECRKSVPCGWERV
VLSKRGIKSRYKDCS
81
|
|
HR4635B-15
MBD4
O95243
MTECRKSVPCGWERV
VLSKRGIKSRYKDCS
81
|
|
HR4635C-14
MBD4
O95243
RSSECNHLLQEPIAS
FTVLSKRGIKSRYKD
101
|
|
HR4635D-55-161-14
MBD4
O95243
MIKRSSECNPLLQEP
SKRGIKSRYKDCSMA
108
|
|
HR4635D-55-161-Av6HT
MBD4
O95243
IKRSSECNPLLQEPI
SKRGIKSRYKDCSMA
107
|
|
HR4635D-55-161-TEV
MBD4
O95243
IKRSSECNPLLQEPI
SKRGIKSRYKDCSMA
107
|
|
HR4635D-55-191-14
MBD4
O95243
MIKRSSECNPLLQEP
NLRTRSKCKKDVFMP
138
|
|
HR4635D-61-156-14
MBD4
O95243
MCNPLLQEPIASAQF
DFTVLSKRGIKSRYK
97
|
|
HR4635D-61-186-14
MBD4
O95243
MCNPLLQEPIASAQF
NNSNWNLRTRSKCKK
127
|
|
HR4635E-437-574-TEV
MBD4
O95243
KWTPPRSPFNLVQET
DHKLNKYHDWLWENH
138
|
|
HR8088A-178-246-TEV
MBNL1
Q9NR56
RTDRLEVCREYQRGN
EKCKYFHPPAHLQAK
69
|
|
HR7551A-175-243-TEV
MBNL2
Q5VZF2
RTDKLEVCREFQRGN
EKCKYFHPPAHLQAK
69
|
|
HR7762A-173-241-TEV
MBNL3
Q9NUK0
RCSREKCKYFHPPAH
NGATPVFNPTVFHCQ
69
|
|
HR3168-14
MDS1
Q13465
MRSKGRARKLATNNE
QADVYMPGLQCAFLS
169
|
|
HR7632A-77-171-TEV
MECP2
P51608
SEGSGSAPAVPEASA
VGDTSLDPNDFDFTV
95
|
|
HR4583C-2-78-TEV
MEF2A
Q02078
GRKKIQITRIMDERN
KVLLKYTEYNEPHES
77
|
|
HR8120A-2-94-TEV
MEF2B
Q02080
GRKKIQISRILDQRN
TNTDILETLKRRGIG
93
|
|
HR4550C-2-78-TEV
MEF2D
Q14814
GRKKIQIQRITDERN
KVLLKYTEYNEPHES
77
|
|
HR8225A-277-341-NHT
MEIS1
O00470
GIFPKVATNIMRAWL
RRRIVQPMIDQSNRA
65
|
|
HR8225A-277-341-TEV
MEIS1
O00470
GIFPKVATNIMRAWL
RRRIVQPMIDQSNRA
65
|
|
HR8514A-250-313-TEV
MEIS3P2
A8K058
GIFPKVATNIMRAWL
ARRRMVQPMIDQSNR
64
|
|
HR7119A-175-247-NHT
MEOX2
P50222
QEGNYKSEVNSKPRK
VWFQNRRMKWKRVKG
73
|
|
HR7798B-1047-1351-Av6HT
MET
P08581
LQNTVHIDLSALNPE
ISAIFSTFIGEHYVH
305
|
|
HR8521A-1-179-TEV
MGMT
P16455
DKDCEMKRTTLDSPL
KEWLLAHEGHRLGKP
178
|
|
HR7181A-199-243-TEV
MIER1
Q8N108
YKENEKVYENDDQLL
KDASRRTGDEKGVEA
45
|
|
HR7181A-199-265-TEV
MIER1
Q8N108
YKENEKVYENDDQLL
KDNEQALYELVKCNF
67
|
|
HR7181A-203-243-TEV
MIER1
Q8N108
EKVYENDDQLLWDPE
KDASRRTGDEKGVEA
41
|
|
HR7181A-203-265-TEV
MIER1
Q8N108
EKVYENDDQLLWDPE
KDNEQALYELVKCNF
63
|
|
HR7181A-208-260-TEV
MIER1
Q8N108
NDDQLLWDPEYLPED
EGSHIKDNEQALYEL
53
|
|
HR3622D-1-299-14
MINK1
Q8N4C8
MGDPAPARSLDDIDL
KFPFIRDQPTERQVR
299
|
|
HR3622D-13-294-14
MINK1
Q8N4C8
MIDLSALRDPAGIFE
TEQLLKFPFIRDQPT
283
|
|
HR3622D-8-299-14
MINK1
Q8N4C8
MRSLDDIDLSALRDP
KFPFIRDQPTERQVR
293
|
|
HR3622D-9-294-14
MINK1
Q8N4C8
MSLDDIDLSALRDPA
TEQLLKFPFIRDQPT
287
|
|
HR3622E-1180-1284-14
MINK1
Q8N4C8
MIYGSSAGFHAVDVD
GEKAIEIRSVETGHL
106
|
|
HR3622E-1185-1282-14
MINK1
Q8N4C8
MAGFHAVDVDSGNSY
GWGEKAIEIRSVETG
99
|
|
HR7746A-86-152-Av6HT
MIXL1
Q9H2W2
QRRKRTSFSAEQLQL
RAKSRRQSGKSFQPL
67
|
|
HR7244A-248-367-NHT
MKRN1
Q9UHC7
DAAQRSQHIKSCIEA
EKQKLILKYKEAMSN
120
|
|
HR7430A-278-369-NHT
MKRN3
Q13064
DAAQREEHMRACIEA
NRIVKSCPQCRVTSE
92
|
|
HR7905A-54-146-Av6HT
MKX
Q8IYA7
NLGLRHRRTGARQNG
VRQPDLSWALRIKLY
93
|
|
HR4516M-1422-1490-15
MLL
Q03164
MILTSVPITPRVVCF
CRRCKFCHVCGRQHQ
70
|
|
HR4516M-1422-1514-15
MLL
Q03164
MILTSVPITPRVVCF
KCRNSYHPECLGPNY
94
|
|
HR4516M-1427-1486-15
MLL
Q03164
MPITPRVVCFLCASS
ENWCCRRCKFCHVCG
61
|
|
HR4516M-1427-1514-15
MLL
Q03164
MPITPRVVCFLCASS
KCRNSYHPECLGPNY
89
|
|
HR4516N-1476-1537-15
MLL
Q03164
MCRRCKFCHVCGRQH
KVWICTKCVRCKSCG
63
|
|
HR4516O-2012-2081-15
MLL
Q03164
MNGLEPENIHMMIGS
YTCKIVECRPPVVEP
71
|
|
HR4516O-2017-2076-15
MLL
Q03164
MENIHMMIGSMTIDC
RKRCVYTCKIVECRP
61
|
|
HR4516O-2017-2082-15
MLL
Q03164
MENIHMMIGSMTIDC
TCKIVECRPPVVEPD
67
|
|
HR8195A-1-143-Av6HT
MLLT1
Q03111
DNQCTVQVRLELGHR
TEFRYKLLRAGGVMV
142
|
|
HR7909A-1-139-Av6HT
MLLT3
P42568
ASSCAVQVKLELGHR
NNPTEDFRRKLLKAG
138
|
|
HR7716A-121-220-NHT
MLX
Q9UH92
AYKESYKDRRRRAHT
TALKIMKVNYEQIVK
100
|
|
HR7887A-717-802-Av6HT
MLXIP
Q9HAP2
LKNRQMKHISAEQKR
EELNATIISCQQLLP
86
|
|
HR7887A-726-802-Av6HT
MLXIP
Q9HAP2
SAEQKRRFNIKMCFD
EELNATIISCQQLLP
77
|
|
HR7434A-647-736-NHT
MLXIPL
Q9NP71
TENRRITHISAEQKR
EELNAAINLCQQQLP
90
|
|
HR7223A-347-541-Av6HT
MRF
Q9Y2G1
NYQSIKWQPHQQNKW
IIVRASNPGQFESDS
195
|
|
HR7242A-112-186-TEV
MRRF
Q96E11
ESGMNLNPEVEGTLI
DTVSEDTIRLIEKQI
75
|
|
HR4485B-103-183-14
MSC
O60682
MECKQSQRNAANARE
ENGYVHPVNLTWPFV
82
|
|
HR4485B-103-188-14
MSC
O60682
MECKQSQRNAANARE
HPVNLTWPFVVSGRP
87
|
|
HR4485B-103-188-Av6HT
MSC
O60682
ECKQSQRNAANARER
HPVNLTWPFVVSGRP
86
|
|
HR4485B-103-188-TEV
MSC
O60682
ECKQSQRNAANARER
HPVNLTWPFVVSGRP
86
|
|
HR4485B-103-194-14
MSC
O60682
MECKQSQRNAANARE
WPFVVSGRPDSDTKE
93
|
|
HR4485B-103-199-14
MSC
O60682
MECKQSQRNAANARE
SGRPDSDTKEVSAAN
98
|
|
HR4485B-135-194-14
MSC
O60682
MPWVPPDTKLSKLDT
WPFVVSGRPDSDTKE
61
|
|
HR4485C-103-174-14
MSC
O60682
MECKQSQRNAANARE
RQLLQEDRYENGYVH
73
|
|
HR7186A-122-193-NHT
MSGN1
A6NI15
SVQRRRKASEREKLR
TDLLNRGREPRAQSA
72
|
|
HR7207A-25-769-TEV
MST1R
Q04912
EDWQCPRTPYAASRD
GAQVPGSWTFQYRED
745
|
|
HR4585B-167-224-TEV
MSX1
P28360
RKPRTPFTTAQLLAL
VKIWFQNRRAKAKRL
58
|
|
HR7691A-143-200-TEV
MSX2
P35548
RKPRTPFTTSQLLAL
VKIWFQNRRAKAKRL
58
|
|
HR4538-1-540-14
MTA1
Q13330
MAANMYRVGDYVYFE
LKQAVRKPLEAVLRY
540
|
|
HR4538-1-540-15
MTA1
Q13330
MAANMYRVGDYVYFE
LKQAVRKPLEAVLRY
540
|
|
HR4538-1-545-14
MTA1
Q13330
MAANMYRVGDYVYFE
RKPLEAVLRYLETHP
545
|
|
HR4538-1-545-15
MTA1
Q13330
MAANMYRVGDYVYFE
RKPLEAVLRYLETHP
545
|
|
HR4538C-375-438-14
MTA1
Q13330
MGVVNGTGAPGQSPG
WKKYGGLKMPTRLDG
65
|
|
HR4538C-380-433-14
MTA1
Q13330
MTGAPGQSPGAGRAC
SCWTYWKKYGGLKMP
55
|
|
HR4538D-15
MTA1
Q13330
ALVPQGGPVLCRDEM
QVYIPNYNKPNPNQI
97
|
|
HR4538D-Av6HT
MTA1
Q13330
ALVPQGGPVLCRDEM
QVYIPNYNKPNPNQI
97
|
|
HR4538D-TEV
MTA1
Q13330
ALVPQGGPVLCRDEM
QVYIPNYNKPNPNQI
97
|
|
HR4621B-352-412-15
MTA2
O94776
MSKPGMNGAGFQKGL
WKKYGGLKTPTQLEG
62
|
|
HR4621B-357-407-15
MTA2
O94776
MNGAGFQKGLTCESC
SCWIYWKKYGGLKTP
52
|
|
HR4621C-1-140-15
MTA2
O94776
MAANMYRVGDYVYFE
CFFYSLVFDPVQKTL
140
|
|
HR4621C-1-145-15
MTA2
O94776
MAANMYRVGDYVYFE
LVFDPVQKTLLADQG
145
|
|
HR4621C-1-161-15
MTA2
O94776
MAANMYRVGDYVYFE
IRVGCKYQAEIPDRL
161
|
|
HR4621C-1-166-15
MTA2
O94776
MAANMYRVGDYVYFE
KYQAEIPDRLVEGES
166
|
|
HR4468C-268-324-TEV
MTA3
Q9BIC8
AISALVPQGGPVLCR
IQQDFLPWKSLTSII
57
|
|
HR6907A-148-207-NHT
MTF1
Q14872
PRTYSTAGNLRTHQK
VHTKEKPFECDVQGC
60
|
|
HR6878A-57-136-TEV
MXD1
Q05195
SRSTHNEMEKNRRAH
LQREQRHLKRQLEKL
80
|
|
HR6454A-24-140-14
MXD4
Q14582
EHGYASVLPFDGDFA
LKRRLEQLSVQSVER
117
|
|
HR6454A-44-143-14
MXD4
Q14582
AAGLVRKAPNNRSSH
RLEQLSVQSVERVRT
100
|
|
HR6454A-44-143-15
MXD4
Q14582
AAGLVRKAPNNRSSH
RLEQLSVQSVERVRT
100
|
|
HR6454A-49-140-14
MXD4
Q14582
RKAPNNRSSHNELEK
LKRRLEQLSVQSVER
92
|
|
HR6454A-56-136-14
MXD4
Q14582
SSHNELEKHRRAKLR
EHRFLKRRLEQLSVQ
81
|
|
HR6454A-56-136-15
MXD4
Q14582
SSHNELEKHRRAKLR
EHRFLKRRLEQLSVQ
81
|
|
HR6436A-58-155-14
MXI1
P50539
SSGSSNTSTANRSTH
KWRLEQLQGPQEMER
98
|
|
HR6436A-63-149-14
MXI1
P50539
NTSTANRSTHNELEK
REQRFLKWRLEQLQG
87
|
|
HR6436A-63-155-14
MXI1
P50539
NTSTANRSTHNELEK
KWRLEQLQGPQEMER
93
|
|
HR6436A-68-149-14
MXI1
P50539
NRSTHNELEKNRRAH
REQRRLKWRLEQLQG
82
|
|
HR8112A-85-136-TEV
MYBL1
P10243
LIKGPWTKEEDQRVI
GKQCRERWHNHLNPE
52
|
|
HR3593B-28-78-TEV
MYBL2
P10244
SKCKVKWTHEEDEQL
RTDQQCQYRWLRVLN
51
|
|
HR4620B-353-438-TEV
MYC
P01106
NVKRRTHNVLERQRR
REQLKHKLEQLRNSC
86
|
|
HR7184A-279-364-NHT
MYCL1
P12524
DVTKRKNHNFLERKR
RQQQLQKRIAYLIGY
86
|
|
HR8502A-1-111-Av6HT
MYCL2
P12525
DRDSYHHYFYDYDGG
EPLERAVSDLLAVGA
110
|
|
HR6419A-367-464-14
MYCN
P04198
AKSLSPRNSDSEDSE
RQQQLLKKIEHARTC
98
|
|
HR7983A-4-117-TEV
MYNN
Q9NPC7
SHHCEHLLERLNKQR
KVEEVVTKCKIKMED
114
|
|
HR4693-66-224-14
MYOG
P15173
MLPWACKVCKRKSVS
VEDVSVAFPDETMPN
160
|
|
HR4693B-71-145-14
MYOG
P15173
MKVCKRKSVSVDRRR
RLQALLSSLNQEERD
76
|
|
HR4693B-73-156-14
MYOG
P15173
MCKRKSVSVDRRRAA
EERDLRYRGGGGPQP
85
|
|
HR4693B-76-138-14
MYOG
P15173
MKSVSVDRRRAATLR
SAIQYIERLQALLSS
64
|
|
HR4693B-78-156-14
MYOG
P15173
MVSVDRRRAATLREK
EERDLRYRGGGGPQP
80
|
|
HR7507A-115-181-TEV
MYSM1
Q5VVJ2
ASYSVKWTIEEKELF
VKCGLDKETPNQKTG
67
|
|
HR7507B-367-470-TEV
MYSM1
Q5VVJ2
HEEEELKPPEQEIEI
IGAINFGGEQAVYNR
104
|
|
HR4437B-298-605-NHT
MYST2
O95251
LENLTSEYDLDLFRR
RSNSNKTMDPSCLKW
308
|
|
HR8033A-559-650-TEV
MYT1
Q01538
SYRPNVAPATPRANL
LSTRCWEMPENLSTK
92
|
|
HR6948A-486-549-TEV
MYT1L
Q9UL68
HVKKPYYDPSRTEKK
PPEILAMHESVLKCP
64
|
|
HR7215A-37-128-TEV
MZF1
P28698
DPGPEAARLRFRCFR
EAAALVDGLRREPGG
92
|
|
HR6963A-75-157-TEV
NANOG
Q9H9S0
KQPTSAEKSVAKKED
FQNQRMKSKRWQKNN
83
|
|
HR7935-106-160-Av6HT
NANOGNB
Q7Z5D8
KRLVSKSLMHTLWAK
ISQWFCKTRKKYNKE
55
|
|
HR8537A-41-101-Av6HT
NANOGP1
Q8N7R0
TRTVFSSTQLCVLND
QNQRMKSKRWQKNNW
61
|
|
HR3639F-24-96-15
NCOA1
Q15788
MCDTLASSTEKRRRE
RMEQEKSTTDDDVQK
74
|
|
HR3639F-29-91-15
NCOA1
Q15788
MSSTEKRRREQENKY
IQLMKRMEQEKSTTD
64
|
|
HR3639G-104-174-15
NCOA1
Q15788
MQGVIEKESLGPLLL
LHVGDHAEFVKNLLP
72
|
|
HR3639G-107-179-15
NCOA1
Q15788
MIEKESLGPLLLEAL
HAEFVKNLLPKSLVN
74
|
|
HR3639G-112-174-15
NCOA1
Q15788
MLGPLLLEALDGFFF
LHVGDHAEFVKNLLP
64
|
|
HR3639G-112-203-15
NCOA1
Q15788
MLGPLLLEALDGFFF
RRNSHTFNCRMLIHP
93
|
|
HR3639G-99-179-15
NCOA1
Q15788
MISSSSQGVIEKESL
HAEFVKNLLPKSLVN
82
|
|
HR3639H-1185-1441-15
NCOA1
Q15788
MSPFSQLAANPEASL
PQAQQKSLLQQLLTE
258
|
|
HR3639H-1190-1441-15
NCOA1
Q15788
MLAANPEASLANRNS
PQAQQKSLLQQLLTE
253
|
|
HR3639H-1205-1441-15
NCOA1
Q15788
MVSRGMTGNIGGQFG
PQAQQKSLLQQLLTE
238
|
|
HR3639H-1210-1441-15
NCOA1
Q15788
MTGNIGGQFGTGINP
PQAQQKSLLQQLLTE
233
|
|
HR3639H-1216-1441-15
NCOA1
Q15788
MQFGTGINPQMQQNV
PQAQQKSLLQQLLTE
227
|
|
HR4453I-100-258-Av6HT
NCOA3
Q9Y6Q9
MVSSTGQGVIDKDSL
SCMICVARRITTGER
160
|
|
HR4453I-100-258-NHT
NCOA3
Q9Y6Q9
VSSTGQGVIDKDSLG
SCMICVARRITTGER
159
|
|
HR7885A-433-486-TEV
NCOR1
O75376
DRQFMNVWTDHEKEI
PDCVLYYYLTKKNEN
54
|
|
HR4636E-602-671-14
NCOR2
Q9Y618
MAELASMELNESSRW
KKRQNLDEILQQHKL
71
|
|
HR4636E-608-670-14
NCOR2
Q9Y618
MELNESSRWTEEEME
YKKRQNLDEILQQHK
64
|
|
HR7360A-102-160-TEV
NEUROD1
Q13562
RRMKANARERNRMHG
AKNYIWALSEILRSG
59
|
|
HR7134A-122-180-TEV
NEUROD2
Q15784
RRQKANARERNRMHD
AKNYIWALSEILRSG
59
|
|
HR7078A-87-146-TEV
NEUROD4
Q9HD90
ARRVKANARERTRMH
ARNYIWALSEVLETG
60
|
|
HR8276A-95-153-NHT
NEUROD6
Q96NK8
RRQEANARERNRMHG
AKNYIWALSEILRIG
59
|
|
HR8276A-95-153-TEV
NEUROD6
Q96NK8
RRQEANARERNRMHG
AKNYIWALSEILRIG
59
|
|
HR6971A-104-175-NHT
NEUROG2
Q9H2A3
ETVQRIKKTRRLKAN
IWALTETLRLADHCG
72
|
|
HR7673A-76-167-NHT
NEUROG3
Q9Y4Z2
ALSKQRRSRRKKAND
APHCGELGSPGGSPG
92
|
|
HR7259A-264-544-TEV
NFAT5
O94916
KKSPMLCGQYPVKSE
AGRSHDVQPFTYTPD
281
|
|
HR8282A-416-591-Av6HT
NFATC1
O95644
MDWQLPSHSGPYELR
SLQVASNPIECSQRS
177
|
|
HR8282A-416-591-TEV
NFATC1
O95644
DWQLPSHSGPYELRI
SLQVASNPIECSQRS
176
|
|
HR7889A-421-595-TEV
NFATC3
Q12968
DWPLPAHFGQCELKI
SLQIASIPVECSQRS
175
|
|
HR4653B-214-293-14
NFE2
Q16621
MAKPTARGEAGSRDE
AAQNCRKRKLETIVQ
81
|
|
HR4653B-218-293-14
NFE2
Q16621
MARGEAGSRDERRAL
AAQNCRKRKLETIVQ
77
|
|
HR4653B-223-293-14
NFE2
Q16621
MGSRDERRALAMKIP
AAQNCRKRKLETIVQ
72
|
|
HR4653B-234-293-14
NFE2
Q16621
MKIPFPTDKIVNLPV
AAQNCRKRKLETIVQ
61
|
|
HR4653C-259-338-14
NFE2
Q16621
MLTESQLALVRDIRR
QQLTELYRDIFQHLR
81
|
|
HR4653C-274-338-14
NFE2
Q16621
MGKNKVAAQNCRKRK
QQLTELYRDIFQHLR
66
|
|
HR7672A-605-674-NHT
NFE2L1
Q14494
DFLDKQMSRDEHRAR
RRGKNKMAAQNCRKR
70
|
|
HR3520B-21
NFE2L2
Q16236
MMDLELPPPGLPSQQ
TSGSANYSQVAHIPK
110
|
|
HR3520F-21
NFE2L2
Q16236
DMDLIDILWRQDIDL
TSGSANYSQVAHIPK
95
|
|
HR3520L-455-594-14
NFE2L2
Q16236
TRDELRAKALHIPFP
EYSLQQTRDGNVFLV
140
|
|
HR3520L-455-599-14
NFE2L2
Q16236
TRDELRAKALHIPFP
QTRDGNVFLVPKSKK
145
|
|
HR3520M-435-523-15
NFE2L2
Q16236
MGHRKTPFTKDKHSS
VAAQNCRKRKLENIV
90
|
|
HR3520M-440-523-15
NFE2L2
Q16236
MPFTKDKHSSRLEAH
VAAQNCRKRKLENIV
85
|
|
HR3520N-489-570-15
NFE2L2
Q16236
MQFNEAQLALIRDIR
QLSTLYLEVFSMLRD
83
|
|
HR3520O-445-523-15
NFE2L2
Q16236
MKHSSRLEAHLTRDE
VAAQNCRKRKLENIV
80
|
|
HR7720A-530-598-NHT
NFE2L3
Q9Y4A8
DTDRNLSRDEQRAKA
RRGKNKVAAQNCRKR
69
|
|
HR7383A-63-165-TEV
NFIA
Q12857
EKPEVKQKWASRLLA
VKSPQCSNPGLCVQP
103
|
|
HR7383A-63-184-TEV
NFIA
Q12857
EKPEVKQKWASRLLA
VSVKELDLYLAYFVH
122
|
|
HR7383A-7-165-TEV
NFIA
Q12857
LTQDEFHPFIEALLP
VKSPQCSNPGLCVQP
159
|
|
HR7279A-8-166-Av6HT
NFIB
O00712
LTQDEFHPFIEALLP
MKSPHCTNPALCVQP
159
|
|
HR7320A-61-170-TEV
NFIC
P08651
LLGEKPEVKQKWASR
QCGHPVLCVQPHHIG
110
|
|
HR7320A-61-186-TEV
NFIC
P08651
LLGEKPEVKQKWASR
AVKELDLYLAYFVRE
126
|
|
HR7320A-64-166-TEV
NFIC
P08651
EKPEVKQKWASRLLA
VKAAQCGHPVLCVQP
103
|
|
HR7320A-8-166-TEV
NFIC
P08651
LTQDEFHPFIEALLP
VKAAQCGHPVLCVQP
159
|
|
HR3633C-804-893-TEV
NFKB1
P19838
AQGDMKQLAEDVKLQ
MGYTEAIEVIQAASS
90
|
|
HR3633D-248-354-Av6HT
NFKB1
P19838
SNLKIVRMDRTAGCV
ETSEPKPFLYYPEIK
107
|
|
HR5561A-15
NFKB1
P19838
MQLVRDLLEVTSGLI
GADPLVENFEPLYDL
201
|
|
HR4541C-445-696-14
NFKB2
Q00653
MEYNARLFGLAQRSA
TLTRLLLKAGADIHA
253
|
|
HR4541C-477-696-14
NFKB2
Q00653
MQRHLLTAQDENGDT
TLTRLLLKAGADIHA
221
|
|
HR4541C-482-696-14
NFKB2
Q00653
MTAQDENGDTPLHLA
TLTRLLLKAGADIHA
216
|
|
HR4541D-37-329-TEV
NFKB2
Q00653
GPYLVIVEQPKQRGF
GDVSDSKQFTYYPLV
293
|
|
HR6920A-980-1063-NHT
NFX1
Q12986
SKFSDSLKEDARKDL
DSEPKRNVVVTAIRG
84
|
|
HR6427-1-270-14
NFYA
P23511
MEQYTANSNSSTEQI
GAEMLEEEPLYVNAK
270
|
|
HR6427-1-290-14
NFYA
P23511
MEQYTANSNSSTEQI
LKRRQARAKLEAEGK
290
|
|
HR6427-1-295-14
NFYA
P23511
MEQYTANSNSSTEQI
ARAKLEAEGKIPKER
295
|
|
HR6427A-38-145-14
NFYA
P23511
EAQVASASGQQVQTL
QIIIQQPQTAVTAGQ
108
|
|
HR6427A-42-150-14
NFYA
P23511
ASASGQQVQTLQVVQ
QPQTAVTAGQTQTQQ
109
|
|
HR6427A-47-145-14
NFYA
P23511
QQVQTLQVVQGQPLM
QIIIQQPQTAVTAGQ
99
|
|
HR4613B-51-143-TEV
NFYB
P25208
SFREQDIYLPIANVA
SYVEPLKLYLQKFRE
93
|
|
HR3512B-166-288-15
NKRF
O15226
VVAEKQYFIEKLTAT
LQKRIEVRVVRRKFK
123
|
|
HR3512B-166-293-15
NKRF
O15226
VVAEKQYFIEKLTAT
EVRVVRRKFKHTFGE
128
|
|
HR3512B-188-288-15
NKRF
O15226
PEMTSGSDKINYTYM
LQKRIEVRVVRRKFK
101
|
|
HR4600-161-227-Av6HT
NKX2-1
P43699
RRKRVLFSQAQVYE
RYKMKRQAKDKAAQQ
67
|
|
HR7114A-123-196-TEV
NKX2-2
O95096
GDAGKKRKRRVLFSK
KMKRARAEKGMEVTP
74
|
|
HR4758B-148-211-TEV
NKX2-3
Q8TAU0
RRKPRVLFSQAQVFE
QNRRYKCKRQRQDKS
64
|
|
HR7998A-189-255-TEV
NKX2-4
Q9H2Z4
RRKRRVLFSQAQVYE
RYKMKRQAKDKAAQQ
67
|
|
HR5518A-127-207-14
NKX2-5
P52952
MADNAERPRARRRRK
CKRQRQDQTLELVGL
82
|
|
HR5518A-127-207-Av6HT
NKX2-5
P52952
ADNAERPRARRRRKP
CKRQRQDQTLELVGL
81
|
|
HR5518A-127-207-TEV
NKX2-5
P52952
ADNAERPRARRRRKP
CKRQRQDQTLELVGL
81
|
|
HR5518A-14
NKX2-5
P52952
MRPRARRRRKPRVLF
DQTLELVGLPPPPPP
83
|
|
HR5518A-15
NKX2-5
P52952
MRPRARRRRKPRVLF
DQTLELVGLPPPPPP
83
|
|
HR5518B-128-224-14
NKX2-5
P52952
MDNAERPRARRRRKP
PPPPPARRIAVPVLV
98
|
|
HR5518B-128-233-14
NKX2-5
P5295
MDNAERPRARRRRKP
AVPVLVRDGKPCLGD
107
|
|
HR5518B-143-224-14
NKX2-5
P52952
MVLFSQAQVYELERR
PPPPPARRIAVPVLV
83
|
|
HR5518B-143-228-14
NKX2-5
P52952
MVLFSQAQVYELERR
PARRIAVPVLVRDGK
87
|
|
HR5518B-143-233-14
NKX2-5
P52952
MVLFSQAQVYELERR
AVPVLVRDGKPCLGD
92
|
|
HR7861A-83-143-TEV
NKX2-8
O15522
KRKKRRVLFSKAQTL
KIWFQNHRYKLKRAR
61
|
|
HR6470A-127-195-15
NKX3-1
Q99801
SRAAFSHTQVIELER
RKQLSSELGDLEKHS
69
|
|
HR6470A-132-189-15
NKX3-1
Q99801
SHTQVIELERKFSHQ
RRYKTKRKQLSSELG
58
|
|
HR6470A-97-163-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
LSAPERAHLAKNLKL
67
|
|
HR6470A-97-168-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
RAHLAKNLKLTETQV
72
|
|
HR6470A-97-189-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
RRYKTKRKQLSSELG
93
|
|
HR6470A-97-195-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
RKQLSSELGDLEKHS
99
|
|
HR8303A-212-271-Av6HT
NKX3-2
P78367
AFSHAQVFELERRFN
RRYKTKRRQMAADLL
60
|
|
HR6930A-227-296-NHT
NKX6-1
P78426
SILLDKDGKRKHTRP
VWFQNRRTKWRKKHA
70
|
|
HR7948A-199-323-Av6HT
NOC3L
Q8WTT2
TIEEHLIERKKKLQE
LENLEQMVKDWKQRK
125
|
|
HR8350A-301-458-Av6HT
NOC4L
Q9BVI4
GGALSLLALNGLFIL
HYHPEVSKAASVINQ
158
|
|
HR6913A-130-201-NHT
NPAS1
Q99742
VSEVFEQHLGGHILQ
HPGDHSEVLEQLGLR
72
|
|
HR8115A-87-146-Av6HT
NPAS2
Q99743
QLMLEALDGFIIAVT
FLPEQEHSEVYKILS
60
|
|
HR7386A-142-213-NHT
NPAS3
Q8IXF0
AIEVFEAHLGSHILQ
HPGDHVEMAEQLGMK
72
|
|
HR7814A-184-329-NHT
NPAS4
Q8IUM7
GNPVFTAFCAPLEPR
SDMEAWSLRQQINSE
146
|
|
HR7372A-210-470-15
NR0B1
P51843
MGSTLYCVPTSTNQA
VSMDDMMLEMLCTKI
262
|
|
HR7372A-210-470-Av6HT
NR0B1
P51843
GSTLYCVPTSTNQAQ
VSMDDMMLEMLCTKI
261
|
|
HR7372A-210-470-TEV
NR0B1
P51843
GSTLYCVPTSTNQAQ
VSMDDMMLEMLCTKI
261
|
|
HR7372A-237-470-15
NR0B1
P51843
MDTSSGALRPVALKS
VSMDDMMLEMLCTKI
235
|
|
HR7372A-237-470-Av6HT
NR0B1
P51843
DTSSGALRPVALKSP
VSMDDMMLEMLCTKI
234
|
|
HR7372A-237-470-TEV
NR0B1
P51843
DTSSGALRPVALKSP
VSMDDMMLEMLCTKI
234
|
|
HR7372A-245-470-15
NR0B1
P51843
MPVALKSPQVVCEAA
VSMDDMMLEMLCTKI
227
|
|
HR7372A-245-470-Av6HT
NR0B1
P51843
PVALKSPQVVCEAAS
VSMDDMMLEMLCTKI
226
|
|
HR7372A-245-470-TEV
NR0B1
P51843
PVALKSPQVVCEAAS
VSMDDMMLEMLCTKI
226
|
|
HR8369A-14-257-15
NR0B2
Q15466
MAASRPAILYALLSS
DVDIAGLLGDMLLLR
245
|
|
HR8278A-123-216-15
NR1D1
P20393
MTKLNGMVLLCKVCG
AVRFGRIPKREKQRM
95
|
|
HR8278A-123-216-Av6HT
NR1D1
P20393
TKLNGMVLLCKVCGD
AVRFGRIPKREKQRM
94
|
|
HR8278A-123-216-TEV
NR1D1
P20393
TKLNGMVLLCKVCGD
AVRFGRIPKREKQRM
94
|
|
HR8341A-100-171-15
NR1D2
Q14995
MVLLCKVCGDVASGF
QQCRFKKCLSVGMSR
73
|
|
HR8341A-100-171-Av6HT
NR1D2
Q14995
VLLCKVCGDVASGFH
QQCRFKKCLSVGMSR
72
|
|
HR8341A-100-171-TEV
NR1D2
Q14995
VLLCKVCGDVASGFH
QQCRFKKCLSVGMSR
72
|
|
HR8341A-100-181-15
NR1D2
Q14995
MVLLCKVCGDVASGF
VGMSRDAVRFGRIPK
83
|
|
HR8341A-100-181-Av6HT
NR1D2
Q14995
VLLCKVCGDVASGFH
VGMSRDAVRFGRIPK
82
|
|
HR8341A-100-181-TEV
NR1D2
Q14995
VLLCKVCGDVASGFH
VGMSRDAVRFGRIPK
82
|
|
HR8341A-100-200-15
NR1D2
Q14995
MVLLCKVCGDVASGF
RMLIEMQSAMKTMMN
102
|
|
HR8341A-100-200-Av6HT
NR1D2
Q14995
VLLCKVCGDVASGFH
RMLIEMQSAMKTMMN
101
|
|
HR8341A-100-200-TEV
NR1D2
Q14995
VLLCKVCGDVASGFH
RMLIEMQSAMKTMMN
101
|
|
HR8341B-381-579-15
NR1D2
Q14995
MHLVCPMSKSPYVDP
NNMHSEELLAFKVHP
200
|
|
HR8341B-381-579-Av6HT
NR1D2
Q14995
HLVCPMSKSPYVDPH
NNMHSEELLAFKVHP
199
|
|
HR8341B-381-579-TEV
NR1D2
Q14995
HLVCPMSKSPYVDPH
NNMHSEELLAFKVHP
199
|
|
HR7370A-209-460-15
NR1H2
P55055
MSQGSGEGEGVQLTA
DKKLPPLLSEIWDVH
253
|
|
HR7370A-209-460-Av6HT
NR1H2
P55055
SQGSGEGEGVQLTAA
DKKLPPLLSEIWDVH
252
|
|
HR7370A-209-460-TEV
NR1H2
P55055
SQGSGEGEGVQLTAA
DKKLPPLLSEIWDVH
252
|
|
HR8107E-205-447-TEV
NR1H3
Q13133
QLSPEQLGMIEKLVA
KKLPPLLSEIWDVHE
243
|
|
HR4469B-125-217-14
NR1H4
Q96RI1
MGASAGRIKGDELCV
LAECMYTGLLTEIQC
94
|
|
HR4469B-125-234-14
NR1H4
Q96RI1
MGASAGRIKGDELCV
KRLRKNVKQHADQTV
111
|
|
HR4469B-129-217-14
NR1H4
Q96RI1
MGRIKGDELCVVCGD
LAECMYTGLLTEIQC
90
|
|
HR4469B-129-234-14
NR1H4
Q96RI1
MGRIKGDELCVVCGD
KRLRKNVKQHADQTV
107
|
|
HR4469B-130-213-14
NR1H4
Q96RI1
MRIKGDELCVVCGDR
EMGMLAECMYTGLLT
85
|
|
HR4469B-130-229-14
NR1H4
Q96RI1
MRIKGDELCVVCGDR
IQCKSKRLRKNVKQH
101
|
|
HR4469B-134-213-14
NR1H4
Q96RI1
MDELCVVCGDRASGY
EMGMLAECMYTGLLT
81
|
|
HR4469B-134-229-14
NR1H4
Q96RI1
MDELCVVCGDRASGY
IQCKSKRLRKNVKQH
97
|
|
HR7870A-37-107-15
NR1I2
O75469
MGPQJCRVCGDKATG
QCQACRLRKCLESGM
72
|
|
HR7870A-37-107-Av6HT
NR1I2
O75469
GPQICRVCGDKATGY
QCQACRLRKCLESGM
71
|
|
HR7870A-37-107-TEV
NR1I2
O75469
GPQICRVCGDKATGY
QCQACRLRKCLESGM
71
|
|
HR7870A-37-130-15
NR1I2
O75469
MGPQICRVCGDKATG
EAVEERRALIKRKKS
95
|
|
HR7870A-37-130-Av6HT
NR1I2
O75469
GPQICRVCGDKATGY
EAVEERRALIKRKKS
94
|
|
HR7870A-37-130-TEV
NR1I2
O75469
GPQICRVCGDKATGY
EAVEERRALIKRKKS
94
|
|
HR7870B-130-434-15
NR1I2
O75469
MSERTGTQPLGVQGL
FATPLMQELFGITGS
306
|
|
HR7870B-130-434-Av6HT
NR1I2
O75469
SERTGTQPLGVQGLT
FATPLMQELFGITGS
305
|
|
HR7870B-130-434-TEV
NR1I2
O75469
SERTGTQPLGVQGLT
FATPLMQELFGITGS
305
|
|
HR7870C-142-434-15
NR1I2
O75469
MGLTEEQRMMIRELM
FATPLMQELFGITGS
294
|
|
HR7870C-142-434-Av6HT
NR1I2
O75469
GLTEEQRMMIRELMD
FATPLMQELFGITGS
293
|
|
HR7870C-142-434-TEV
NR1I2
O75469
GLTEEQRMMIRELMD
FATPLMQELFGITGS
293
|
|
HR7475A-6-105-15
NR1I3
Q14994
MDELRNCVVCGDQAT
RAKQAQRRAQQTPVQ
101
|
|
HR7475A-6-105-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
RAKQAQRRAQQTPVQ
100
|
|
HR7475A-6-105-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
RAKQAQRRAQQTPVQ
100
|
|
HR7475A-6-120-15
NR1I3
Q14994
MDELRNCVVCGDQAT
LSKEQEELIRTLLGA
116
|
|
HR7475A-6-120-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
LSKEQEELIRTLLGA
115
|
|
HR7475A-6-120-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
LSKEQEELIRTLLGA
115
|
|
HR7475B-6-77-15
NR1I3
Q14994
MDELRNCVVCGDQAT
CPACRLQKCLDAGMR
73
|
|
HR7475B-6-77-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
CPACRLQKCLDAGMR
72
|
|
HR7475B-6-77-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
CPACRLQKCLDAGMR
72
|
|
HR7475B-6-82-15
NR1I3
Q14994
MDELRNCVVCGDQAT
LQKCLDAGMRKDMIL
78
|
|
HR7475B-6-82-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
LQKCLDAGMRKDMIL
77
|
|
HR7475B-6-82-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
LQKCLDAGMRKDMIL
77
|
|
HR7475C-103-352-15
NR1I3
Q14994
MPVQLSKEQEELIRT
QGLSAMMPLLQEICS
251
|
|
HR7475C-103-352-Av6HT
NR1I3
Q14994
PVQLSKEQEELIRTL
QGLSAMMPLLQEICS
250
|
|
HR7475C-103-352-TEV
NR1I3
Q14994
PVQLSKEQEELIRTL
QGLSAMMPLLQEICS
250
|
|
HR8155A-108-196-Av6HT
NR2C1
P13056
KVFDLCVVCGDKASG
SVQCERKPIEVSREK
89
|
|
HR6956-16-584-15
NR2C2
P49116
MAVASPQRIQGSEPA
RLMSSNITEELFFTG
570
|
|
HR6956-16-584-Av6HT
NR2C2
P49116
AVASPQRIQGSEPAS
RLMSSNITEELFFTG
569
|
|
HR6956-16-584-TEV
NR2C2
P49116
AVASPQRIQGSEPAS
RLMSSNITEELFFTG
569
|
|
HR6956A-115-584-15
NR2C2
P49116
MSASVERLLGKTDVQ
RLMSSNITEELFFTG
471
|
|
HR6956A-115-584-TEV
NR2C2
P49116
SASVERLLGKTDVQR
RLMSSNITEELFFTG
470
|
|
HR6956B-170-584-15
NR2C2
P49116
MYSCRSNQDCIINKH
RLMSSNITEELFFTG
416
|
|
HR6956B-170-584-Av6HT
NR2C2
P49116
YSCRSNQDCIINKHH
RLMSSNITEELFFTG
415
|
|
HR6956B-170-584-TEV
NR2C2
P49116
YSCRSNQDCIINKHH
RLMSSNITEELFFTG
415
|
|
HR6956B-181-584-15
NR2C2
P49116
MNKHHRNRCQFCRLK
RLMSSNITEELFFTG
405
|
|
HR6956B-181-584-Av6HT
NR2C2
P49116
NKHHRNRCQFCRLKK
RLMSSNITEELFFTG
404
|
|
HR6956B-181-584-TEV
NR2C2
P49116
NKHHRNRCQFCRLKK
RLMSSNITEELFFTG
404
|
|
HR6956B-218-584-15
NR2C2
P49116
MEKPSNCAASTEKIY
RLMSSNITEELFFTG
368
|
|
HR6956B-218-584-Av6HT
NR2C2
P49116
EKPSNCAASTEKIYI
RLMSSNITEELFFTG
367
|
|
HR6956B-218-584-TEV
NR2C2
P49116
EKPSNCAASTEKIYI
RLMSSNITEELFFTG
367
|
|
HR6956C-110-188-15
NR2C2
P49116
MQIVTDSASVERLLG
SNQDCIINKHHRNRC
80
|
|
HR6956C-110-205-15
NR2C2
P49116
MQIVTDSASVERLLG
CRLKKCLEMGMKMES
97
|
|
HR6956C-115-183-15
NR2C2
P49116
MSASVERLLGKTDVQ
TYSCRSNQDCIINKH
70
|
|
HR6956C-115-183-Av6HT
NR2C2
P49116
SASVERLLGKTDVQR
TYSCRSNQDCIINKH
69
|
|
HR6956C-115-183-TEV
NR2C2
P49116
SASVERLLGKTDVQR
TYSCRSNQDCIINKH
69
|
|
HR6956C-115-200-15
NR2C2
P49116
MSASVERLLGKTDVQ
NRCQFCRLKKCLEMG
87
|
|
HR6956C-115-200-Av6HT
NR2C2
P49116
SASVERLLGKTDVQR
NRCQFCRLKKCLEMG
86
|
|
HR6956C-115-200-TEV
NR2C2
P49116
SASVERLLGKTDVQR
NRCQFCRLKKCLEMG
86
|
|
HR7378A-18-385-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
PITRLLSDMYKSSDI
369
|
|
HR7378A-18-385-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
PITRLLSDMYKSSDI
368
|
|
HR7378A-18-385-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
PITRLLSDMYKSSDI
368
|
|
HR7378B-134-385-Av6HT
NR2E1
Q9Y466
VTQLEPHGLELAAVS
PITRLLSDMYKSSDI
252
|
|
HR7378B-134-385-TEV
NR2E1
Q9Y466
VTQLEPHGLELAAVS
PITRLLSDMYKSSDI
252
|
|
HR7378B-65-385-15
NR2E1
Q9Y466
MTHRNQCRACRLKKC
PITRLLSDMYKSSDI
322
|
|
HR7378B-65-385-Av6HT
NR2E1
Q9Y466
THRNQCRACRLKKCL
PITRLLSDMYKSSDI
321
|
|
HR7378B-65-385-TEV
NR2E1
Q9Y466
THRNQCRACRLKKCL
PITRLLSDMYKSSDI
321
|
|
HR7378B-76-385-15
NR2E1
Q9Y466
MKKCLEVNMNKDAVQ
PITRLLSDMYKSSDI
311
|
|
HR7378B-76-385-Av6HT
NR2E1
Q9Y466
KKCLEVNMNKDAVQH
PITRLLSDMYKSSDI
310
|
|
HR7378B-76-385-TEV
NR2E1
Q9Y466
KKCLEVNMNKDAVQH
PITRLLSDMYKSSDI
310
|
|
HR7378C-18-109-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
RTSTIRKQVALYFRG
93
|
|
HR7378C-18-109-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
RTSTIRKQVALYFRG
92
|
|
HR7378C-18-109-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
RTSTIRKQVALYFRG
92
|
|
HR7378C-18-83-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
QCRACRLKKCLEVNM
67
|
|
HR7378C-18-83-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
QCRACRLKKCLEVNM
66
|
|
HR7378C-18-83-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
QCRACRLKKCLEVNM
66
|
|
HR7378C-18-96-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
NMNKDAVQHERGPRT
80
|
|
HR7378C-18-96-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
NMNKDAVQHERGPRT
79
|
|
HR7378C-18-96-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
NMNKDAVQHERGPRT
79
|
|
HR7906-Av6HT
NR2E3
Q9Y5X4
ETRPTALMSSTVAAA
NTPMEKLLCDMFKN*
410
|
|
HR7906B-101-410-Av6HT
NR2E3
Q9Y5X4
QACRLKKCLQAGMNQ
GNTPMEKLLCDMFKN
310
|
|
HR7906B-101-410-TEV
NR2E3
Q9Y5X4
QACRLKKCLQAGMNQ
GNTPMEKLLCDMFKN
310
|
|
HR7906B-114-410-15
NR2E3
Q9Y5X4
MNQDAVQNERQPRST
GNTPMEKLLCDMFKN
298
|
|
HR7906B-114-410-Av6HT
NR2E3
Q9Y5X4
NQDAVQNERQPRSTA
GNTPMEKLLCDMFKN
297
|
|
HR7906B-114-410-TEV
NR2E3
Q9Y5X4
NQDAVQNERQPRSTA
GNTPMEKLLCDMFKN
297
|
|
HR7906B-164-410-Av6HT
NR2E3
Q9Y5X4
SAARALGHHFMASLI
GNIPMEKLLCDMFKN
247
|
|
HR7906C-45-119-15
NR2E3
Q9Y5X4
MLQCRVCGDSSSGKH
LKKCLQAGMNQDAVQ
76
|
|
HR7906C-45-131-15
NR2E3
Q9Y5X4
MLQCRVCGDSSSGKH
AVQNERQPRSTAQVH
88
|
|
HR7906C-45-142-15
NR2E3
Q9Y5X4
MLQCRVCGDSSSGKH
AQVHLDSMESNTESR
99
|
|
HR7906C-50-114-15
NR2E3
Q9Y5X4
MCGDSSSGKHYGIYA
CQACRLKKCLQAGMN
66
|
|
HR7906C-50-126-15
NR2E3
Q9Y5X4
MCGDSSSGKHYGIYA
GMNQDAVQNERQPRS
78
|
|
HR7906C-50-126-Av6HT
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
GMNQDAVQNERQPRS
77
|
|
HR7906C-50-126-TEV
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
GMNQDAVQNERQPRS
77
|
|
HR7906C-50-135-Av6HT
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
ERQPRSTAQVHLDSM
86
|
|
HR7906C-50-135-TEV
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
ERQPRSTAQVHLDSM
86
|
|
HR7906D-36-410-Av6HT
NR2E3
Q9Y5X4
EDPTGVSPSLQCRVC
GNTPMEKLLCDMFKN
375
|
|
HR3061D-77-164-TEV
NR2F1
P10589
SGQSQQHIECVVCGD
GMRREAVQRGRMPPT
88
|
|
HR6377A-77-157-TEV
NR2F2
P24468
IECVVCGDKSSGKHY
GMRREAVQRGRMPPT
81
|
|
HR7636A-56-394-Av6HT
NR2F6
P10588
CVVCGDKSSGKHYGV
TPIETLIRDMLLSGS
339
|
|
HR7636A-56-394-TEV
NR2F6
P10588
CVVCGDKSSGKHYGV
TPIETLIRDMLLSGS
339
|
|
HR7636B-113-394-15
NR2F6
P10588
MLKKCFRVGMRKEAV
TPIETLIRDMLLSGS
283
|
|
HR7636B-113-394-Av6HT
NR2F6
P10588
LKKCFRVGMRKEAVQ
TPIETLIRDMLLSGS
282
|
|
HR7636B-113-394-TEV
NR2F6
P10588
LKKCFRVGMRKEAVQ
TPIETLIRDMLLSGS
282
|
|
HR7636B-159-394-Av6HT
NR2F6
P10588
DLFPGQPVSELIAQL
TPIETLIRDMLLSGS
236
|
|
HR7636B-159-394-TEV
NR2F6
P10588
DLFPGQPVSELIAQL
TPIETLIRDMLLSGS
236
|
|
HR7636C-56-133-15
NR2F6
P10588
MCVVCGOKSSGKHYG
VGMRKEAVQRGRIPH
79
|
|
HR4533-15
NR3C1
P04150
MDSKESLTPGREENP
KYSNGNIKKLLFHQK
777
|
|
HR7785-601-673-15
NR3C2
P08235
MKICLVCGDEASGCH
RLQKCLQAGMNLGAR
74
|
|
HR7785A-601-673-Av6HT
NR3C2
P08235
KICLVCGDEASGCHY
RLQKCLQAGMNLGAR
73
|
|
HR7785A-601-673-TEV
NR3C2
P08235
KICLVCGDEASGCHY
RLQKCLQAGMNLGAR
73
|
|
HR7785A-601-685-15
NR3C2
P08235
MKICLVCGDEASGCH
GARKSKKLGKLKGIH
86
|
|
HR7785A-601-685-Av6HT
NR3C2
P08235
KICLVCGDEASGCHY
GARKSKKLGKLKGIH
85
|
|
HR7785A-601-685-TEV
NR3C2
P08235
KICLVCGDEASGCHY
GARKSKKLGKLKGIH
85
|
|
HR7785B-712-984-15
NR3C2
P08235
MAPAKEPSVNTALVP
KVESGNAKPLYFHRK
274
|
|
HR7785B-712-984-Av6HT
NR3C2
P08235
APAKEPSVNTALVPQ
KVESGNAKPLYFHRK
273
|
|
HR7785B-712-984-TEV
NR3C2
P08235
APAKEPSVNTALVPQ
KVESGNAKPLYFHRK
273
|
|
HR7785C-731-984-Av6HT
NR3C2
P08235
SRALTPSPVMVLENI
KVESGNAKPLYFHRK
254
|
|
HR7785C-731-984-TEV
NR3C2
P08235
SRALTPSPVMVLENI
KVESGNAKPLYFHRK
254
|
|
HR4793B-265-353-TEV
NR4A1
P22736
GRCAVCGDNASCQHY
TDSLKGRRGRLPSKP
89
|
|
HR8241A-261-342-15
NR4A2
P43354
MGLCAVCGDNAACQH
MVKEVVRTDSLKGRR
83
|
|
HR8241A-261-342-Av6HT
NR4A2
P43354
GLCAVCGDNAACQHY
MVKEVVRTDSLKGRR
82
|
|
HR8241A-261-342-TEV
NR4A2
P43354
GLCAVCGDNAACQHY
MVKEVVRTDSLKGRR
82
|
|
HR8241A-264-328-15
NR4A2
P43354
MAVCGDNAACQHYGV
RCQYCRFQKCLAVGM
66
|
|
HR8241A-264-328-Av6HT
NR4A2
P43354
AVCGDNAACQHYGVR
RCQYCRFQKCLAVGM
65
|
|
HR8241A-264-328-TEV
NR4A2
P43354
AVCGDNAACQHYGVR
RCQYCRFQKCLAVGM
65
|
|
HR8241B-328-598-15
NR4A2
P43354
MVKEVVRTDSLKGRR
PPAIIDKLFLDTLPF
271
|
|
HR8241B-328-598-Av6HT
NR4A2
P43354
VKEVVRTDSLKGRRG
PPAIIDKLFLDTLPF
270
|
|
HR8241B-328-598-TEV
NR4A2
P43354
VKEVVRTDSLKGRRG
PPAIIDKLFLDTLPF
270
|
|
HR7224A-291-626-15
NR4A3
Q92570
MTCAVCGDNAACQHY
PPSIIDKLFLDTLPF
337
|
|
HR7224B-363-626-15
NR4A3
Q92570
MRTDSLKGRRGRLPS
PPSIIDKLFLDTLPF
265
|
|
HR7224B-363-626-Av6HT
NR4A3
Q92570
RTDSLKGRRGRLPSK
PPSIIDKLFLDTLPF
264
|
|
HR7224B-363-626-TEV
NR4A3
Q92570
RTDSLKGRRGRLPSK
PPSIIDKLFLDTLPF
264
|
|
HR7224B-396-626-15
NR4A3
Q92570
MICMMNALVRALTDS
PPSIIDKLFLDTLPF
232
|
|
HR7224B-396-626-Av6HT
NR4A3
Q92570
ICMMNALVRALTDST
PPSIIDKLFLDTLPF
231
|
|
HR7224B-396-626-TEV
NR4A3
Q92570
ICMMNALVRALTDST
PPSIIDKLFLDTLPF
231
|
|
HR7224B-411-626-15
NR4A3
Q92570
MPRDLDYSRYCPTDQ
PPSIIDKLFLDTLPF
217
|
|
HR7224B-411-626-Av6HT
NR4A3
Q92570
PRDLDYSRYCPTDQA
PPSIIDKLFLDTLPF
216
|
|
HR7224B-411-626-TEV
NR4A3
Q92570
PRDLDYSRYCPTDQA
PPSIIDKLFLDTLPF
216
|
|
HR7224C-291-374-15
NR4A3
Q92570
MTCAVCGDNAACQHY
EVVRTDSLKGRRGRL
85
|
|
HR7224C-291-374-Av6HT
NR4A3
Q92570
TCAVCGDNAACQHYG
EVVRTDSLKGRRGRL
84
|
|
HR7224C-291-374-TEV
NR4A3
Q92570
TCAVCGDNAACQHYG
EVVRTDSLKGRRGRL
84
|
|
HR7224C-294-356-15
NR4A3
Q92570
MVCGDNAACQHYGVR
NRCQYCRFQKCLSVG
64
|
|
HR7224C-294-356-Av6HT
NR4A3
Q92570
VCGDNAACQHYGVRT
NRCQYCRFQKCLSVG
63
|
|
HR7224C-294-356-TEV
NR4A3
Q92570
VCGDNAACQHYGVRT
NRCQYCRFQKCLSVG
63
|
|
HR7993A-220-461-15
NR5A1
Q13285
MGPNVPELILQLLQL
PRNNLLIEMLQAKQT
243
|
|
HR7993A-220-461-Av6HT
NR5A1
Q13285
GPNVPELILQLLQLE
PRNNLLIEMLQAKQT
242
|
|
HR7993A-220-461-TEV
NR5A1
Q13285
GPNVPELILQLLQLE
PRNNLLIEMLQAKQT
242
|
|
HR7993B-10-111-15
NR5A1
O13285
MDELCPVCGDKVSGY
PMYKRDRALKQQKKA
103
|
|
HR7993B-10-111-Av6HT
NR5A1
Q13285
DELCPVCGDKVSGYH
PMYKRDRALKQQKKA
102
|
|
HR7993B-10-111-TEV
NR5A1
Q13285
DELCPVCGDKVSGYH
PMYKRDRALKQQKKA
102
|
|
HR8211A-79-187-Av6HT
NR5A2
O00482
MDEDLEELCPVCGDK
KRDRALKQQKKALIR
110
|
|
HR8211A-79-187-NHT
NR5A2
O00482
DEDLEELCPVCGDKV
KRDRALKQQKKALIR
109
|
|
HR8211A-79-187-TEV
NR5A2
O00482
DEDLEELCPVCGDKV
KRDRALKQQKKALIR
109
|
|
HR7049A-49-474-15
NR6A1
Q15406
MDRAEQRTCLICGDR
LFKVVLHSCKTSVGK
427
|
|
HR7049A-49-474-Av6HT
NR6A1
Q15406
DRAEQRTCLICGDRA
LFKVVLHSCKTSVGK
426
|
|
HR7049A-49-474-TEV
NR6A1
Q15406
DRAEQRTCLICGDRA
LFKVVLHSCKTSVGK
426
|
|
HR7049B-117-474-15
NR6A1
Q15406
MLQMGMNRKAIREDG
LFKVVLHSCKTSVGK
359
|
|
HR7049B-117-474-Av6HT
NR6A1
Q15406
LQMGMNRKAIREDGM
LFKVVLHSCKTSVGK
358
|
|
HR7049B-117-474-TEV
NR6A1
Q15406
LQMGMNRKAIREDGM
LFKVVLHSCKTSVGK
358
|
|
HM7049C-49-143-15
NR6A1
Q15406
MDRAEQRTCLICGDR
DGMPGGRNKSIGPVQ
96
|
|
HR7049C-49-143-Av6HT
NR6A1
Q15406
DRAEQRTCLICGDRA
DGMPGGRNKSIGPVQ
95
|
|
HR7049C-49-143-TEV
NR6A1
Q15406
DRAEQRTCLICGDRA
DGMPGGRNKSIGPVQ
95
|
|
HR7049C-49-159-15
NR6A1
Q15406
MDRAEQRTCLICGDR
SEEEIERIMSGQEFE
112
|
|
HR7049C-49-159-Av6HT
NR6A1
Q15406
DRAEQRTCLICGDRA
SEEEIERIMSGQEFE
111
|
|
HR7049C-49-159-TEV
NR6A1
Q15406
DRAEQRTCLICGDRA
SEEEIERIMSGQEFE
111
|
|
HR7049C-58-143-15
NR6A1
Q15406
MICGDRATGLHYGII
DGMPGGRNKSIGPVQ
87
|
|
HR7049C-58-159-15
NR6A1
Q15406
MICGDRATGLHYGII
SEEEIERIMSGQEFE
103
|
|
HR7049C-58-159-Av6HT
NR6A1
Q15406
ICGDRATGLHYGIIS
SEEEIERIMSGQEFE
102
|
|
HR7049C-58-159-TEV
NR6A1
Q15406
ICGDRATGLHYGIIS
SEEEIERIMSGQEFE
102
|
|
HR8346A-59-490-Av6HT
NRF1
Q16656
LNSTAADEVTAHLAA
AMAPVTTRISDSAVT
432
|
|
HR7765A-130-171-Av6HT
NRL
P54845
ERFSDAALVSMSVRE
ALRLKQRRRTLKNRG
42
|
|
HR8036A-96-176-Av6HT
OLIG1
Q8TAK6
PDAKEEQQQQLRRKI
LLLGSSLQELRRALG
81
|
|
HR7010A-102-190-15
OLIG2
Q13516
MTEPELQQLRLKINS
IYGGHHAGFHPSACG
90
|
|
HR7010A-136-190-15
OLIG2
Q13516
MPYAHGPSVRKLSKI
IYGGHHAGFHPSACG
56
|
|
HR7010A-97-191-15
OLIG2
Q13516
MDKKQMTEPELQQLR
YGGHHAGFHPSACGG
96
|
|
HR6912A-76-168-NHT
OLIG3
Q7RTU3
LSEQDLQQLRLKING
GHHSAFHCGTVGHSA
93
|
|
HR4667C-291-437-TEV
ONECUT1
Q9UBC0
EINTKEVAQRITTEL
GLELSTVSNFFMNAR
147
|
|
HR8108A-313-459-TEV
ONECUT2
O95948
ERPPSSSSGSQVATS
FKENKRPSKEMQITI
147
|
|
HR7555A-320-466-TEV
ONECUT3
O60422
EINTKEVAQRITAEL
GLELNTVSNFFMNAR
147
|
|
HR8321A-165-256-TEV
OSR1
Q8TAX0
GRLPSKTKKEFVCKF
QSRTLAVHKTLHSQV
92
|
|
HR6892A-160-254-TEV
OSR2
Q8N2R0
SRGRLPSKTKKEFIC
SRTLAVHKTLHMQES
95
|
|
HR7032A-39-109-TEV
OTX1
P32242
RRERTTFTRSQLDVL
QQQQSGSGTKSRPAK
71
|
|
HR7869A-39-106-TEV
OTX2
P32243
PAATPRKQRRERTTF
VWFKNRRAKCRQQQQ
68
|
|
HR8136A-96-170-Av6HT
OVOL1
O14753
RDHGFLRTKMKVTLG
NDTFDLKRHVRTHTG
75
|
|
HR8149A-102-172-Av6HT
OVOL2
Q9BRP0
ARSKIKFTTGTCSDS
DTFDLKRHVRTHTGI
71
|
|
HR8517-1-166-Av6HT
OVOL3
O00110
PRAFLVRSRRPQPPN
YRERREKLHVCEDCG
165
|
|
HR6980A-489-684-TEV
PARP12
Q9H0J9
DSSALPDPGFQKITL
YPEYVIQYTTSSKPS
196
|
|
HR8222A-355-438-TEV
PATZ1
Q9HBE1
VACEICGKIFRDVYH
RPDHLNGHIKQVHTS
84
|
|
HR7455A-96-228-NHT
PAX1
P15863
EQTYGEVNQLGGVFV
VSSISRILRNKIGSL
133
|
|
HR7856A-1-149-TEV
PAX5
Q02548
DLEKNYPTPRTSRTG
INRIIRTKVQQPPNQ
148
|
|
HR8074A-4-136-TEV
PAX6
P26367
SHSGVNQLGGVFVNG
SINRVLRNLASEKQQ
133
|
|
HR7676A-217-276-TEV
PAX7
P23759
QRRSRTTFTAEQLEE
QVWFSNRRARWRKQA
60
|
|
HR7297A-1-146-TEV
PAX8
Q06710
PHNSIRSGHGGLNQL
IRTKVQQPFNLPMDS
145
|
|
HR7882A-388-494-TEV
PBRM1
Q86U86
YYQQIKMPISLQQIR
RKSKKNIRKQRMKIL
107
|
|
HR7526A-233-295-TEV
PBX1
P40424
ARRKRRNFNKQATEI
SNWFGNKRIRYKKNI
63
|
|
HR7154A-244-306-TEV
PBX2
P40425
ARRKRRNFSKQATEV
SNWFGNKRIRYKKNI
63
|
|
HR7892A-235-297-Av6HT
PBX3
P40426
KTAVTAAHAVAAAVQ
NGDSYQGSQVGANVQ
63
|
|
HR7892A-235-297-TEV
PBX3
P40426
KTAVTAAHAVAAAVQ
NGDSYQGSQVGANVQ
63
|
|
HR7406A-210-272-Av6HT
PBX4
Q9BYU1
MARRKRRNFSKQATE
SNWFGNKRIRYKKNM
64
|
|
HR7406A-210-272-TEV
PBX4
Q9BYU1
ARRKRRNFSKQATEV
SNWFGNKRIRYKKNM
63
|
|
HR7140A-124-182-TEV
PCGF6
Q9BYE7
NLSELTPYILCSICK
RCPKCNIVVHQTQPL
59
|
|
HR7140B-130-350-TEV
PCGF6
Q9BYE7
PYILCSICKGYLIDA
LVLHYGLVVSPLKIT
221
|
|
HR7140B-134-350-TEV
PCGF6
Q9BYE7
CSICKGYLIDATTIT
LVLHYGLVVSPLKIT
217
|
|
HR7140B-143-350-TEV
PCGF6
Q9BYE7
DATTITECLHTFCKS
LVLHYGLVVSPLKIT
208
|
|
HR7140B-182-350-TEV
PCGF6
Q9BYE7
LYNIRLDRQLQDIVY
LVLHYGLVVSPLKIT
169
|
|
HT6303A-249-350-Av6HT
PCGF6
Q9BYE7
IPPELDMSLLLEFIG
GLLVLHYGLVVSPLK
102
|
|
HT6303A-249-350-TEV
PCGF6
Q9BYE7
IPPELDMSLLLEFIG
GLLVLHYGLVVSPLK
102
|
|
HR7628A-146-206-TEV
PDX1
P52945
NKRTRTAYTRAQLLE
IWFQNRRMKWKKEED
61
|
|
HR4675D-563-641-TEV
PGR
P06401
PQKICLICGDEASGC
CCQAGMVLGGRKFKK
79
|
|
HR6832-1-194-15
PHB2
Q99623
MAQNLKDLAGRLPAG
DDVAITELSFSREYT
194
|
|
HR6832-1-194-Av6HT
PHB2
Q99623
AQNLKDLAGRLPAGP
DDVAITELSFSREYT
193
|
|
HR6832-1-291-15
PHB2
Q99623
MAQNLKDLAGRLPAG
NLVLNLQDESFTRGS
291
|
|
HR6832-1-291-Av6HT
PHB2
Q99623
AQNLKDLAGRLPAGP
NLVLNLQDESFTRGS
290
|
|
HR6832-15
PHB2
Q99623
MAQNLKDLAGRLPAG
SFTRGSDSLIKGKK*
300
|
|
HR6832-33-299-15
PHB2
Q99623
MAYGVRESVFTVEGG
ESFTRGSDSLIKGKK
268
|
|
HR6832-33-299-Av6HT
PHB2
Q99623
AYGVRESVFTVEGGH
ESFTRGSDSLIKGKK
267
|
|
HR6832-38-299-15
PHB2
Q99623
MESVFTVEGGHRAIF
ESFTRGSDSLIKGKK
263
|
|
HR6832-38-299-Av6HT
PHB2
Q99623
ESVFTVEGGHRAIFF
ESFTRGSDSLIKGKK
262
|
|
HR6832-Av6HT
PHB2
Q99623
AQNLKDLAGRLPAGP
SFTRGSDSLIKGKK*
299
|
|
HR6832A-33-194-15
PHB2
Q99623
MAYGVRESVFTVEGG
DDVAITELSFSREYT
163
|
|
HR6832A-33-194-Av6HT
PHB2
Q99623
AYGVRESVFTVEGGH
DDVAITELSFSREYT
162
|
|
HR6832A-33-207-15
PHB2
Q99623
MAYGVRESVFTVEGG
YTAAVEAKQVAQQEA
176
|
|
HR6832A-33-207-Av6HT
PHB2
Q99623
AYGVRESVFTVEGGH
YTAAVEAKQVAQQEA
175
|
|
HR6832A-33-207-NHT
PHB2
Q99623
AYGVRESVFTVEGGH
YTAAVEAKQVAQQEA
175
|
|
HR6832A-72-194-15
PHB2
Q99623
MIPWFQYPIIYDIRA
DDVAITELSFSREYT
124
|
|
HR6832A-72-194-Av6HT
PHB2
Q99623
IPWFQYPIIYDIRAR
DDVAITELSFSREYT
123
|
|
HR6832A-72-207-15
PHB2
Q99623
MIPWFQYPIIYDIRA
YTAAVEAKQVAQQEA
137
|
|
HR6832A-72-207-Av6HT
PHB2
Q99623
IPWFQYPIIYDIRAR
YTAAVEAKQVAQQEA
136
|
|
HR7710A-641-719-NHT
PHF20
Q9BVI0
ELDGDDRYDFEVVRC
PGFKYWYDKEWLSRG
79
|
|
HR6973A-486-543-TEV
PHF21A
Q96BD5
IHEDFCSVCRKSGQL
CPRCQDQMLKKEEAI
58
|
|
HR6412A-62-149-14
PHOX2A
O14813
LRDHQPAPYSAVPYK
QVWFQNRRAKFRKQE
88
|
|
HR6412A-67-144-14
PHOX2A
O14813
PAPYSAVPYKFFPEP
TEARVQVWFQNRRAK
78
|
|
HR6412B-71-149-14
PHOX2A
O14813
SAVPYKFFPEPSGLH
QVWFQNRRAKFRKQE
79
|
|
HR6412B-76-144-14
PHOX2A
O14813
KFFPEPSGLHEKRKQ
TEARVQVWFQNRRAK
69
|
|
HR7334A-91-148-Av6HT
PHOX2B
Q99453
GLNEKRKQRRIRTTF
KIDLTEARVQVWFQN
58
|
|
HR8156A-1-65-TEV
PIAS1
O75925
ADSAELKQMVMSLRV
PAVQMKIKELYRRRP
64
|
|
HR7952-96-424-Av6HT
PIAS2
O75928
LAVAGIHSLPSTSVT
CSDVDEIKFQEDGSW
329
|
|
HR3483-121-628-14
PIAS3
Q9Y6X2
MQPVHPDVTMKPLPF
GPSLTGCRSDIISLD
509
|
|
HR3483-126-628-14
PIAS3
Q9Y6X2
MDVTMKPLPFYEVYG
GPSLTGCRSDIISLD
504
|
|
HR3042-1-425-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
KERSCSPQGAILVLG
425
|
|
HR3042A-1-55-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
RALQLVQFDCSPELF
55
|
|
HR3042A-1-68-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
LFKKIKELYETRYAK
68
|
|
HR3042A-1-73-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
KELYETRYAKKNSEP
73
|
|
HR7108A-119-222-Av6HT
PIKFYVE
Q9Y2I7
GHDPRTAVQLRSLST
RACTYCRKIALSYAH
104
|
|
HR7108A-119-241-Av6HT
PIKFYVE
Q9Y2I7
GHDPRTAVQLRSLST
NSIGEDLNALSDSAC
123
|
|
HR7108A-143-222-Av6HT
PIKFYVE
Q9Y2I7
EGKSQDSDLKQYWMP
RACTYCRKIALSYAH
80
|
|
HR7108A-143-241-Av6HT
PIKFYVE
Q9Y2I7
EGKSQDSDLKQYWMP
NSIGEDLNALSDSAC
99
|
|
HR7108A-150-222-Av6HT
PIKFYVE
Q9Y2I7
DLKQYWMPDSQCKEC
RACTYCRKIALSYAH
73
|
|
HR7108A-150-241-NHT
PIKFYVE
Q9Y2I7
DLKQYWMPDSQCKEC
NSIGEDLNALSDSAC
92
|
|
HR7108B-586-943-Av6HT
PIKFYVE
Q9Y2I7
GWHHNNLELLREENG
LLELRIVFEKGEQEN
358
|
|
HR7108B-610-943-Av6HT
PIKFYVE
Q9Y2I7
SANHNHMMALLQQLL
LLELRIVFEKGEQEN
334
|
|
HR7108C-1761-2058-Av6HT
PIKFYVE
Q9Y2I7
KRETLRGADSAYYQV
DKKLEMVVKSTGILG
298
|
|
HR7108C-1761-2088-Av6HT
PIKFYVE
Q9Y2I7
KRETLRGADSAYYQV
TRFCEAMDKYFLMVP
328
|
|
HR7108C-1807-2058-Av6HT
PIKFYVE
Q9Y2I7
PHVELQFSDANAKFY
DKKLEMVVKSTGILG
252
|
|
HR7108C-1807-2088-Av6HT
PIKFYVE
Q9Y2I7
PHVELQFSDANAKFY
TRFCEAMDKYFLMVP
282
|
|
HR7108D-342-488-Av6HT
PIKFYVE
Q9Y2I7
TEDERKILLDSVQLK
DSDTEQIAEEGDDNL
147
|
|
HR7108D-353-488-Av6HT
PIKFYVE
Q9Y2I7
VQLKDLWKKICHHSS
DSDTEQIAEEGDDNL
136
|
|
HR8214A-89-149-TEV
PITX1
P78337
QRRQRTHFTSQQLQE
VWFKNRRAKWRKRER
61
|
|
HR4722B-274-317-Av6HT
PITX2
Q99697
RDTCNSSLASLRLKA
ASNLSACQYAVDRPV
44
|
|
HR7801A-85-145-TEV
PITX3
O75364
RYPDMSTREEIAVWT
GSFAAPLGGIVPPYE
61
|
|
HR7268A-257-319-TEV
PKNOX1
P55347
GSSKNKRGVLPKHAT
QVNNWFINARRRILQ
63
|
|
HR7428A-289-348-TEV
PKNOX2
Q96KN3
KNKRGVLPKHATNIM
QVNNWFINARRRILQ
60
|
|
HR7109-1-351-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
SSTSYAISIPEKEQP
351
|
|
HR7109-1-356-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
AISIPEKEQPLKGEI
356
|
|
HR7109-1-368-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
GEIESYLMELQGGVP
368
|
|
HR7109-1-436-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
FNFIPLNGPPYNPLS
436
|
|
HR7109-1-441-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
LNGPPYNPLSVGSLG
441
|
|
HR7109A-70-128-Av6HT
PLAG1
Q6DJT9
TKAFVSKYKLQRHMA
HDPNKETFKCEECGK
59
|
|
HR7109A-70-163-Av6HT
PLAG1
Q6DJT9
TKAFVSKYKLQRHMA
DLTCKVCLQTFESTG
94
|
|
HR7109A-72-107-Av6HT
PLAG1
Q6DJT9
AFVSKYKLQRHMATH
KCNYCEKMFHRKDHL
36
|
|
HR7109B-36-237-Av6HT
PLAG1
Q6DJT9
CQLCDKAFNSVEKLK
GRKDHLTRHMKKSHN
202
|
|
HR7109C-119-174-Av6HT
PLAG1
Q6DJT9
ETFKCEECGKNYNTK
ESTGVLLEHLKSHAG
56
|
|
HR7109C-122-170-Av6HT
PLAG1
Q6DJT9
KCEECGKNYNTKLGF
LQTFESTGVLLEHLK
49
|
|
HR7109D-183-233-Av6HT
PLAG1
Q6DJT9
KKHQCEHCDRRFYTR
AQRFGRKDHLTRHMK
51
|
|
HR7109D-183-237-Av6HT
PLAG1
Q6DJT9
KKHQCEHCDRRFYTR
GRKDHLTRHMKKSHN
55
|
|
HR7109D-188-233-Av6HT
PLAG1
Q6DJT9
EHCDRRFYTRKDVRR
AQRFGRKDHLTRHMK
46
|
|
HR7895-1-337-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
KGFCNISLFEDLPLQ
336
|
|
HR7895-1-397-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
LLGFWQLPPPATQNT
396
|
|
HR7895-159-463-Av6HT
PLAGL1
Q9UM63
DHCERCFYTRKDVRR
GTGSAILPHFHHAFR
305
|
|
HR7895-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
TGSAILPHFHHAFR*
463
|
|
HR7895A-149-212-15
PLAGL1
Q9UM63
MSGTKEKKHQCDHCE
HLTRHTKKTHSQELM
65
|
|
HR7895A-154-207-15
PLAGL1
Q9UM63
MKKHQCDHCERLFYT
FGRKDHLTRHTKKTH
55
|
|
HR7895A-159-199-Av6HT
PLAGL1
Q9UM63
DHCERCFYTRKDVRR
LCQFCAQRFGRKDHL
41
|
|
HR7895B-1-209-AV6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
RKDHLTRHTKKTHSQ
208
|
|
HR7895C-1-69-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
THSPQKSHQCAHCEK
68
|
|
HR7895C-12-69-Av6HT
PLAGL1
Q9UM63
TFLTLEKFTIHNYSH
THSPQKSHQCAHCEK
58
|
|
HR7996A-189-243-Av6HT
PLAGL2
Q9UPG8
KKHPCDHCDRRFYTR
GRKDHLTRHVKKSHS
55
|
|
HR8052A-121-223-TEV
PLEK
P08567
PETIDLGALYLSMKD
FLDNPDAFYYFPDSG
103
|
|
HR7739A-238-353-TEV
PLEK2
Q9NYT0
SLSTVELSGTVVKQG
KAERAEWIEAIKKLT
116
|
|
HR7495A-45-167-TEV
PLEKHA4
Q9H4M7
NALRRDPNLPVHIRG
RAEGDDYGQPRSPAR
123
|
|
HR8545A-1266-1889-Av6HT
PLXNA1
Q9UIW2
AYKRKSRDADRTLKR
QARRQRLRSKLEQVV
624
|
|
HR7225A-1259-1890-TEV
PLXNA2
O75051
AYKRKSRENDLTLKR
RQRLAYKVEQLINAM
632
|
|
HR8315A-1241-1867-TEV
PLXNA3
P51805
AYKRKTQDADRTLKR
KHKLRQKLEQIISLV
627
|
|
HR7815A-1736-1862-Av6HT
PLXNB1
O43157
DNRLLREDVEYRPLT
ALVPCLTKHVLRENQ
127
|
|
HR7815A-1736-1862-TEV
PLXNB1
O43157
DNRLLREDVEYRPLT
ALVPCLTKHVLRENQ
127
|
|
HR8081A-1224-1827-NHT
PLXNB2
O15031
SQQAEREYEKIKSQL
PAAQKMQLAFRLQQI
604
|
|
HR8081A-1224-1827-TEV
PLXNB2
O15031
SQQAEREYEKIKSQL
PAAQKMQLAFRLQQI
604
|
|
HR6985A-1280-1902-TEV
PLXNB3
Q9ULL4
GVGMGAAVLIAAVLL
LYNHIHRYYDQIISA
623
|
|
HR7941A-1198-1305-TEV
PLXNC1
O60486
TVALNVVFEKIPENE
HYEISNGSTIKVFKK
108
|
|
HR8405A-1553-1678-NHT
PLXND1
Q9Y4D7
AKPRNLNVSFQGCGM
RVKDLDTEKYFHLVL
126
|
|
HR6974A-571-650-TEV
PMS1
P54277
IKKPMSASALFVQDH
KRAIEQESQMSLKDG
80
|
|
HR6952A-34-103-NHT
POGK
Q9P215
QKVRICSEGGWVPAL
PFPKPDMITRLEGEE
70
|
|
HR7570A-37-117-NHT
POLE4
Q9NR33
RLSRLPLARVKALVK
IEAVDEFAFLEGTLD
81
|
|
HR7808-15
POLR2L
P62875
MIIPVRCFTCGKIVG
DLIEKLLNYAPLEK*
68
|
|
HR8543A-1-154-Av6HT
POTEKP
Q9BYX7
DDDTAVLVIDNGSGM
LSLYTSGRTTGIVMD
153
|
|
HR4466B-129-273-TEV
POU1F1
P28069
IRELEKFANEFKVRR
RVWFCNRRQREKRVK
145
|
|
HR7752A-297-359-TEV
POU2F2
P09086
EKSFLANQKPTSEEI
APMLPSPGKPASYSP
63
|
|
HR7822A-187-257-TEV
POU2F3
Q9UKI9
DLEELEKFAKTFKQR
CKLKPLLEKWLNDAE
71
|
|
HR7177A-250-322-Av6HT
POU3F1
Q03052
PSSDDLEQFAKQFKQ
KLKPLLNKWLEETDS
73
|
|
HR6946A-348-418-15
POU3F2
P20265
MIAAQGRKRKKRTSI
NRRQKEKRMTPPGGT
72
|
|
HR6946A-353-407-Av6HT
POU3F2
P20265
RKRKKRTSIEVSVKG
LEKEVVRVWFCNRRQ
55
|
|
HR6946A-353-414-15
POU3F2
P20265
MRKRKKRTSIEVSVK
VWFCNRRQKEKRMTP
63
|
|
HR6946A-356-432-15
POU3F2
P20265
MKKRTSIEVSVKGAL
TLPGAEDVYGGSRDT
78
|
|
HR6946A-361-427-15
POU3F2
P20265
MIEVSVKGALESHFL
TPPGGTLPGAEDVYG
58
|
|
HR6946A-377-427-15
POU3F2
P20265
MPKPSAQEITSLADS
TPPGGTLPGAEDVYG
52
|
|
HR8066A-320-388-TEV
POU3F3
P20264
DDLEQFAKQFKQRRI
CKLKPLLNKWLEEAD
69
|
|
HR8200A-192-260-TEV
POU3F4
P49335
DELEQFAKQFKQRRI
CKLKPLLNKWLEEAD
69
|
|
HR7341A-253-330-NHT
POU4F2
Q12837
ADPRDLEAFAERFKQ
KPILQAWLEEAEKSH
78
|
|
HR7479A-183-261-NHT
POU4F3
Q15319
DPRELEAFAERFKQR
VLQAWLEEAEAAYRE
79
|
|
HR7056A-224-289-TEV
POU5F1
Q01860
ETLVQARKRKRTSIE
RVWFCNRRQKGKRSS
66
|
|
HR8237A-224-288-NHT
POU5F1B
Q06416
ETLMQARKRKRTSIE
RVWFCNRRQKGKRSS
65
|
|
HR8392A-142-292-TEV
POU6F1
Q14863
INLEEIREFAKNFKI
VRVWFCNRRQTLKNT
151
|
|
HR7133A-97-168-15
PPARA
Q07869
MALNIECRICGDKAS
QYCRFHKCLSVGMSH
73
|
|
HR7133A-97-168-Av6HT
PPARA
Q07869
ALNIECRICGDKASG
QYCRFHKCLSVGMSH
72
|
|
HR7133A-97-168-TEV
PPARA
Q07869
ALNIECRICGDKASG
QYCRFHKCLSVGMSH
72
|
|
HR7133A-97-174-15
PPARA
Q07869
MALNIECRICGDKAS
KCLSVGMSHNAIRFG
79
|
|
HR7133A-97-174-Av6HT
PPARA
Q07869
ALNIECRICGDKASG
KCLSVGMSHNAIRFG
78
|
|
HR7133A-97-174-TEV
PPARA
Q07869
ALNIECRICGDKASG
KCLSVGMSHNAIRFG
78
|
|
HR7133A-97-187-15
PPARA
Q07869
MALNIECRICGDKAS
FGRMPRSEKAKLKAE
92
|
|
HR7133A-97-187-Av6HT
PPARA
Q07869
ALNIECRICGDKASG
FGRMPRSEKAKLKAE
91
|
|
HR7133A-97-187-TEV
PPARA
Q07869
ALNIECRICGDKASG
FGRMPRSEKAKLKAE
91
|
|
HR7133B-182-468-15
PPARA
Q07869
MAKLKAEILTGEHDI
AALHPLLQEIYRDMY
288
|
|
HR7133B-182-468-Av6HT
PPARA
Q07869
AKLKAEILTCEHDIE
AALHPLLQEIYRDMY
287
|
|
HR7133B-182-468-TEV
PPARA
Q07869
AKLKAEILTCEHDIE
AALHPLLQEIYRDMY
287
|
|
HR7133C-192-468-15
PPARA
Q07869
MEHDIEDSETADLKS
AALHPLLQEIYRDMY
278
|
|
HR7133C-192-468-Av6HT
PPARA
Q07869
EHDIEDSETADLKSL
AALHPLLQEIYRDMY
277
|
|
HR7133C-192-468-TEV
PPARA
Q07869
EHDIEDSETADLKSL
AALHPLLQEIYRDMY
277
|
|
HR8028A-67-146-15
PPARD
Q03181
MCGSLNMECRVCGDK
KCLALGMSHNAIRFG
81
|
|
HR8028A-67-146-Av6HT
PPARD
Q03181
CGSLNMECRVCGDKA
KCLALGMSHNAIRFG
80
|
|
HR8028A-67-146-TEV
PPARD
Q03181
CGSLNMECRVCGDKA
KCLALGMSHNAIRFG
80
|
|
HR8028A-67-156-15
PPARD
Q03181
MCGSLNMECRVCGDK
AIRFGRMPEAEKRKL
91
|
|
HR8028A-67-156-Av6HT
PPARD
Q03181
CGSLNMECRVCGDKA
AIRFGRMPEAEKRKL
90
|
|
HR8028A-67-156-TEV
PPARD
Q03181
CGSLNMECRVCGDKA
AIRFGRMPEAEKRKL
90
|
|
HR8028A-73-146-15
PPARD
Q03181
MECRVCGDKASGFHY
KCLALGMSHNAIRFG
75
|
|
HR8028A-73-146-Av6HT
PPARD
Q03181
ECRVCGDKASGFHYG
KCLALGMSHNAIRFG
74
|
|
HR8028A-73-146-TEV
PPARD
Q03181
ECRVCGDKASGFHYG
KCLALGMSHNAIRFG
74
|
|
HR8028A-73-156-15
PPARD
Q03181
MECRVCGDKASGFHY
AIRFGRMPEAEKRKL
85
|
|
HR8028A-73-156-Av6HT
PPARD
Q03181
ECRVCGDKASGFHYG
AIRFGRMPEAEKRKL
84
|
|
HR8028A-73-156-TEV
PPARD
Q03181
ECRVCGDKASGFHYG
AIRFGRMPEAEKRKL
84
|
|
HR80288-163-441-15
PPARD
Q03181
MNEGSQYNPQVADLK
TSLHPLLQEIYKDMY
280
|
|
HR8028B-163-441-Av6HT
PPARD
Q03181
NEGSQYNPQVADLKA
TSLHPLLQEIYKDMY
279
|
|
HR8028B-163-441-TEV
PPARD
Q03181
NEGSQYNPQVADLKA
TSLHPLLQEIYKDMY
279
|
|
HR4464B-222-504-TEV
PPARG
P37231
LAEISSDIDQLNPES
DMSLHPLLQEIYKDL
283
|
|
HR7373A-58-198-NHT
PPP1R10
Q96QC0
RSPEILVKFIDVGGY
AEEAPEKKREKPKSL
141
|
|
HR7854A-111-311-Av6HT
PPP2R3B
Q9Y5P8
TRKEEPLPPATSQSI
LLEEEADINQLTEFF
201
|
|
HR6538A-2-187-TEV
PRDM1
O75626
LDICLEKRVGTTLAA
LAACQNGMNIYFYTI
186
|
|
HR7699A-188-339-TEV
PRDM10
Q9NQV6
KHGPLHPIPNRPVLT
YAASYAEFVNQKIHD
152
|
|
HR6506A-60-229-TEV
PRDM12
Q9H4Q4
KTAFTAEVLAQSFSG
VPGLEEDQKKNKHED
170
|
|
HR7923A-243-372-Av6HT
PRDM14
Q9GZV8
DKDSLQLPEGLCLMQ
QNQELLVWYGDCYEK
130
|
|
HR8160A-72-214-Av6HT
PRDM16
Q9HAZ2
VYIPEDIPIPADFEL
IEPGEELLVHVKEGV
143
|
|
HR4804B-1144-1216-14
PRDM2
Q13029
MLSIKDLTKHLSIHA
FLCNLQQHQRDLHPD
74
|
|
HR4804B-1144-1221-14
PRDM2
Q13029
MLSIKDLTKHLSIHA
QQHQRDLHPDKVCTH
79
|
|
HR4804B-1144-1230-14
PRDM2
Q13029
MLSIKDLTKHLSIHA
DKVCTHHEFESGTLR
88
|
|
HR4804B-1158-1216-14
PRDM2
Q13029
MEEWPFKCEFCVQLF
FLCNLQQHQRDLHPD
60
|
|
HR4804B-1158-1221-14
PRDM2
Q13029
MEEWPFKCEFCVQLF
QQHQRDLHPDKVCTH
65
|
|
HR4804B-1158-1230-14
PRDM2
Q13029
MEEWPFKCEFCVQLF
DKVCTHHEFESGTLR
74
|
|
HR4804C-342-415-14
PRDM2
Q13029
MQIPRTKEEANGDVF
TQINRRRHERRHEAG
75
|
|
HR4804C-356-417-14
PRDM2
Q13029
METFMFPCQHCERKF
INRRRHERRHEAGLK
63
|
|
HR4804C-360-422-14
PRDM2
Q13029
MFPCQHCERKFTTKQ
HERRHEAGLKRKPSQ
64
|
|
HR4804C-367-417-14
PRDM2
Q13029
MRKFTTKQGLERHMH
INRRRHERRHEAGLK
52
|
|
HR4804D-2-148-TEV
PRDM2
Q13029
NQNTTEPVAATETLA
EELLVWYNGEDNPEI
147
|
|
HR6504A-390-540-TEV
PRDM4
Q9UKN5
EHGPVTFVPDTPIES
FYYSRDYAQQIGVPE
151
|
|
HR7347A-1-135-NHT
PRDM5
Q9NQX1
LGMYVPDRFSLKSSR
IGYLDSDMEAEEEEQ
134
|
|
HR8295A-234-370-Av6HT
PRDM6
Q9NQX0
PPELPEWLRDLPREV
RGTELLVWYNDSYTS
137
|
|
HR7077A-196-395-NHT
PRDM7
Q9NQW5
EPQDDDYLYCEMCQN
VNCWSGMGMSMARNW
200
|
|
HR8098A-623-689-Av6HT
PRDM8
Q9NQV8
AQNWCAKCNASFRMT
FRERHHLSRHMTSHN
67
|
|
HR8069A-197-382-Av6HT
PRDM9
Q9NQV7
PQDDDYLYCEMCQNF
KWGSKWKKELMAGRE
186
|
|
HR7506-125-390-Av6HT
PREB
Q9HCU5
EKKCGAETQHEGLEL
SRCQLHLLPSRRSVP
266
|
|
HR7506A-125-312-Av6HT
PREB
Q9HCU5
EKKCGAETQHEGLEL
CGHEVVSCLDVSESG
188
|
|
HR7506A-133-315-Av6HT
PREB
Q9HCU5
QHEGLELRVENLQAV
EVVSCLDVSESGTFL
183
|
|
HR7506A-155-312-15
PREB
Q9HCU5
MPLQKVVCFNHDNTL
CGHEVVSCLDVSESG
159
|
|
HR8329A-190-376-Av6HT
PREX2
Q70Z35
KHSDYAAVMEALQAM
RRKGLKLGMEQDTWV
187
|
|
HR8329B-674-751-Av6HT
PREX2
Q70Z35
PRETVKIPDSADGLG
AHVTACRKYRRPTKQ
78
|
|
HR8329B-674-760-Av6HT
PREX2
Q70Z35
PRETVKIPDSADGLG
RRPTKQDSIQWVYNS
87
|
|
HR2833A-1-98-NHT
PRKRIR
O43422
GQLKFNTSEEHHADM
ERYENGRKRLKAYLR
97
|
|
HR3353-149-736-14
PRKRIR
O43422
MDEDILPLTLEEKEN
LLNINFDIKHDLDLM
589
|
|
HR3353-154-731-14
PRKRIR
O43422
MPLTLEEKENKEYLK
SSNLALLNINFDIKH
579
|
|
HR4564B-74-136-14
PROP1
O75360
MTTFSPVQLEQLESA
AKQRKQERSLLQPLA
64
|
|
HR4660B-14
PROX1
Q92786
MAMQEGLSPNHLKKA
EIFKSPNCLQELLHE
164
|
|
HR4660B-15
PROX1
Q92786
MAMQEGLSPNHLKKA
EIFKSPNCLQELLHE
164
|
|
HR4660C-546-737-14
PROX1
Q92786
MTAEGLSLSLIKSEC
EIFKSPNCLQELLHE
193
|
|
HR4660C-550-737-14
PROX1
Q92786
MLSISLIKSECGDLQ
EIFKSPNCLQELLHE
189
|
|
HR4660C-566-737-14
PROX1
Q92786
MSEISPYSGSAMQEG
EIFKSPNCLQELLHE
173
|
|
HR4660C-572-737-14
PROX1
Q92786
MSGSAMQEGLSPNHL
EIFKSPNCLQELLHE
167
|
|
HR4660C-577-737-14
PROX1
Q92786
MQEGLSPNHLKKAKL
EIFKSPNCLQELLHE
162
|
|
HR8100A-409-592-Av6HT
PROX2
Q3B8N5
LPLLPSVKMEQRGLH
DSDIPEIFKSSSYPQ
184
|
|
HR6440-1-237-14
PRRX1
P54821
MTSSYGHVLERQPAL
SIANLRLKAKEYSLQ
237
|
|
HR6440-14
PRRX1
P54821
MTSSYGHVLERQPAL
AKEYSLQRNQVPTVN
245
|
|
HR6440-22-245-14
PRRX1
P54821
PGNLDTLQAKKNFSV
AKEYSLQRNQVPTVN
224
|
|
HR6440-27-245-14
PRRX1
P54821
TLQAKKNFSVSHLLD
AKEYSLQRNQVPTVN
219
|
|
HR7233A-95-168-Av6HT
PRRX2
Q99811
GSAAKRKKKQRRNRT
NRRAKFRRNERAMLA
74
|
|
HR7750A-100-341-Av6HT
PSMD11
O00231
EAATGQEVELCLECI
YDNLLEQNLIRVIEP
242
|
|
HR7208-1-335-TEV
PSMD12
O00232
ADGGSERADGRIVKM
VEDYGMELRKGSLES
334
|
|
HR7208-11-335-TEV
PSMD12
O00232
GRIVKMEVDYSATVD
VEDYGMELRKGSLES
325
|
|
HR7208-TEV
PSMD12
O00232
ADGGSERADGRIVKM
THLIAKEEMIHNLQ*
456
|
|
HR7208A-338-425-15
PSMD12
O00232
MTDVFGSTEEGEKRW
GIINFQRPKDPNNLL
89
|
|
HR7208A-338-456-15
PSMD12
O00232
MTDVFGSTEEGEKRW
TTHLIAKEEMIHNLQ
120
|
|
HR7208A-343-420-15
PSMD12
O00232
MSTEEGEKRWKDLKN
VDRLAGIINFQRPKD
79
|
|
HR7208A-343-456-15
PSMD12
O00232
MSTEEGEKRWKDLKN
TTHLIAKEEMIHNLQ
115
|
|
HR7208A-371-456-15
PSMD12
O00232
MTRITMKRMAQLLDL
TTHLIAKEEMIHNLQ
87
|
|
HR7208B-300-417-TEV
PSMD12
O00232
PKYKDLLKLFTTMEL
FAKVDRLAGIINFQR
118
|
|
HR7208C-300-456-TEV
PSMD12
O00232
PKYKDLLKLFTTMEL
TTHLIAKEEMIHNLQ
157
|
|
HR5110A-437-891-Av6HT
Q6ZU11
Q6ZU11
LNKDQATALIQIAQM
HCEGREDGLQHANQY
455
|
|
HR7981A-147-199-TEV
RABGEF1
Q9UJ41
KTFHKTGQEIYKQTK
FYHNVAERMQTRGKV
53
|
|
HR8212A-1-114-NHT
RAD51
Q06609
AMQMQLEANADTSVE
IQITTGSKELDKLLQ
113
|
|
HR7353A-268-383-TEV
RAG1
P15918
NCSKIHLSTKLLAVD
LEKYNHHISSHKESK
116
|
|
HR7829A-213-923-TEV
RAPGEF3
O95398
PDALLTVALRKPPGQ
DNQRELSRLSRELEP
711
|
|
HR7829B-33-923-TEV
RAPGEF3
O95398
DVVPEGTLLNMVLRR
DNQRELSRLSRELEP
891
|
|
HR8365C-81-160-NHT
RARA
P10276
LPRIYKPCFVCQDKS
QKCFEVGMSKESVRN
80
|
|
HR8365C-81-160-TEV
RARA
P10276
LPRIYKPCFVCQDKS
QKCFEVGMSKESVRN
80
|
|
HR6970C-82-160-TEV
RARB
P10826
FVCQDKSSGYHYGVS
MSKESVRNDRNKKKK
79
|
|
HR7515A-85-154-15
RARG
P13631
MRVYKPCFVCNDKSS
NRCQYCRLQKCFEVG
71
|
|
HR7515A-85-154-Av6HT
RARG
P13631
RVYKPCFVCNDKSSG
NRCQYCRLQKCFEVG
70
|
|
HR7515A-85-154-TEV
RARG
P13631
RVYKPCFVCNDKSSG
NRCQYCRLQKCFEVG
70
|
|
HR7515A-85-166-15
RARG
P13631
MRVYKPCFVCNDKSS
EVGMSKEAVRNDRNK
83
|
|
HR7515A-85-166-Av6HT
RARG
P13631
RVYKPCFVCNDKSSG
EVGMSKEAVRNDRNK
82
|
|
HR7515A-85-166-TEV
RARG
P13631
RVYKPCFVCNDKSSG
EVGMSKEAVRNDRNK
82
|
|
HR7515A-97-166-15
RARG
P13631
MSSGYHYGVSSCEGC
EVGMSKEAVRNDRNK
71
|
|
HR7515A-97-166-Av6HT
RARG
P13631
SSGYHYGVSSCEGCK
EVGMSKEAVRNDRNK
70
|
|
HR7515A-97-166-TEV
RARG
P13631
SSGYHYGVSSCEGCK
EVGMSKEAVRNDRNK
70
|
|
HR7515B-178-423-15
RARG
P13631
MDSYELSPQLEELIT
PPLIREMLENPEMFE
247
|
|
HR7515B-178-423-Av6HT
RARG
P13631
DSYELSPQLEELITK
PPLIREMLENPEMFE
246
|
|
HR7515B-178-423-TEV
RARG
P13631
DSYELSPQLEELITK
PPLIREMLENPEMFE
246
|
|
HR7515C-183-417-15
RARG
P13631
MSPQLEELITKVSKA
EIPGPMPPLIREMLE
236
|
|
HR7515C-183-417-Av6HT
RARG
P13631
SPQLEELITKVSKAH
EIPGPMPPLIREMLE
235
|
|
HR7515C-183-417-TEV
RARG
P13631
SPQLEELITKVSKAH
EIPGPMPPLIREMLE
235
|
|
HR7515D-84-169-15
RARG
P13631
MPRVYKPCFVCNDKS
MSKEAVRNDRNKKKK
87
|
|
HR7515D-84-169-Av6HT
RARG
P13631
PRVYKPCFVCNDKSS
MSKEAVRNDRNKKKK
86
|
|
HR7515D-84-169-TEV
RARG
P13631
PRVYKPCFVCNDKSS
MSKEAVRNDRNKKKK
86
|
|
HR8219A-137-208-Av6HT
RAX
Q9Y2V3
RRNRTTFTTYQLHEL
QEKLEVSSMKLQDSP
72
|
|
HR8168A-24-86-Av6HT
RAX2
Q96IS3
KKKHRRNRTTFTTYQ
QVWFQNRRAKWRRQE
63
|
|
HR7540-167-714-15
RBAK
Q9NYW8
MECGKTYHGEKMCEF
IHRRGNMNVLDVENL
549
|
|
HR7540-171-714-15
RBAK
Q9NYW8
MTYHGEKMCEFNQNG
IHRRGNMNVLDVENL
545
|
|
HR7540-183-714-15
RBAK
Q9NYW8
MNGDTYSHNEENILQ
IHRRGNMNVLDVENL
533
|
|
HR7540-188-714-15
RBAK
Q9NYW8
MSHNEENILQKISIL
IHRRGNMNVLDVENL
528
|
|
HR7540-7-562-15
RBAK
Q9NYW8
MPVSFKDVAVDFTQE
FNELSYYTEHYRSHS
557
|
|
HR7540A-397-562-TEV
RBAK
Q9NYW8
GEKLYKCNECGKSYY
FNELSYYTEHYRSHS
166
|
|
HR7540A-397-591-TEV
RBAK
Q9NYW8
GEKLYKCNECGKSYY
SHNSSLFRHQRVHTG
195
|
|
HR7540A-428-562-TEV
RBAK
Q9NYW8
PYQCSECGKFFSRVS
FNELSYYTEHYRSHS
135
|
|
HR7540A-428-591-TEV
RBAK
Q9NYW8
PYQCSECGKFFSRVS
SHNSSLFRHQRVHTG
164
|
|
HR7540B-1-64-Av6HT
RBAK
Q9NYW8
NTLQGPVSFKDVAVD
DTTKPNVIIKLEQGE
63
|
|
HR7540C-633-701-Av6HT
RBAK
Q9NYW8
SRMSNLTVHYRSHSG
KFHHRSAFNSHQRIH
69
|
|
HR7540C-649-701-Av6HT
RBAK
Q9NYW8
KPYECNECGKVFSQK
KFHHRSAFNSHQRIH
53
|
|
HR7540C-653-701-Av6HT
RBAK
Q9NYW8
CNECGKVFSQKSYLT
KFHHRSAFNSHQRIH
49
|
|
HR8531A-503-605-Av6HT
RBM20
Q5T481
LASVGTTFAQRKGAG
SKRYKELQLKKPGKA
103
|
|
HR7548A-227-304-TEV
RBM22
Q9NW64
EDKTITTLYVGGLGD
KLIVNGRRLNVKWGR
78
|
|
HR7417A-596-679-NHT
RBM27
Q9P2N5
QYTNTKLEVKKIPQE
RFIRVLWHRENNEQP
84
|
|
HR7740A-184-325-NHT
RBM5
P52756
DWLCNKCCLNNFRKR
DFAKSARKDLVLSDG
142
|
|
HR6987A-23-453-TEV
RBPJ
Q06330
GERPPPKRLTREAMR
SLTFTYTPEPGPRPH
431
|
|
HR7414A-356-477-NHT
RBPJL
Q9UBG7
SSCWTIIGTESVEFS
DGLFYPSAFSFTYTP
122
|
|
HR8038A-1-79-Av6HT
RC3H2
Q9HBD1
PVQAAQWTEFLSCPI
PVNFALLQLVGAQVP
78
|
|
HR7631A-308-440-TEV
RCOR1
Q9UKL0
RKPPKGMFLSQEDVE
RRFNIDEVLQEWEAE
133
|
|
HR7631B-158-237-Av6HT
RCOR1
Q9UKL0
GYNMEQALGMLFWHK
IASLVKFYYSWKKTR
80
|
|
HR7631B-158-247-Av6HT
RCOR1
Q9UKL0
GYNMEQALGMLFWHK
WKKTRTKTSVMDRHA
90
|
|
HR7631B-172-237-Av6HT
RCOR1
Q9UKL0
KHNIEKSLADLPNFT
IASLVKFYYSWKKTR
66
|
|
HR7631B-172-247-Av6HT
RCOR1
Q9UKL0
KHNIEKSLADLPNFT
WKKTRTKTSVMDRHA
76
|
|
HR7640A-292-387-NHT
RCOR2
Q8IZ40
ISLKRQVQSMKQTNS
YRRRFNLEEVLQEWE
96
|
|
HR2844A-14
REL
Q04864
EKDTYGNKAKKQKTT
NEQLSDSFPYEFFQV
337
|
|
HR2844B-14
REL
Q04864
EKDTYGNKAKKQKTT
NSQGIPPFLRIPVGN
171
|
|
HR2844C-14
REL
Q04864
DLNASNACIYNNADD
NEQLSDSFPYEFFQV
166
|
|
HR2845-14
RELA
Q04206
MDELFPLIFPAEPAQ
IADMDFSALLSQISS
551
|
|
HR2845B-14
RELA
Q04206
TDDRHRIEEKRKRTY
QFDDEDLGALLGNST
167
|
|
HR2845C-14
RELA
Q04206
DPAVFTDLASVDNSE
IADMDFSALLSQISS
93
|
|
HR2845D-191-291-Av6HT
RELA
Q04206
TAELKICRVNRNSGS
DRELSEPMEFQYLPD
101
|
|
HR2845D-191-291-TEV
RELA
Q04206
TAELKICRVNRNSGS
DRELSEPMEFQYLPD
101
|
|
HR2846-40-579-15
RELB
Q01201
MLSSLSLAVSRSTDE
AAFGGGLLSPGPEAT
541
|
|
HR2846B-14
RELB
Q01201
DHDSYGVDKKRKRGM
AAFGGGLLSPGPEAT
179
|
|
HR6006B-21
RERE
Q9P2R6
STQGEIRVGPSHQAK
LITFYYYWKKTPEAA
165
|
|
HR6006C-21
RERE
Q9P2R6
STQGEIRVGPSHQAK
RLVKKPVPKLIEKCW
116
|
|
HR6006D-21
RERE
Q9P2R6
STQGEIRVGPSHQAK
DLLMYLRAARSMAAF
60
|
|
HR6006E-21
RERE
Q9P2R6
VTQHEELVWMPGVND
ETGELITFYYYWKKT
132
|
|
HR6006F-21
RERE
Q9P2R6
VTQHEELVWMPGVND
RLVKKPVPKLIEKCW
87
|
|
HR6006H-21
RERE
Q9P2R6
QGEIRVGPSHQAKLP
ETGELITFYYYWKKT
159
|
|
HR6969A-342-413-NHT
REST
Q13127
SNQHEVTRHARQVHN
SKKCNLQYHFKSKHP
72
|
|
HR8119A-438-513-TEV
RFX1
P22670
TVQWLLDNYETAEGV
RGNSKYHYYGLRIKA
76
|
|
HR7754A-200-273-TEV
RFX2
P48378
LQWLLDNYETAEGVS
TRGNSKYHYYGIRLK
74
|
|
HR7471A-184-257-TEV
RFX3
P48380
LQWLLDNYETAEGVS
TRGNSKYHYYGIRVK
74
|
|
HR8007A-101-167-15
RFX5
P48382
MEEHTDTCLPKQSVY
GRGQSKYCYSGIRRK
68
|
|
HR8007A-76-173-15
RFX5
P48382
MDKSSEPSTLSNEEY
YCYSGIRRKTLVSMP
99
|
|
HR8007A-81-167-15
RFX5
P48382
MPSTLSNEEYMYAYR
GRGQSKYCYSGIRRK
88
|
|
HR7289A-107-205-NHT
RFX6
Q8HWS3
KKTITQIVKDKKKQT
HYYGIGIKESSAYYH
99
|
|
HR7790-68-260-TEV
RFXANK
O14593
KHSTTLTNRQRGNEV
ILKLFQSNLVPADPE
193
|
|
HR7790-79-260-TEV
RFXANK
O14593
GNEVSALPATLDSLS
ILKLFQSNLVPADPE
182
|
|
HR7790A-101-248-15
RFXANK
O14593
MGELDQLKEHLRKGD
GYRKVQQVIENHILK
149
|
|
HR7790A-101-260-15
RFXANK
O14593
MGELDQLKEHLRKGD
ILKLFQSNLVPADPE
161
|
|
HR7790A-79-248-15
RFXANK
O14593
MGNEVSALPATLDSL
GYRKVQQVIENHILK
171
|
|
HR7790A-86-251-15
RFXANK
O14593
MPATLDSLSIHQLAA
KVQQVIENHILKLFQ
167
|
|
HR7790A-91-248-15
RFXANK
O14593
MSLSIHQLAAQGELD
GYRKVQQVIENHILK
159
|
|
HR7790A-91-260-15
RFXANK
O14593
MSLSIHQLAAQGELD
ILKLFQSNLVPADPE
171
|
|
HR7361A-325-470-TEV
RGS6
P49758
PSQQRVKRWGFSFDE
KGKSLAGKRLTGLMQ
146
|
|
HR6895A-323-449-TEV
RGS7
P49802
SQQRVKRWGFGMDEA
YPRFIRSSAYQELLQ
127
|
|
HR6935A-279-424-TEV
RGS9
O75916
DLNAKLVEIPTKMRV
YKDMLAKAIEPQETT
146
|
|
HR7291A-130-236-NHT
RHOXF2
Q9BQY4
PGNAQQPNVHAFTPL
PLFISGMRDDYFWDH
107
|
|
HR7532A-130-236-NHT
RHOXF2B
P0C7M4
PGNAQQPNVHAFTPL
PLFISGMRDDYFWDH
107
|
|
HR7189A-91-307-Av6HT
RIOK2
Q9BVS4
RQVVESVGNQMGVGK
EDTLDVEVSASGYTK
217
|
|
HR7201A-769-825-Av6HT
RLF
Q13129
LRYKCELNGCNIVFS
FYYSKIEYQNHLSMH
57
|
|
HR7201A-769-837-NHT
RLF
Q13129
LRYKCELNGCNIVFS
SMHNVENSNGDIKKS
69
|
|
HR7201B-707-825-Av6HT
RLF
Q13129
LDMKNRREKCTYCRR
FYYSKIEYQNHLSMH
119
|
|
HR7201B-707-837-Av6HT
RLF
Q13129
LDMKNRREKCTYCRR
SMHNVENSNGDIKKS
131
|
|
HR7201B-716-825-Av6HT
RLF
Q13129
CTYCRRHFMSAFHLR
FYYSKIEYQNHLSMH
110
|
|
HR7201B-716-837-Av6HT
RLF
Q13129
CTYCRRHFMSAFHLR
SMHNVENSNGDIKKS
122
|
|
HR7201C-707-770-Av6HT
RLF
Q13129
LDMKNRREKCTYCRR
VNELLNHKQKHDDLR
64
|
|
HR7201C-725-770-Av6HT
RLF
Q13129
SAFHLREHEQVHCGP
VNELLNHKQKHDDLR
46
|
|
HR7461A-26-161-TEV
RNASE2
P10153
HVKPPQFTWAQWFET
PPQYPVVPVHLDRII
136
|
|
HR7865A-252-319-TEV
RNF113A
O15541
GSDDEEIPFKCFICR
GVFNPAKELIAKLEK
68
|
|
HR7107A-246-319-TEV
RNF113B
Q8IZP6
GSEEEEIPFRCFICR
KELMAKLQKLQAAEG
74
|
|
HR7482A-1-89-NHT
RNF114
Q9Y508
AAQQRDCGGAAQLAG
VRAVELERQIESTET
88
|
|
HR7645A-17-100-NHT
RNF125
Q96EQ8
ATARALERRRDPELP
ATDVAKRMKSEYKNC
84
|
|
HR4563B-87-210-14
RORA
P35398
MKEDKEVQTGYMNAQ
HRMQQQQRDHQQQPG
125
|
|
HR4563B-92-174-14
RORA
P35398
MVQTGYMNAQIEIIP
HCRLQKCLAVGMSRD
84
|
|
HR4563B-92-193-14
RORA
P35398
MVQTGYMNAQIEIIP
GRMSKKQRDSLYAEV
103
|
|
HR4563B-93-210-14
RORA
P35398
MQTGYMNAQIEIIPC
HRMQQQQRDHQQQPG
119
|
|
HR4563B-98-174-14
RORA
P35398
MNAQIEIIPCKICGD
HCRLQKCLAVGMSRD
78
|
|
HR4563B-98-193-14
RORA
P35398
MNAQIEIIPCKICGD
GRMSKKQRDSLYAEV
97
|
|
HR7194B-260-507-TEV
RORC
P51449
PEAPYASLTEIEHLV
VVQAAFPPLYKELFS
248
|
|
HR7255A-172-270-Av6HT
RPA2
P15927
ANSQPSAGRAPISNP
YSTVDDDHFKSTDAE
99
|
|
HR7255A-172-270-TEV
RPA2
P15927
ANSQPSAGRAPISNP
YSTVDDDHFKSTDAE
99
|
|
HR7006A-95-145-NHT
RREB1
Q92766
ADHSCSICGKSLSSA
GQSFTTNGNMHRHMK
51
|
|
HR4447C-46-185-Av6HT
RUNX1
Q01196
MSGDRSMVEVLADHP
DGPREPRRHRQKLDD
141
|
|
HR4447C-46-185-TEV
RUNX1
Q01196
SGDRSMVEVLADHPG
DGPREPRRHRQKLDD
140
|
|
HR4568B-112-233-TEV
RUNX2
Q13950
ELVRTDSPNFLCSVL
VTVDGPREPRRHRQK
122
|
|
HR7324A-53-189-TEV
RUNX3
Q13761
QAAVGPGGRARPEVR
TQVATYHRAIKVTVD
137
|
|
HR4643B-135-200-TEV
RXRA
P19793
CAICGDRSSGKHYGV
RCQYCRYQKCLAMGM
66
|
|
HR8407C-205-270-NHT
RXRB
P28702
CAICGDRSSGKHYGV
RCQYCRYQKCLATGM
66
|
|
HR8407C-205-270-TEV
RXRB
P28702
CAICGDRSSGKHYGV
RCQYCRYQKCLATGM
66
|
|
HR47518-139-204-TEV
RXRG
P48443
CAICGDRSSGKHYGV
RCQYCRYQKCLVMGM
66
|
|
HR7653A-909-977-NHT
SALL2
Q9Y467
SRKACEVCGQAFPSQ
HHQVQPFAPHGPQNI
69
|
|
HR7433A-975-1045-NHT
SALL3
Q9BXA9
PSTVCGVCGKPFACK
ELPSQLFDPNFALGP
71
|
|
HR6875A-376-433-Av6HT
SALL4
Q9UJQ4
MEAALYKHKCKYCSK
FTTKGNLKVHFHRHP
59
|
|
HR6875A-376-433-NHT
SALL4
Q9UJQ4
EAALYKHKCKYCSKV
FTTKGNLKVHFHRHP
58
|
|
HR4435B-174-250-14
SATB1
Q01826
MPKLEDLPPEQWSHT
FGRWYKHFKKTKDMM
78
|
|
HR4435B-174-254-14
SATB1
Q01826
MPKLEDLPPEQWSHT
YKHFKKTKDMMVEMD
82
|
|
HR4435B-179-244-14
SATB1
Q01826
MLPPEQWSHTTVRNA
AAKCQEFGRWYKHFK
67
|
|
HR4435B-179-250-14
SATB1
Q01826
MLPPEQWSHTTVRNA
FGRWYKHFKKTKDMM
73
|
|
HR4435C-368-452-TEV
SATB1
Q01826
NTEVSSEIYQWVRDE
AERDRIYQDERERSL
85
|
|
HR4435D-53-254-15
SATB1
Q01826
MQGVPLKHSGHLMKT
YKHFKKTKDMMVEMD
203
|
|
HR4435D-56-250-15
SATB1
Q01826
MPLKHSGHLMKTNLR
FGRWYKHFKKTKDMM
196
|
|
HR4435E-53-178-15
SATB1
Q01826
MQGVPLKHSGHLMKT
VTLKIQLHSCPKLED
127
|
|
HR4435E-56-175-15
SATB1
Q01826
MPLKHSGHLMKTNLR
YHVVTLKIQLHSCPK
121
|
|
HR7571A-350-437-NHT
SATB2
Q9UPW6
KPEPTNSSVEVSPDI
NLPEVERDRIYQDER
88
|
|
HR7571B-610-674-TEV
SATB2
Q9UPW6
SCAKKPRSRTKISLE
IKFFQNQRYHVKHHG
65
|
|
HR5092A-90-156-Av6HT
SCAPER
Q9BY12
RHPRKIDLRARYWAF
DFKALIDWIQLQEKL
67
|
|
HR8394A-256-325-Av6HT
SCRT1
Q9BWW7
AFSRPWLLQGHMRSH
KSFALKSYLNKHYES
70
|
|
HR7196A-158-206-NHT
SCRT2
Q9NQ03
ACAECCKTYATSSNL
GKAYVSMPALAMHLL
51
|
|
HR3583D-653-871-15
SETDB1
Q15047
MLFLEMFCLDPYVLV
LDHIESVENFKEGYE
220
|
|
HR3583D-658-867-15
SETDB1
Q15047
MFCLDPYVLVDRKFQ
YFANLDHIESVENFK
211
|
|
HR3583E-555-676-15
SETDB1
Q15047
MLERAPAEPSYRAPM
PYVLVDRKFQPYKPF
123
|
|
HR3583E-584-681-15
SETDB1
Q15047
MSRVRPMRNEQYRGK
DRKFQPYKPFYYILD
99
|
|
HR3583E-590-676-15
SETDB1
Q15047
MRNEQYRGKNPLLVP
PYVLVDRKFQPYKPF
88
|
|
HR8073A-102-182-Av6HT
SHOX
Q15266
EDVKSEDEDGQTKLK
RRAKCRKQENQMHKG
81
|
|
HR6933A-647-727-Av6HT
SHPRH
Q149N8
NTMSPFNTSDYRFEC
VSTRATLIISPSSIC
81
|
|
HR6933A-647-739-NHT
SHPRH
Q149N8
NTMSPFNTSDYRFEC
SICHQWVDEINRHVR
93
|
|
HR6933A-654-727-Av6HT
SHPRH
Q149N8
TSDYRFECICGELDQ
VSTRATLIISPSSIC
74
|
|
HR6933A-654-739-Av6HT
SHPRH
Q149N8
TSDYRFECICGELDQ
SICHQWVDEINRHVR
86
|
|
HR6933B-437-502-Av6HT
SHPRH
Q149N8
VQCPPTRVMILTAVK
KCLIFEGLVKQIKGH
66
|
|
HR6933B-437-512-Av6HT
SHPRH
Q149N8
VQCPPTRVMILTAVK
QIKGHGFSGTFTLGK
76
|
|
HR6933C-1495-1636-Av6HT
SHPRH
Q149N8
KANQEEDIPVKGSHS
GQTKPTIVHRFLIKA
142
|
|
HR6933C-1495-1646-Av6HT
SHPRH
Q149N8
KANQEEDIPVKGSHS
FLIKATIEERMQAML
152
|
|
HR6933C-1495-1659-Av6HT
SHPRH
Q149N8
KANQEEDIPVKGSHS
MLKTAERSHTNSSAK
165
|
|
HR7129A-227-345-NHT
SIM1
P81133
LHSNMFMFRASLDMK
VLTDTEYKGLQLSLD
119
|
|
HR8357A-72-194-Av6HT
SIM2
Q14190
PLDGVAKELGSHLLQ
YKVIHCSGYLKIRQY
123
|
|
HR7143A-205-281-Av6HT
SIX3
Q95343
DGEQKTHCFKERTRS
KNRLQHQAIGPSGMR
77
|
|
HR7095A-206-294-Av6HT
SIX4
Q9UIU6
DKYRLRRKFPLPRTI
NPSETQSKSESDGNP
89
|
|
HR8072A-125-195-Av6HT
SIX6
O95475
IWDGEQKTHCFKERT
QRDRAAAAKNRLQQQ
71
|
|
HR4810B-218-313-TEV
SKI
P12755
VRVYHECFGKCKGLL
RLGRCLDDVKEKFDY
96
|
|
HR8491B-28-132-Av6HT
SKOR2
Q2VWA4
QPRPGHANLKPNQVG
ITKREAERLCKSFLG
105
|
|
HR8491C-141-237-Av6HT
SKOR2
Q2VWA4
DNFAFDVSHECAWGC
ELVFAWEDVKAMFNG
97
|
|
HR8491C-141-244-Av6HT
SKOR2
Q2VWA4
DNFAFDVSHECAWGC
DVKAMFNGGSRKRAL
104
|
|
HR8491D-43-132-Av6HT
SKOR2
Q2VWA4
QVILYGIPIVSLVID
ITKREAERLCKSFLG
90
|
|
HR7664A-124-217-TEV
SLC30A9
Q6PML9
KYTQNNFITGVRAIN
ERLFRNQKILREYRD
94
|
|
HR8337A-9-132-TEV
SMAD1
Q15797
FTSPAVKRLLGWKQG
KEVCINPYHYKRVES
124
|
|
HR8337B-248-465-TEV
SMAD1
Q15797
APPLPSEINRGDVQA
LTQMGSPHNPISSVS
218
|
|
HR4670B-55-191-14
SMAD2
Q15796
MTGRLDELEKAITTQ
PVLVPRHTEILTELP
138
|
|
HR4670B-55-196-14
SMAD2
Q15796
MTGRLDELEKAITTQ
RHTEILTELPPLDDY
143
|
|
HR4670B-55-202-14
SMAD2
Q15796
MTGRLDELEKAITTQ
TELPPLDDYTHSIPE
149
|
|
HR4670B-55-202-Av6HT
SMAD2
Q15796
TGRLDELEKAITTQN
TELPPLDDYTHSIPE
148
|
|
HR4670B-55-202-TEV
SMAD2
Q15796
TGRLDELEKAITTQN
TELPPLDDYTHSIPE
148
|
|
HR4670B-6-173-14
SMAD2
Q15796
MPFTPPVVKRLLGWK
EVCVNPYHYQRVETP
169
|
|
HR4670C-101-173-14
SMAD2
Q15796
MLYSFSEQTRSLDGR
EVCVNPYHYQRVETP
74
|
|
HR4670C-106-173-14
SMAD2
Q15796
MEQTRSLDGRLQVSH
EVCVNPYHYQRVETP
69
|
|
HR4670D-261-456-Av6HT
SMAD2
Q15796
LDLQPVTYSEPAFWC
LNGPLQWLDKVLTQM
196
|
|
HR4503B-1-148-14
SMAD4
Q13485
MDNMSITNTPTSNDA
ERVVSPGIDLSGLTL
148
|
|
HR4503B-1-166-14
SMAD4
Q13485
MDNMSITNTPTSNDA
APSSMMVKDEYVHDF
166
|
|
HR4503B-10-160-14
SMAD4
Q13485
MPTSNDACLSIVHSL
LTLQSNAPSSMMVKD
152
|
|
HR4503B-11-142-14
SMAD4
Q13485
MTSNDACLSIVHSLM
VNPYHYERVVSPGID
133
|
|
HR4503C-9-149-14
SMAD4
Q13485
MTPTSNDACLSIVHS
RVVSPGIDLSGLTLQ
142
|
|
HR4503D-314-552-Av6HT
SMAD4
Q13485
ISNHPAPEYWCSIAY
EVLHTMPIADPQPLD
239
|
|
HR5565A-14
SMAD6
O43541
MRLSPRDEYKPLDLS
TSCPCWLEILLNNPR
217
|
|
HR5560A-14
SMAD7
O15105
MVPSSAETGGTNYLA
ISSCPCWLEVIFNSR
199
|
|
HR5560A-15
SMAD7
O15105
MVPSSAETGGTNYLA
ISSCPCWLEVIFNSR
199
|
|
HR7626A-769-932-TEV
SMARCA1
P28370
VSEPKIPKAPRPPKQ
QIERGEARIQRRISI
164
|
|
HR7914A-754-917-TEV
SMARCA5
O60264
VSEPKAPKAPRPPKQ
QIERGEARIQRRISI
164
|
|
HR7256A-607-680-TEV
SMARCC1
Q92922
SKKTLAKSKGASAGR
IEDPYLENSDASLGP
74
|
|
HR7400B-419-526-Av6HT
SMARCC2
Q8TAQ2
EQTHHIIIPSYAAWF
YQVDAESRPTPMGPP
108
|
|
HR7400B-419-538-Av6HT
SMARCC2
Q8TAQ2
EQTHHIIIPSYAAWF
GPPPTSHFHVLADTP
120
|
|
HR7400B-421-520-Av6HT
SMARCC2
Q8TAQ2
THHIIIPSYAAWFDY
QWGLINYQVDAESRP
100
|
|
HR7400C-421-514-Av6HT
SMARCC2
Q8TAQ2
THHIIIPSYAAWFDY
VHAFLEQWGLINYQV
94
|
|
HR7811A-46-134-NHT
SMARCE1
Q969G3
GTNSRVTASSGITIP
EAEKIEYNESMKAYH
89
|
|
HR7811A-46-146-Av6HT
SMARCE1
Q969G3
GTNSRVTASSGITIP
AYHNSPAYLAYINAK
101
|
|
HR7520-1-242-15
SNAI1
O95863
MPRSELVRKPSDPNR
QTHSDVKKYQCQACA
242
|
|
HR7520-1-247-15
SNAI1
O95863
MPRSFLVRKPSDPNR
VKKYQCQACARTFSR
247
|
|
HR7520-1-253-TEV
SNAI1
O95863
PRSFLVRKPSDPNRK
QACARTFSRMSLLHK
252
|
|
HR7520-15
SNAI1
O95863
MPRSFLVRKPSDPNR
LHKHQESGCSGCPR*
265
|
|
HR7520-34-264-Av6HT
SNAI1
O95863
PYDQAHLLAAIPPPE
LLHKHQESGCSGCPR
231
|
|
HR7520-40-264-15
SNAI1
O95863
MLLAAIPPPEILNPT
LLHKHQESGCSGCPR
226
|
|
HR7520-45-264-15
SNAI1
O95863
MPPPEILNPTASLPM
LLHKHQESGCSGCPR
221
|
|
HR7012A-122-179-NHT
SNAI2
O43623
AIEAEKFQCNLCNKT
DKEYVSLGALKMHIR
58
|
|
HR7849A-212-292-NHT
SNAI3
Q3KNW1
KICGKAFSRPWLLQG
SLLARHEESGCCPGP
81
|
|
HR7971A-346-397-Av6HT
SNAPC4
Q5SXM2
RKEWTEEEDRMLTQL
DSMQLIYRWTKSLDP
52
|
|
HR7549A-165-287-NHT
SOHLH2
Q9NX45
EHLGYFPTDLFACSE
RFCKKQQTPIELSLP
123
|
|
HR7723A-49-131-TEV
SOX1
O00570
DRVKRPMNAFMVWSR
DYKYRPRRKTKTLLK
83
|
|
HR7246A-102-183-15
SOX10
P56693
MPHVKRPMNAFMVWA
PDYKYQPRRRKNGKA
83
|
|
HR7246A-109-178-15
SOX10
P56693
MNAFMVWAQAARRKL
HKKDHPDYKYQPRRR
71
|
|
HR7246A-127-178-15
SOX10
P56693
MPHLHNAELSKTLGK
HKKDHPDYKYQPRRR
53
|
|
HR7246A-91-179-15
SOX10
P56693
MPVRVNGASKSKPHV
KKDHPDYKYQPRRRK
90
|
|
HR7180A-31-110-Av6HT
SOX12
O15370
GWCKTPSGHIKRPMN
LRLKHMADYPDYKYR
80
|
|
HR7313A-421-500-TEV
SOX13
Q9UN79
SSHIKRPMNAFMVWA
EKYPDYKYKPRPKRT
80
|
|
HR7773A-2-88-TEV
SOX14
O95416
SKPSDHIKRPMNAFM
DYKYRPRRKPKNLLK
87
|
|
HR7489A-83-161-TEV
SOX18
P35713
SRIRRPMNAFMVWAK
RDHPNYKYRPRRKKQ
79
|
|
HR8317A-38-121-TEV
SOX2
P48431
PDRVKRPMNAFMVWS
DYKYRPRRKTKTLMK
84
|
|
HR8041A-6-88-TEV
SOX21
Q9Y651
DHVKRPMNAFMVWSR
DYKYRPRRKPKTLLK
83
|
|
HR7838A-132-219-TEV
SOX3
P41225
GGTDQDRVKRPMNAF
DYKYRPRRKTKTLLK
88
|
|
HR8424A-45-130-Av6HT
SOX4
Q06945
KADDPSWCKTPSGHI
RLKHMADYPDYKYRP
86
|
|
HR7351A-554-632-TEV
SOX5
P35711
PHIKRPMNAFMVWAK
EKYPDYKYKPRPKRT
79
|
|
HR7953A-619-697-TEV
SOX6
P35712
HNSNISKILGSRWKS
YKQLMRSRRQEMRQF
78
|
|
HR7275A-43-121-TEV
SOX7
Q9BT81
SRIRRPMNAFMVWAK
QDYPNYKYRPRRKKQ
79
|
|
HR7103A-102-174-Av6HT
SOX8
P57073
VKRPMNAFMVWAQAA
VQHKKDHPDYKYQPR
73
|
|
HR7103A-63-143-Av6HT
SOX8
P57073
RFPACIRDAVSQVLK
NAELSKTLGKLWRLL
81
|
|
HR7103A-63-150-Av6HT
SOX8
P57073
RFPACIRDAVSQVLK
LGKLWRLLSESEKRP
88
|
|
HR7103A-63-173-NHT
SOX8
P57073
RFPACIRDAVSQVLK
RVQHKKDHPDYKYQP
111
|
|
HR7103A-82-143-Av6HT
SOX8
P57073
SLVPMPVRGGGGGAL
NAELSKTLGKLWRLL
62
|
|
HR7103A-82-150-Av6HT
SOX8
P57073
SLVPMPVRGGGGGAL
LGKLWRLLSESEKRP
69
|
|
HR7103A-82-173-Av6HT
SOX8
P57073
SLVPMPVRGGGGGAL
RVQHKKDHPDYKYQP
92
|
|
HR6433-64-495-15
SOX9
P48436
SEEDKFPVCIREAVS
ADTSGVPSIPQTHSP
432
|
|
HR6433-64-509-14
SOX9
P48436
SEEDKFPVCIREAVS
PQHWEQPVYTQLTRP
446
|
|
HR6433-68-490-15
SOX9
P48436
KFPVCIREAVSQVLK
MYTPIADTSGVPSIP
423
|
|
HR6433-68-509-14
SOX9
P48436
KFPVCIREAVSQVLK
PQHWEQPVYTQLTRP
442
|
|
HR4634C-496-558-14
SP1
P08047
MSSSNTTLTPIASAA
VHPIQGLPLAIANAP
64
|
|
HR4744B-38-153-14
SP100
P23497
MFTEDQGVDDRLLYD
HIYKGFENVIHDKLP
117
|
|
HR4744B-42-149-14
SP100
P23497
MQGVDDRLLYDIVFK
PDLIHIYKGFENVIH
109
|
|
HR4744B-70-135-14
SP100
P23497
MKTFPFLEGLRDRDL
VLEALFSDVNMQEYP
67
|
|
HR4744B-70-149-14
SP100
P23497
MKTFPFLEGLRDRDL
PDLIHIYKGFENVIH
81
|
|
HR4744C-595-684-TEV
SP100
P23497
DENINFKQSELPVTC
MENKFLPEPPSTRKK
90
|
|
HR7625A-677-739-NHT
SP140
Q13342
SQNNSSVDPCMRNLD
RTPWNCIFCRMKESP
63
|
|
HR7855A-523-581-Av6HT
SP2
Q02086
KKHVCHIPDCGKTFR
TRSDELQRHARTHTG
59
|
|
HR8154A-336-382-Av6HT
SP5
Q6BEB4
SFTRSDELQRHLRTH
SDHLAKHVKTHQNKK
47
|
|
HR7866A-256-329-Av6HT
SP6
Q3SY56
CHIPGCGKAYAKTSH
PCAVCSRVFMRSDHL
74
|
|
HR7872A-292-352-Av6HT
SP7
Q8TDD2
PIHSCHIPGCGKVYG
SDELERHVRTHTREK
61
|
|
HR7447A-131-213-TEV
SPDEF
O95238
LKDIETACKLLNITA
GDVLHAHLDIWKSAA
83
|
|
HR8383A-169-257-NHT
SPI1
P17947
KKIRLYQFLLDLLRS
KKVKKKLTYQFSGEV
89
|
|
HR4679B-130-262-14
SPIB
Q01892
MEEEDLPLDSPALEV
TYQFDSALLPAVRRA
134
|
|
HR4679B-134-262-14
SPIB
Q01892
MLPLDSPALEVSDSE
TYQFDSALLPAVRRA
130
|
|
HR4679B-163-262-14
SPIB
Q01892
MAGTRKKLRLYQFLL
TYQFDSALLPAVRRA
101
|
|
HR4679B-168-262-14
SPIB
Q01892
MKLRLYQFLLGLLTR
TYQFDSALLPAVRRA
96
|
|
HR7954A-111-207-Av6HT
SPIC
Q8N5J4
LRLFEYLHESLYNPE
FSEAILQRLSPSYFL
97
|
|
HR7260A-815-910-NHT
SRCAP
Q6ZRS2
IEGSQEYNEGLVKRL
QLRKVCNHPNLFDPR
96
|
|
HR7260B-583-850-Av6HT
SRCAP
Q6ZRS2
EITDIAAAAESLQPK
FLLRRVKVDVEKQMP
268
|
|
HR7260B-597-840-Av6HT
SRCAP
Q6ZRS2
KGYTLATTQVKTPIP
VKRLHKVLRPFLLRR
244
|
|
HR7260B-601-850-Av6HT
SRCAP
Q6ZRS2
LATTQVKTPIPLLLR
FLLRRVKVDVEKQMP
250
|
|
HR7260B-607-840-Av6HT
SRCAP
Q6ZRS2
KTPIPLLLRGQLREY
VKRLHKVLRPFLLRR
234
|
|
HR7260B-607-850-Av6HT
SRCAP
Q6ZRS2
KTPIPLLLRGQLREY
FLLRRVKVDVEKQMP
244
|
|
HR4448F-14
SREBF1
P36956
VLLFVYGEPVTRPHS
VVRTSLWRQQQPPAP
432
|
|
HR4448G-521-624-14
SREBF1
P36956
MVYHSPGRNVLGTES
RALGRPLPTSHLDLA
105
|
|
HR4448G-521-643-14
SREBF1
P36956
MVYHSPGRNVLGTES
WNLIRHLLQRLWVGR
124
|
|
HR4448G-526-619-14
SREBF1
P36956
MGRNVLGTESRDGPG
LWLALRALGRPLPTS
95
|
|
HR4448G-526-638-14
SREBF1
P36956
MGRNVLGTESRDGPG
ACSLLWNLIRHLLQR
114
|
|
HR4448G-530-624-14
SREBF1
P36956
MLGTESRDGPGWAQW
RALGRPLPTSHLDLA
96
|
|
HR4448G-530-643-14
SREBF1
P36956
MLGTESRDGPGWAQW
WNLIRHLLQRLWVGR
115
|
|
HR4448G-535-619-14
SREBF1
P36956
MRDGPGWAQWLLPPV
LWLALRALGRPLPTS
86
|
|
HR4448G-535-638-14
SREBF1
P36956
MRDGPGWAQWLLPPV
ACSLLWNLIRHLLQR
105
|
|
HR4448H-319-400-TEV
SREBF1
P36956
QSRGEKRTAHNAIEK
SLRTAVHKSKSLKDL
82
|
|
HR4448H-TEV
SREBF1
P36956
QSRGEKRTAHNAIEK
SLRTAVHKSKSLKDL
82
|
|
HR6329A-1075-1134-14
SREBF2
Q12772
MPGQRERATAILLAC
RSCNDCQQMIVKLGG
61
|
|
HR4543C-132-223-TEV
SRF
P11831
SGAKPGKKTRGRVKI
ETGKALIQTCLNSPD
92
|
|
HR6924A-56-131-Av6HT
SRY
Q05066
VQDRVKRPMNAFIVW
QAMHREKYPNYKYRP
76
|
|
HR6924A-56-131-TEV
SRY
Q05066
VQDRVKRPMNAFIVW
QAMHREKYPNYKYRP
76
|
|
HR7075A-105-202-Av6HT
SSB
P05455
KNDVKNRSVYIKGFP
YFAKKNEERKQNKVE
98
|
|
HR7075A-105-202-TEV
SSB
P05455
KNDVKNRSVYIKGFP
YFAKKNEERKQNKVE
98
|
|
HR7013A-305-448-TEV
SSH2
Q76I76
DSPTQIFEHVFLGSE
SFMRQLEEYQGILLA
143
|
|
HR7844A-287-452-NHT
SSH3
Q8TE77
DLESVTSKEIRQALE
QALRHVQELRPIARP
166
|
|
HR3575-1-551-14
SSRP1
Q08945
MAETLEFNDVYQEVK
EVKKGKDPNAPKRPM
551
|
|
HR3575-1-556-14
SSRP1
Q08945
MAETLEFNDVYQEVK
KDPNAPKRPMSAYML
556
|
|
HR3575-1-573-14
SSRP1
Q08945
MAETLEFNDVYQEVK
NASREKIKSDHPGIS
573
|
|
HR5522A-14
SSRP1
Q08945
MLKKAKMAKDRKSRK
RDYEKAMKEYEGGRG
101
|
|
HR5522A-15
SSRP1
Q08945
MLKKAKMAKDRKSRK
RDYEKAMKEYEGGRG
101
|
|
HR7020A-812-906-TEV
ST18
O60284
PELKCPVIGCDGQGH
GCPLNAQVIKKGKVS
95
|
|
HR8389A-136-710-Av6HT
STAT1
P42224
LDKQKELDSKVRNVK
PKGTGYIKTELISVS
575
|
|
HR8389A-136-710-NHT
STAT1
P42224
LDKQKELDSKVRNVK
PKGTGYIKTELISVS
575
|
|
HR8389A-136-710-TEV
STAT1
P42224
LDKQKELDSKVRNVK
PKGTGYIKTELISVS
575
|
|
HR3569D-573-771-14
STAT2
P52630
NDGRIMGFVSRSQER
STLEPVIEPTLGMVS
199
|
|
HR3569E-1-131-14
STAT2
P52630
MAQWEMLQNLDSPFQ
RILIQAQRAQLEQGE
131
|
|
HR3569E-1-186-14
STAT2
P52630
MAQWEMLQNLDSPFQ
VFCFRYKIQAKGKTP
186
|
|
HR5539A-14
STAT2
P52630
MAQWEMLQNLDSPFQ
LEEKRILIQAQRAQL
127
|
|
HR5539A-15
STAT2
P52630
MAQWEMLQNLDSPFQ
LEEKRILIQAQRAQL
127
|
|
HR5535A-1-101-14
STAT3
P40763
MAQWNQLQQLDTRYL
KQFLQSRYLEKPMEI
101
|
|
HR5535A-14
STAT3
P40763
MAQWNQLQQLDTRYL
WEESRLLQTAATAAQ
124
|
|
HR5535B-1-116-14
STAT3
P40763
MAQWNQLQQLDTRYL
ARIVARCLWEESRLL
116
|
|
HR5535B-1-133-14
STAT3
P40763
MAQWNQLQQLDTRYL
AATAAQQGGQANHPT
133
|
|
HR3612-187-748-14
STAT4
Q14765
MNSAMVNQEVLTLQE
PTTIETAMKSPYSAE
563
|
|
HR5542A-14
STAT5A
P42229
MAGWIQAQQLQGDAL
NEQRLVREANNCSSP
129
|
|
HR5542A-15
STAT5A
P42229
MAGWIQAQQLQGDAL
NEQRLVREANNCSSP
129
|
|
HR55428-128-712-NHT
STAT5A
P42229
SPAGILVDAMSQKHL
QIKQVVPEFVNASAD
585
|
|
HR5541A-1-102-14
STAT5B
P51692
MAVWIQAQQLQGEAL
GHYATQLQNTYDRCP
102
|
|
HR5541A-1-106-14
STAT5B
P51692
MAVWIQAQQLQGEAL
TQLQNTYDRCPMELV
106
|
|
HR5541A-14
STAT5B
P51692
MAVWIQAQQLQGEAL
NEQRLVREANNGSSP
129
|
|
HR5541A-15
STAT5B
P51692
MAVWIQAQQLQGEAL
NEQRLVREANNGSSP
129
|
|
HR5541B-1-127-14
STAT5B
P51692
MAVWIQAQQLQGEAL
LYNEQRLVREANNGS
127
|
|
HR5541B-1-135-14
STAT5B
P51692
MAVWIQAQQLQGEAL
REANNGSSPAGSLAD
135
|
|
HR5541C-1-684-TEV
STAT5B
P51692
AVWIQAQQLQGEALH
FPDRPKDEVYSKYYT
683
|
|
HR3396C-1-127-14
STAT6
P42226
MSLWGLVSKMPPEKV
QFRHLPMPFHWKQEE
127
|
|
HR3396C-1-169-14
STAT6
P42226
MSLWGLVSKMPPEKV
AEAGQVSLHSLIETP
169
|
|
HR3396C-1-174-14
STAT6
P42226
MSLWGLVSKMPPEKV
VSLHSLIETPANGTG
174
|
|
HR3396D-72-655-14
STAT6
P42226
GEGSTILQHISTLES
YVPATIKMTVERDQP
584
|
|
HR3396E-90-279-14
STAT6
P42226
RDPLKLVATFRQILQ
LRTLVTSCFLVEKQP
190
|
|
HR3396E-90-327-14
STAT6
P42226
RDPLKLVATFRQILQ
ADMVTEKQARELSVP
238
|
|
HR3396F-1-630-TEV
STAT6
P42226
SLWGLVSKMPPEKVQ
YPKKPKDEAFRSHYK
629
|
|
HR7864A-355-443-TEV
TADA2A
O75478
SNSGRRSAPPLNLTG
KIYDFLIREGYITKG
89
|
|
HR8503A-244-333-Av6HT
TADA2B
B3KX99
KEDGKDSEFAAIENL
LNSLTESGWISRDAS
90
|
|
HR4753B-177-253-14
TAL1
P17542
MEITDGPHTKVVRRI
LAKLLNDQEEEGTQR
78
|
|
HR4753B-177-280-14
TAL1
P17542
MEITDGPHTKVVRRI
GGGGGGGGGAPPDDL
105
|
|
HR4753B-182-247-14
TAL1
P17542
MPHTKVVRRIFTNSR
MKYINFLAKLLNDQE
67
|
|
HR4753B-182-262-14
TAL1
P17542
MPHTKVVRRIFTNSR
EEGTQRAKTGKDPVV
82
|
|
HR4753B-182-262-Av6HT
TAL1
P17542
PHTKVVRRIFTNSRE
EEGTQRAKTGKDPVV
81
|
|
HR4753B-182-262-TEV
TAL1
P17542
PHTKVVRRIFTNSRE
EEGTQRAKTGKDPVV
81
|
|
HR4753B-182-287-14
TAL1
P17542
MPHTKVVRRIFTNSR
GGAPPDDLLQDVLSP
107
|
|
HR6460A-1-79-15
TAL2
Q16559
MTRKIFTNTRERWRQ
QTGVAAQGNILGLFP
79
|
|
HR6460A-1-84-15
TAL2
Q16559
MTRKIFTNTRERWRQ
AQGNILGLFPQGPHL
84
|
|
HR6460A-1-96-15
TAL2
Q16559
MTRKIFTNTRERWRQ
PHLPGLEDRTLLENY
96
|
|
HR6460A-34-96-15
TAL2
Q16559
PDKKLSKNETLRLAM
PHLPGLEDRTLLENY
63
|
|
HR464-14
TAX1BP1
Q86VP1
MTSFQEVPLQTSNFA
NSDMLVVTTKAGLLE
151
|
|
HR464-21
TAX1BP1
Q86VP1
MTSFQEVPLQTSNFA
NSDMLVVTTKAGLLE
151
|
|
HR7030-1-512-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
TSASTVDVKPSPSAA
511
|
|
HR7030-1-529-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
DFDIVTKGQVCEMTK
528
|
|
HR7030-1-588-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
ENVKLELAEVQDNYK
587
|
|
HR7030-1-597-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
VQDNYKELKRSLENP
596
|
|
HR7030A-15-466-TEV
TAX1BP1
Q86VP1
AHVIFQNVAKSYLPN
KFKECQRLQKQINKL
452
|
|
HR7030A-15-470-TEV
TAX1BP1
Q86VP1
AHVIFQNVAKSYLPN
CQRLQKQINKLSDQS
456
|
|
HR8311A-205-394-Av6HT
TBR1
Q16650
QVYLCNRPLWLKFHR
LKIDHNPFAKGFRDN
190
|
|
HR8240A-138-330-Av6HT
TBX18
O95935
APRVDLQGAELWKRF
RLKIDRNPFAKGFRD
193
|
|
HR7379A-91-283-TEV
TBX2
Q13207
SLKSLEPEDEVEDDP
DKITQLKIDNNPFAK
193
|
|
HR7868A-127-326-Av6HT
TBX21
Q9UL17
LPAGLEVSGKLRVAL
QLKIDNNPFAKGFRE
200
|
|
HR7452A-91-277-NHT
TBX22
Q9Y458
DIQMELQGSELWKRF
QNQQITKLKIERNPF
187
|
|
HR7369A-99-311-TEV
TBX3
O15119
VEDDPKVHLEAKELW
LTLQSMRVFDERHKK
213
|
|
HR7232A-61-248-Av6HT
TBX4
P57082
EQTIENIKVGLHEKE
KITQLKIENNPFAKG
188
|
|
HR8313A-52-232-Av6HT
TBX5
Q99593
EGIKVFLHERELWLK
QNHKITQLKIENNPF
181
|
|
HR7389A-90-273-NHT
TBX6
O95947
GVSLSLENRELWKEF
QLKIAANPFAKGFRE
184
|
|
HR6334A-578-637-TEV
TCF12
Q99081
RRMANNARERLRVRD
AVAVILSLEQQVRER
60
|
|
HR6965A-1-144-Av6HT
TCF19
Q9Y242
MLPCFQLLRIGGGRG
DFAAITIPRSRGEAR
144
|
|
HR6965A-1-144-NHT
TCF19
Q9Y242
LPCFQLLRIGGGRGG
DFAAITIPRSRGEAR
143
|
|
HR8141A-73-167-Av6HT
TCF21
O43680
SQEGKQVQRNAANAR
PFMVAGKPESDLKEV
95
|
|
HR7160A-75-162-NHT
TCF23
Q7RTU1
SEASPENAARERSRV
LRYLHPLKKWPMRSR
88
|
|
HR7366A-178-588-Av6HT
TCF25
Q9BQ70
LYVEHRHLNPDTELK
DVTTQSVMGFDPLPP
411
|
|
HR4404E-550-609-TEV
TCF3
P15923
RRVANNARERLRVRD
AVSVILNLEQQVRER
60
|
|
HR4645C-565-624-TEV
TCF4
P15884
RRMANNARERLRVRD
AVAVILSLEQQVRER
60
|
|
HR8064A-27-105-TEV
TEAD1
P28347
IDNDAEGVWSPDIEQ
SSHIQVLARRKSRDF
79
|
|
HR7830A-40-115-TEV
TEAD2
Q15562
DAEGVWSPDIEQSFD
SSHIQVLARRKSREI
76
|
|
HR7697A-27-104-TEV
TEAD3
Q99594
LDNDAEGVWSPDIEQ
VSSHIQVLARKKVRE
78
|
|
HR6976A-217-434-TEV
TEAD4
Q15561
RSVASSKLWMLEFSA
SEHGAQHHIYRLVKE
218
|
|
HR7931A-446-500-Av6HT
TERF2
Q15554
KKQKWTVEESEWVKA
MIKDRWRTMKRLGMN
55
|
|
HR7931A-446-500-TEV
TERF2
Q15554
KKQKWTVEESEWVKA
MIKDRWRTMKRLGMN
55
|
|
HR7939A-132-190-Av6HT
TERF2IP
Q9NYB0
GRIAFTDADDVAILT
SWQSLKDRYLKHLRG
59
|
|
HR7939A-132-190-TEV
TERF2IP
Q9NYB0
GRIAFTDADDVAILT
SWQSLKDRYLKHLRG
59
|
|
HR8166A-153-218-TEV
TFAM
Q00059
GKPKRPRSAYNVYVA
AKEDETRYHNEMKSW
66
|
|
HR3078B-202-418-14
TFAP2A
P05549
GGVVNPNEVFCSVPG
EALKAMDKMYLSNNP
217
|
|
HR3078B-207-414-14
TFAP2A
P05549
PNEVFCSVPGRLSLL
NYLTEALKAMDKMYL
208
|
|
HR3162-15
TFAP2B
Q92481
MHSPPRDQAAIMLWK
GPGSKTGDKEEKHRK
460
|
|
HR7501-139-450-15
TFAP2C
Q92754
MRRDAYRRSDLLLPH
ADSNKTLEKMEKHRK
313
|
|
HR7501A-206-427-TEV
TFAP2C
Q92754
NLPCQKELVGAVMNP
QNYIKEALIVIDKSY
222
|
|
HR7501A-219-427-TEV
TFAP2C
Q92754
NPTEVFCSVPGRLSL
QNYIKEALIVIDKSY
209
|
|
HR7501B-128-430-Av6HT
TFAP2C
Q92754
LSGLEAGAVSARRDA
IKEALIVIDKSYMNP
303
|
|
HR7501B-128-450-Av6HT
TFAP2C
Q92754
LSGLEAGAVSARRDA
ADSNKTLEKMEKHRK
323
|
|
HR7501B-139-430-TEV
TFAP2C
Q92754
RRDAYRRSDLLLPHA
IKEALIVIDKSYMNP
292
|
|
HR7501B-206-450-TEV
TFAP2C
Q92754
NLPCQKELVGAVMNP
ADSNKTLEKMEKHRK
245
|
|
HR7501B-219-450-TEV
TFAP2C
Q92754
NPTEVFCSVPGRLSL
ADSNKTLEKMEKHRK
232
|
|
HR7272A-212-422-Av6HT
TFAP2E
Q6VUC0
TNPGEVFCSVPGRLS
YLLESLKGLDKMFLS
211
|
|
HR7122A-21-122-Av6HT
TFAP4
Q01664
EKEVIGGLCSLANIP
QQNTQLKRFIQELSG
102
|
|
HR7110A-303-394-15
TFCP2
Q12800
MLGEGNGSPNHQPEP
ALKGRMVRPRLTIYV
93
|
|
HR7110A-303-400-15
TFCP2
Q12800
MLGEGNGSPNHQPEP
VRPRLTIYVCQESLQ
99
|
|
HR7110A-303-404-15
TFCP2
Q12800
MLGEGNGSPNHQPEP
LTIYVCQESLQLREQ
103
|
|
HR7110A-332-395-15
TFCP2
Q12800
MEAQQWLHRNRFSTF
LKGRMVRPRLTIYVC
65
|
|
HR7110A-332-399-15
TFCP2
Q12800
MEAQQWLHRNRFSTF
MVRPRLTIYVCQESL
69
|
|
HR7110A-332-404-15
TFCP2
Q12800
MEAQQWLHRNRFSTF
LTIYVCQESLQEREQ
74
|
|
HR7022A-278-385-NHT
TFCP2L1
Q9NZI6
SPNSFGLGEGNASPT
MTIYVCQELEQNRVP
108
|
|
HR4671B-105-200-TEV
TFDP1
Q14186
RNRKGEKNGKGLRHF
KKEIKWIGLPTNSAQ
96
|
|
HR7048A-121-215-TEV
TFDP2
Q14188
RRRVYDALNVLMAMN
QNQGPPALNSTIQLP
95
|
|
HR7261A-244-347-NHT
TFDP3
Q5H9I0
QRPLPNSVIHVPFII
AQGTFGGVFTTAGSR
104
|
|
HR4665C-333-388-14
TFE3
P19532
MISETEAKALLKERQ
PKSSDPEMRWNKGTI
57
|
|
HR4665C-333-443-14
TFE3
P19532
MISETEAKALLKERQ
ELELQAQIHGLPVPP
112
|
|
HR4665C-338-383-14
TFE3
P19532
MAKALLKERQKKDNH
LGTLIPKSSDPEMRW
47
|
|
HR665C-338-438-14
TFE3
P19532
MAKALLKERQKKDNH
QLRIQELELQAQIHG
102
|
|
HR7480A-223-309-NHT
TFEB
P19484
TDAESRALAKERQKK
SRELENHSRRLEMTN
87
|
|
HR4411B-151-237-14
TGIF1
Q15583
MDIPLDLSSSAGSGK
LPDMLRKDGKDPNQF
88
|
|
HR4411B-170-232-14
TGIF1
Q15583
MNLPKESVQILRDWL
ARRRLLPDMLRKDGK
64
|
|
HR4411B-170-252-14
TGIF1
Q15583
MNLPKESVQILRDWL
TISRRGAKISETSSV
84
|
|
HR4411B-171-248-14
TGIF1
Q15583
MLPKESVQILRDWLY
PNQFTISRRGAKISE
79
|
|
HR4411B-189-248-14
TGIF1
Q15583
MNAYPSEQEKALLSQ
PNQFTISRRGAKISE
61
|
|
HR4411C-171-241-14
TGIF1
Q15583
MLPKESVQILRDWLY
LRKDGKDPNQFTISR
72
|
|
HR4393-12-199-15
TGIF2
Q9GZN2
LLSLAGKRKRRGNLP
PTPPEQDKEDFSSFQ
188
|
|
HR4393-12-223-15
TGIF2
Q9GZN2
LLSLAGKRKRRGNLP
AAEMELQKQQDPSLP
212
|
|
HR4393-17-220-15
TGIF2
Q9GZN2
GKRKRRGNLPKESVK
LQRAAEMELQKQQDP
204
|
|
HR4393-6-199-15
TGIF2
Q9GZN2
LGEDEGLLSLAGKRK
PTPPEQDKEDFSSFQ
194
|
|
HR4393-6-223-15
TGIF2
Q9GZN2
LGEDEGLLSLAGKRK
AAEMELQKQQDPSLP
218
|
|
HR7881A-51-127-TEV
TGIF2LX
Q8IUE1
KKRKGNLPAESVKIL
LQQRRNDPIIGHKTG
77
|
|
HR8232A-51-127-NHT
TGIF2LY
Q8IUE0
KKRKGNLPAESVKIL
LQQRRNDPIIGHKTG
77
|
|
HR8232A-51-127-TEV
TGIF2LY
Q8IUE0
KKRKGNLPAESVKIL
LQQRRNDPIIGHKTG
77
|
|
HR7047A-1-87-TEV
THAP1
Q9NVV9
VQSCSAYGCKNRYDK
KENAVPTIFLCTEPH
86
|
|
HR1517A-1-91-Av6HT
THAP10
Q9P2Z0
PARCVAAHCGNTTKS
QRLRLVAGAVPTLHR
90
|
|
HR7799A-1-67-TEV
THAP11
Q96EK4
PGFTCCVPGCYNNSH
QPTTGHRLCSVHFQG
66
|
|
HR7799A-1-72-TEV
THAP11
Q96EK4
PGFTCCVPGCYNNSH
HRLCSVHFQGGRKTY
71
|
|
HR7799A-1-82-Av6HT
THAP11
Q96EK4
PGFTCCVPGCYNNSH
GRKTYTVRVPTIFPL
81
|
|
HR8301A-1-87-TEV
THAP2
Q9H0W7
PTNCAAAGCATTYNK
MDAVPTIFDFCTHIK
86
|
|
HR7028A-1-83-NHT
THAP5
Q7Z6K1
PRYCAAICCKNRRGR
RWGIRYLKQTAVPTI
82
|
|
HR8415A-1-149-Av6HT
THAP6
Q8TBB0
VKCCSAIGCASRCLP
QFIFEHSYSVMDSPK
148
|
|
HR7818A-1-92-Av6HT
THAP7
Q9BT49
PRHCSAAGCCTRDTR
ISGYHRLKEGAVPTI
91
|
|
HR6978A-1-82-15
THAP8
Q8NA92
MPKYCRAPNCSNTAG
QWRWGVRYLRPDAVP
82
|
|
HR6978A-1-87-15
THAP8
Q8NA92
MPKYCRAPNCSNTAG
VRYLRPDAVPSIFSR
87
|
|
HR6978A-16-87-15
THAP8
Q8NA92
MRLGADNRPVSFYKF
VRYLRPDAVPSIFSR
73
|
|
HR6978A-21-82-15
THAP8
Q8NA92
MNRPVSFYKFPLKDG
QWRWGVRYLRPDAVP
63
|
|
HR7271A-1-88-NHT
THAP9
Q9H5L6
TRSCSAVGCSTRDTV
YGIRRKLKKGAVPSV
87
|
|
HR7130A-202-461-15
THRB
P10828
MEELQKSIGHKPEPT
PTELFPPLFLEVFED
261
|
|
HR7130A-202-461-Av6HT
THRB
P10828
EELQKSIGHKPEPTD
PTELFPPLFLEVFED
260
|
|
HR7130A-202-461-TEV
THRB
P10828
EELQKSIGHKPEPTD
PTELFPPLFLEVFED
260
|
|
HR7130B-104-206-15
THRB
P10828
MDELCVVCGDKATGY
IEENREKRRREELQK
104
|
|
HR7130B-104-206-Av6HT
THRB
P10828
DELCVVCGDKATGYH
IEENREKRRREELQK
103
|
|
HR7130B-104-206-TEV
THRB
P10828
DELCVVCGDKATGYH
IEENREKRRREELQK
103
|
|
HR6921A-74-139-NHT
TIGD3
Q6B0B8
SKYSGIDEALLCWYH
VRWKRRNNVGFGARH
66
|
|
HR7457A-14-77-NHT
TIGD4
Q8IY51
TVKKKKSLSIEEKID
VLEAFESLRFDPKRK
64
|
|
HR7206A-68-132-NHT
TIGD6
Q17RP2
KRMRSALYDDIDKAV
QASVGWLNRFRDRHG
65
|
|
HR7729A-62-136-NHT
TIGD7
Q6NT04
PLVGAEKRKRTTGAK
STGWLFRFRNRHAIG
75
|
|
HR7316A-298-418-NHT
TIPARP
Q7Z3E1
NDRMRMKYGGQEFWA
LFRSCFILLPYLQTL
121
|
|
HR7535A-206-260-TEV
TLX1
P31314
TSFTRLQICELEKRF
KTWFQNRRTKWRRQT
55
|
|
HR6480A-162-216-TEV
TLX2
O43763
TSFSRSQVLELERRF
KTWFQNRRTKWRRQT
55
|
|
HR7241A-171-225-TEV
TLX3
O43711
TSFSRVQICELEKRF
KTWFQNRRTKWRRQT
55
|
|
HR3551B-1-370-TEV
TNFAIP3
P21580
AEQVLPQALYLSNMR
WQENSEQGRREGHAQ
369
|
|
HR8218A-34-319-Av6HT
TOE1
Q96GM8
VPVVDVQSNNFKEMW
AYGWCPLGPQCPQSH
286
|
|
HR5174A-643-706-NHT
TOP3A
Q13472
QQEDIYPAMPEPIRK
PDSVLEASRDSSVCP
64
|
|
HR8243A-244-339-NHT
TOX
O94900
GKKPKTPKKKKKKDP
LAAYRASLVSKSYSE
96
|
|
HR8243A-244-339-TEV
TOX
O94900
GKKPKTPKKKKKKDP
LAAYRASLVSKSYSE
96
|
|
HR7258A-238-302-TEV
TOX2
Q96NM4
VASMWDSLGEEQKQA
STQANPPAKMLPPKQ
65
|
|
HR7680A-238-335-TEV
TOX3
O15405
GKKPKTPKKKKKKDP
AYRASLVSKAAAESA
98
|
|
HR7250A-206-291-TEV
TOX4
O94842
GKKQKAPKKRKKKDP
EAAKKEYLKALAAYK
86
|
|
HR6989-94-312-15-TEV
TP53
P04637
MLSSSVPSQKTYQGS
ELPPGSTKRALPNNT
221
|
|
HR6989-94-312-R175H-15-TEV
TP53
P04637
MLSSSVPSQKTYQGS
ELPPGSTKRALPNNT
221
|
|
HR6989A-20-73-Av6HT
TP53
P04637
SDLWKLLPENNVLSP
GPDEAPRMPEAAPPV
54
|
|
HR6989A-20-73-TEV
TP53
P04637
SDLWKLLPENNVLSP
GPDEAPRMPEAAPPV
54
|
|
HR3500C-14
TP63
Q9H3D4
MDALSPSPAIPSNTD
GTKRPFRQNTHGIQM
232
|
|
HR3500C-15
TP63
Q9H3D4
MDALSPSPAIPSNTD
GTKRPFRQNTHGIQM
232
|
|
HR3500D-540-614-TEV
TP63
Q9H3D4
PPPYPTDCSIVSFLA
GILDHRQLHEFSSPS
75
|
|
HR3466-110-636-14
TP73
O15350
MSPAPVIPSNTDYPG
RKQPIKEEFTEAEIH
528
|
|
HR3466-114-636-14
TP73
O15350
MVIPSNTDYPGPHHF
RKQPIKEEFTEAEIH
524
|
|
HR3466D-14
TP73
O15350
MSPAPVIPSNTDYPG
KADEDHYREQQALNE
209
|
|
HR3466D-15
TP73
O15350
MSPAPVIPSNTDYPG
KADEDHYREQQALNE
209
|
|
HR3466E-487-554-TEV
TP73
O15350
YHADPSLVSFLTGLG
TIWRGLQDLKQGHDY
68
|
|
HR8230A-78-139-TEV
TRAFD1
O14545
HEETECPLRLAVCQH
VKDLKTHPEVCGREG
62
|
|
HR4455D-876-951-14
TRERF1
Q96PN7
MCHPLANYHYAGSDK
LGRKHRTRLAEIIDD
77
|
|
HR4455D-881-945-14
TRERF1
Q96PN7
MNYHYAGSDKWTSLE
WKKIMRLGRKHRTRL
66
|
|
HR4455E-773-1200-15
TRERF1
Q96PN7
MQTVDVEPRINIGLR
LDDQDSVLLQGDAEL
429
|
|
HR4455E-778-1200-15
TRERF1
Q96PN7
MEPRINIGLRFQAEI
LDDQDSVLLQGDAEL
424
|
|
HR4455F-773-841-15
TRERF1
Q96PN7
MQTVDVEPRINIGLR
ENLLNLCCSSALPGG
70
|
|
HR4455F-778-836-15
TRERF1
Q96PN7
MEPRINIGLRFQAEI
LQQRVENLLNLCCSS
60
|
|
HR7441A-22-107-NHT
TRIM23
P36406
GTAVVKVLECGVCED
FALLELLERLQNGPI
86
|
|
HR7486A-13-98-NHT
TRIM3
O75382
QPMDKQFLVCSICLD
SLMEAMQQAPDGAHD
86
|
|
HR7466A-4-90-TEV
TRIM32
Q13049
AAASHLNLDALREVL
LTDNLTVLKIIDTAG
87
|
|
HR5056A-48-428-Av6HT
TRIT1
Q9H3H1
GGEIVSADSMQVYEG
IKSKSHLNQLKKRRR
381
|
|
HR7683A-316-386-15
TSC22D4
Q9Y3Q8
MVGIDNKIEQAMDLV
EQLAQLPSSGVPRLG
72
|
|
HR7683A-320-381-15
TSC22D4
Q9Y3Q8
MNKIEQAMDLVKSHL
ALASPEQLAQLPSSG
63
|
|
HR7683A-320-395-Av6HT
TSC22D4
Q9Y3Q8
NKIEQAMDLVKSHLM
GVPRLGPPAPNGPSV
76
|
|
HR8019A-232-335-TEV
TSHZ1
Q6ZSZ6
DKDSEKTKRWSKPRK
EPAGMAAEVALSESA
104
|
|
HR7516A-824-951-NHT
TSHZ2
Q9NRE2
DVRRFEDVSSEVSTL
TPSTYISHLESHLGF
128
|
|
HR6901A-200-303-TEV
TSHZ3
Q63HK5
SSKLYGSIFTGASKF
DLSVHMIKTKHYQKV
104
|
|
HR7321A-615-661-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
ARSSLSVALKFSQIS
47
|
|
HR7321A-615-669-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
LKFSQISSQRNRGAW
55
|
|
HR7321A-615-678-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
RNRGAWSKSETRKLI
64
|
|
HR7321A-615-687-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
ETRKLIKAVEEVILK
73
|
|
HR7321A-615-697-NHT
TTF1
Q15361
NYKGRYSEGDTEKLK
EVILKKMSPQELKEV
83
|
|
HR8382A-244-506-NHT
TUB
P50607
GISSSMSFDEDEEDE
QSYVLNFHGRVTQAS
263
|
|
HR8277A-291-536-TEV
TULP1
O00294
PREFVLRPAPQGRTV
LCALQAFAIALSSFD
246
|
|
HR7732A-263-520-Av6HT
TULP2
O00295
SPCPGLEEDMEAYVL
FSPLQAFSICLSSFN
258
|
|
HR6409A-100-175-14
TWIST1
Q15672
PQSYEELQTQRVMAN
QVLQSDELDSKMASC
76
|
|
HR6409A-102-171-14
TWIST1
Q15672
SYEELQTQRVMANVR
DFLYQVLQSDELDSK
70
|
|
HR7529A-43-146-TEV
U2AF1
Q01081
SQTIALLNIYRNPQN
NRWFNGQPIHAELSP
104
|
|
HR7415B-479-562-Av6HT
UBTF
P17480
MEMTWNNMEKKEKLM
NGELNHLPLKERMVE
85
|
|
HR7415B-479-562-TEV
UBTF
P17480
EMTWNNMEKKEKLMW
NGELNHLPLKERMVE
84
|
|
HR8089A-89-170-Av6HT
UNCX
A6NJT0
KLSDSGDPDKESPGC
RRAKWRKKENTKKGP
82
|
|
HR7768A-197-260-TEV
USF1
P22415
DEKRRAQHNEVERRR
KACDYIQELRQSNHR
64
|
|
HR6458A-220-346-15
USF2
Q15853
PYSPKIDGTRTPRDE
LQQHNLEMVGEGTRQ
127
|
|
HR6458A-226-279-15
USF2
Q15853
DGTRTPRDERRRAQH
CNADNSKTGASKGGI
54
|
|
HR6458A-226-346-15
USF2
Q15853
DGTRTPRDERRRAQH
LQQHNLEMVGEGTRQ
121
|
|
HR6458B-226-330-15
USF2
Q15853
DGTRTPRDERRRAQH
QQIEELKNENALLRA
105
|
|
HR6458B-231-325-15
USF2
Q15853
PRDERRRAQHNEVER
NELLRQQIEELKNEN
95
|
|
HR8005-106-565-15
USP39
Q53GS9
MPYLDTINRSVLDFD
IWKRRDNDETNQQGA
461
|
|
HR8005A-189-554-15
USP39
Q53GS9
MITYVLKPTFTKQQI
QMITLSEAYIQIWKR
367
|
|
HR8005A-189-565-15
USP39
Q53GS9
MITYVLKPTFTKQQI
IWKRRDNDETNQQGA
378
|
|
HR8005A-194-549-15
USP39
Q53GS9
MKPTFTKQQIANLDK
TDILPQMITLSEAYI
357
|
|
HR8005A-194-555-15
USP39
Q53GS9
MKPTFTKQQIANLDK
MITLSEAYIQIWKRR
363
|
|
HR8005B-210-555-15
USP39
Q53GS9
MKLSRAYDGTTYLPG
MITLSEAYIQIWKRR
347
|
|
HR8005C-106-183-TEV
USP39
Q53GS9
PYLDTINRSVLDFDF
TLKFYCLPDNYEIID
78
|
|
HR8005C-129-183-TEV
USP39
Q53GS9
SHINAYACLVCGKYF
TLKFYCLPDNYEIID
55
|
|
HR6997A-81-167-NHT
VAX1
Q5SQQ9
DAKGSIREIILPKGL
TKQKKDQGKDSELRS
87
|
|
HR8032A-81-165-Av6HT
VAX2
Q9UIW0
VRDAKGTIREIVLPK
QNRRTKQKKDQSRDL
85
|
|
HR7564A-21-427-Av6HT
VDR
P11473
PRICGVCGDRATGFH
KLTPLVLEVFGNEIS
407
|
|
HR7564A-21-427-TEV
VDR
P11473
PRICGVCGDRATGFH
KLTPLVLEVFGNEIS
407
|
|
HR7564B-16-125-15
VDR
P11473
MFDRNVPRICGVCGD
KEEEALKDSLRPKLS
111
|
|
HR7564B-16-125-Av6HT
VDR
P11473
FDRNVPRICGVCGDR
KEEEALKDSLRPKLS
110
|
|
HR7564B-16-125-TEV
VDR
P11473
FDRNVPRICGVCGDR
KEEEALKDSLRPKLS
110
|
|
HR7703A-97-158-Av6HT
VENTX
O95231
AFTMEQVRTLEGVFQ
MKHKRQMQDPQLHSP
62
|
|
HR7928A-148-214-Av6HT
VSX1
Q9NZR4
EDRNDLKASPTLGKR
KTELPEDRIQVWFQN
67
|
|
HR8065A-153-211-Av6HT
VSX2
P58304
TIFTSYQLEELEKAF
QNRRAKWRKREKCWG
59
|
|
HR7106A-20-70-TEV
VTN
P04004
DQESCKGRCTEGFNV
AECKPQVTRGDVFTM
51
|
|
HR7713A-1017-1084-TEV
WDHD1
O75717
RPKTGFQMWLEENRS
KGETASEGTEAKKRK
68
|
|
HR7541A-815-891-NHT
WHSC1
O96028
AHFTARKGKRHHAHV
KLHFQDIIWVKLGNY
77
|
|
HR8130A-318-438-TEV
WT1
P19544
HSTGYESDNHTTPII
HQRRHTGVKPFQCKT
121
|
|
HR3172-15
XBP1
P17861
MVVVAAAPNPADGTP
CQWGRHQPSWKPLMN
261
|
|
HR8228A-98-208-TEV
XPA
P23025
EFDYVICEECGKEFM
WGSQEALEEAKEVRQ
110
|
|
HR8027A-52-129-TEV
YBX1
P67809
KKVIATKVLGTVKWF
EGEKGAEAANVTGPG
78
|
|
HR7254A-87-164-TEV
YBX2
Q9Y2T7
KPVLAIQVLGTVKWF
EGEKGAEATNVTGPG
78
|
|
HR7538A-193-335-NHT
YEATS2
Q9ULM3
RNADLTDETSRLFVK
AETVVDVELHRHSLG
143
|
|
HR8298A-14-147-15
YEATS4
O95619
MGRVKGVTIVKPIVY
TVVSEFYDEMIFQDP
135
|
|
HR8137A-293-414-TEV
YY1
P25490
PRTIACPHKGCTKMF
LKSHILTHAKAKNNQ
122
|
|
HR8207A-251-371-TEV
YY2
O15391
PKTVPCSYSGCEKMF
NLKTHILTHVKTKNN
121
|
|
HR7328A-23-83-TEV
ZBED1
O96006
SKVWKYFGFDTNAEG
KNHPEEFCEFVKSNT
61
|
|
HR7606A-49-119-TEV
ZBED2
Q9BTP6
NKGTRFSEAWFYFHL
MHREELEKSGHGQAG
71
|
|
HR8174A-11-69-15
ZBP1
Q9H171
MEGHLEQRILQVLTE
ELKVSLTSPATWCLG
60
|
|
HR8174A-26-69-15
ZBP1
Q9H171
MGSPVKLAQLVKECQ
ELKVSLTSPATWCLG
45
|
|
HR8174A-6-74-15
ZBP1
Q9H171
MADPGREGHLEQRIL
LTSPATWCLGGTDPE
70
|
|
HR7903A-21-117-Av6HT
ZBTB1
Q9Y2K1
GFLCDCCIAIDDIYF
YLQLYNVPDCLEDIQ
97
|
|
HR6940A-194-334-NHT
ZBTB11
O95625
PKHCQAVLKQLNEQR
KKGEVQTVASTQDLR
141
|
|
HR6940B-764-842-Av6HT
ZBTB11
O95625
RGYHCTQCEKSFFEA
GKEFYEKALFRRHVK
79
|
|
HR4454-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
NVLEASVAEINVLIR
459
|
|
HR4454C-1-132-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
KCRNALSQFIEPKIG
132
|
|
HR4454C-1-137-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
LSQFIEPKIGLKEDG
137
|
|
HR4454C-1-151-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
GVSEASLVSSISATK
151
|
|
HR4454D-328-447-14
ZBTB12
Q9Y330
MNPLKNIKCTKCPEV
HLKEQHGKTTAENVL
121
|
|
HR4454E-361-421-14
ZBTB12
Q9Y330
MCPRCGKQFNHSSNI
NLHSGARPYRCSYCD
62
|
|
HR4454E-366-418-14
ZBTB12
Q9Y330
MKQFNHSSNLNRHMN
DHLNLHSGARPYRCS
54
|
|
HR3471-145-673-15
ZBTB16
Q05516
MEEDRKARYLKNIFI
PDWRIEKTYLYLCYV
530
|
|
HR3471-150-673-15
ZBTB16
Q05516
MARYLKNIFISKHSS
PDWRIEKTYLYLCYV
525
|
|
HR3471-189-673-15
ZBTB16
Q05516
MTSFGLSAMSPTKAA
PDWRIEKTYLYLCYV
486
|
|
HR3471-194-673-15
ZBTB16
Q05516
MSAMSPTKAAVDSLM
PDWRIEKTYLYLCYV
481
|
|
HR4581F-2-115-TEV
ZBTB17
Q03105
DFPQHSQHVLEQLNQ
MQDIITACHALKSLA
114
|
|
HR7182A-1-107-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
VRLEQGIKFLHAYPL
107
|
|
HR7182A-1-113-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
IKFLHAYPLIQEASL
113
|
|
HR7182B-1-117-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
HAYPLIQEASLASQG
117
|
|
HR7182B-1-147-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
YGIQIADHQLRQATK
147
|
|
HR7182B-1-152-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
ADHQLRQATKIASAP
152
|
|
HR7182C-227-390-15
ZBTB2
Q8N680
MSDEQPASLTIAHVK
SHWREHMYIHTGKPF
165
|
|
HR7182C-232-385-15
ZBTB2
Q8N680
MASLTIAHVKPSIMK
KFIQKSHWREHMYIH
155
|
|
HR7182C-245-390-15
ZBTB2
Q8N680
MKRNGSFPKYYACHL
SHWREHMYIHTGKPF
147
|
|
HR7182C-248-385-15
ZBTB2
Q8N680
MGSFPKYYACHLCGR
KFIQKSHWREHMYIH
139
|
|
HR7182C-252-385-15
ZBTB2
Q8N680
MKYYACHLCGRRFTL
KFIQKSHWREHMYIH
135
|
|
HR8336A-81-201-Av6HT
ZBTB20
Q9HC78
INLHNFSNSVLETLN
DECTRIVSQNVGDVF
121
|
|
HR7741A-30-151-NHT
Z8T822
O15209
AVVHVSFPEVTSALL
WHIVDKCTELLREGR
122
|
|
HR7877A-1-114-15
ZBTB25
P24278
MDTASHSLVLLQQLN
RFLHADYLSHIATEM
114
|
|
HR7877A-1-120-15
ZBTB25
P24278
MDTASHSLVLLQQLN
YLSHIATEMNQVFSP
120
|
|
HR7877A-1-138-15
ZBTB25
P24278
MDTASHSLVLLQQLN
QSSNLYGIQISTTQK
138
|
|
HR7877A-1-144-15
ZBTB25
P24278
MDTASHSLVLLQQLN
GIQISTTQKTVVKQG
144
|
|
HR7877B-231-376-15
ZBTB25
P24278
MTENSVKIHLCHYCG
SQLLEHMYTHKGKSY
147
|
|
HR7877B-236-373-15
ZBTB25
P24278
MKIHLCHYCGERFDS
PRKSQLLEHMYTHKG
139
|
|
HR7877B-244-373-15
ZBTB25
P24278
MGERFDSRSNLRQHL
PRKSQLLEHMYTHKG
131
|
|
HR7877B-261-373-15
ZBTB25
P24278
MVSGSLPFGVPASII
PRKSQLLEHMYTHKG
114
|
|
HR7877B-270-376-15
ZBTB25
P24278
MPASILESNDLGEVH
SQLLEHMYTHKGKSY
108
|
|
HR7877B-275-373-15
ZBTB25
P24278
MESNDLGEVHPLNEN
PRKSQLLEHMYTHKG
100
|
|
HR7422A-1-129-NHT
ZBTB26
Q9HCK0
SERSDLLHFKFENYG
IVERCTQALWKFIKP
128
|
|
HR6960A-46-179-NHT
ZBTB3
Q9H5J0
PSWGTMEFPEHSQQL
CKRRLQARALAEADS
134
|
|
HR7977A-1-110-Av6HT
ZBTB32
Q9Y2Y4
SLPPIRLPSPYGSDR
AARALGVQSLEEACW
109
|
|
HR7008A-1-116-TEV
ZBTB33
Q86T24
ESRKLISATDIQYSG
IKSGQLLGVKFIAEL
115
|
|
HR6893A-1-124-NHT
ZBTB34
Q8NCN2
DSSSFIQFDVPEYSS
QMQCVIDKCTQILES
123
|
|
HR7018A-1-125-NHT
ZBTB37
Q5TC79
EKGGNIQLEIPDFSN
MQHIIDKCTQILEGI
124
|
|
HR7837A-13-139-NHT
ZBTB38
Q8NAP3
DFHSDTVLSILNEQR
RNFSNSPGPYVFCIT
127
|
|
HR7896A-1-125-Av6HT
ZBTB39
O15060
GMRIKLQSTNHPNNL
MEDLLQACHSTFPDL
124
|
|
HR7527A-1-112-NHT
ZBTB40
Q9NUA8
ELPNYSRQLLQQLYT
DSLQMFDVAVSCKNL
111
|
|
HR8293A-24-183-Av6HT
ZBTB41
Q5SVQ8
EGNVAVECDQVTYTH
DAVKLLNNENVAPFH
160
|
|
HR7772A-367-467-TEV
ZBTB43
O43298
SATDKLYPCQCGKSF
SYEAAKAEQNTTEAN
101
|
|
HR7772B-1-126-15
ZBTB43
O43298
MEPGTNSFRVEFPDF
MWHVVDKCTEVLEGN
126
|
|
HR7772B-1-137-15
ZBTB43
O43298
MEPGTNSFRVEFPDF
LEGNPTVLCQKLNHG
137
|
|
HR7772C-10-126-Av6HT
ZBTB43
O43298
VEFPDFSSTILQKLN
MWHVVDKCTEVLEGN
117
|
|
HR7772C-10-131-Av6HT
ZBTB43
O43298
VEFPDFSSTILQKLN
DKCTEVLEGNPTVLC
122
|
|
HR7772C-29-131-15
ZBTB43
O43298
MQGQLCDVSIVVQGH
DKCTEVLEGNPTVLC
104
|
|
HR7772C-29-137-15
ZBTB43
O43298
MQGQLCDVSIVVQGH
LEGNPTVLCQKLNHG
110
|
|
HR7772C-33-126-15
ZBTB43
O43298
MCDVSIVVQGHIFRA
MWHVVDKCTEVLEGN
95
|
|
HR7772C-33-131-15
ZBTB43
O43298
MCDVSIVVQGHIFRA
DKCTEVLEGNPTVLC
100
|
|
HR8333A-1-128-15
ZBTB44
Q8NCP5
MGVKTFTHSSSSHSQ
FSVASTCSEFMKSSI
128
|
|
HR8333A-1-133-15
ZBTB44
Q8NCP5
MGVKTFTHSSSSHSQ
TCSEFMKSSILWNTP
133
|
|
HR7817A-6-125-NHT
ZBTB45
Q96K62
AVHHIHLQNFSRSLL
IQTVIDECTQIIARA
120
|
|
HR7445A-291-405-NHT
ZBTB48
P10074
VECPTCHKKFLSKYY
KDLQSHMIKLHGAPK
115
|
|
HR7445A-291-405-TEV
ZBTB48
P10074
VECPTCHKKFLSKYY
KDLQSHMIKLHGAPK
115
|
|
HR7445B-4-120-TEV
ZBTB48
P10074
SFVQHSVRVLQELNK
EAVELCQSFKPKTSV
117
|
|
HR7910A-1-125-Av6HT
ZBTB49
Q6ZSB9
DPVATHSCHLLQQLH
SLCHTFLKSATVVQP
124
|
|
HR7620A-1-125-NHT
ZBTB5
O15062
DFPGHFEQIFQQLNY
VVKACKHYLTTRTLP
124
|
|
HR8300A-1-134-Av6HT
ZBTB6
Q15916
AAESDVLHFQFEQQG
TEALSKYLEIDLSMK
133
|
|
HR4695C-9-128-TEV
ZBTB7A
O95365
IGIPFPDHSSDILSG
LEIPAVSHVCADLLD
120
|
|
HR8347A-1-143-Av6HT
ZBTB7B
O15156
GSPEDDLIGIPFPDH
EIPCVIAACMEILQG
142
|
|
HR7365A-6-129-NHT
ZBTB7C
A1YPR0
DELIGIPFPNHSSEV
EIQCIVNVCLEIMEP
124
|
|
HR8095A-1-121-Av6HT
ZBTB8A
Q96BR9
EISSHQSHLLQQLNE
MTDVISVCKTFIKSS
120
|
|
HR7919A-1-131-Av6HT
ZBTB8B
Q8NAP8
EMQSYYAKLLGELNE
YIRSSLDICRKMEKE
130
|
|
HR7153A-20-140-NHT
ZBTB9
Q96C00
PRTIQIEFPQHSSSL
QMMQVVDQCSEILRE
121
|
|
HR6996-34-350-Av6HT
ZC3H15
Q8WU90
KKGAKQQKFIKAVTH
LYIPRDVDETGITVA
317
|
|
HR7121A-417-503-TEV
ZC3H4
Q9UPT8
ELPKKRELCKFYITG
GAEDEKEVEELKKQG
87
|
|
HR7136A-892-947-TEV
ZC3H7A
Q8IWR0
QYCWQHRFPTGYFSI
WEERRDALKMKLNKA
56
|
|
HR6981A-218-283-NHT
ZC3H8
Q8N5P1
EIEKKKEMCKFYVQG
APLTPETQELLAKVI
66
|
|
HR8421A-724-896-TEV
ZC3HAV1
Q7Z2W4
SSKKYKLSEIHHLHP
KDQVYPQYVIEYTED
173
|
|
HR4840-1-454-14
ZCCHC4
Q9H5U6
MAASRNGFEAVEAEG
GPKHGCFICGELDHK
454
|
|
HR4840-1-459-14
ZCCHC4
Q9H5U6
MAASRNGFEAVEAEG
CFICGELDHKRSTCP
459
|
|
HR4840-102-513-14
ZCCHC4
Q9H5U6
MLSRTQCVERYLKFI
RRKKRRERAHQYLGS
413
|
|
HR4840-41-454-14
ZCCHC4
Q9H5U6
MPHGPTLLFVKVTQG
GPKHGCFICGELDHK
415
|
|
HR4840-41-459-14
ZCCHC4
Q9H5U6
MPHGPTLLFVKVTQG
CFICGELDHKRSTCP
420
|
|
HR4840-41-513-14
ZCCHC4
Q9H5U6
MPHGPTLLFVKVTQG
RRKKRRERAHQYLGS
474
|
|
HR7192A-927-1161-Av6HT
ZCCHC6
Q5VYS8
SLKEENVCEEKNSPV
LCYTMKVFTKMCDIG
235
|
|
HR4656C-161-443-14
ZEB1
P37275
MGTPDAFSQLLTCPY
LENNQANLASKEQET
284
|
|
HR4656C-165-439-14
ZEB1
P37275
MAFSQLLTCPYCDRG
IRQVLENNQANLASK
276
|
|
HR4656D-885-1017-14
ZEB1
P37275
MNDSDSTPPKKKMRK
PEILSNEHVGARASP
134
|
|
HR4656D-885-992-14
ZEB1
P37275
MNDSDSTPPKKKMRK
HMNHRYSYCKREAEE
109
|
|
HR4656D-890-1014-14
ZEB1
P37275
MTPPKKKMRKTENGM
EAGPEILSNEHVGAR
126
|
|
HR4656D-890-987-14
ZEB1
P37275
MTPPKKKMRKTENGM
GSYSQHMNHRYSYCK
99
|
|
HR4656D-897-1014-14
ZEB1
P37275
MRKTENGMYACDLCD
EAGPEILSNEHVGAR
119
|
|
HR4656D-897-987-14
ZEB1
P37275
MRKTENGMYACDLCD
GSYSQHMNHRYSYCK
92
|
|
HR4656E-583-642-TEV
ZEB1
P37275
SPSQPPLKNLLSLLK
WFEKMQAGQISVQSS
60
|
|
HR4589D-647-707-Av6HT
ZEB2
O60315
MSPINPYKDHMSVLK
EQRKVYQYSNSRSPS
62
|
|
HR4589D-647-707-TEV
ZEB2
O60315
SPINPYKDHMSVLKA
EQRKVYQYSNSRSPS
61
|
|
HR6404A-128-196-TEV
ZFAND5
O76080
SPSVSQPSTSQSEEK
DKHNCPYDYKAEAAA
69
|
|
HR8363-123-190-Av6HT
ZFAND6
Q6FIF0
SVSDTAQQPSEEQSK
SDVHNCSYNYKADAA
68
|
|
HR7859A-697-770-TEV
ZFHX2
Q9C0A1
LGSSSDSLPTSPPPD
DTHRCKLCCYGTQLK
74
|
|
HR7545B-1398-1452-Av6HT
ZFHX3
Q15911
VYKYRCNQCSLAFKT
FRTFQALKKHLETSH
55
|
|
HR7545B-1398-1483-Av6HT
ZFHX3
Q15911
VYKYRCNQCSLAFKT
ANGDLLAMGDPTLAE
86
|
|
HR7545C-2943-2998-Av6HT
ZFHX3
Q15911
RPGQKRFRTQMTNLQ
GLPKRVVQVWFQNAR
56
|
|
HR7545C-2943-3010-Av6HT
ZFHX3
Q15911
RPGQKRFRTQMTNLQ
NARAKEKKSKLSMAK
68
|
|
HR7545C-2954-3005-Av6HT
ZFHX3
Q15911
TNLQLKVLKSCFNDY
QVWFQNARAKEKKSK
52
|
|
HR7545C-2954-3010-Av6HT
ZFHX3
Q15911
TNLQLKVLKSCFNDY
NARAKEKKSKLSMAK
57
|
|
HR7573D-2953-3003-TEV
ZFHX4
Q86UP3
TPTMQECEMLGNEIG
INIGKPFMINQGGTE
51
|
|
HR8105A-360-407-Av6HT
ZFP1
Q6P2D0
TFSQRSTLRLHCRIH
SRLSVHQRVHIGEKP
48
|
|
HR7592A-1509-1806-Av6HT
ZFP106
Q9H2Y7
SSEISSEPGDDDEPT
MIYTGCYDGSIQAVR
298
|
|
HR7696A-237-310-NHT
ZFP112
Q9UJU3
GEDIMKVSLLNQESI
NYSSLLHIHQNIERE
74
|
|
HR7929A-142-207-Av6HT
ZFP14
Q9HCL3
QVKITSEKMTTYKRH
IHTGEKPYKCKECGQ
66
|
|
HR7835A-8-127-NHT
ZFP161
O43829
SETIKYNDDDHKTLF
QILGIRFLDKLCSQK
120
|
|
HR7794A-82-137-NHT
ZFP2
Q6ZN57
DATQNSELIKTQRMF
IHTGEKPYKCNVCGK
56
|
|
HR7491A-224-296-NHT
ZFP28
Q8NHY6
LFETQPGLVTIKNLA
QEKEPWWVKRELTGS
73
|
|
HR7037A-395-483-Av6HT
ZFP3
Q96NJ6
CFECGKAFRRTSHLI
RIHTGEKPYECQECQ
89
|
|
HR7776A-306-378-NHT
ZFP30
Q9Y2G7
AFLCSTGLRLHHKLH
SRGYHLTLHQRIHTG
73
|
|
HR4743B-99-171-TEV
ZFP36
P26651
TTPSRYKTELCRTFS
PYGSRCHFIHNPSED
73
|
|
HR7685A-112-181-TEV
ZFP36L1
Q07352
SSRYKTELCRPFEEN
CPYGPRCHFIHNAEE
70
|
|
HR7167A-151-220-TEV
ZFP36L2
P47974
STRYKTELCRPFEES
CPYGPRCHFIHNADE
70
|
|
HR7105A-571-623-NHT
ZFP37
Q9Y6Q3
KPYECNECEKAFNAK
TFKQNASLTKHVKTH
53
|
|
HR7063A-83-140-NHT
ZFP41
Q8N8Y5
RKKPYECSECGRIFK
HSSDVTKHQRTHTGE
58
|
|
HR7124A-165-241-NHT
ZFP42
Q96MM3
PKQLAEFARKKPPIN
VESSKLKRHFLVHTG
77
|
|
HR7554A-339-397-TEV
ZFP64
Q9NPA5
SEHPEKCSECSYSCS
PSNLSKHMKKFHGDM
59
|
|
HR7612A-318-373-Av6HT
ZFP82
Q8N141
AFLCGSGLRVHHKLH
THTGFKPYECKECGK
56
|
|
HR7734A-483-537-NHT
ZFP90
Q8TF47
AFSQQAISHPGEKPY
KPYECNECGEAFSRR
55
|
|
HR7784A-364-427-15
ZFP91
Q96JP5
MKHHTDQRDYICEYC
ASLNWHMKKHDADSF
65
|
|
HR7784A-370-422-15
ZFP91
Q96JP5
MRDYICEYCARAFKS
TCRQKASLNWHMKKH
54
|
|
HR7784A-370-456-15
ZFP91
Q96JP5
MRDYICEYCARAFKS
KDSVVAHKAKSHPEV
88
|
|
HR7784B-313-454-Av6HT
ZFP91
Q96JP5
CEMEGCGTVLAHPRY
EKKDSVVAHKAKSHP
142
|
|
HR7665A-150-204-NHT
ZFP92
A6NM28
KRYLCQQCGKAFSRS
RRSFALLEHQRIHSG
55
|
|
HR7876A-297-383-Av6HT
ZFPM1
Q8IX07
CRKSCPSASSLEIHM
TNHMVCQPGSKGEIY
87
|
|
HR7512A-673-743-NHT
ZFX
P17010
RPSELKKHVAAHKGK
RQQSELKKHMKTHSG
71
|
|
HR8053A-728-784-Av6HT
ZFYVE20
Q9H1K0
PEAEEPIEEELLLQQ
RELKHTLAKQKGGTD
57
|
|
HR8053B-133-256-15
ZFYVE20
Q9H1K0
MAFDRTNTESAKIRA
DEKDDDRIRCCTHCK
125
|
|
HR8053B-133-276-15
ZFYVE20
Q9H1K0
MAFDRTNTESAKIRA
REQQIDEKEHTPDIV
145
|
|
HR8053B-139-251-15
ZFYVE20
Q9H1K0
MTESAKIRAIEKSVV
VSSVLDEKDDDRIRC
114
|
|
HR8053B-139-273-15
ZFYVE20
Q9H1K0
MTESAKIRAIEKSVV
LLKREQQIDEKEHTP
136
|
|
HR8053B-150-251-15
ZFYVE20
Q9H1K0
MSVVPWVNDQDVPFC
VSSVLDEKDDDRIRC
103
|
|
HR8053B-150-273-15
ZFYVE20
Q9H1K0
MSVVPWVNDQDVPFC
LLKREQQIDEKEHTP
125
|
|
HR7907A-60-153-TEV
ZHX1
Q9UKY1
NQQNKKVEGGYECKY
NNQTIFEQTINQLTF
94
|
|
HR7907B-565-641-TEV
ZHX1
Q9UKY1
PDFTPQKFKEKTAEQ
EEKMEIDESNAGSSK
77
|
|
HR7907C-295-358-Av6HT
ZHX1
Q9UKY1
NNPLLLNTYNKFPYP
TPEEVEEARRKQFNG
64
|
|
HR7907D-768-820-Av6HT
ZHX1
Q9UKY1
NWDRGPSLIKFKTGT
KSHMGYEQVREWFAE
53
|
|
HR7907D-768-830-Av6HT
ZHX1
Q9UKY1
NWDRGPSLIKFKTGT
EWFAERQRRSELGIE
63
|
|
HR7907E-658-720-Av6HT
ZHX1
Q9UKY1
SGSTGKICKKTPEQL
SWFGDTRYAWKNGNL
63
|
|
HR7907E-658-728-Av6HT
ZHX1
Q9UKY1
SGSTGKICKKTPEQL
AWKNGNLKWYYYYQS
71
|
|
HR7907F-462-532-Av6HT
ZHX1
Q9UKY1
PDSFGIRAKKTKEQL
NQRNSKSNQCLHLNN
71
|
|
HR7907F-468-513-Av6HT
ZHX1
Q9UKY1
RAKKTKEQLAELKVS
KITGLTKGEIKKWFS
46
|
|
HR7907F-468-532-Av6HT
ZHX1
Q9UKY1
RAKKTKEQLAELKVS
NQRNSKSNQCLHLNN
65
|
|
HR8292A-524-605-NHT
ZHX2
Q9Y6X8
AYPDFAPQKFKEKTQ
VLDSMGSGKKGQDVG
82
|
|
HR8292A-524-605-TEV
ZHX2
Q9Y6X8
AYPDFAPQKFKEKTQ
VLDSMGSGKKGQDVG
82
|
|
HR7743A-613-675-TEV
ZHX3
Q9H4I2
PTKYKERAPEQLRAL
SERRKKVNAEETKKA
63
|
|
HR7728A-219-303-TEV
ZIC1
Q15915
QPIKQELICKWIEPE
LVNHIRVHTGEKPFP
85
|
|
HR7748A-250-334-TEV
ZIC2
O95409
QCIKQELICKWIDPE
LVNHIRVHTGEKPFP
85
|
|
HR8404A-122-262-NHT
ZIC4
Q8N9L1
QPIKQELICKWLAAD
SSDRKKHSHVHTSDK
141
|
|
HR8404A-122-262-TEV
ZIC4
Q8N9L1
QPIKQELICKWLAAD
SSDRKKHSHVHTSDK
141
|
|
HR7356A-417-487-NHT
ZIK1
Q3SY52
SQSSILIQHRRIHTG
SQCSSLIHHQKCHNT
71
|
|
HR7796A-474-527-NHT
ZIM2
Q9NZV7
VFSRNSYLIQHYRTH
YQLHSQAEKTVECDHC
54
|
|
HR8306A-277-331-Av6HT
ZIM3
Q96PE6
KSYQCNECEKSFRQN
IYKSDLVKHQRIHTG
55
|
|
HR8102A-61-140-Av6HT
ZKSCAN1
P17029
RFCYQNTFGPREALS
RAVTLLEDLELDLSG
80
|
|
HR8296A-7-131-Av6HT
ZKSCAN2
Q63HK3
SQIDAPLEVEGCLIM
VALVVHLEKETGRLR
125
|
|
HR7446A-37-132-NHT
ZKSCAN3
Q9BRR0
SPDLGSEGSRERFRG
VVLLEYLERQLDERA
96
|
|
HR7362A-49-138-NHT
ZKSCAN4
Q969J2
PERSRQRFRGFRYPE
VVVLLEYLERQLDEP
90
|
|
HR7407A-25-130-NHT
ZKSCAN5
Q9Y2L8
LFIVKVEEEDCTWMQ
ESGEEAVAVIENIQR
106
|
|
HR7288A-62-140-NHT
ZMAT2
Q96NC0
LGKTIVITKTTPQSE
FEVNKKKMEEKQKDY
79
|
|
HR7490-503-839-Av6HT
ZMIZ1
Q9ULI6
PVANYPHSPVPGNPT
VPIKSDLHIKDDPDG
337
|
|
HR7144A-212-289-NHT
ZNF10
P21506
SNECGQTFCQNIHLI
SWRSNLTRHQLIHTG
78
|
|
HR8024A-409-481-Av6HT
ZNF100
Q8IYN0
GFNWSSALTKHKRIH
NRSSQLTAHKMIHTG
73
|
|
HR8250A-364-426-Av6HT
ZNF101
Q8IZC7
KPYECTRCGKAFGWC
HERTHLAGRSQCFGR
63
|
|
HR7096A-555-620-15
ZNF107
Q9UII5
MEEHGKVFNQSSNLT
KPHKCEECGKAYNRF
67
|
|
HR7096A-560-615-15
ZNF107
Q9UII5
MVFNQSSNLTTQKII
IYTGEKPHKCEECGK
57
|
|
HR7096B-607-719-Av6HT
ZNF107
Q9UII5
PHKCEECGKAYNRFS
SNLTTHKKIHTSEKP
113
|
|
HR7096C-611-676-15
ZNF107
Q9UII5
MEECGKAYNRFSNLT
KPYKCKECGKAFNLS
67
|
|
HR7096C-616-671-15
ZNF107
Q9UII5
MAYNRFSNLTIHKRI
IHTGEKPYKCKECGK
57
|
|
HR7096D-53-131-15
ZNF107
Q9UII5
MECTGHKGGHNTVNQ
SQLTQHRRIHTRVNS
80
|
|
HR7096D-58-126-15
ZNF107
Q9UII5
MKGGHNTVNQCLTAT
SFCVLSQLTQHRRIH
70
|
|
HR7096D-69-131-15
ZNF107
Q9UII5
MTATPSKIFQCNKYV
SQLTQHRRIHTRVNS
64
|
|
HR7096D-71-126-15
ZNF107
Q9UII5
MTPSKIFQCNKYVKV
SFCVLSQLTQHRRIH
57
|
|
HR7096E-158-269-TEV
ZNF107
Q9UII5
KPYKCEECGKAFNQS
LFSNLTNHKRIHAGE
112
|
|
HR7096F-672-727-Av6HT
ZNF107
Q9UII5
AFNLSSTLTAHKKIH
IHTSEKPYKCEECGK
56
|
|
HR7096G-659-772-Av6HT
ZNF107
Q9UII5
TGEKPYKCKECGKAF
NLSSNLTTHKKIHTG
114
|
|
HR7096H-702-776-Av6HT
ZNF107
Q9UII5
NQSSNLTTHKKIHTS
NLTTHKKIHTGEKPY
75
|
|
HR7096H-716-776-Av6HT
ZNF107
Q9UII5
SEKPYKCEECGKSFN
NLTTHKKIHTGEKPY
61
|
|
HR8087A-338-417-Av6HT
ZNF114
Q8NC26
GKAFRYSLHLNKHLR
LKKHLKTHKDEKPCE
80
|
|
HR7502A-318-390-NHT
ZNF121
P58317
GKAFATSSQLIEHIR
AYNRFYLLTKHLKTH
73
|
|
HR7834A-112-166-NHT
ZNF132
P52740
KANSCDMCGPFLKDI
WLNANLHQHQKEHSG
55
|
|
HR7007A-48-120-NHT
ZNF134
P52741
TALPCDICGPILKDI
LRRDKSEASIVKNCT
73
|
|
HR8079A-458-526-Av6HT
ZNF136
P52737
SYLNSFRTHEMIHTG
AYSCRASFQRHMLTH
69
|
|
HR8523A-1-79-Av6HT
ZNF137P
P52743
NVARFLVEKHTLHVI
IHGVGKLCKCNDCHK
78
|
|
HR6957A-157-213-NHT
ZNF140
P52738
VERPYGCHECGKTFG
SQISNLVKHQMIHTG
57
|
|
HR7470A-405-474-NHT
ZNF141
Q15928
RRSTDRSQHKKIHSA
FKRFSHLNKHKKIHT
70
|
|
HR8111A-337-394-Av6HT
ZNF143
P52747
SFTTSNIRKVHVRTH
IHTGEKPYVCTVPGC
58
|
|
HR8395A-1-68-Av6HT
ZNF146
Q15072
SHLSQQRIYSGENPF
SQKQYVIKHQNTHTG
67
|
|
HR3636C-225-287-NHT
ZNF148
Q9UQR1
KPFRCDECGMRFIQK
HKRMCHENHDKKLNR
63
|
|
HR7492A-160-244-NHT
ZNF154
Q13106
CYICSECGKSFSKSY
SNLIKHRRVHTGERP
85
|
|
HR8099A-408-497-Av6HT
ZNF155
Q12901
GFYTNSQLSSHQRSH
PFKCEDCGKRLVHRT
90
|
|
HR7481A-394-466-NHT
ZNF157
P51786
AFYVKARLIEHQRMH
YVKVRLIEHQRIHTG
73
|
|
HR7426A-245-317-NHT
ZNF16
P17020
TFSQNSVLKNRHRSH
SQNSSLKKHQKSHMS
73
|
|
HR7677A-461-550-Av6HT
ZNF160
Q9HCG1
AFSMHSNLATHQVIH
PYKCIECGKSFTQKS
90
|
|
HR8279A-12-131-Av6HT
ZNF165
P49910
NSPEDEGLLIVKIEE
GEEAVTILEDLERGT
120
|
|
HR7169A-37-134-NHT
ZNF167
Q9P0L1
GQGSSLQKNYPPVCE
ESGEEAVAVVEDFQR
98
|
|
HR7079A-232-286-NHT
ZNF169
Q14929
KHHVCPECGRGFCQR
SQKASLSIHQRKHSG
55
|
|
HR8144A-504-578-Av6HT
ZNF17
P17021
GKSFRCRSTLDTHQR
SQNSHLIRHQKVHTR
75
|
|
HR7831A-37-132-TEV
ZNF174
Q15697
KNCPDPELCRQSFRR
VTLVEDFHRASKKPK
96
|
|
HR7382A-565-650-NHT
ZNF175
Q9Y473
GKAFTSKSQFKEHQR
THMGEKPYECLDCGK
86
|
|
HR8386A-246-321-Av6HT
ZNF177
Q13360
STGSYLIVHKRTHTG
LIMHKRIHNGQKLHE
76
|
|
HR8047A-6-143-Av6HT
ZNF18
P17022
GQALGLLPSLAKAED
WISIQVLGQDILSEK
138
|
|
HR7449A-517-602-Av6HT
ZNF180
Q9UIW8
GEKPFECNQCGKSFS
QSYVLVVHQRTHTGE
86
|
|
HR7508A-221-306-NHT
ZNF181
Q2M3W8
QGKSLTLPQTCNREK
PYKCIECGKAFSHVS
86
|
|
HR7707A-292-396-NHT
ZNF189
Q75820
KCKKSFSRNSLLVEH
SQLCNLTRHQRIHTG
105
|
|
HR8281A-147-213-Av6HT
ZNF19
P17023
IQGKVPRIPCARKPF
NGNSSLIRHQRIHTG
67
|
|
HR8500A-45-132-Av6HT
ZNF192
Q15776
LGQEVFRLRFRQLRY
NGEEVVTLLEDLERQ
88
|
|
HR7141A-10-132-NHT
ZNF193
O15535
SLGVQVPEAWEELLT
ESGEEAVILLEDLER
123
|
|
HR7496A-33-148-NHT
ZNF197
O14709
SSSSVWETSHLHFRQ
LVKDQDTLQKVVSAP
116
|
|
HR7949A-310-387-Av6HT
ZNF20
P17024
PYECKQCGKAFRCGS
GKGFRCASQLQIHER
78
|
|
HR7725A-16-132-NHT
NF202
O95125
EGILMVKLEDDFTCR
VTLVEGLQKQPRRPR
117
|
|
HR7127A-305-371-NHT
ZNF205
O95201
RKSYRCEQCGKGFSW
IHTGEKPYTCPACRK
67
|
|
HR8501A-1095-1149-Av6HT
ZNF208
O43345
KPYKCEECGKAFSTF
SWLSVFSKHKKIHTG
55
|
|
HR7117A-425-476-NHT
ZNF212
Q9UDV6
SSLICGYCGKSFSHP
KSFVQKQHLLQHQKI
52
|
|
HR7052A-50-129-NHT
ZNF213
O14771
QFCYGDVHGPHEAFS
EAVALVEDLQKQPVK
80
|
|
HR6908A-201-269-NHT
ZNF214
Q9UL59
VGVICQEDLLRDSME
CFSQRSDLYRHPRNH
69
|
|
HR8316A-49-130-Av6HT
ZNF215
Q9UL58
QKFRHFQYLKVSGPH
SKDMVTLIEDVIEML
82
|
|
HR7041A-127-180-NHT
ZNF217
O75362
EFSCEVCGQTFRVAF
KEPWFLKNHMRTHNG
54
|
|
HR7381A-39-109-NHT
ZNF219
Q9P2Y4
SLGMGAVSWSESRAG
AQRALLRSHLRTHQP
71
|
|
HR7603A-137-200-Av6HT
ZNF22
P17026
MKPYQCDECGRCFSQ
MKVHKEEKPRKTRGK
65
|
|
HR7603A-137-200-NHT
ZNF22
P17026
KPYQCDECGRCFSQS
MKVHKEEKPRKTRGK
64
|
|
HR7848A-283-341-Av6HT
ZNF222
Q9UK12
KLYKSEKYGRGFIDR
YLLVHQRVHTGEKPY
59
|
|
HR8507A-136-200-Av6HT
ZNF223
Q9UK11
EGLSIMHTGQKPSNC
CYISALHIHQRVHLG
65
|
|
HR7500A-576-665-Av6HT
ZNF225
Q9UK10
SFSRASSILNHKRLH
LLQCEDCGKSIVHSS
90
|
|
HR7826A-501-553-NHT
ZNF226
Q9NYT6
KPYKCNECGKSFRRN
GFSQSSYLQIHQKAH
53
|
|
HR7039-1-527-TEV
ZNF227
Q86WZ6
PSQNYDLPQKKQEKM
VHTGEKRFKCETCGK
526
|
|
HR7039-255-799-Av6HT
ZNF227
Q86WZ6
CGRGFSYSPRLPLHP
SRLTYHQKVHTGKKL
545
|
|
HR7039-320-799-Av6HT
ZNF227
Q86WZ6
GEKSYRCDSCGKGFS
SRLTYHQKVHTGKKL
480
|
|
HR7039A-21-80-Av6HT
ZNF227
Q86WZ6
EAVTFKDVAVVFSRE
PFQPDMVSQLEAEEK
60
|
|
HR7249A-552-607-NHT
ZNF229
Q9UJW7
SFGRSSDLHIHQRVH
VHTGERPYVCDVCGK
56
|
|
HR8056A-178-248-Av6HT
ZNF23
P17027
RCDSQLIQHQENNTE
SYSSHYITHQTIHSG
71
|
|
HR7277A-201-287-Av6HT
ZNF230
Q9UIE0
RGKEFSQSSCLQTRE
IHTGEKPFKCEICGK
87
|
|
HR7779A-56-136-Av6HT
ZNF232
Q9UNY5
EEEQSCEYETRLPGN
LVLEQFLTILPEELQ
81
|
|
HR7083A-324-410-NHT
ZNF233
A6NK53
SQGSHLQPHQRVSTG
RACKCDVYDKGFSQT
87
|
|
HR7425A-606-678-Av6HT
ZNF234
Q14588
SQASSLQLHQSVHTG
RSNLVSHHKIHAAGT
73
|
|
HR6869A-681-738-NHT
ZNF235
Q14590
KPYTCQQCGKGFSQA
SHLIYHQRVHTGGNL
58
|
|
HR7932A-71-144-Av6HT
ZNF236
Q9UL36
CPQTFNVEFNLTLHK
FTLQSQLAVHMEEHR
74
|
|
HR7756A-1-111-NHT
ZNF238
Q99592
EFPDHSRHLLQCLSE
VLAAASYLHMYDIVK
110
|
|
HR7813A-381-458-NHT
ZNF239
Q16600
GKGFSQSSDLRIHLR
SNLHIHQRVHKKDPR
78
|
|
HR7147A-272-331-TEV
ZNF24
P17028
IHSGEKPYGCVECGK
SQNSGLINHQRIHTG
60
|
|
HR7147B-49-112-Av6HT
ZNF24
P17028
EIFRQRFRQFGYQDS
EQFVAILPKELQTWV
64
|
|
HR7147B-49-117-Av6HT
ZNF24
P17028
EIFRQRFRQFGYQDS
ILPKELQTWVRDHHP
69
|
|
HR7147B-49-138-Av6HT
ZNF24
P17028
EIFRQRFRQFGYQDS
VTVLEDLESELDDPG
90
|
|
HR7111A-518-570-Av6HT
ZNF248
Q8NDW4
KPYKCNECGKTFCEK
TFSQRSVLTKHQRIH
53
|
|
HR7751A-154-226-NHT
ZNF25
P17030
SESKNEDLIRHQKIH
YQKPHLTEHQKTHTG
73
|
|
HR6988A-235-324-NHT
ZNF250
P15622
AFSQSSVLSKHRRIH
PYVCPLCGKAFNHST
90
|
|
HR7737A-208-296-Av6HT
ZNF253
O75346
AFNQSANLTTHKRIH
KPYKCEECGKAFKHP
89
|
|
HR6990A-584-652-NHT
ZNF254
O75437
NRSSTFTKHKVIHTG
AFNRSSHLTTDKITH
69
|
|
HR8384A-202-266-Av6HT
ZNF256
Q9Y2P7
VAFHSVKNHYNWGEC
CSLSDHLRVHTSEKP
65
|
|
HR7634A-464-533-Av6HT
ZNF26
P17031
PRKASLQIHQKTHSG
FCWNSGLRIHRKTHK
70
|
|
HR8255A-134-188-Av6HT
ZNF260
Q3ZCT1
KPYACKECGKAFNGK
SQKQYLIKHQNIHTG
55
|
|
HR7211A-35-111-NHT
ZNF263
O14978
PSPEASHLRFRRFRF
IQSRVQELHPESGEE
77
|
|
HR6888A-230-294-Av6HT
ZNF264
O43296
PYECTECGKTFIKST
IHSGEKPYKCNECGK
65
|
|
HR8327A-276-365-Av6HT
ZNF266
Q14584
AFTVSSCLSQHMKIH
PYKCKDCGKAFTQNS
90
|
|
HR6896A-62-137-NHT
ZFN268
Q14587
LEWLFISQEQPKITK
QHTKPDIIFKLEQGE
76
|
|
HR8262A-158-241-Av6HT
ZNF273
Q14593
VHKRGYNGLNQCLTT
TATRVNFYKCKTCGK
84
|
|
HR7968A-77-161-Av6HT
ZNF276
Q8N554
GHCRLCHGKFSSRSL
HSLLKSFLQRVNASP
85
|
|
HR8173A-209-282-Av6HT
ZNF277
Q9NRM2
NCNEFLCTLQKKLDN
ELGKSWEEVQLEDDR
74
|
|
HR8391A-440-492-Av6HT
ZNF280C
Q8ND82
KNLLCPFCLKVSKMA
QFLTSKEKAEHKAQH
53
|
|
HR7724A-288-373-NHT
ZNF281
Q9Y2X9
PFQCSQCSMGFIQKY
RLLKHRRTCGEVIVK
86
|
|
HR7574A-86-180-Av6HT
ZNF282
Q9UDV7
REPQLPTAEISLWTV
RRLENLENLLRNRNF
94
|
|
HR6982A-569-623-NHT
ZNF283
Q8N7M2
KPFKCKECGKAFSWG
GSGYQLSVHQRFHTG
55
|
|
HR8101A-140-217-Av6HT
ZNF284
Q2VY69
IHIGETPSEHGKCKK
YKCDVCSKAFSQNSQ
78
|
|
HR7778A-510-590-NHT
ZNF285
Q96NJ3
KPYKCDECGKGFSRN
DLLTHQRLHEQRETL
81
|
|
HR7046A-197-250-NHT
ZNF286A
Q9HBT8
SFNQKSVLITEDRVP
TYKEKKPHKCNDCGE
54
|
|
HR7764A-1340-1400-TEV
ZNF292
O60281
PEKVKKDRGRGPNGK
NPRSLGGHLSKRSYC
61
|
|
HR7764B-550-593-Av6HT
ZNF292
O60281
EFLGHRIVRHAQKHY
NSKETFVPHVTLHVK
44
|
|
HR7764C-779-824-Av6HT
ZNF292
O60281
AKCMFPKCGRIFSEA
KFTGCGKVYRSQGEL
46
|
|
HR7764C-779-829-Av6HT
ZNF292
O60281
AKCMFPKCGRIFSEA
GKVYRSQGELEKHLD
51
|
|
HR7401A-713-806-TEV
ZNF295
Q9ULJ3
ASPVENKEVYQCRLC
RHQVEVHNQNNMAPT
94
|
|
HR7401B-907-958-Av6HT
ZNF295
Q9ULJ3
SLWPCEKCGKMFTVH
KAFRTNFRLWSHFQS
52
|
|
HR7401B-907-963-Av6HT
ZNF295
Q9ULJ3
SLWPCEKCGKMFTVH
NFRLWSHFQSHMSQA
57
|
|
HR7401C-1-125-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
ISFLTNIVSKTPQAP
124
|
|
HR7401C-1-133-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
SKTPQAPFPTCPNRK
132
|
|
HR7401D-1-110-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
KSSLAAVQELGYSLG
109
|
|
HR7401D-1-114-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
AAVQELGYSLGISFL
113
|
|
HR7438A-396-451-NHT
ZNF296
Q8WUU4
TNSSNLTVHRRSHTG
GMTPGSTRFECPHCH
56
|
|
HR7980A-567-639-Av6HT
ZNF304
Q9HCX3
AYISSSHLVQHKKVH
SRSSHLVRHQKAHTG
73
|
|
HR6886A-245-327-NHT
ZNF311
Q5JNZ3
KLHECARCGKNFSWH
NSRSALCRHKKTHSG
83
|
|
HR8348A-456-510-Av6HT
ZNF319
Q9P2F9
KPLRCTLCERRFFSS
KYASDLQRHRRVHTG
55
|
|
HR7649A-335-419-Av6HT
ZNF320
A2RRD8
DKVFSRKSHLERHRR
KLHTGEKLYECEECD
85
|
|
HR7116A-290-344-NHT
ZNF322A
Q6U7Q0
THTFKCLEYEKSFNC
FLLGMDFVAQQKMRT
55
|
|
HR7719-1-389-Av6HT
ZNF322B
Q5SYY0
YTSEEKCNQRTQKRK
GEKPFVCNVSEKGLE
388
|
|
HR7473A-7-125-NHT
ZNF323
Q96LW9
QYDLKIVKVEEDPIW
VAVVEDLEQELSEPG
119
|
|
HR7209A-240-309-NHT
ZNF324
O75467
PSTWDELGEALHAGE
SQTSHLTQHQRIHSG
70
|
|
HR7920A-181-255-Av6HT
ZNF329
Q86UD4
ENIFTLSSSLNENQR
SKNYNLIVHQRIHTG
75
|
|
HR8085A-409-463-Av6HT
ZNF331
Q9NQX6
KPYGCTECGKSFSHG
NHLNHLREHQRIHNS
55
|
|
HR8071A-542-633-Av6HT
ZNF333
Q96JL9
VLSRLSTLKSHMRTH
QCNQCEKAFRHSSSL
92
|
|
HR7926A-511-568-Av6HT
ZNF334
Q9HCZ1
NTKENLYECSEHGHA
CRKSALTHHQRTHTG
58
|
|
HR8140A-560-612-Av6HT
ZNF335
Q9H4Z2
SSFPCPVCGRVYPMQ
SFKKRYTFKMHLLTH
53
|
|
HR7962A-683-744-Av6HT
ZNF337
Q9Y3M9
KPFVCQECKRGYTSK
KHLKRHLREKRFCTG
62
|
|
HR7329A-327-374-NHT
ZNF33B
Q06732
KHFECNECGKAFWEK
NQCGKTFWEKSNLTK
48
|
|
HR7973A-53-101-Av6HT
ZNF343
Q6P1L6
EGKAQIVVPVTFRDV
YKEVMLENYRNLLSL
49
|
|
HR7782A-408-478-NHT
ZNF345
Q14585
SSGSALNRHQRIHTG
GRDSEFQQHKKSHNG
71
|
|
HR8375A-52-156-Av6HT
ZNF346
Q9UL40
QPVGREEVEHMIQKN
TFSSPVVAQSHYLGK
105
|
|
HR7359A-200-274-NHT
ZNF35
P13682
GGKYSLNSGAVKNPK
IQSANLVVHQRIHTG
75
|
|
HR7521A-532-605-NHT
ZNF354A
O60765
GQSSALIQHRRIHTG
SSLTNHYKIHIEEDP
74
|
|
HR8204A-166-238-Av6HT
ZNF354B
Q96LW1
NFYLKSVFIKQQRFA
IHNSSLRKHQKNHTG
73
|
|
HR7986A-494-548-Av6HT
ZNF354C
Q86Y25
KLYKCMECGKAYSYR
ICSSSLTQYQRFFKG
55
|
|
HR8492A-212-270-Av6HT
ZNF355P
Q9NSJ1
CKCEECGKACKQSLG
IHAGEKPYNCEKCGK
59
|
|
HR7559A-189-242-NHT
ZNF358
Q9NW07
SHGATLAQHRGIHTG
SHSGEKPHHCPVCGK
54
|
|
HR8534A-152-309-Av6HT
ZNF365
Q70YC5
DTKASFEAHVREKFN
QQASGFVRDLSGHVL
158
|
|
HR7222A-233-319-NHT
ZNF366
Q8N895
DVNVQIDDSYYVDVG
GTRPHKCQVCHKAFT
87
|
|
HR7913A-160-248-Av6HT
ZNF367
Q7RTV3
GEHSSSRIRCNICNR
SRFTHANRHCPKHPY
89
|
|
HR8143A-116-153-Av6HT
ZNF37A
P17032
EPSEYNKNGNSFWLN
IKNWEQSFEYNECGK
38
|
|
HR7024A-370-456-NHT
ZNF383
Q8NA42
ECGKAFTQSSQLRQH
RIHTGEKPYNCKECG
87
|
|
HR8244A-91-161-Av6HT
ZNF391
Q9UJN7
KDNSDLIKHQRLFSQ
SRSTHLIEHQRTHTG
71
|
|
HR7003A-55-179-NHT
ZNF394
Q53GI3
AASPDPETSRLHFRQ
TWEEWERLDPARRDF
125
|
|
HR7436A-17-136-NHT
ZNF397
Q8NF99
PEQELILVKVEDNFS
VTLLEDLEREFDDPG
120
|
|
HR6874A-291-375-Av6HT
ZNF41
P51814
RIHAGEKSRECDKSN
GKAFFQRSDLFRHLR
85
|
|
HR7062-124-478-15
ZNF410
Q86VK4
MLNLTRAGLGSSAEH
PQELLNQGDLTERRT
356
|
|
HR7062-129-478-15
ZNF410
Q86VK4
MAGLGSSAEHLVFVQ
PQELLNQGDLTERRT
351
|
|
HR7062-150-478-15
ZNF410
Q86VK4
MNDFLSSESTDSSIP
PQELLNQGDLTERRT
330
|
|
HR7062-155-478-15
ZNF410
Q86VK4
MSESTDSSIPWFLRV
PQELLNQGDLTERRT
325
|
|
HR7338A-520-571-NHT
ZNF416
Q9BWM5
RPYDCGQCGKSFIQK
KSFTQHSGLILHRKS
52
|
|
HR6922A-214-292-NHT
ZNF417
Q8TAU3
CGKRTKAFSTKHSVI
SRKSSLIQHQRVHTG
79
|
|
HR7936A-544-625-AV6HT
ZNF418
Q8TF45
GKSFHQSSSLLRHQK
RLHTRGKPYECSECG
82
|
|
HR8286A-145-234-Av6HT
ZNF420
Q8TAQ5
GKAFRRASHLTQHQS
EKPYKCEECGKAFIR
90
|
|
HR7298A-293-344-NHT
ZNF423
Q2M1K9
ADLQCIHCPEVFVDE
EQFSSVEGVYCHLDS
52
|
|
HR7298B-1204-1284-Av6HT
ZNF423
Q2M1K9
NQMFDSPAKLLCHLI
FQTELQNHTMSQHAQ
81
|
|
HR7298C-136-178-Av6HT
ZNF423
Q2M1K9
LPYPCQFCDKSFIRL
LPFKCTYCSRLFKHK
43
|
|
HR7298D-627-684-Av6HT
ZNF423
Q2M1K9
ISNGEYPCNQCDLKF
DFDSQESLLQHLTVH
58
|
|
HR7298E-750-803-Av6HT
ZNF423
Q2M1K9
YRCTACNWDFRKEAD
TFSTEVELQCHITTH
54
|
|
HR7298F-923-981-Av6HT
ZNF423
Q2M1K9
AEFIKGSHKCNVCSR
RFPSLLTLTEHKVTH
59
|
|
HR7298F-928-981-Av6HT
ZNF423
Q2M1K9
GSHKCNVCSRTFFSE
RFPSLLTLTEHKVTH
54
|
|
HR8124A-692-742-Av6HT
ZNF425
Q6IV72
RPFQCPECGKGFLQK
GRSFTYVGALKTHIA
51
|
|
HR7371A-502-554-NHT
ZNF426
Q9BUY5
KPYECKECGKAFTCS
AYSHPRSLRRHEQIH
53
|
|
HR7017A-571-643-NHT
ZNF429
Q86V71
DKAFTHSSNLSSHKK
AFTRSSRLTQHKKIH
73
|
|
HR8161A-229-300-Av6HT
ZNF43
P17038
PYTCEECGKVFNWSS
YKCKECAKAFNQSSN
72
|
|
HR8378A-511-570-Av6HT
ZNF430
Q9H8G1
TSYKYLECDKAFSQS
LIEQSNSYWRETLQM
60
|
|
HR6876A-159-226-NHT
ZNF431
Q8TF32
EGYNELNQCLTTTQS
SFCMLLHLSQHKRIH
68
|
|
HR7979A-260-324-Av6HT
ZNF432
O94892
SFICSECGKVFTMKS
NHTGEKSYICSECGK
65
|
|
HR7340A-616-673-NHT
ZNF433
Q8N7K0
KPYKCKQCGKAFGCP
SQLQVHGRAHCIDTP
58
|
|
HR7145A-271-333-NHT
ZNF434
Q9NX65
SHQSFCARDKACTHI
SRSSYLVRHQRIHTG
63
|
|
HR6863A-401-470-NHT
ZNF436
Q9C0F3
ERSDLIKHQRTHTGE
SRSSALIKHKRVHTD
70
|
|
HR6993A-498-598-NHT
ZNF438
Q7Z4V0
GFSGIKKPWHRCHVC
GHLKEVHRVVISTEP
101
|
|
HR7001A-19-66-NHT
ZNF439
Q8NDP4
VAFKDVAVNFTQEEW
FWNLTSIGKKWKDQN
48
|
|
HR7627A-522-574-NHT
ZNF44
P15621
EPYECKECGKAFSSF
AFSRFSYLKTHERTH
53
|
|
HR7091A-1-51-NHT
ZNF440
Q8IYI8
DPVAFKDVAVNFTQE
FRNLTSLGKRWKDQN
50
|
|
HR6977A-625-693-NHT
ZNF441
Q8N8Z8
SHSSYLRIHERVHTG
AFHCISSFHKHEMTH
69
|
|
HR7410A-570-627-NHT
ZNF442
Q9H7R0
KSYECQQCGKAFTRS
SSLHRHKRTHWRDTL
58
|
|
HR7294A-14-105-NHT
ZNF444
Q8N0Y2
LALDSPWHRFRRFHL
AVALLEELWGPAASP
92
|
|
HR8025A-61-139-Av6HT
ZNF445
P59923
LRYHESSGPLETLSR
EAVALLEELQRDLDG
79
|
|
HR8393A-22-126-Av6HT
ZNE446
Q9NWS9
PETARLRFRGFCYQE
LGWITAHVLKQEVLP
105
|
|
HR7503A-25-115-NHT
ZNF449
Q6P9G9
DCEVFRQRFRQFQYR
VVSLIEDLQRELEIP
91
|
|
HR7588A-340-406-Av6HT
ZNF45
Q02386
SFSYSSHLNIHCRIH
ECGKGFCRASNLLDH
67
|
|
HR7276A-252-326-Av6HT
ZNF454
Q8N9P8
AFSVSSSLTYHQKIH
RAHLTKHQNIHSGEK
75
|
|
HR7023A-306-367-NHT
ZNF460
Q14592
KPFACSECGKGFYES
QHERIHTGEKPFVCS
62
|
|
HR7305A-244-297-NHT
ZNF461
Q8TAF7
KCNECKECWKAFVHC
NYGSELTLHQRIHTG
54
|
|
HR8320A-1871-1948-TEV
ZNF462
Q96JM2
SRDLKRDFIILGNGP
KQKYADGAFADFKQE
78
|
|
HR8302A-424-504-15
NF467
Q7Z7K2
MAPSGERSFFCPDCG
AQCGRRFSRKSHLGR
82
|
|
HR8302A-429-499-15
ZNF467
Q7Z7K2
MRSFFCPDCGRGFSH
RPFACAQCGRRFSRK
72
|
|
HR8302B-485-539-15
ZNF467
Q7Z7K2
MRPFACAQCGRRFSR
SSKTNLVRHQAIHTG
56
|
|
HR8302C-540-595-TEV
ZNF467
Q7Z7K2
SRPFSCPQCGKSFSR
AWSAPPEVAPPPLFF
56
|
|
HR8962C-551-595-TEV
ZNF467
Q7Z7K2
SFSRKTHLVRHQLIH
AWSAPPEVAPPPLFF
45
|
|
HR8121A-1-49-Av6HT
ZNF468
Q5VIY5
ALPQGLLTFRDVAIE
DVMLENYRNLVSLDI
48
|
|
HR8083A-181-258-Av6HT
ZNF471
Q9BX82
TSDKKSFSKNSMVIK
KQRQHLAQHHRTHTG
78
|
|
HR7760A-205-288-Av6HT
ZNF473
Q8WTR7
GEKPYQCSECGKSFS
FSQSTYLWHQKTHTG
84
|
|
HR8431-87-906-Av6HT
ZNF474
Q6S9Z5
IPARRPGFRVCYICG
RIFTSDRLLVHQRSC
220
|
|
HR6879A-445-517-NHT
ZNF479
Q96JC4
AFSLSSTLTDHKRIH
KWHSSLAKHKIIHTG
73
|
|
HR8210A-201-255-Av6HT
ZNF480
Q8WV37
KPYECNEHSKVFRVS
SRNSHLAEHCRIHTG
55
|
|
HR7266A-379-438-TEV
ZNF483
Q8TF39
KRQKIHLGDRSQKCS
AALNKDEGNESGEKT
60
|
|
HR7735A-326-380-NHT
ZNF484
Q5JVG2
NYYKCSDYGRAPIQK
PQNSNLNIHKKIHTG
55
|
|
HR7735B-1-66-Av6HT
ZNF484
Q5JVG2
TKSLESVSFKDVTVD
PKPEVIFSLEQEEPC
65
|
|
HR7735B-6-66-Av6HT
ZNF484
Q5JVG2
ESVSFKDVTVDFSRD
PKPEVIFSLEQEEPC
61
|
|
HR7735C-259-310-Av6HT
ZNF484
Q5JVG2
VFSPKSHAFAHESIC
GSQRVYAGICTEYEK
52
|
|
HR7735C-259-316-Av6HT
ZNF484
Q5JVG2
VFSPKSHAFAHESIC
AGICTEYEKDFSLKS
58
|
|
HR8114A-115-182-Av6HT
ZNF485
Q8NCK3
EKGLDWEGRSSTEKN
MNSSSLLNHHKVHAG
68
|
|
HR8541A-108-234-Av6HT
ZNF486
Q96H40
ILRKFEKCGHGNLHF
NRSSHLTTHKITHTR
127
|
|
HR7094A-456-529-NHT
ZNF490
Q9ULM2
IYFSHLRRHERSHTG
KSLHVHERTHSRQKP
74
|
|
HR8126A-332-407-Av6HT
ZNF491
Q8N8L2
CGKAFRSAKYIRIHG
TCSIYIRIHERIHTG
76
|
|
HR7429A-33-114-NHT
ZNF496
Q96IT1
GELPSPESSRRLFRR
SWVRAQEPESGEQAV
82
|
|
HR7643A-35-118-NHT
ZNF498
Q6NSZ9
DPSPETFRLRFRQFR
EHGPESGKALAAMVE
84
|
|
HR7635A-55-136-NHT
ZNF500
O60304
LFCYQEVAGPREALS
VVLVEGLQRKPRKHR
82
|
|
HR7681A-163-225-NHT
ZNF501
Q96CX3
KCNECGKAFNQSACL
THTGEKLYKCSECEK
63
|
|
HR8192A-151-240-Av6HT
ZNF502
Q8TBZ5
QKKSWKCNECGKTFT
LTQHQRIHTGEKPYK
90
|
|
HR7474A-5-630-TEV
ZNF503
Q96F45
PSLSALRSSKHSGGG
PVPVPAATGPYYSPY
626
|
|
HR7624A-141-197-NHT
ZNF506
Q5JVG8
QRKIFQCDEYVKFLH
NQSSTRTTYKKIDAG
57
|
|
HR7678A-639-723-NHT
ZNF507
Q8TCN5
RPYRCRLCHYTSGNK
KSQLRNHEREQHSLP
85
|
|
HR7670A-34-107-15
ZNF510
Q9Y2H8
MQEQQKMNISQASVS
EVIFKLEQGEEPWFS
75
|
|
HR7670A-40-102-15
ZNF510
Q9Y2H8
MNISQASVSPKDVTI
CCFKPEVIFKLEQGE
64
|
|
HR7670B-515-683-Av6HT
ZNF510
Q9Y2H8
SFQCNQCGKTFGQKS
TLSLYQKIQGEGNPY
169
|
|
HR7670B-521-652-Av6HT
ZNF510
Q9Y2H8
CGKTFGQKSNLRIHQ
GQKSNLRIHQRTHSG
132
|
|
HR7670B-521-683-Av6HT
ZNF510
Q9Y2H8
CGKTFGQKSNLRIHQ
TLSLYQKIQGEGNPY
163
|
|
HR7670C-582-683-Av6HT
ZNF510
Q9Y2H8
ARTSTLRVHQRIHTG
TLSLYQKIQGEGNPY
102
|
|
HR7670C-595-683-Av6HT
ZNF510
Q9Y2H8
TGEKPFKCNECGKKF
TLSLYQKIQGEGNPY
89
|
|
HR7670D-552-607-Av6HT
ZNF510
Q9Y2H8
SFWRKDHLIQHQKTH
IHTGEKPFKCNECGK
56
|
|
HR8051A-493-578-TEV
ZNF512B
Q96KM6
PGGPEEQWQRAIHER
SAKPSDAEASEGGEQ
86
|
|
HR7686A-202-256-NHT
ZNF514
Q96K75
KSCKCNECGKSFHFQ
GHISSLIKHQRTHTG
55
|
|
HR7203A-240-299-NHT
ZNF516
Q92618
KPELSPGEFPCEVCG
FKEPWFLKNHMKAHG
60
|
|
HR8163A-367-458-Av6HT
ZNF517
Q6ZMY9
PHECPVCGRPFRHNS
RLHSGERPYRCRACG
92
|
|
HR6938A-228-328-NHT
ZNF518A
Q6AHZ1
RHNEIHYKCGKCHHV
ILKRYKIGASRKTFW
101
|
|
HR8175A-141-213-Av6HT
ZNF518B
Q9C0D4
RFSTKDPLQYKKHTL
AIRNDYIVKHTKRVH
73
|
|
HR8275A-281-327-Av6HT
ZNF519
Q8TB69
GHQKIHTGEKPYKCK
IHTGEKPFKCKECGK
47
|
|
HR8035A-114-170-Av6HT
ZNF521
Q96K83
PGLPYPCQFCDKSFS
KHKRSRDRHIKLHTG
57
|
|
HR8035B-928-981-Av6HT
ZNF521
Q96K83
GNYKCNVCSRTFFSE
RFPSLLTLTEHKVTH
54
|
|
HR8035C-1253-1292-Av6HT
ZNF521
Q96K83
GGTFKCPVCFTVFVQ
AHGQEDKIYDCTQCP
40
|
|
HR8035C-1253-1311-Av6HT
ZNF521
Q96K83
GGTFKCPVCFTVFVQ
FQTELQNHTMTQHSS
59
|
|
HR8035D-1177-1247-Av6HT
ZNF521
Q96K83
QVSPMPRISPSQSDE
TFDSPAKLQCHLIEH
71
|
|
HR8035D-1187-1247-Av6HT
ZNF521
Q96K83
SQSDEKKTYQCIKCQ
TFDSPAKLQCHLIEH
61
|
|
HR8035D-1193-1247-Av6HT
ZNF521
Q96K83
KTYQCIKCQMVFYNE
TFDSPAKLQCHLIEH
55
|
|
HR8035E-750-805-Av6HT
ZNF521
Q96K83
KVYRCTSCNWDFRNE
SFGTEVELQCHITTH
56
|
|
HR8035E-750-841-Av6HT
ZNF521
Q96K83
KVYRCTSCNWDFRNE
HLREKHCVFETKTPN
92
|
|
HR8035F-632-686-Av6HT
ZNF521
Q96K83
GEYICNQCGAKYTSL
EFPNQESLLKHVTIH
55
|
|
HR8035G-692-745-Av6HT
ZNF521
Q96K83
TYYICESCDKQFTSV
FDSKVSIQLHLAVKH
54
|
|
HR7651A-311-395-NHT
ZNF526
Q8TF50
QRSFSSANRLQAHGR
AHTANPLHRCRCGKT
85
|
|
HR8497A-368-478-Av6HT
ZNF527
Q8NB42
SRYAFLVEHQRIHTG
HTGEKPYECIKCGKF
111
|
|
HR7761A-499-570-NHT
ZNF528
Q3MIS6
GKVFSRSSNLVCHQK
KAFRGCSGLTAHLAI
72
|
|
HR6966A-331-386-NHT
ZNF530
Q6P9A1
SFSHSTNLYRHRSAH
VHTGVRPYECSECGK
56
|
|
HR7961A-840-894-Av6HT
ZNF532
Q9HCE3
VGFRCVHCNVVYSDV
KSAPSTHSHAYTQHP
55
|
|
HR6910A-112-178-NHT
ZNF536
O15090
GIMSQMSDIEDDARK
DHRAAQKGNLKIHLR
67
|
|
HR7987A-333-390-Av6HT
ZNF540
Q8NDQ6
GKAFSVCGQLTRHQK
THAGKKPYECKECGK
58
|
|
HR8055A-1071-1130-Av6HT
ZNF541
Q9H0D2
EPHINIGSRFQAEIP
TQDRVTELCNVACSS
60
|
|
HR8506A-95-170-Av6HT
ZNF542
Q5EBM4
CTRNVCKECGNLYCH
CNECIKTFNQRAHLT
76
|
|
HR7303A-250-315-NHT
ZNF544
Q6NX49
SLNYGSSLCFHGRTF
DECRETCSESLCLVQ
66
|
|
HR7708A-449-521-NHT
ZNF546
Q86UE3
AFRLQTELTRHHRTH
SSRYHLTQHYRIHTG
73
|
|
HR8224A-347-390-Av6HT
ZNF547
Q8IVP9
TGERPYECSECGKAF
AAKQCSECGKFERYN
44
|
|
HR7308A-303-359-NHT
ZNF552
Q9H707
KFFRHKYHLIAHQRV
VHTGQKPYECSECGK
57
|
|
HR7586A-351-442-Av6HT
ZNF554
Q86TJ5
PYECQECGRAFTHSS
RTHTGFKPYECSECG
92
|
|
HR6864A-534-597-NHT
ZNF555
Q8NEP9
KPYECKECGKVFKWP
VRIHTTEKQYKCNVG
64
|
|
HR7560A-285-337-NHT
ZNF556
Q9HAH1
RPYECKQCGKAYCWA
AFGWRSSLHKHARTH
53
|
|
HR7484-16-423-TEV
ZNF557
Q8N988
FPASQREGHTEGGEL
CGKSFTSNSYLSVHT
408
|
|
HR7484-32-423-TEV
ZNF557
Q8N988
NELLKSWLKGLVTFE
CGKSFTSNSYLSVHT
392
|
|
HR7484-TEV
ZNF557
Q8N988
AAVVLPPTAALSSLF
SYLSVHTRMHNRQM*
430
|
|
HR7484A-12-94-15
ZNF557
Q8N988
MLSSLFPASQREGHT
ASLGNQVDKPRLISQ
84
|
|
HR7484A-16-89-15
ZNF557
Q8N988
MFPASQREGHTEGGE
NCRNLASLGNQVDKP
75
|
|
HR7484A-32-89-15
ZNF557
Q8N988
MNELLKSWLKGLVTF
NCRNLASLGNQVDKP
59
|
|
HR7484B-344-408-15
ZNF557
Q8N988
MGEKPYTCNECGKSF
HMRTHTGKKPYECNY
66
|
|
HR7484B-344-423-15
ZNF557
Q8N988
MGEKPYTCNECGKSF
CGKSFTSNSYLSVHT
81
|
|
HR7484B-349-403-15
ZNF557
Q8N988
MTCNECGKSFTNSFS
SSVKKHMRTHTGKKP
56
|
|
HR7484B-349-423-15
ZNF557
Q8N988
MTCNECGKSFTNSFS
CGKSFTSNSYLSVHT
76
|
|
HR8385A-150-204-Av6HT
ZNF558
Q96NG5
KLNECNQCFKVFSTK
SSRSYLTIHKRIHNG
55
|
|
HR7908A-195-264-Av6HT
ZNF559
Q9BR84
PSSSHLRECVRIYGG
FTESSYLTQHLRTHS
70
|
|
HR8030A-275-342-Av6HT
ZNF560
Q96MR9
RLILNVQVQRKCTQD
AFTHSTSHAVNVETH
68
|
|
HR8284A-153-246-Av6HT
ZNF561
Q8N587
KDTLSVHKEASTGQE
RAVTASSHLKQCVAV
94
|
|
HR7120A-315-406-NHT
ZNF562
Q6V9R5
PHKCTECGKAFTRST
RIHTGEKPYECVECG
92
|
|
HR7101A-177-267-NHT
ZNF563
Q8TA94
TFSSRRNLRRHMVVQ
YECKQCSKALPDSSS
91
|
|
HR7852A-258-333-NHT
ZNF564
Q8TBZ8
CGKAFDRPSLFRIHE
IFPSYVRKHERTHTG
76
|
|
HR7421A-165-219-Av6HT
ZNF565
Q8N9K5
KLMECHECGKAFSRG
SRASHLVQHQRIHTG
55
|
|
HR6953A-201-290-Av6HT
ZNF566
Q969W8
CKECGKSFRHPSRLT
IHTGEKPYECKECGK
90
|
|
HR7055-1-501-TEV
ZNF567
Q8N184
DVMLENYCHLISVGC
TNLNLHQRIHTGEKP
500
|
|
HR7055A-1-62-15
ZNF567
Q8N184
MDVMLENYCHLISVG
KAEDFLVKFKEHQEK
62
|
|
HR7055A-1-67-15
ZNF567
Q8N184
MDVMLENYCHLISVG
LVKFKEHQEKYSRSV
67
|
|
HR7513A-584-636-NHT
ZNF568
Q3ZCX4
KPYECNKCGKAFSQC
AFSQRASLSIHKRGH
53
|
|
HR8322A-184-236-Av6HT
ZNF569
Q5MGW4
TPFKCNHCGKGFNQT
AFSHKEKLIKHYKIH
53
|
|
HR7036A-222-276-NHT
ZNF57
Q68EA5
KTYKCEQCRMAFNGF
IYPSTFQRHMTTHTG
55
|
|
HR8437A-468-518-Av6HT
ZNF570
Q96NI8
KPYECTVCGKAFSYC
KKTFRQHAHLAHHQR
51
|
|
HR7898A-556-609-Av6HT
ZNF571
Q7Z3V5
KPYECKECGRAFSRG
FRCPSQLTQHTRLHN
54
|
|
HR7069A-130-212-NHT
ZNF572
Q7Z3I7
RPYKCSECWKSFSNS
SNTSHLIIHERTHTG
83
|
|
HR7339A-346-414-NHT
ZNF574
Q6ZN55
PSPSSLDQHLGDHSS
FVNLTKFLYHRRTHG
69
|
|
HR7766A-185-234-NHT
ZNF575
Q86XF7
AFSFPSKLAAHRLCH
QAFGQRRLLLLHQRS
50
|
|
HR7135A-110-164-NHT
ZNF576
Q9H609
PTFPCPDCGKTFGQA
QDFAQEAGLHQHYIR
55
|
|
HR7392A-95-172-Av6HT
ZNF580
Q9UK33
PECARVFASPLRLQS
RFQDAAELAQHVRLH
78
|
|
HR7332A-85-197-NHT
ZNF581
Q9P0T4
KCYSCPVCSRVFEYM
MEQNTLQKHTRWKHP
113
|
|
HR7613A-143-226-NHT
ZNF582
Q96NG8
IIRHEEMPTFDQHAS
SRLIQHENIHSGKKP
84
|
|
HR8213A-490-546-Av6HT
ZNF583
Q96ND8
KPYECNVCGKAFSYS
RAHLAHHERIHTMES
57
|
|
HR7005A-111-199-NHT
ZNF584
Q8IVC4
EHLKSYRVIQHQDTH
RPFRCPTGRSAFKKS
89
|
|
HR7126A-700-769-NHT
ZNF585B
Q52M93
TKKSQLQVHQRIHTG
FVQKSVFSVHQSSHA
70
|
|
HR7959A-294-369-Av6HT
ZNF586
Q9NXT0
ECGKSFSLRSNLIHH
AENSSLIKHLRVHTG
76
|
|
HR8398-1-385-15
ZNF587
Q96SQ5
MAAAVPRRPTQQGTV
QRVHTGERPYKCGEC
385
|
|
HR8398A-13-68-15
ZNF587
Q96SQ5
MGTVTFEDVAVNFSQ
LGCWCGSKDEEAPCK
57
|
|
HR8398A-8-73-15
ZNF587
Q96SQ5
MRPTQQGTVTFEDVA
GSKDEEAPCKQRISV
67
|
|
HR8398B-85-147-15
ZNF587
Q96SQ5
MGVSPKKAHPCEMCG
AYLHQHQKQHIGEKF
64
|
|
HR8398B-90-144-15
ZNF587
Q96SQ5
MKAHPCEMCGLILED
DDTAYLHQHQKQHIG
56
|
|
HR7374A-223-283-NHT
ZNF589
Q86UQ0
AFNQKSNLFRQKAVT
THTGEKPYVCGECGR
61
|
|
HR7253A-8-134-TEV
ZNF593
O00488
GAHRAHSLARQMKAK
PTEVSTEVPEMDTST
127
|
|
HR7622A-658-732-NHT
ZNF594
Q96JF6
GKAFSQRSHLATHQK
MWHTAFLKHQRLHAG
75
|
|
HR8535A-211-338-Av6HT
ZNF595
Q8IYB9
RSTSLSKHKRIHTGE
SRSLNEHKNIHTGEK
128
|
|
HR7605A-165-247-NHT
ZNF596
Q8TC21
KSYGSHLFDYAFIQN
THCSDLRKHERTHTG
83
|
|
HR6958A-339-424-NHT
ZNF597
Q96LX8
KPLQCPDCDMTFPCF
LHLITHKRTHIKNTT
86
|
|
HR7504A-200-279-NHT
ZNF599
Q96NL3
TCTECGKGFSKKWAL
KRRFHLTEHQRIHTG
80
|
|
HR7536A-401-473-NHT
ZNF605
Q86T29
AFFKKSELIRHQKIH
TQKSSLISHQRTHTG
73
|
|
HR7780A-327-407-NHT
ZNF606
Q8WXB4
NQSPSFNEHPRLHVG
TYTAEKPYDYNECGT
81
|
|
HR7972A-628-696-Av6HT
ZNF607
Q96SK3
CASYLVRHESVHADG
FRLRSILEVHQRIHI
69
|
|
HR7618A-201-256-NHT
ZNF610
Q8N9Z0
SYEYECSEDGEVFRV
SRNSHLVEHWRIHTG
56
|
|
HR7693A-602-688-NHT
ZNF611
Q8N823
TFSRRSSLHCHRRLH
AEKPYKCNECGKAFN
87
|
|
HR8205A-466-535-Av6HT
ZNF613
Q6PF04
SHKSGLINHQRIHTG
FSHLSCLVYHKGMLH
70
|
|
HR7312A-239-311-NHT
ZNF614
Q8N883
KLSRSVLFTKHLKTN
TMKRYLIAHQRTHSG
73
|
|
HR7638A-239-293-NHT
ZNF616
Q08AN1
KSYQCDVCGKIFRKN
SKSSHLAVHQRIHTG
55
|
|
HR8536A-215-271-Av6HT
ZNF619
Q8N2I2
PYTCKECGKTFRYNS
SHLLQHQKLHGGQRP
57
|
|
HR7004A-342-416-Av6HT
ZNF620
Q6ZNG0
GKRLSSNTALTQHQR
SWCGRFILHQKLHTQ
75
|
|
HR6865A-260-345-NHT
ZNF621
Q6ZSS3
EKLYKCKECWKAFGC
YGSFVQHQKLHPVEK
86
|
|
HR7076A-233-357-Av6HT
ZNF622
Q969S3
MQDAEEEEAEEGPPL
FADFYDFRSSYPDHK
126
|
|
HR7076A-233-357-NHT
ZNF622
Q969S3
QDAEEEEAEEGPPLG
FADFYDFRSSYPDHK
125
|
|
HR8004A-806-858-Av6HT
ZNF624
Q9P2J8
RPYKCEECGKAFRTN
AFRSSSSLTVHQRIH
53
|
|
HR8159A-235-289-Av6HT
ZNF625
Q96I27
KPYECKQCGKAFRSA
GCASSVKIHERTHTG
55
|
|
HR8312A-451-505-Av6HT
ZNF626
Q68DY1
KFYKCEECGKAFKCS
NQSSIDTTHERIILE
55
|
|
HR7221A-166-234-Av6HT
ZNF627
Q7L945
PYDCKECGETFISLV
EKPYECKQCGKAFSC
69
|
|
HR7999A-830-869-Av6HT
ZNF629
Q9UEG4
GQNPKTLVEEKPYLC
AALLLHRSCHPGVSL
40
|
|
HR7098A-597-651-NHT
ZNF630
Q2M218
KTPECAESGMTFFWK
CQHVYFTGHQNPYRK
55
|
|
HR7646-132-485-Av6HT
ZNF639
Q9UID6
VHTAEDVPIAVEVHA
NERELISHLPVHETT
354
|
|
HR7646-158-485-Av6HT
ZNF639
Q9UID6
NSSESLQDQTDEEPP
NERELISHLPVHETT
328
|
|
HR7646-168-485-Av6HT
ZNF639
Q9UID6
DEEPPAKLCKILDKS
NERELISHLPVHETT
318
|
|
HR7646-24-485-Av6HT
ZNF639
Q9UID6
ISRIADGFNGIFSDH
NERELISHLPVHETT
462
|
|
HR7646-80-485-Av6HT
ZNF639
Q9UID6
RNQNYLVPSPVLRIL
NERELISHLPVHETT
406
|
|
HR7646-Av6HT
ZNF639
Q9UID6
NEYPKKRKRKTLHPS
ERELISHLPVHETT*
485
|
|
HR7646A-406-471-15
ZNF639
Q9UID6
MDDCGKGFSSMLEYC
DLPHKCSDCLMRFGN
67
|
|
HR7646A-406-485-15
ZNF639
Q9UID6
MDDCGKGFSSMLEYC
NERELISHLPVHETT
81
|
|
HR7646A-411-466-15
ZNF639
Q9UID6
MGFSSMLEYCKHLNS
FKHSADLPHKCSDCL
57
|
|
HR7646A-411-485-15
ZNF639
Q9UID6
MGFSSMLEYCKHLNS
NERELISHLPVHETT
76
|
|
HR7646B-233-313-Av6HT
ZNF639
Q9UID6
NVCRVCKESFSTNML
SSSSELYLHFQEHSC
81
|
|
HR7646B-256-313-Av6HT
ZNF639
Q9UID6
EEDPYICKYCDYKTV
SSSSELYLHFQEHSC
58
|
|
HR7646C-372-425-Av6HT
ZNF639
Q9UID6
NFFVCQVCGFRSRLH
GFSSMLEYCKHLNSH
54
|
|
HR7646D-202-255-Av6HT
ZNF639
Q9UID6
GLYKCELCEFNSKYF
SFSTNMLLIEHAKLH
54
|
|
HR7858A-251-323-Av6HT
ZNF642
Q49AA0
RNTYKLDLINHPTSY
SQSASLSTHQRIHTG
73
|
|
HR7770A-52-130-NHT
ZNF645
Q8N7E2
LPIHFCDKCDLPIKI
IVQQCKRTYLSQKSL
79
|
|
HR7348A-260-345-NHT
ZNF648
Q5T619
QKPSKPLSPAETRGG
GEKPYPCPDCGKAFV
86
|
|
HR7533A-232-314-NHT
ZNF649
Q9BS31
KPHGCSLCGKAFYKR
SRKSLLVVHQRTHTG
83
|
|
HR7463A-365-451-NHT
ZNF652
Q9Y209
SFKRSMSLKVHSLQH
GEKPFICETCGKSFT
87
|
|
HR8324A-526-605-Av6HT
ZNF653
Q96CK0
REFTCETCGKSFKRK
CGKRFEKLDSVKFHT
80
|
|
HR8422A-173-222-15
ZNF655
Q8N720
MGKHEHLNLTEDFQS
TEKSYKCDVCGKIFH
51
|
|
HR8422A-173-239-15
ZNF655
Q8N720
MGKHEHLNLTEDFQS
SALTRHQRIHTREKP
68
|
|
HR8422A-178-218-15
ZNF655
Q8N720
MLNLTEDFQSSECKE
SIPNTEKSYKCDVCG
42
|
|
HR8422A-178-234-15
ZNF655
Q8N720
MLNLTEDFQSSECKE
IFHQSSALTRHQRIH
58
|
|
HR8422A-182-234-TEV
ZNF655
Q8N720
EDFQSSECKESLMDL
IFHQSSALTRHQRIH
53
|
|
HR8422B-430-491-TEV
ZNF655
Q8N720
HRKEKSYECNEYEGS
AHLVQHQSIHTKENS
62
|
|
HR8422B-434-491-TEV
ZNF655
Q8N720
KSYECNEYEGSFSHS
AHLVQHQSIHTKENS
58
|
|
HR8422C-372-430-Av6HT
ZNF655
Q8N720
GIHFREKPYTCSECG
AFSQTSCLIQHHKMH
59
|
|
HR8422C-372-470-Av6HT
ZNF655
Q8N720
GIHFREKPYTCSECG
EVLTROKAFDCDVWE
99
|
|
HR8422C-372-475-Av6HT
ZNF655
Q8N720
GIHFREKPYTCSECG
QKAFDCDVWEKNSSQ
104
|
|
HR8422D-378-430-Av6HT
ZNF655
Q8N720
KPYTCSECGKDFRLN
AFSQTSCLIQHHKMH
53
|
|
HR7623A-279-349-NHT
ZNF658
Q5TYW1
CDKTTAVEYNKVHMA
SQSSAHIVHQKTQAG
71
|
|
HR8538A-1-85-Av6HT
ZNF663
Q8NDT4
YTGEKPDECKENEKA
VLKESCLTPNQRIKT
84
|
|
HR6955A-195-249-NHT
ZNF664
Q8N3J9
GEKPYRCCGCGKAFS
AFSQSTSLCIHQRVH
55
|
|
HR7621A-171-230-NHT
ZNF667
Q5HYK9
PFECSNCRKAFRQIS
ILHMRIHDGKEILDC
60
|
|
HR6925A-83-165-NHT
ZNF670
Q9BS34
TFSQDSNLNLNKKVS
ISLTSVDRHMVTHTS
83
|
|
HR7883A-267-337-Av6HT
ZNF671
Q8TAW3
KPHKSTKLVSGFLMG
SQSYDLFKHQTVHTG
71
|
|
HR7237A-1-66-NHT
ZNF672
Q499Z4
FATSGAVAAGKPYSC
ARAADLRAHRRTHAG
65
|
|
HR7236A-365-437-NHT
ZNF674
Q2M3X9
ASDEKPSPTKHWRTH
SGKSHLSVHHRTHTG
73
|
|
HR7578A-1-67-15
ZNF675
Q8TD23
MGLLTFRDVAIEFSL
ITCLEQEKEPLTVKR
67
|
|
HR7578A-1-74-15
ZNF675
Q8TD23
MGLLTFRDVAIEFSL
KEPLTVKRHEMVNEP
74
|
|
HR7578B-131-199-15
ZNF675
Q8TD23
MGLNQCLPTMQSKMF
SHLTRHERNYTKVNF
70
|
|
HR7578B-136-194-15
ZNF675
Q8TD23
MLPTMQSKMFQCDKY
SFCMLSHLTRHERNY
60
|
|
HR7578B-137-199-15
ZNF675
Q8TD23
MPTMQSKMFQCDKYV
SHLTRHERNYTKVNF
64
|
|
HR7578B-140-194-15
ZNF675
Q8TD23
MQSKMFQCDKYVKVF
SFCMLSHLTRHERNY
56
|
|
HR7891A-111-163-Av6HT
ZNF676
Q8N7Q3
KVFQCGKYANVFHKC
SFCMLSHLSQHERIY
53
|
|
HR7577A-497-565-NHT
ZNF677
Q86XU0
TERSNLTQHKKIHTG
ALFQSSNIGDHQKSY
69
|
|
HR8530A-404-487-Av6HT
ZNF678
Q5SXM1
PYKCEECGKVFKQCS
FSSLTRHKRIHTGEK
84
|
|
HR7709A-360-411-NHT
ZNF679
Q8IYX0
AFAFSSTLNTHKRIH
NHKSMHTGEKPYKCE
52
|
|
HR8058A-136-204-Av6HT
ZNF680
Q8NEM1
KEGYNELNQCLRTTQ
SFCMLSHLTQHIRIH
69
|
|
HR7323A-486-575-NHT
ZNF681
Q96N22
AFNQSSILTTHKRIH
PYQCEECGKAFNOSS
90
|
|
HR7060A-141-225-NHT
ZNF682
O95780
PSKIFPYNKCVKVFS
KWFSYLTKHKRIHTG
85
|
|
HR7991A-155-211-Av6HT
ZNF684
Q5T5D7
VENAYECSECGKAFK
SRKAHLATHQKIHNG
57
|
|
HR7327A-962-1050-Na6HT
ZNF687
Q8N1G0
GWTCGLCHSWFPERD
SSRLILEKHVQVRHG
89
|
|
HR7862A-150-239-Av6HT
ZNF689
Q96CS4
ICPDCGCTFPDHOAL
VIHTGEKPYHCPDCG
90
|
|
HR8314A-328-397-NHT
ZNF692
Q9BU19
KKHLKEHMKLHSDTR
QKASLNWHQRKHAET
70
|
|
HR7296A-298-376-NHT
ZNF695
Q8IW36
CEECGKSFKLFPYLT
NQSSHLTEHRRIHTG
79
|
|
HR8310A-158-221-Av6HT
ZNF696
Q9H7X3
CGKAFIHSSHVVRHQ
KPYACADCGKAFGQR
64
|
|
HR7368A-352-405-NHT
ZNF697
Q5TEC3
PFACGECGKGFVRRS
SWRSDLVKHQRVHTG
54
|
|
HR8203A-585-642-Av6HT
ZNF699
Q32M78
KPFECLECGKAFSCP
AYFRRHVKTHTRENI
58
|
|
HR7900-118-686-15
ZNF7
P17097
MQNPGFGDVSDSEVW
NRSSRLTQHQKIHMG
570
|
|
HR7900-123-686-15
ZNF7
P17097
MGDVSDSEVWLDSHL
NRSSRLTQHQKIHMG
565
|
|
HR7900-176-686-15
ZNF7
P17097
MSSGLDCQPLESQGE
NRSSRLTQHQKIHMG
512
|
|
HR7900-181-686-15
ZNF7
P17097
MCQPLESQGESAEGM
NRSSRLTQHQKIHMG
507
|
|
HR7900-192-686-15
ZNF7
P17097
MEGMSQRCEECGKGI
NRSSRLTQHQKIHMG
496
|
|
HR7900-98-686-Av6HT
ZNF7
P17097
DILKSESYGTVVRIS
NRSSRLTQHQKIHMG
589
|
|
HR7900A-632-686-Av6HT
ZNF7
P17097
KLHQCEDCEKIFRWR
NRSSRLTQHQKIHMG
55
|
|
HR7964A-390-437-Av6HT
ZNF70
Q9UC06
KPYTCECGKAFRHRS
LCGKSFRGSSHLIRH
48
|
|
HR8076A-25-71-Av6HT
ZNF700
Q9H0M5
AFEDVAVNFTQEEWT
FRNLTSIGKKWSDQN
47
|
|
HR7819A-251-341-Av6HT
ZNF701
Q9NV72
DFHQKRYLACHRCHT
KCEECDKVFSRKSHL
91
|
|
HR6936A-105-196-NHT
ZNF705A
Q6ZN79
TMENSLILEDPFECN
TNCFRLRRHKMTHTG
92
|
|
HR7717A-105-196-NHT
ZNF705G
A8MUZ8
TMENSLILEDPFECN
TNCFHLRRHKMTHTG
92
|
|
HR7599A-294-364-NHT
ZNF707
Q96C28
GKAFRTKENLSHHQR
GKGFRHLGFFTRHQR
71
|
|
HR8522A-127-192-Av6HT
ZNF708
P17019
GLNRCVTTTQSKIVQ
CMLSQLTQHEIIHTG
66
|
|
HR8299A-146-232-Av6HT
ZNF709
Q8N972
GKRFSFRSSFRIHER
HTGEKPYKCKECGKT
87
|
|
HR7598A-420-489-NHT
ZNF71
Q9NQZ8
SQSAYLIEHQRIHTG
FSRNTNLTRHLRIHT
70
|
|
HR7994A-273-347-Av6HT
ZNF710
Q8N1W2
RLDINVQIDDSYLVE
KQPSHLQTHLLTHQG
75
|
|
HR7730A-640-700-NHT
ZNF711
Q9Y462
IHKGRKIHQCRHCDF
RQQNELKKHMKTHTG
61
|
|
HR7315A-202-251-NHT
ZNF713
Q8N859
SIKHNSDLIYYQGNY
LTDHIHTAEKPSECG
50
|
|
HR8420A-149-221-Av6HT
ZNF718
Q3SXZ3
VKVFHKFSNSNKDKI
AFNWSSILTKHKRIH
73
|
|
HR7757A-1-62-NHT
ZNF720
Q7Z2F6
GLLTFRDVAIEFSRE
SKPOLITFLEQRKEP
61
|
|
HR8490A-143-197-Av6HT
ZNF730
Q6ZMV8
KIFQCDKYVKVFHKF
CILSHLAQHKKIHTG
55
|
|
HR8539A-16-91-Av6HT
ZNF738
Q8NE65
GYPGAERNLLEYSYF
DVSKPDLITCLEQGK
76
|
|
HR8339A-526-578-Av6HT
ZNF74
Q16587
KPYKCSECGRAFSQN
MFNWSSHLTEHQRLH
53
|
|
HR8360A-96-181-Av6HT
ZNF740
Q8NDX6
KIPKNFVCEHCFGAF
SRTDRLLRHKRMCQG
86
|
|
HR8176A-34-86-Av6HT
ZNF747
Q9BV97
PGAVSFADVAVYFSR
HLGALGESPTCLPGP
53
|
|
HR8509A-408-460-Av6HT
ZNF749
Q43361
RLYKCSECGKAFSLK
AFVRKSHLVQHQKIH
53
|
|
HR7901A-1-56-Av6HT
ZNF75A
Q96N20
YFSQEEWELLDPTQK
KVISCLEQGEEPWVQ
55
|
|
HR6964-1-358-Av6HT
ZNF76
P36508
ESLGLHTVTLSDGTT
PYTCSTCGKTYRQTS
357
|
|
HR6964-1-369-Av6HT
ZNF76
P36508
ESLGLHTVTLSDGTT
RQTSTLAMHKRSAHG
368
|
|
HR6964A-173-267-NHT
ZNF76
P36508
GRLYTTAHHLKVHER
RPFQCPFEGCGRSFT
95
|
|
HR6964B-161-251-Av6HT
ZNF76
P36508
GDRAFRCGYKGCGRL
KTSGDLQKHVRTHTG
91
|
|
HR6964C-227-276-Av6HT
ZNF76
P36508
CPEELCSKAFKTSGD
CGRSFTTSNIRKVHV
50
|
|
HR6964C-227-294-Av6HT
ZNF76
P36508
CPEELCSKAFKTSGD
TGERPYTCPEPHCGR
68
|
|
HR6964C-232-294-Av6HT
ZNF76
P36508
CSKAFKTSGDLQKHV
TGERPYTCPEPHCGR
63
|
|
HR6964C-235-276-Av6HT
ZNF76
P36508
AFKTSGDLQKHVRTH
CGRSFTTSNIRKVHV
42
|
|
HR7027A-389-461-NHT
ZNF765
Q7L2R6
SKTFSHKSSLTYHRR
YSFKSNLFIHQKIHT
73
|
|
HR7836A-303-379-NHT
ZNF766
Q5HY98
KCGKVYSSSSYLAQH
RHKFSLTVHQRNHNG
77
|
|
HR7774A-291-355-NHT
ZNF768
Q9H5H4
CEVCSKAFSQSSDLI
GQKPYKCPHCGKAFG
65
|
|
HR8123A-304-359-Av6HT
ZNF77
Q15935
SFSCYSSFRDHVRTH
THSGEKPYECKECGK
56
|
|
HR7610A-1-82-NHT
ZNF770
Q6IQ21
AENNLKMLKIQQCVV
VHLERHQLTHSLPFK
80
|
|
HR7742A-127-216-NHT
ZNF771
Q7L3S4
RFSAASNLRQHRRRH
PYACADCGTRFAQSS
90
|
|
HR7325A-385-458-NHT
ZNF772
Q68DY9
KYFGHKYRLIKHWSV
SHKHVLVQHHRIHTG
74
|
|
HR8057A-186-243-Av6HT
ZNF773
Q6PK81
AGKRHYKCSECGKAF
SHKSNLFIHQIVHTG
58
|
|
HR7824A-105-159-Av6HT
ZNF775
Q96BV0
GHFVCLDCGKRFSWW
SQKPNLARHQRHHTG
55
|
|
HR7510A-199-288-NHT
ZNF776
Q68DI1
IPLQGGKTHYICGES
WYKAHLTEHQRVHTG
90
|
|
HR7596A-583-631-NHT
ZNF780A
Q75290
KPFECKECGKAFRLH
ECGKVFSLPTQLNRH
49
|
|
HR7666A-735-815-NHT
ZNF780B
Q9Y6R6
GLLTQLAQHQIIHTG
KLVQVRNPLNVRNVG
81
|
|
HR7344A-514-586-NHT
ZNF782
Q6ZMW2
AFKLKSGLRKHHRTH
SQKSNLRVHHRTHTG
73
|
|
HR8508A-34-122-Av6HT
ZNF783
Q6ZMS7
SYLYSTEITLWTVVA
LLQRRLENVENLLRN
89
|
|
HR8227A-257-318-Av6HT
ZNF785
A8K8V0
ACSDCKSRFTYPYLL
RIHTGEKPYPCPDCG
62
|
|
HR7825A-407-473-NHT
ZNF786
Q8N393
RLRRLLQVHQHAHGG
GRNFRQRGQLLRHQR
67
|
|
HR7915A-65-146-Av6HT
ZNF787
Q6DD87
PYICNECGKSFSHWS
SWSSNLMQHQRIHTG
82
|
|
HR8290A-153-225-Av6HT
ZNF789
Q5FWF6
GFLQNLNLIQDQNAQ
RRKAWFDQHQRIHFL
73
|
|
HR7454A-424-498-NHT
ZNF79
Q15937
KFFSESSALIRHHII
CSSAFVRHQRLHAGE
75
|
|
HR7139A-544-636-NHT
ZNF790
Q6PG37
IWGSQLTRHKKIHTD
FEKAFSSSSHFISLL
93
|
|
HR8412A-506-576-Av6HT
ZNF791
Q3KP31
IYPTSFQGHMRMHTG
SVSTSLKKHMRMHNR
71
|
|
HR8238A-532-599-15
ZNF792
Q3KQV3
MRPYECSECGKTFRQ
IRERSMENVLLPCSQ
69
|
|
HR8238A-532-599-Av6HT
ZNF792
Q3KQV3
RPYECSECGKTFRQR
IRERSMENVLLPCSQ
68
|
|
HR7343A-484-570-NHT
ZNF799
Q96GE5
AFSCFQYLSQHRRTH
REKPYECQQCGKAFT
87
|
|
HR4794D-252-417-15
ZNF8
P17098
VQDKPYKCTDCGKSF
GKGFRHSSSLAQHQR
166
|
|
HR4794D-256-412-15
ZNF8
P17098
PYKCTDCGKSFNHNA
ECNHCGKGFRHSSSL
157
|
|
HR4794D-274-417-15
ZNF8
P17098
VHKRIHTGERPYMCK
GKGFRHSSSLAQHQR
144
|
|
HR4794D-280-412-15
ZNF8
P17098
TGERPYMCKECGKAF
ECNHCGKGFRHSSSL
133
|
|
HR4794E-339-417-15
ZNF8
P17098
KPYECQDCGRAFNQN
GKGFRHSSSLAQHQR
79
|
|
HR4794E-344-411-15
ZNF8
P17098
QDCGRAFNQNSSLGR
YECNHCGKGFRHSSS
68
|
|
HR7462A-85-152-NHT
ZNF80
P51504
AFPEKVDFVRPMRIH
CGKTFSYHSVFIQHR
68
|
|
HR8132A-480-640-Av6HT
ZNF800
Q2TB10
GFDFKQLYCKLCKRQ
AFAKKTYLEHHKKTH
161
|
|
HR7014A-407-492-NHT
ZNF808
Q8N4W9
AFNHQSSLARHHILH
TGEKTYKCNECRKTF
86
|
|
HR7427A-226-281-NHT
ZNF81
P51508
VFTQNSSYSHHENTH
FPIGEKANTCTEFGK
56
|
|
HR8002A-591-645-Av6HT
ZNF816A
Q0VGE8
KPYKCNECGKVFNQK
TGQSTLIHHQAIHGC
55
|
|
HR8532A-59-113-Av6HT
ZNF818P
Q6ZRF7
KRSLTNVCGKVLSQN
TQGSRFINHQIVHTG
55
|
|
HR7648A-533-610-NHT
ZNF823
P16415
GKAFSWLTCLLRHER
RSLHRHKRTHWKDTL
78
|
|
HR7405A-703-761-NHT
ZNF828
Q96JM3
KRGKGKYYCKICCCR
FLLESLLKNHVAAHG
59
|
|
HR8193A-154-208-Av6HT
ZNF829
Q3KNS6
KPWECKICGKTFNQN
SRGSLVTRHQRIHTG
55
|
|
HR7002A-127-184-15
ZNF83
P51522
MGKIFNKKSNLASHQ
IHTGEKPYKCNECGK
59
|
|
HR7002B-70-148-15
ZNF83
P51522
MTYECNFVDSLFTQK
SNLASHQRIHTGEKP
80
|
|
HR7002B-74-145-15
ZNF83
P51522
MNFVDSLFTQKEKAN
NKKSNLASHQRIHTG
73
|
|
HR7002B-89-145-15
ZNF83
P51522
MGTEHYKCSERGKAF
NKKSNLASHQRIHTG
58
|
|
HR8533A-9-176-Av6HT
ZNF833P
Q6ZTB9
PYKCKFCGKAFDNLH
FSSFHSHEGVHTGEK
168
|
|
HR8077A-450-518-Av6HT
ZNF835
Q9Y2P0
SQGSSLALHQRTHTG
AFSFSSALIRHQRTH
69
|
|
HR8234A-206-287-15
ZNF836
Q6ZNA1
MTQLEKTHIREKPYM
PYQCGVCGKIFRQNS
83
|
|
HR8234A-206-287-Av6HT
ZNF836
Q6ZNA1
TQLEKTHIREKPYMC
PYQCGVCGKIFRQNS
82
|
|
HR7704A-427-482-NHT
ZNF837
Q96EG3
AFKGRSGLVQHQRAH
LHSGEKPYICRDCGK
56
|
|
HR8403A-681-738-Av6HT
ZNF84
P51523
KPYGCSECRKAFSQK
SQLINHQRTHTVKKS
58
|
|
HR8489A-197-283-Av6HT
ZNF841
Q6ZN19
RGKPYQCDVCGRIFR
SSSLATHQTVHTGDK
87
|
|
HR8361A-897-970-Av6HT
ZNF845
Q96IR2
NQQAHLACHHRIHTG
AKLARHHRIHTGKKH
74
|
|
HR7777A-476-525-NHT
ZNF846
Q147U1
KPYACKECGKAFRYS
CGKNFTQSSALAKHL
50
|
|
HR7585A-536-595-NHT
ZNF85
Q03923
KPYTCEECGKAFNQS
LTKHKIIHTGEKLQI
60
|
|
HR8493A-449-519-Av6HT
ZNF852
B4DLD7
SYNSSLMVHQRTHTG
SQRSTFNHHQRTHAG
71
|
|
HR8177-500-555-Av6HT
ZNF880
Q6PD84
VFSHNSHLARHRQIH
IHTGEKPYRCHECGK
56
|
|
HR6923A-519-589-NHT
ZNF90
Q03938
KRSSVLSKHKIIHTG
NLSSDLNTHKRIHIG
71
|
|
HR8498A-486-572-Av6HT
ZNF98
A6NK75
GEKPYKCEECGKAFN
IAKISKYKRNCAGEK
87
|
|
HR8425A-706-753-Av6HT
ZNF99
A8MXY4
AFNNSSTLRKHEIIH
IHTGKKPYKCEECGK
48
|
|
HR7451A-925-1258-Av6HT
ZNFX1
Q9P2E3
LDLSSRWQLYRLWLQ
SKIIHTLRENNQIGP
334
|
|
HR6880A-166-356-NHT
ZRSR2
Q15696
EKDRANCPFYSKTGA
ANRDIYLSPDRTGSS
191
|
|
HR7933A-24-120-Av6HT
ZSCAN1
Q8NBBT
ADPGPASPRDTEAQR
CREAASLVEDLTQMC
97
|
|
HR7806A-1-70-NHT
ZSCAN10
Q96SZ4
GPRASLSRLRELCGH
DGEEVVLLLEGIHRE
69
|
|
HR8495A-9-132-Av6HT
ZSCAN12
O43309
AHMDQDEPLEVKIEE
VTVLEDLERELDEPG
124
|
|
HR7081A-224-291-TEV
ZSCAN16
Q9H4T2
GRSEWQQRERRRYKC
SHLIGHHRVHTGVKP
68
|
|
HR7530A-36-127-NHT
ZSCAN21
Q9Y5A6
KYLPSLEMFRQRFRQ
AEEAVTLLEDLEREL
92
|
|
HR7904A-40-135-Av6HT
ZSCAN22
P10073
DHIAHSEAARLRFRH
AVLVEDLTQVLDKRG
96
|
|
HR7247A-37-133-NHT
ZSCAN23
Q3MJ62
SRNNPHTREIFRRRF
AVTVLEDLERELDDP
97
|
|
HR8429A-9-104-Av6HT
ZSCAN29
Q8IWY8
ENGTNSETFRQRFRR
VTLVEDLEREPGRPR
96
|
|
HR6932A-12-134-NHT
ZSCAN80
Q86W11
APEEQEGLLVVKVEE
VTMLEELEKELEEPR
123
|
|
HR7089A-35-123-Av6HT
ZSCAN4
Q8NAM6
REEGISEFSRMVLNS
KSSGKNLERFIEDLT
89
|
|
HR7089A-35-130-NHT
ZSCAN4
Q8NAM6
REEGISEFSRMVLNS
ERFIEDLTDDSINPP
96
|
|
HR7089A-46-123-Av6HT
ZSCAN4
Q8NAM6
VLNSFQDSNNSYARQ
KSSGKNLERFIEDLT
78
|
|
HR7089A-46-130-Av6HT
ZSCAN4
Q8NAM6
VLNSFQDSNNSYARQ
ERPIEDLTDDSINPP
85
|
|
HR6950A-39-129-NHT
ZSCAN5A
Q9BUG6
DPEISHVNFRMFSCP
LEDLLRNNRRPKKWS
91
|
|
HR8432A-35-142-Av6HT
ZSCAN5B
A6NJL1
NHDRNPETWHMNFRM
WSIVNLLGKEYLMLN
108
|
|
HR7759A-37-130-NHT
ZSCAN5C
A6NGD5
DSDPETCHVNFRMFS
EDLLRNNRRPKKWSV
94
|
|
HR8021A-314-557-Av6HT
ZUFSP
Q96AP4
DGKTKTSGIIEALHR
LKHKQYDILAVEGAL
244
|
|
HR7812A-358-413-NHT
ZXDA
P98168
NSFKCEVCEESFPTQ
TFITVSALFSHNRAH
56
|
|
HR7168A-360-417-NHT
ZXDB
P98169
QENSFKCEVCEESFP
TFITVSALFSHNRAH
58
|
|
HR7131A-652-715-TEV
ZZZ3
Q8IYH5
NQLWTVEEQKKLEQL
KYFIKLTKAGIPVPG
64
|
|
REFERENCES
- Acton, T. B., et al., 2011. Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol. 493, 21-60.
- Agaton et al., Molecular & Cellular Proteomics 2:405-414, 2003.
- Bindewald, E., et al., CyloFold: secondary structure prediction including pseudoknots. Nucleic Acids Res. 38, W368-72.
- Brodskii, L. I., et al., 1995. [GeneBee-NET: An Internet based server for biopolymer structure analysis]. Biokhimiia. 60, 1221-30.
- Crowe, J., et al., 1994. 6×His-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol. 31, 371-87.
- Ding, Y., et al., 2004. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135-41.
- Do, C. B., et al., 2006. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics. 22, e90-8.
- Gonzalez de Valdivia, E. I., Isaksson, L. A., 2004. A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli. Nucleic Acids Res. 32, 5198-205.
- Gruber, A. R., et al., 2008. The Vienna RNA websuite. Nucleic Acids Res. 36, W70-4.
- Hamada, M., et al., 2009. Predictions of RNA secondary structure by combining homologous sequence information. Bioinformatics. 25, i330-8.
- Jansson, M.; et al., 1996. High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. B. J. Biomol. NMR. 7, 131-141.
- Kapust, R. B., et al., 2002. The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun. 294, 949-55.
- Kudla, G., et al., 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science. 324, 255-8.
- Lamla, T., Erdmann, V. A., 2004. The Nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins. Protein Expr Purif. 33, 39-47.
- Lui et al., 2002, Loopy proteins appear conserved in evolution. J Mol Biol. 322-53-64)
- Markham, N. R., Zuker, M., 2008. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 453, 3-31.
- Mathews, D. H., et al., 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA. 101, 7287-92.
- Netzer and Hartl, 1997. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature. 358-343-9.
- Nomura, M., et al., 1984. Influence of messenger RNA secondary structure on translation efficiency. Nucleic Acids Symp Ser. 173-6.
- Quan, J., et al., 2011. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol. 29, 449-52.
- Reeder, J., et al., 2007. pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res. 35, W320-4.
- Rivas, E., Eddy, S. R., 1999. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol. 285, 2053-68.
- Rocha, E. P., et al., 1999. Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res. 27, 3567-76.
- Sharp, P. M., Li, W. H., 1987. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281-95.
- Scholle, M. D., et al., 2004. In vivo biotinylated proteins as targets for phage-display selection experiments. Protein Expr Purif. 37, 243-52.
- Schroeder, S. J., et al., 2011. Ensemble of secondary structures for encapsidated satellite tobacco mosaic virus RNA consistent with chemical probing and crystallography constraints. Biophys J. 101, 167-75.
- Voss, B., et al., 2006. Complete probabilistic analysis of RNA shapes. BMC Biol. 4, 5.
- Xayaphoummine, A., et al., 2005. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605-10.
- Xayaphoummine, A., et al., 2003. Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl Acad Sci USA. 100, 15310-5.
- Zuker, M., Stiegler, P., 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133-48.
The foregoing examples and description of the preferred embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the scope of the invention, and all such variations are intended to be included within the scope of the following claims. All references cited herein are incorporated herein in their entireties.