TRANSCRIPT OPTIMIZED EXPRESSION ENHANCEMENT FOR HIGH-LEVEL PRODUCTION OF PROTEINS AND PROTEIN DOMAINS

Information

  • Patent Application
  • 20140273091
  • Publication Number
    20140273091
  • Date Filed
    November 13, 2012
    12 years ago
  • Date Published
    September 18, 2014
    10 years ago
Abstract
The present invention relates to a system for high-level production of recombinant proteins and protein domains.
Description
BACKGROUND

The production of recombinant proteins and protein domains as reagents is extremely valuable to biomedical researchers and the entire biotechnology industry. Escherichia coli expression systems are the most cost effective and widely utilized expression systems for this task. However, production of certain proteins can be challenging in this bacterial system. Often proteins or protein domains fail to express at sufficient levels to allow for the purification of the protein reagents. This is especially true of the protein coding sequences derived from higher eukaryotes (such as humans). For example, using a standard pET E. coli expression system (Acton et al., 2011), nearly one-third of human protein targets produced in a large scale screen of protein expression had no detectable expression levels.


Thus, there is a need for agents and methods for high-level production of recombinant proteins and protein domains that do not require RNA optimization for each individual target gene.


SUMMARY OF CERTAIN EMBODIMENTS OF THE INVENTION

This invention relates to a system for high-level production of recombinant proteins and protein domains that does not require RNA optimization for each individual target gene.


Certain embodiments of the invention provide a method of preparing an expression vector, wherein the expression vector comprises, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the method comprises specifically modifying the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag to minimize RNA secondary structure both within and/or between these two regions of the mRNA.


Certain embodiments of the invention provide an expression vector designed using the methods described herein.


Certain embodiments of the invention provide an expression vector comprising, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag has been specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA.


Certain embodiments of the invention provide a host cell comprising an expression vector as described herein.


The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a set of diagrams showing sequences of Avi-tag and Nano-tag based Transcript-Optimized Expression Enhancement Technology (TOEET) expression vectors. The pNESG_Avi6HT Avi-tag sequence (top) (DNA, RNA and protein sequence), the His-tag sequences and the TEV Protease Recognition Site sequences are shown as indicated. Similarly, for pNESG_Nano6HT (bottom) the Nano-tag sequences, the His-tag sequences and TEV Protease Recognition Site sequences are shown as indicated. The T7 RNA transcript produced by each vector is shown under each vector with untranslated sequences indicated with brackets. The Multiple Cloning Site (MCS) is also shown after the tag sequences, including the positions and identity of restriction sites available for cloning.



FIG. 2 is a diagram showing the predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pNESG_Avi6HT T7 promoter. Numbering of the transcript from nucleotides 1-156 is indicated; negative numbers (in italics) show the estimated strength, in kcal/mole, of the predicted base-paired regions. The arrow indicates a predicted open structure (lack of base pairing) at the RBS/translation initiation region. RNA secondary structure predictions were done using GeneBee-NET (http://www.genebee.msu.su/services/rna2_reduced.html).



FIG. 3 is a set of photographs showing representative SDS-PAGE analysis of expression and solubility for two human protein domains cloned into each of the three vectors pET15_NESG, pNESG_Nano6HT and pNESG_Avi6HT. Left Panel shows the expression and solubility of HR7724C (HUGO ID: ZNF281) residues 291-374. Right Panel shows the expression and solubility of HR8241 (HUGO ID: NR4A21) residues 261-342. Total cell lysate (Tot) and the soluble portion (Sol) of the cell lysate are run in adjacent lanes for each of the two protein domains and the three expression vectors. An asterisk (*) indicates an overexpressed band of the correct size. Note the lack of protein expression in the case of pET15_NESG constructs.



FIG. 4. Wild-Type and TOEET-Optimized Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP). The sequences at the top corresponds to the first 30 residues of the wild-type PfR-MBP DNA sequence lacking the native secretion signal. The protein open reading frame (DNA sequence) is shown above the corresponding protein sequence. Directly below is the T7 RNA polymerase mediated RNA transcript resulting from the cloning of the PfR-MBP into the pET15_NESG backbone. The Ribosome Binding Site (RBS) is underlined and highlighted in bold, the translation initiation codon is shown in bold-italics. The lower set of sequences correspond to TOEET-optimized PfR-MBP. Bold nucleotides with arrows indicate positions where silent mutations were introduced for codon optimization, predicted decrease in RNA secondary structure in the regions of the RBS and translation initiation codon, or both. The RNA transcript for the TOEET optimized sequence is also shown following the parameters outlined above. The silent mutations were introduced using primers incorporating the nucleotide changes and 5 successive rounds of PCR, negating the need for expensive total gene synthesis.



FIG. 5. The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) without TOEET optimization. The arrows indicate significant secondary structure (base pairing) at both the Ribosome Binding Site (RBS) and the translation initiation site (Initiation Codon). RNA secondary structure predictions were performed using GeneBee-NET (http://www.genebee.msu.su/services/rna2_reduced.html).



FIG. 6. The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) after TOEET optimization. The arrows indicates the Ribosome Binding Site (RBS) and the translation initiation site (Initiation Codon) and the prediction of significantly greater open structure (lack of base pairing) after TOEET optimization. RNA secondary structure predictions were done using GeneBee-NET (http://www.genebee.msu.su/services/rna2_reduced.html).



FIG. 7. Histogram plots comparing Expression scores (E ranging from 0 to 5) using the TOEET technology (E_TOEET) compared to expression scores for the same target protein using a pET vector lacking TOEET technology (E_pET). The data shown in FIG. 7a is for 98 protein target genes cloned into the pNESG_Avi6HT TOEET vector compared with the exact same genes cloned into the pET15_NESG vector (lacking TOEET). The data shown in FIG. 7b is for 94 protein target genes cloned into the pNESG_Nano6HT TOEET vector compared with the exact same genes cloned into pET15_NESG vector (lacking TOEET). In these histogram plots, a value E_TOEET−E_pET=0 indicates that the expression levels for both vectors were identical; values E_TOEET−E_pET>0 indicate that the TOEET technology provided higher level expression, values E_TOEET−E_pET<0 indicate that the TOEET technology provided lower level expression.





DETAILED DESCRIPTION

mRNA stem-loop structures often inhibit translation initiation and therefore reduce recombinant protein expression (Nomura et al., 1984). High level expression of proteins is affected by a lack of mRNA secondary structure near the translation start site (Kudla et al., 2009; Rocha et al., 1999). In addition, rare codons present within the first ten residues of a protein have deleterious effects on protein expression levels (Gonzalez de Valdivia and Isaksson, 2004). E. coli, like all organisms, prefers to use a subset of the possible codons. The codons that an organism utilizes only infrequently are termed “rare codons” of that organism.


Heterologous genes from other organisms, which generally have a different codon bias, often contain E. coli rare codons. Decreasing or minimizing mRNA secondary structure near the Ribosome Binding Site (RBS) and translation initiation site, and separately that a lack of rare codons near the start of translation, are important for high level E. coli protein expression (Gonzalez de Valdivia and Isaksson, 2004; Kudla et al., 2009). However, the DNA coding sequence of a target gene destined for heterologous expression in E. coli has evolved under different conditions and may intrinsically contain deleterious rare codons and mRNA secondary structure when cloned into an expression vector. Deleterious rare codons and mRNA secondary structure features are particularly problematic when expressing domains or specific segments of target proteins; e.g., gene segments coding for fragments other than the native N-terminal region of the protein have not evolved to provide for efficient translation initiation. Total gene synthesis, or the chemical synthesis of a protein coding region, may address these problems to some extent, since the DNA sequence can be optimized to reduce these issues (Quan et al., 2011). However, the costs of total gene synthesis are prohibitive for large sets of protein targets, and generally is not suitable for large-scale screening or projects involving expression of many different proteins.


This invention is based, at least in part, on an unexpected discovery of a new methodology for achieving high-level production of recombinant proteins and protein domains. RNA sequence optimization is a well-known approach for improving protein expression. A feature of the system described herein is that RNA sequence optimization is required only in DNA comprising the vector backbone, including the DNA coding for the 5′-UTR and a common N-terminal polypeptide tag. Each target gene, coding for various target proteins, that is cloned into this vector backbone, need not be optimized individually. Hence, the optimized vector backbone can be used to enhance expression of many different target proteins without the need for target-protein-specific gene sequence optimization. Unlike certain previous methods, gene-by-gene RNA transcript sequence optimization is not required in certain embodiments of the methods described herein. The methodology includes, among others, jointly designing and optimizing sequences encoding 5′ untranslated and 5′ translated regions of the mRNA transcript produced by an expression vector so as to minimize RNA secondary structure and/or optimize codon usage in the mRNA transcript.


In one aspect, this invention addresses, among others, the problems associated with mRNA secondary structure and codon bias. Accordingly, the invention provides systems for high-level production of recombinant proteins and protein domains based on the Transcript-Optimized Expression Enhancement Technology (TOEET). As disclosed herein, TOEET is used to design expression vectors that produce mRNA transcripts with minimal RNA secondary structure and optimum codon usage in the nucleotide region around the Ribosomal Binding Site (RBS) and the translation initiation site, as well as minimal RNA secondary structure and optimal codon usage in a region of the transcript coding for an N-terminal polypeptide tag that is encoded directly downstream of the translation initiation site. Optimization can extend up to approximately 100 or more nucleotides on each of the 5′ and 3′ sides of the RBS. This generally will involve producing a protein with an N-terminal polypeptide tag, which is called an Expression Enhancement Tag (EET). This EET may be designed with other features that support protein production, such as solubility enhancing properties or affinity purification sequence motifs. Solubility enhancing tags known from the literature include the maltose-binding protein, the B1 domain of protein G, and domain of myxococcus protein S, to name a few representative examples. Expression vectors designed with TOEET allow most genes of interest to be produced with enhanced expression.


An advantage of the TOEET strategy over target gene optimization by total gene synthesis is that unless the 5′ end of the synthetic gene is optimized in the context of the untranslated vector sequences, detrimental mRNA secondary structure may form near or around the RBS/translation initiation site. More specifically, even if the 5′ translated region of the target gene is optimized by gene synthesis or by specific mutations, enhanced expression may not be realized unless the 5′-translated and 5′-untranslated regions of the transcript are jointly optimized, as described herein. Furthermore, by using a sufficiently long N-terminal EET tag, translated from an optimized RNA sequence that is encoded by the vector itself, there is no need to optimize the sequence of the target gene, avoiding the need for gene-specific synthesis or modification. This feature allows the TOEET technology to be used for target protein expression enhancement in high throughput applications, including expression screening studies and projects involving expression of many different proteins, where gene-specific synthesis or modification would be costly or impractical. The roughly 30 amino-acid residue (or larger) EETs effectively shift any deleterious RNA features of the target gene transcript significantly downstream of the RBS/translation initiation site, so that any potential RNA secondary structure formation with the 5′ end of the transcript is avoided, and any RNA secondary structure within the RNA coded for by the target gene itself will likely have little or no effect on expression. This TOEET strategy, which is independent of the target gene sequence, could be used more generally to enhance the expression levels of proteins produced with almost any expression vector or system.


Accordingly, certain embodiments of the invention provide a method of preparing an expression vector, wherein the expression vector comprises, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region (UTR) of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag (i.e., at the N-terminal end of the expressed target protein); and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the method comprises specifically modifying the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag to minimize RNA secondary structure both within and/or between these two regions of the mRNA.


As used herein, a vector refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. The vector can be capable of autonomous replication or integrate into a host DNA. Examples of the vector include a plasmid, cosmid, or viral vector. The vector of this invention includes a nucleic acid in a form suitable for expression of the nucleic acid in a host cell. Preferably the vector includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. A “regulatory sequence” includes promoters, enhancers, repressor binding sites, and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. For example, in certain embodiments of the invention, an expression vector described herein comprises a 5′ upstream sequence encoding an operable promoter and associated regulatory sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like.


As used herein, the 5′UTR of the encoded messenger RNA is transcribed from a promoter and includes a ribosome binding site several nucleotides preceding the start codon.


As used herein, a “cloning site” enables a sequence, such as, e.g., a target protein coding sequence, to be inserted into an expression vector. For example, the cloning site may be a multiple cloning site (MCS), also known as a polylinker, which is a short nucleic acid sequence that contains many restriction sites. For example, FIG. 1 shows a multiple cloning site, comprising a series of restriction enzyme recognition sites. In certain embodiments, the sequence is inserted in-frame, enabling expression of the inserted sequence. In certain embodiments, after the sequence, such as, e.g., the target protein coding sequence, has been inserted into the cloning site of the vector, a portion of the cloning site remains as flanking sequence on one or both sides of the inserted sequence. In other embodiments, the cloning site no longer remains after the insertion of the sequence into the cloning site of the vector.


As described herein, the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag may be specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA. In certain embodiments, one feature of the method described herein is that RNA optimization is required only in DNA comprising the vector backbone, including the DNA coding for the 5′-UTR and a common N-terminal polypeptide tag, and each gene coding for various target proteins, that is cloned into this vector backbone, need not be optimized individually. Accordingly, nucleic acids within the specific sequence encoding the 5′ untranslated region and the adjacent polypeptide tag are replaced with different nucleic acids to minimize RNA secondary structure of the expressed mRNA as described herein. In particular, in certain embodiments, the RNA secondary structure is minimized in the region surrounding the RBS and/or translation initiation site of the expressed mRNA. For example, nucleic acids are replaced to reduce base pairing with the RBS and/or translation initiation site of the expressed mRNA. In certain embodiments, the nucleic acid sequence directly surrounding the RBS site and/or the translation initiation site (e.g., the consensus sequences and sequences between these two sites) is minimally modified or not modified. For example, after modification the RBS site and the translation initiation site remain functionally active. In certain embodiments, nucleotides within the nucleic acid sequence encoding the polypeptide tag are modified in a manner that results in silent mutations.


Prediction of RNA secondary structure can be readily determined by one skilled in the art using techniques and tools known in the art. For example, a skilled artisan may use RNA structure prediction software, including CentroidFold (Hamada et al., 2009), CentroidHomfold (Hamada et al., 2009), CONTRAfold (Do et al., 2006), CyloFold (Bindewald et al.), KineFold (Xayaphoummine et al., 2005; Xayaphoummine et al., 2003), Mfold (Zuker and Stiegler, 1981), GeneBee-NET (Brodskii et al., 1995), (Pknots (Rivas and Eddy, 1999), PknotsRG (Reeder et al., 2007), RNAl23 (www.rna123.com), RNAfold (Gruber et al., 2008), RNAshapes (Voss et al., 2006), RNAstructure (Mathews et al., 2004), Sfold (Ding et al., 2004), UNAFold (Markham and Zuker, 2008), Crumple (Schroeder et al., 2011), and Sliding Windows & Assembly (Schroeder et al., 2011) among others.


As described herein, a target protein may refer to any of the following non-limiting embodiments: a full-length naturally occurring protein, a polypeptide sequence corresponding to a fragment or domain of a naturally occurring protein sequence, a mutant or modified form of a full-length protein or protein fragment, or a polypeptide sequence coding for a non-natural protein, such as proteins that have been engineered or designed by artificial methods.


Certain embodiments of the invention provide a method of preparing an expression vector, wherein the expression vector comprises, in order of position, a 5′ upstream sequence encoding an operable promoter and associated regulatory signals, a sequence encoding the 5′ untranslated region of the messenger RNA transcribed from the promoter including a ribosome binding site several nucleotides preceding the translation start codon, a sequence beginning with the start codon encoding a polypeptide tag, and a cloning site that enables “target protein” coding sequences to be inserted into the vector in-frame with the polypeptide tag thus allowing their expression as fusions to the polypeptide tag, wherein the method comprises specifically modifying the entire sequence encoding the 5′ untranslated region of the messenger RNA through and including the sequence encoding the polypeptide tag sequence in order to minimize RNA secondary structure upstream of the target insertion site.


In certain embodiments, the method further comprises specifically modifying the second nucleic acid sequence to reduce the presence of rare codons (i.e. mRNA codons for which the corresponding tRNAs are in low abundance in the host cell). For example, rare codons are replaced with high frequency codons to increase expression of any target protein expressed by the vector. Codons that are considered rare are dependent on the selected host cell that is used for expression of the vector and are known to and/or can be readily determined by one skilled in the art. For example, rare codons may be identified using computer software programs known in the art, for example, the Rare Codon Calculator (RaCC) for E. coli (http://nihserver.mbi.ucla.edu/RACC/), http://www.jcat.de/, or http://genomes.urv.es/OPTIMIZER/.


In certain embodiments, the modified region of the nucleic acid sequence spans from the first 5′ nucleotide in the expressed mRNA to the last nucleotide of the polypeptide tag.


In certain embodiments, nucleotides within about the last 20 nucleotides of the first nucleic acid sequence are modified (i.e., from the nucleotide that directly precedes the encoded start codon to 20 nucleotides upstream). In certain embodiments, nucleotides within about the last, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the first nucleic acid sequence are modified.


In certain embodiments, nucleotides within about the first 20 nucleotides of the second nucleic acid sequence are modified (i.e., from the first nucleotide within the encoded start codon to 20 nucleotides downstream). In certain embodiments, nucleotides within about the first, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the second nucleic acid sequence are modified.


In certain embodiments, the expression vector further comprises a target protein coding sequence inserted into the vector in-frame with the nucleic acid tag sequence to encode a fusion protein comprising the polypeptide tag and the target protein.


In certain embodiments, the target protein coding sequence is not modified to minimize RNA secondary structure.


In certain embodiments, the target protein coding sequence is not modified to reduce the presence of rare codons.


In certain embodiments, the target protein coding sequence is modified to minimize RNA secondary structure.


In certain embodiments, the target protein coding sequence is modified to reduce the presence of rare codons.


As used herein, the second nucleic acid sequence encodes at least one polypeptide tag. In certain embodiments, the second nucleic acid sequence encodes more than one polypeptide tag. As used herein, when the second nucleic acid sequence encodes more than one polypeptide tag, the respective sequences that encode each polypeptide tag are joined in-frame to result in a fusion protein that comprises each polypeptide tag. In certain embodiments, the second nucleic acid sequence encodes, e.g., two, three, four, five, etc. polypeptide tags.


As used herein, the second nucleic acid sequence may encode any polypeptide tag appropriate to the particular chosen application or selected target protein (e.g., an affinity purification tag and/or a solubility enhancement tag). Polypeptide tags are known to those skilled in the art. For example, the encoded polypeptide tag may be an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein G B1 domain tag, a myxococcus protein S tag or Protein A tag.


Accordingly, in certain embodiments, the at least one encoded polypeptide tag is selected from an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein G B1 domain tag, a myxococcus protein S tag or Protein A tag.


In certain embodiments, the second nucleic acid sequence encodes at least one affinity purification tag.


In certain embodiments, the second nucleic acid sequence encodes more than one affinity purification tag.


In certain embodiments, the second nucleic acid sequence encodes two affinity purification tags.


In certain embodiments, the encoded affinity purification tag(s) is/are selected from a Streptavidin binding moiety, a maltose binding protein moiety, and a HIS tag.


In certain embodiments, the Streptavidin binding moiety is a Nano-tag or a biotinylated Avi-tag.


In certain embodiments, the second nucleic acid sequence encodes no affinity purification tags.


In certain embodiments, the second nucleic acid sequence encodes at least one solubility enhancement tag.


In certain embodiments, the second nucleic acid sequence encodes more than one solubility enhancement tag.


In certain embodiments, the second nucleic acid sequence encodes two solubility enhancement tags.


In certain embodiments, the encoded solubility enhancement tag(s) is/are selected from a maltose binding protein tag, a protein G B1 domain tag, and a myxococcus protein S tag.


In certain embodiments, the second nucleic acid sequence encodes no solubility enhancement tags.


In certain embodiments, the second nucleic acid sequence further encodes at least one protease recognition site. In certain embodiments, the second nucleic acid sequence encodes more than one protease recognition site.


As used herein, when the second nucleic acid sequence further encodes a protease recognition site(s), the sequence that encodes this/these site(s) is/are inserted in-frame with the sequence(s) that encode the at least one polypeptide tag to result in a fusion protein that comprises the polypeptide tag(s) and the protease recognition site(s). In certain embodiments, the encoded protease recognition site(s) is/are downstream of the encoded polypeptide tag(s). In certain embodiments, the encoded protease recognition site is/are between a series of encoded polypeptide tag(s).


In certain embodiments, the protease recognition site(s) is/are a Tobacco Etch Virus (TEV), Thrombin, Factor Xa and/or a human rhinovirus (HRV) 3C (e.g., PreScission Protease, GE Healthcare Life Sciences, Pittsburgh, Pa.) protease recognition site.


As described herein, the PreScission Protease is a genetically engineered protein consisting of human rhinovirus 3C protease. It is often produced as a fusion protein with a hexaHis or GST affinity purification tag. It specifically cleaves between the Gln and Gly residues of the recognition sequence of LeuGluValLeuPheGln/GlyPro.


In certain embodiments, the second nucleic acid sequence is at least about 21 nucleotides in length. In certain embodiments, the second nucleic acid sequence is at least about, e.g., 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 201, 252, 303, 354, 405, 456, 507, 558, 609, 660, 711, 762, 813, 864, 915, 966, or 1,017 nucleotides in length.


In certain embodiments, the target protein coding sequence encodes a transcription factor, a transcription factor domain, an epigenetic regulatory factor, or an epigenetic regulatory factor domain.


In certain embodiments, the target protein coding sequence encodes a polypeptide sequence described in Table 2. As described herein, the target protein coding sequence may also encode a polypeptide sequence that has substantial identity to or is a functional equivalent of a polypeptide sequence described in Table 2.


In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an affinity capture reagent.


In certain embodiments, the affinity capture reagent is an antibody, an antibody fragment, or an aptamer.


In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an antibody or Fab by phage display.


In certain embodiments, the expression of the target protein is about 1.5 fold greater than the expression of a target protein generated from an expression vector that was not modified as described herein. In certain embodiments, the expression of the target protein is, e.g., about 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, or 20, etc., fold greater than the expression of a target protein generated from an expression vector that was not modified as described herein.


As described herein, in certain embodiments, expression of a target protein from a vector that is not TOEET modified as described herein is undetectable, whereas expression of the same target protein from a vector that has been modified as described herein is detectable.


Certain embodiments of the invention provide an expression vector prepared using a method as described herein.


Certain embodiments of the invention provide a target protein expression vector (e.g. a target protein expression vector) comprising, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag has been specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA.


In certain embodiments, the second nucleic acid sequence has been specifically modified to reduce the presence of rare codons.


In certain embodiments, the modified region of the nucleic acid sequence spans from the first 5′ nucleotide in the expressed mRNA to the last nucleotide of the polypeptide tag.


In certain embodiments, nucleotides within about the last 20 nucleotides of the first nucleic acid sequence have been modified (i.e., from the nucleotide that directly precedes the encoded start codon to 20 nucleotides upstream). In certain embodiments, nucleotides within about the last, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the first nucleic acid sequence have been modified.


In certain embodiments, nucleotides within about the first 20 nucleotides of the second nucleic acid sequence have been modified (i.e., from the first nucleotide within the encoded start codon to 20 nucleotides downstream). In certain embodiments, nucleotides within about the first, e.g., 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450, 475, 500, 525, 550, 575, 600, 625, 650, 675, 700, 725, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975 or 1,000 nucleotides of the second nucleic acid sequence have been modified.


In certain embodiments, an expression vector as described herein, further comprises a target protein coding sequence inserted into the vector in-frame with the nucleic acid tag sequence to encode a fusion protein comprising the polypeptide tag and the target protein.


In certain embodiments, the target protein coding sequence has not been modified to minimize RNA secondary structure.


In certain embodiments, the target protein coding sequence has not been modified to eliminate rare codons.


In certain embodiments, the target protein coding sequence has been modified to minimize RNA secondary structure.


In certain embodiments, the target protein coding sequence has been modified to eliminate rare codons.


In certain embodiments, the second nucleic acid sequence encodes at least one affinity purification tag.


In certain embodiments, the second nucleic acid sequence encodes more than one polypeptide tag. As used herein, when the second nucleic acid sequence encodes more than one polypeptide tag, the respective sequences that encode each polypeptide tag are joined in-frame to result in a fusion protein that comprises each polypeptide tag. In certain embodiments, the second nucleic acid sequence encodes, e.g., two, three, four, five, etc. polypeptide tags.


As used herein, the second nucleic acid sequence may encode any polypeptide tag appropriate to the particular chosen application or selected target protein (e.g., an affinity purification tag or a solubility enhancement tag). Polypeptide tags are known to those skilled in the art. For example, the encoded polypeptide tag may be an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein G B1 domain tag, a myxococcus protein S tag or Protein A tag.


Accordingly, in certain embodiments, the at least one encoded polypeptide tag is selected from an Avi-tag, Calmodulin-tag, FLAG-tag, HA-tag, His-tag, Myc-tag, S-tag, SBP-tag, Softag 1, Softag 3, V5 tag, Xpress tag, Isopeptag, Spy tag, BCCP, Glutathione-S-transferase-tag, Green fluorescent protein-tag, Maltose binding protein-tag, Nus-tag, Strep-tag, Thioredoxin-tag, TC tag, Ty tag, Nano-tag, Halo-tag, protein. G B1 domain tag, a myxococcus protein S tag or Protein A tag.


In certain embodiments, the second nucleic acid sequence encodes more than one affinity purification tag.


In certain embodiments, the second nucleic acid sequence encodes two affinity purification tags.


In certain embodiments, the encoded affinity purification tag(s) is/are selected from a Streptavidin binding moiety, a maltose binding protein moiety, and a HIS tag.


In certain embodiments the Streptavidin binding moiety is a Nano-tag or a biotinylated Avi-tag.


In certain embodiments, the second nucleic acid sequence encodes no affinity purification tags.


In certain embodiments, the second nucleic acid sequence encodes at least one solubility enhancement tag.


In certain embodiments, the second nucleic acid sequence encodes more than one solubility enhancement tag.


In certain embodiments, the second nucleic acid sequence encodes two solubility enhancement tags.


In certain embodiments, the encoded solubility enhancement tag(s) is/are selected from a maltose binding protein tag, a protein G B1 domain tag, and a myxococcus protein S tag.


In certain embodiments, the second nucleic acid sequence encodes at least one protease recognition site.


As used herein, when the second nucleic acid sequence further encodes a protease recognition site(s), the sequence that encodes this/these site(s) is/are inserted in-frame with the sequence(s) that encode the at least one polypeptide tag to result in a fusion protein that comprises the polypeptide tag(s) and the protease recognition site(s). In certain embodiments, the encoded protease recognition site(s) is/are downstream of the encoded polypeptide tag(s). In certain embodiments, the encoded protease recognition site is/are between a series of encoded polypeptide tag(s).


In certain embodiments, the protease recognition site(s) is/are a Tobacco Etch Virus (TEV), Thrombin, Factor Xa and/or a HRV 3C protease recognition site.


In certain embodiments, the second nucleic acid sequence is at least about 21 nucleotides in length. In certain embodiments, the second nucleic acid sequence is at least about, e.g., 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72, 75, 78, 81, 84, 87, 90, 93, 96, 99, 102, 105, 108, 111, 114, 117, 120, 123, 126, 129, 132, 135, 138, 141, 144, 147, 150, 201, 252, 303, 354, 405, 456, 507, 558, 609, 660, 711, 762, 813, 864, 915, 966, or 1,017 nucleotides in length.


In certain embodiments, the target protein coding sequence encodes a transcription factor, a transcription factor domain, an epigenetic regulatory factor, or an epigenetic regulatory factor domain.


In certain embodiments, the target protein coding sequence encodes a polypeptide sequence described in Table 2. As described herein, the target protein coding sequence may also encode a polypeptide sequence that has substantial identity to or is a functional equivalent of a polypeptide sequence described in Table 2.


In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an affinity capture reagent.


In certain embodiments, the affinity capture reagent is an antibody, an antibody fragment, or an aptamer.


In certain embodiments, the target protein coding sequence encodes a protein antigen for producing an antibody or Fab by phage display.


In certain embodiments, the target protein is expressed at about a 1.5 fold higher level than a target protein generated from an expression vector that was not modified as described herein. In certain embodiments, the target protein is expressed at about, e.g., a 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, or 20, etc., higher level than a target protein generated from an expression vector that was not modified as described herein.


As described herein, in certain embodiments, expression of a target protein from a vector not modified as described herein is undetectable, whereas expression of the same target protein from a vector that has been modified as described herein is detectable.


Certain embodiments of the invention provide a host cell comprising the expression vector as described herein. Host cells are used for the expression of vectors and are known in the art. For example, a host cell may be a bacterial cell, such as E. coli.


Certain embodiments of the invention provide a method for expressing a target protein in a host cell, comprising culturing the host cell as described herein for a period of time under conditions permitting expression of the target protein.


In certain embodiments, the target protein is a protein antigen for producing an affinity capture reagent.


In certain embodiments, the affinity capture reagent is an antibody, an antibody fragment, or an aptamer.


In certain embodiments, the target protein is a protein antigen for producing an antibody or Fab by phage display.


In one aspect, the invention features a method of designing an expression vector for expressing a recombinant protein in a host cell, e.g., bacterial cell (such as E. coli. cell). The method includes steps of: obtaining a first sequence encoding the recombinant protein; obtaining an expression vector containing an insertion site for the first sequence, wherein once inserted at the insertion site, the first sequence is joined in frame with a 5′ sequence from the expression vector to form a first fusion sequence that encodes a RNA sequence, the RNA sequence having a Ribosomal Binding Site (RBS) and a translation initiation site; modifying the RNA sequence by (i) designing the RNA sequence so as to minimize RNA secondary structure in a region around the RBS site or translation initiation site, or (ii) optimizing codon usage in the RNA sequence based on codon usage of the host cell, to obtain a second fusion sequence; and cloning the second fusion sequence into the expression vector in such a way to replace the first fusion sequence.


In one embodiment, the designing step or optimizing step is carried out using Transcript-Optimized Expression Enhancement Technology (TOEET) as shown and described herein. In another, the designing step or optimizing step is carried out by introducing a third sequence encoding a N-terminal polypeptide expression-enhancement tag (EET) directly downstream of the initiation site.


The expression-enhancement tag can be an affinity purification tag, such as one having the sequence of an Avi tag, a Nano-tag, or a 6×His tag.


In a second aspect, the invention provides an expression vector that is designed using the method described above. In the expression vector, the second fusion sequence can have a sequence selected from the sequences shown in FIG. 1. In one example, the expression vector is selected from the group consisting of pNESG_Avi6HT and pNESG_Nano6HT. The invention also provides a host cell having the expression vector.


In a third aspect, the invention features a method for increasing the expression and solubility of a recombinant protein in a host cell. The method includes obtaining the just described host cell; culturing the host cell in a culture for period of time; and recovering the recombinant protein from the host cell or the culture. To that end, the recombinant protein can be a protein antigen for producing an affinity capture reagent (such as an antibody, an antibody fragment, or an aptamer) or a protein antigen for producing antibody or Fab by phage display.


In a fourth aspect, the invention provides an immunogenic composition having the recombinant protein produced by the method described above. The composition can be administered to a subject in need thereof for generating an immune response in the subject.


In a fifth aspect, the invention provides a method of generating an antibody (either polyclonal or monoclonal) by, among others, administrating to a subject the immunogenic composition described above.


The invention also provides an isolated polypeptide, a nucleic acid encoding it, a high throughput method for identifying a soluble protein or protein domain, and a high throughput method for isolating a soluble protein or protein domain substantially as shown and described herein.


The term “nucleic acid” refers to deoxyribonucleotides (DNA, e.g., a cDNA or genomic DNA), ribonucleotides (RNA, e.g., an mRNA), or a DNA or RNA analog and polymers thereof, in either single- or double-stranded form, but preferably is double-stranded DNA, made of monomers (nucleotides) containing a sugar, phosphate and a base that is either a purine or pyrimidine. A DNA or RNA analog can be synthesized from nucleotide analogs. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions) and complementary sequences, as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed-base and/or deoxyinosine residues.


The term “nucleotide sequence” refers to a polymer of DNA or RNA which can be single-stranded or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases capable of incorporation into DNA or RNA polymers. The terms “nucleic acid,” “nucleic acid molecule,” or “polynucleotide” are used interchangeably.


Certain embodiments of the invention encompass isolated or substantially purified nucleic acid compositions. An “isolated nucleic acid” is a nucleic acid the structure of which is not identical to that of any naturally occurring nucleic acid or to that of any fragment of a naturally occurring genomic nucleic acid. The term therefore covers, for example, (a) a DNA which has the sequence of part of a naturally occurring genomic DNA molecule but is not flanked by both of the coding sequences that flank that part of the molecule in the genome of the organism in which it naturally occurs; (b) a nucleic acid incorporated into a vector or into the genomic DNA of a prokaryote or eukaryote in a manner such that the resulting molecule is not identical to any naturally occurring vector or genomic DNA; (c) a separate molecule such as a cDNA, a genomic fragment, a fragment produced by polymerase chain reaction (PCR), or a restriction fragment; and (d) a recombinant nucleotide sequence that is part of a hybrid gene, i.e., a gene encoding a fusion protein. Specifically excluded from this definition are nucleic acids present in mixtures of different (i) DNA molecules, (ii) transfected cells, or (iii) cell clones, e.g., as these occur in a DNA library such as a cDNA or genomic DNA library. The nucleic acid described above can be used to express a fusion protein of this invention. For this purpose, one can operatively link the nucleic acid to suitable regulatory sequences to generate an expression vector. The following terms are used to describe the sequence relationships between two or more nucleotide sequences: (a) “reference sequence,” (b) “comparison window,” (c) “sequence identity,” (d) “percentage of sequence identity,” and (e) “substantial identity.”


(a) As used herein, “reference sequence” is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.


(b) As used herein, “comparison window” makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.


Methods of alignment of sequences for comparison are well-known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (Myers and Miller, CABIOS, 4, 11 (1988)); the local homology algorithm of Smith et al. (Smith et al., Adv. Appl. Math., 2, 482 (1981)); the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, JMB, 48, 443 (1970)); the search-for-similarity-method of Pearson and Lipman (Pearson and Lipman, Proc. Natl. Acad. Sci. USA, 85, 2444 (1988)); the algorithm of Karlin and Altschul (Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 87, 2264 (1990)), modified as in Karlin and Altschul (Karlin and Altschul, Proc. Natl. Acad. Sci. USA 90, 5873 (1993)).


Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8 (available from Genetics Computer Group (GCG), 575 Science Drive, Madison, Wis., USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (Higgins et al., CABIOS, 5, 151 (1989)); Corpet et al. (Corpet et al., Nucl. Acids Res., 16, 10881 (1988)); Huang et al. (Huang et al., CABIOS, 8, 155 (1992)); and Pearson et al. (Pearson et al., Meth. Mol. Biol., 24, 307 (1994)). The ALIGN program is based on the algorithm of Myers and Miller, supra. The BLAST programs of Altschul et al. (Altschul et al., JMB, 215, 403 (1990)) are based on the algorithm of Karlin and Altschul supra.


Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information. This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold. These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are then extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always >0) and N (penalty score for mismatching residues; always <0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when the cumulative alignment score falls off by the quantity X from its maximum achieved value, the cumulative score goes to zero or below due to the accumulation of one or more negative-scoring residue alignments, or the end of either sequence is reached.


In addition to calculating percent sequence identity, the BLAST algorithm also performs a statistical analysis of the similarity between two sequences. One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between two nucleotide or amino acid sequences would occur by chance. For example, a test nucleic acid sequence is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid sequence to the reference nucleic acid sequence is less than about 0.1, less than about 0.01, or even less than about 0.001.


To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, a cutoff of 100, M=5, N=−4, and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength (W) of 3, an expectation (E) of 10, and the BLOSUM62 scoring matrix. Alignment may also be performed manually by inspection.


For purposes of the present invention, comparison of nucleotide sequences for determination of percent sequence identity to the promoter sequences disclosed herein may be made using the BlastN program (version 1.4.7 or later) with its default parameters or any equivalent program. By “equivalent program” is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by the program.


(c) As used herein, “sequence identity” or “identity” in the context of two nucleic acid or polypeptide sequences makes reference to a specified percentage of residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window, as measured by sequence comparison algorithms or by visual inspection. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have “sequence similarity” or “similarity.” Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).


(d) As used herein, “percentage of sequence identity” means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.


(e)(i) The term “substantial identity” of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, or 94%, or even at least 95%, 96%, 97%, 98%, or 99% sequence identity, compared to a reference sequence using one of the alignment programs described using standard parameters. One of skill in the art will recognize that these values can be appropriately adjusted to determine corresponding identity of proteins encoded by two nucleotide sequences by taking into account codon degeneracy, amino acid similarity, reading frame positioning, and the like. Substantial identity of amino acid sequences for these purposes normally means sequence identity of at least 70%, 80%, 90%, or even at least 95%.


Another indication that nucleotide sequences are substantially identical is if two molecules hybridize to each other under stringent conditions. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. However, stringent conditions encompass temperatures in the range of about 1° C. to about 20° C., depending upon the desired degree of stringency as otherwise qualified herein. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides they encode are substantially identical. This may occur, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. One indication that two nucleic acid sequences are substantially identical is when the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the polypeptide encoded by the second nucleic acid.


(e)(ii) The term “substantial identity” in the context of a peptide indicates that a peptide comprises a sequence with at least 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, or 94%, or even 95%, 96%, 97%, 98% or 99%, sequence identity to the reference sequence over a specified comparison window. In certain embodiments, optimal alignment is conducted using the homology alignment algorithm of Needleman and Wunsch (Needleman and Wunsch, JMB, 48, 443 (1970)). An indication that two peptide sequences are substantially identical is that one peptide is immunologically reactive with antibodies raised against the second peptide. Thus, a peptide is substantially identical to a second peptide, for example, where the two peptides differ only by a conservative substitution. Thus, certain embodiments of the invention provide nucleic acid molecules that are substantially identical to the nucleic acid molecules described herein.


For sequence comparison, typically one sequence acts as a reference sequence to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are input into a computer, subsequence coordinates are designated if necessary, and sequence algorithm program parameters are designated. The sequence comparison algorithm then calculates the percent sequence identity for the test sequence(s) relative to the reference sequence, based on the designated program parameters.


As noted above, another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions. The phrase “hybridizing specifically to” refers to the binding, duplexing, or hybridizing of a molecule only to a particular nucleotide sequence under stringent conditions when that sequence is present in a complex mixture (e.g., total cellular) DNA or RNA. “Bind(s) substantially” refers to complementary hybridization between a probe nucleic acid and a target nucleic acid and embraces minor mismatches that can be accommodated by reducing the stringency of the hybridization media to achieve the desired detection of the target nucleic acid sequence.


“Stringent hybridization conditions” and “stringent hybridization wash conditions” in the context of nucleic acid hybridization experiments such as Southern and Northern hybridizations are sequence dependent, and are different under different environmental parameters. Longer sequences hybridize specifically at higher temperatures. The thermal melting point (Tm) is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the Tm can be approximated from the equation of Meinkoth and Wahl (1984); Tm 81.5° C.+16.6 (log M)+0.41 (% GC)−0.61 (% form)−500/L; where M is the molarity of monovalent cations, % GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. Tm is reduced by about 1° C. for each 1% of mismatching; thus, Tm, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with >90% identity are sought, the Tm can be decreased 10° C. Generally, stringent conditions are selected to be about 5° C. lower than the Tm for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4° C. lower than the Tm; moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10° C. lower than the Tm; low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20° C. lower than the Tm. Using the equation, hybridization and wash compositions, and desired temperature, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a temperature of less than 45° C. (aqueous solution) or 32° C. (formamide solution), the SSC concentration is increased so that a higher temperature can be used. Generally, highly stringent hybridization and wash conditions are selected to be about 5° C. lower than the Tm for the specific sequence at a defined ionic strength and pH.


An example of highly stringent wash conditions is 0.15 M NaCl at 72° C. for about 15 minutes. An example of stringent wash conditions is a 0.2×SSC wash at 65° C. for 15 minutes. Often, a high stringency wash is preceded by a low stringency wash to remove background probe signal. An example medium stringency wash for a duplex of, e.g., more than 100 nucleotides, is 1×SSC at 45° C. for 15 minutes. For short nucleotide sequences (e.g., about 10 to 50 nucleotides), stringent conditions typically involve salt concentrations of less than about 1.5 M, less than about 0.01 to 1.0 M, Na ion concentration (or other salts) at pH 7.0 to 8.3, and the temperature is typically at least about 30° C. and at least about 60° C. for long probes (e.g., >50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. In general, a signal to noise ratio of 2× (or higher) than that observed for an unrelated probe in the particular hybridization assay indicates detection of a specific hybridization. Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the proteins that they encode are substantially identical. This occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code.


Very stringent conditions are selected to be equal to the Tm for a particular probe. An example of stringent conditions for hybridization of complementary nucleic acids that have more than 100 complementary residues on a filter in a Southern or Northern blot is 50% formamide, e.g., hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37° C., and a wash in 0.1×SSC at 60 to 65° C. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37° C., and a wash in 1× to 2×SSC (20×SSC=3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55° C. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37° C., and a wash in 0.5× to 1×SSC at 55 to 60° C.


In addition to the chemical optimization of stringency conditions, analytical models and algorithms can be applied to hybridization data-sets (e.g. microarray data) to improve stringency.


An expression vector as described herein can be introduced into host cells to produce a fusion protein of this invention. Also within the scope of this invention is a host cell that contains the above-described nucleic acid. Examples include E. coli cells, insect cells (e.g., using baculovirus expression vectors), yeast cells, plant cells, or mammalian cells. See e.g., Goeddel, (1990) Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. To produce a fusion protein of this invention, one can culture a host cell in a medium under conditions permitting expression of the protein encoded by a nucleic acid of this invention, and isolate the protein from the cultured cell or the medium of the cell. The presence of the fusion protein in an occlusion body allows one to prepare the protein from the host cell by simply separating the occlusion body from the host cell. Alternatively, the nucleic acid of this invention can be transcribed and translated in vitro, for example, using T7 promoter regulatory sequences and T7 polymerase.


The terms “peptide,” “polypeptide,” and “protein” are used herein interchangeably to describe the arrangement of amino acid residues in a polymer. A peptide, polypeptide, or protein can be composed of the standard 20 naturally occurring amino acid, in addition to rare amino acids and synthetic amino acid analogs. They can be any chain of amino acids, regardless of length or post-translational modification (for example, glycosylation or phosphorylation). The peptide, polypeptide, or protein “of this invention” includes recombinantly or synthetically produced fusion versions having the particular domains or portions that are soluble. The term also encompasses polypeptides that have an added amino-terminal methionine (useful for expression in prokaryotic cells).


A “recombinant” peptide, polypeptide, or protein refers to a peptide, polypeptide, or protein produced by recombinant DNA techniques; i.e., produced from cells transformed by an exogenous DNA construct encoding the desired peptide. A “synthetic” peptide, polypeptide, or protein refers to a peptide, polypeptide, or protein prepared by chemical synthesis. The term “recombinant” when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified.


Within the scope of this invention are fusion proteins containing one or more of the afore-mentioned sequences and a heterologous sequence. A heterologous polypeptide, nucleic acid, or gene is one that originates from a foreign species, or, if from the same species, is substantially modified from its original form. Two fused domains or sequences are heterologous to each other if they are not adjacent to each other in a naturally occurring protein or nucleic acid.


An “isolated” peptide, polypeptide, or protein refers to a peptide, polypeptide, or protein that has been separated from other proteins, lipids, and nucleic acids with which it is naturally associated. The polypeptide/protein can constitute at least 10% (i.e., any percentage between 10% and 100%, e.g., 20%, 30%, 40%, 50%, 60%, 70%, 80%, 85%, 90%, 95%, and 99%) by dry weight of the purified preparation. Purity can be measured by any appropriate standard method, for example, by column chromatography, polyacrylamide gel electrophoresis, or HPLC analysis. An isolated polypeptide/protein described in the invention can be purified from a natural source, produced by recombinant DNA techniques, or by chemical methods.


A functional equivalent of a peptide, polypeptide, or protein of this invention refers to a polypeptide derivative of the peptide, polypeptide, or protein, e.g., a protein having one or more point mutations, insertions, deletions, truncations, a fusion protein, or a combination thereof. It retains substantially the activity of the corresponding unmodified peptide/polypeptide/protein (e.g., the activity of transcription factor). The isolated polypeptide can contain a sequence of a protein as listed in Table 1 or 2 or a functional fragment thereof. In general, the functional equivalent is at least 75% (e.g., any number between 75% and 100%, inclusive, e.g., 70%, 80%, 85%, 90%, 95%, and 99%) identical to the corresponding unmodified peptide/polypeptide/protein.


The amino acid composition of the above-mentioned peptide/polypeptide/protein may vary without disrupting their biological activity, e.g., a transcription factor activity, i.e., ability to bind to a DNA element and/or trigger or inhibit the respective cellular response. For example, it can contain one or more conservative amino acid substitutions. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), β-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a polypeptide is preferably replaced with another amino acid residue from the same side chain family. Alternatively, mutations can be introduced randomly along all or part of the sequences, such as by saturation mutagenesis, and the resultant mutants can be screened for the respective biological activities.


A polypeptide described in this invention can be obtained as a recombinant polypeptide. To prepare a recombinant polypeptide, a nucleic acid encoding it can be linked to another nucleic acid encoding a fusion partner, e.g., the tags disclosed herein, glutathione-s-transferase (GST), 6×-His epitope tag (or Hexa-His), 8×-His (or Octa-His) epitope tag, or M13 Gene 3 protein. The resultant fusion nucleic acid expresses in suitable host cells a fusion protein that can be isolated by methods known in the art. The isolated fusion protein can be further treated, e.g., by enzymatic digestion (e.g., TEV protease digestion), to remove the fusion partner and obtain the recombinant polypeptide of this invention.


The peptide/polypeptide/protein of this invention covers chemically modified versions. Examples of chemically modified peptide/protein include those subjected to conformational change, addition or deletion of a sugar chain, and those to which a compound such as polyethylene glycol has been bound. Once purified and tested by standard methods or according to the methods described in the examples below, the peptide/polypeptide/protein can be included in a composition, e.g., a pharmaceutical composition or an immunogenic composition.


The term “immunogenic” refers to a capability of producing an immune response in a host animal against an antigen or antigens. This immune response forms the basis of the protective immunity elicited by a vaccine against a specific infectious organism. “Immune response” refers to a response elicited in an animal, which may refer to cellular immunity (CMI); humoral immunity or both. “Antigenic agent,” “antigen,” or “immunogen” means a substance that induces a specific immune response in a host animal. The antigen can be a protein described above, a vector encoding it, a cell having the vector or protein, or any combination thereof.


The term “animal” includes all vertebrate animals including humans. It also includes an individual animal in all stages of development, including embryonic and fetal stages. In particular, the term “vertebrate animal” includes, but not limited to, humans, canines (e.g., dogs), felines (e.g., cats); equines (e.g., horses), bovines (e.g., cattle), porcine (e.g., pigs), as well as in avians. The term “avian” refers to any species or subspecies of the taxonomic class ava, such as, but not limited to, chickens (breeders, broilers and layers), turkeys, ducks, a goose, a quail, pheasants, parrots, finches, hawks, crows and ratites including ostrich, emu and cassowary.


The immunogenic composition can be used to generate antibodies against the peptide/polypeptide/protein of this invention. As used herein, “antibody” is used in the broadest sense and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), and antibody fragments so long as they exhibit the desired biological activity.


As used herein, “antibody fragments”, may comprise a portion of an intact antibody, generally including the antigen binding or variable region of the intact antibody, the Fab region of the antibody, or the Fc region of an antibody which retains FcR binding capability. Examples of antibody fragments include linear antibodies; single-chain antibody molecules; and multispecific antibodies formed from antibody fragments. The antibody fragments preferably retain at least part of the hinge and optionally the CH1 region of an IgG heavy chain. More preferably, the antibody fragments retain the entire constant region of an IgG heavy chain, and include an IgG light chain.


As used herein, Affinity Capture Reagents are cognate molecules capable or recognizing and binding to a protein antigen, including protein antigens produced by TOEET-optimized expression vectors. Affinity Capture reagents include (but are not limited to) monoclonal and polyclonal antibodies, Fab or Fab fragments generated by phage and related antigen display methods, RNA aptamers, and various protein binding scaffolds which can be used to generate antigen-recognizing molecules.


As used herein, the term “Fc fragment” or “Fc region” is used to define a C-terminal region of an immunoglobulin heavy chain. The “Fc region” may be a native sequence Fc region or a variant Fc region. Although the boundaries of the Fc region of an immunoglobulin heavy chain might vary, the human IgG heavy chain Fc region is usually defined to stretch from an amino acid residue at position Cys226, or from Pro230, to the carboxyl-terminus thereof.


A “native sequence Fc region” comprises an amino acid sequence identical to the amino acid sequence of an Fc region found in nature. A “variant Fc region” as appreciated by one of ordinary skill in the art comprises an amino acid sequence which differs from that of a native sequence Fc region by virtue of at least one “amino acid modification.” Preferably, the variant Fc region has at least one amino acid substitution compared to a native sequence Fc region or to the Fc region of a parent polypeptide, e.g., from about one to about ten amino acid substitutions, and preferably from about one to about five amino acid substitutions in a native sequence Fc region or in the Fc region of the parent polypeptide. The variant Fc region herein will preferably possess at least about 80% homology with a native sequence Fc region and/or with an Fc region of a parent polypeptide, and more preferably at least about 90% homology therewith, more preferably at least about 95% homology therewith, even more preferably, at least about 99% homology therewith.


Within the scope of this invention is a composition that contains a suitable carrier and one or more of the agents described above. The composition can be a pharmaceutical composition that contains a pharmaceutically acceptable carrier. The term “pharmaceutical composition” refers to the combination of an active agent with a carrier, inert or active, making the composition especially suitable for diagnostic or therapeutic use in vivo or ex vivo. A “pharmaceutically acceptable carrier,” after administered to or upon a subject, does not cause undesirable physiological effects. The carrier in the pharmaceutical composition must be “acceptable” also in the sense that it is compatible with the active ingredient and can be capable of stabilizing it. One or more solubilizing agents can be utilized as pharmaceutical carriers for delivery of an active compound. Examples of a pharmaceutically acceptable carrier include, but are not limited to, biocompatible vehicles, adjuvants, additives, and diluents to achieve a composition usable as a dosage form. Examples of other carriers include colloidal silicon oxide, magnesium stearate, cellulose, and sodium lauryl sulfate.


As used herein, a “subject” refers to a human and a non-human animal. Examples of a non-human animal include all vertebrates, e.g., mammals, such as non-human mammals, non-human primates (particularly higher primates), dog, rodent (e.g., mouse or rat), guinea pig, cat, and rabbit, and non-mammals, such as birds, amphibians, reptiles, etc. In one embodiment, the subject is a human. In another embodiment, the subject is an experimental, non-human animal or animal suitable as a disease model.


The composition of this invention can include an adjuvant agent or adjuvant. As used herein, the term “adjuvant agent” or “adjuvant” means a substance added to an immunogenic composition or a vaccine to increase the immunogenic composition or the vaccine's immunogenicity. Examples of an adjuvant include a cholera toxin, Escherichia coli heat-labile enterotoxin, liposome, unmethylated DNA (CpG) or any other innate immune-stimulating complex. Various adjuvants that can be used to further increase the immunological response depend on the host species and include Freund's adjuvant (complete and incomplete), mineral gels such as aluminum hydroxide, surface-active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, and dinitrophenol. Useful human adjuvants include BCG (bacille Calmette-Guerin) and Corynebacterium parvum.


Pharmaceutical compositions comprising an adjuvant and an antigen may be manufactured by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Pharmaceutical compositions may be formulated in conventional manner using one or more physiologically acceptable carriers, diluents, excipients or auxiliaries which facilitate processing of the antigens of the invention into preparations which can be used pharmaceutically. Proper formulation is dependent upon the route of administration chosen.


A pharmaceutical composition of this invention can be administered parenterally, orally, nasally, rectally, topically, or buccally. The term “parenteral” as used herein refers to subcutaneous, intracutaneous, intravenous, intramuscular, intraarticular, intraarterial, intrasynovial, infrasternal, intrathecal, intralesional, or intracranial injection, as well as any suitable infusion technique. For injection, immunogenic or vaccine preparations may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, phosphate buffered saline, or any other physiological saline buffer. The solution may contain formulatory agents such as suspending, stabilizing and/or dispersing agents. Alternatively, the peptides, polypeptides, or proteins may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.


Determination of an effective amount of the immunogenic or vaccine formulation for administration is well within the capabilities of those skilled in the art, especially in light of the detailed disclosure provided herein. An effective dose can be estimated initially from in vitro assays. For example, a dose can be formulated in animal models to achieve an induction of an immune response using techniques that are well known in the art. One having ordinary skill in the art could readily optimize administration to all animal species based on results described herein. Dosage amount and interval may be adjusted individually. For example, when used as a vaccine, the vaccine formulations of the invention may be administered in about 1 to 3 doses for a 1-36 week period. Preferably, 1 or 2 doses are administered, at intervals of about 3 weeks to about 4 months, and booster vaccinations may be given periodically thereafter. Alternative protocols may be appropriate for individual animals. A suitable dose is an amount of the vaccine formulation that, when administered as described above, is capable of raising an immune response in an immunized animal sufficient to protect the animal from an infection for at least 4 to 12 months. In general, the amount of the antigen present in a dose ranges from about 1 pg to about 100 mg per kg of host, typically from about 10 pg to about 1 mg, and preferably from about 100 pg to about 1 pg. Suitable dose range will vary with the route of injection and the size of the patient, but will typically range from about 0.1 ml to about 5 ml.


This invention also provides methods for making antibodies against the above-described proteins. The antibodies can be either polyclonal or monoclonal.


Polyclonal antibodies against a protein of the invention can be obtained as follows. After verifying that a desired serum antibody level has been reached, blood is withdrawn from the mammal sensitized with the antigen. Serum is isolated from this blood using well-known methods. The serum containing the polyclonal antibody may be used as the polyclonal antibody, or according to needs, the polyclonal antibody-containing fraction may be further isolated from the serum. For instance, a fraction of antibodies that specifically recognize the protein of the invention may be prepared by using an affinity column to which the protein is coupled. Then, the fraction may be further purified by using a Protein A or Protein G column in order to prepare immunoglobulin G or immunoglobulin M.


To obtain monoclonal antibodies, after verifying that the desired serum antibody level has been reached in the mammal sensitized with the above-described antigen, immunocytes are taken from the mammal and used for cell fusion. For this purpose, splenocytes can be preferable immunocytes. As parent cells fused with the above immunocytes, mammalian myeloma cells are preferably used. More preferably, myeloma cells that have acquired the feature, which can be used to distinguish fusion cells by agents, are used as the parent cell.


The cell fusion between the above immunocytes and myeloma cells can be conducted according to known methods, for example, the method of Milstein et al. (Methods Enzymol., 73:3-46, 1981). The hybridoma obtained from cell fusion is selected by culturing the cells in a standard selective culture medium, for example, HAT culture medium (hypoxanthine, aminopterin, thymidine-containing culture medium). The culture in this HAT medium is continued for a period sufficient enough for cells (non-fusion cells) other than the objective hybridoma to perish, usually from a few days to a few weeks. Next, the usual limiting dilution method is carried out, and the hybridoma producing the objective antibody is screened and cloned.


Other than the above method for obtaining hybridomas, by immunizing an animal other than humans with the antigen, a hybridoma producing the objective human antibodies having the activity to bind to proteins can be obtained by the method of sensitizing human lymphocytes, for example, human lymphocytes infected with the EB virus, with proteins, protein-expressing cells, or lysates thereof in vitro, fusing the sensitized lymphocytes with myeloma cells derived from human having a permanent cell division ability.


The obtained monoclonal antibodies can be purified by, for example, ammonium sulfate precipitation, protein A or protein G column, DEAE ion exchange chromatography, an affinity column to which the protein of the present invention is coupled, and so on. The antibody may be useful for the purification or detection of a protein of the invention. It may also be a candidate for an agonist or antagonist of the protein. Furthermore, it is possible to use it for the antibody treatment of diseases in which the protein is implicated. For in vivo administration (in such antibody treatment), human antibodies or humanized antibodies may be favorably used because of their reduced antigenicity.


For example, a human antibody against a protein can be obtained using hybridomas made by fusing myeloma cells with antibody-producing cells obtained by immunizing a transgenic animal comprising a repertoire of human antibody genes with an antigen such as a protein, protein-expressing cells, or a cell lysate thereof. Other than producing antibodies by using hybridoma, antibody—producing immunocytes, such as sensitized lymphocytes that are immortalized by oncogenes, may also be used.


Such monoclonal antibodies can also be obtained as recombinant antibodies produced by using the genetic engineering technique. Recombinant antibodies are produced by cloning the encoding DNA from immunocytes, such as hybridoma or antibody-producing sensitized lymphocytes, incorporating this into a suitable vector, and introducing this vector into a host to produce the antibody. The present invention encompasses such recombinant antibodies as well.


Moreover, the antibody of the present invention may be an antibody fragment or a modified-antibody, so long as it binds to a protein of the invention. For example, Fab, F (ab′)2, Fv, or single chain Fv in which the H chain Fv and the L chain Fv are suitably linked by a linker (scFv, Huston et al., Proc. Natl. Acad. Sci. USA, 85:5879-5883, 1988) can be given as antibody fragments. Specifically, antibody fragments are produced by treating antibodies with enzymes, for example, papain, pepsin, and such, or by constructing a gene encoding an antibody fragment, introducing this into an expression vector, and expressing this vector in suitable host cells (for example, Co et al., J. Immunol., 152:2968-2976, 1994; Better et al., Methods Enzymol., 178:476-496, 1989; Pluckthun et al., Methods Enzymol., 178:497-515, 1989; Lamoyi, Methods Enzymol., 121:652-663, 1986; Rousseaux et al., Methods Enzymol., 121:663-669, 1986; Bird et al., Trends Biotechnol., 9:132-137, 1991).


As modified antibodies, antibodies bound to various molecules such as polyethylene glycol (PEG) can be used. The antibody of the present invention encompasses such modified antibodies as well. To obtain such a modified antibody, chemical modifications are done to the obtained antibody. These methods are already established in the field.


The antibody of the invention may be obtained as a chimeric antibody, comprising non-human antibody-derived variable region and human antibody-derived constant region, or as a humanized antibody comprising non-human antibody-derived complementarity determining region (CDR), human antibody-derived framework region (FR), and human antibody-derived constant region by using conventional methods.


Antibodies thus obtained can be purified to uniformity. The separation and purification methods used in the present invention for separating and purifying the antibody may be any method usually used for proteins. For instance, column chromatography, such as affmity chromatography, filter, ultrafiltration, salt precipitation, dialysis, SDS-polyacrylamide gel electrophoresis, isoelectric point electrophoresis, and so on, may be appropriately selected and combined to isolate and purify the antibodies (Antibodies: a laboratory manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988), but is not limited thereto. Antibody concentration of the above mentioned antibody can be assayed by measuring the absorbance, or by the enzyme-linked immunosorbent assay (ELISA), etc. Protein A or Protein G column can be used for the affmity chromatography. Protein A column may be, for example, Hyper D, POROS, Sepharose F.F., and so on.


Other chromatography may also be used, such as ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A laboratory Course Manual. Ed. by Marshak D.R. et al., Cold Spring Harbor Laboratory Press, 1996). These may be performed on liquid chromatography such as HPLC or FPLC.


Examples of methods that assay the antigen-binding activity of the antibodies of the invention include, for example, measurement of absorbance, enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), radio immunoassay (RIA), or fluorescent antibody method. For example, when using ELISA, a protein of the invention is added to a plate coated with the antibodies of the invention, and next, the objective antibody sample, for example, culture supernatants of antibody-producing cells, or purified antibodies are added. Then, secondary antibody recognizing the antibody, which is labeled by alkaline phosphatase and such enzymes, is added, the plate is incubated and washed, and the absorbance is measured to evaluate the antigen-binding activity after adding an enzyme substrate such as p-nitrophenyl phosphate. As the protein, a protein fragment, for example, a fragment comprising a C-terminus, or a fragment comprising an N-terminus may be used. To evaluate the activity of the antibody of the invention, BIAcore may be used.


The following non-limiting examples set forth herein below illustrate certain aspects of the invention.


Example 1

This example describes two specific EET tags designed utilizing TOEET. These EETs were engineered and subcloned into the pET15_NESG expression vector (Acton et al., 2011). They contain dual tandem protein purification tags and a protease cleavage site to facilitate purification of the resulting proteins. These include the 6×-His tag (Crowe et al., 1994), and one of two Streptavidin binding moieties, either the Avi-tag (Scholle et al., 2004) or the Nano-tag (Lamla and Erdmann, 2004). The Nano-tag binds directly to streptavidin (Lamla and Erdmann, 2004); the Avi-tag is a substrate for the enzyme BirA which can be used to catalyze the covalent attachment of biotin to the Avi Tag (Scholle et al., 2004). These tandem tags allow for two separate affinity purification steps, (i) Ni-based immobilized metal affinity chromatography (IMAC) and (ii) high-affinity Streptavidin-based chromatography. This dual purification strategy allows preparation of highly purified proteins using high-throughput affinity purification methods. The Tobacco Etch Virus (TEV) protease recognition site (Kapust et al., 2002) engineered into these EETs allows removal of the affinity tags, if required, after expression and purification of the protein target.


Briefly, in designing the DNA sequences coding for these EETs, the coding sequence of one of the two Streptavidin binding moieties i.e., Avi-tag (SEQ ID NO:1—MSGLNDIFEAQKIEWHE) or Nano-tag (SEQ ID NO:2—MDVEAWLDERVPLVET) (Lamla and Erdmann, 2004; Scholle et al., 2004), a 6×-His tag (Crowe et al., 1994), and a TEV protease recognition site (Kapust et al., 2002) were fused in frame and optimized to have a high Codon Adaptation Index (Sharp and Li, 1987) (FIG. 1). The DNA sequence coding for the EET was optimized with TOEET, together with the 5′-untranslated region of the pET15-NESG expression vector, to generate the expression vectors pNESG_Avi6HT and pNESG_Nano6HT, shown in FIG. 1. These features functioned together to enhance translation initiation and protein expression levels.


Using these expression vectors (FIG. 1), protein expression resulted in T7 RNA Polymerase mediated transcription producing an mRNA transcript consisting of (i) vector sequence (pET15_NESG-5′-untranslated region), (ii) nucleotides coding for the EET, and (iii) nucleotides coding for the target protein sequence. Both the untranslated region of the vector upstream of the EET-coding region, and the RNA coding for the EET itself were optimized to avoid secondary structure formation within and between these regions of the mRNA transcript. In this particular implementation, the length of the optimized nucleotide sequence coding for the EET was about 90 nucleotides. Together with the 70 upstream 5′-untranslated nucleotides of the transcript driven by the T7 promoter of the vector, the 5′-region of the transcript was optimized as a unit of about 160 nucleotides. Longer optimized nucleotide sequences, and potentially somewhat shorter optimized nucleotide sequences may also be effective in creating TOEET-based expression-enhanced vectors.


The optimized regions of the pNESG_Avi6HT and pNESG_Nano6HT based TOEET vectors are shown in FIG. 1. The figure shows the DNA sequences, RNA sequences, and the translated protein tag (SEQ ID NO:3—MSGLNDIFEAQKIEWHEHHHHHHENLYFQSH and SEQ ID NO:4—MDVEAWLDERVPLVETHHHHHHENLYFQSH, respectively) sequences of the expression vectors, along with the DNA sequence coding for the multiple cloning site (MCS), a series of restriction endonuclease sites used for cloning into the expression plasmids. FIG. 2 shows, as an example, the predicted RNA secondary structure in transcripts generated from the pNESG_Avi6HT vector, highlighting the lack of predicted RNA secondary structure near the RBS/translation initiation site.


A third vector comprising the Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) was also constructed and optimized using TOEET. The MBP from Pyrococcus furiosus is much more thermally stable than that of E. coli, and is expected to provide a more robust solubilization enhancement tag and affinity purification tag. Proteins that are expressed but not soluble in cell extracts can be solubilized and used successfully as antigens using various methods of solublization, including urea and guanidine denaturtants (Agaton et al, 2003). The PfR MBP provides improved purification of target proteins under such partially denaturing conditions or other harsh conditions. The sequences shown at the top of FIG. 4 correspond to the first 30 residues of the wild-type PfR-MBP DNA sequence lacking the native secretion signal. The protein open reading frame (DNA sequence) is shown above the corresponding protein sequence and directly below is the T7 RNA polymerase mediated RNA transcript resulting from the cloning of the PfR-MBP into the pET15_NESG backbone. The lower set of sequences shown in FIG. 4 correspond to TOEET optimized PfR-MBP. Silent mutations were introduced for codon optimization or to decrease the predicted RNA secondary structure in the regions of the RBS and translation initiation codon, or both. The silent mutations were introduced using primers incorporating the nucleotide changes and 5 successive rounds of PCR, negating the need for expensive total gene synthesis.


The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) without TOEET optimization is shown in FIG. 5. Significant secondary structure (base pairing) at both the Ribosome Binding Site (RBS) and the translation initiation site (Initiation Codon) is predicted. The predicted mRNA secondary structure resulting from T7-RNA Polymerase based transcription off of the pET15_NESG vector backbone with Pyrococcus furiosus (PfR) Maltose Binding Protein (MBP) after TOEET optimization is shown in FIG. 6. As illustrated by FIG. 6, significantly greater open structure (lack of base pairing) after TOEET optimization is predicted.


Example 2

The results obtained from expression studies with the above-described new vectors demonstrated that the TOEET strategy is both extremely successful and robust. In this example, similar expression and solubility studies were carried out using a high throughput methodology for the identification and isolation of soluble proteins and protein domains.


As mentioned above, the isolation of soluble, well-folded proteins and protein domains is of great use and importance to the biotechnology industry and biological researchers as a whole. However, the production of such protein reagents remains extremely challenging, especially in the cost effective, commonly used bacterial expression systems. These Escherichia coli expression systems are often successful in the production of simple bacterial proteins but are far less amenable to the production of eukaryotic, mulitdomain proteins or protein complexes, often resulting in no or low levels of expression and/or solubility (greatly complicating or thwarting their production as a protein reagent). There are a variety of reasons that contribute to the lower success rate of these proteins in bacterial expression systems including the fact that eukaryotic proteins are frequently multidomain in nature, this often results in misfolding when expressed using simple prokaryotic expression systems (Netzer and Hartl, 1997). Another major reason for the higher attrition rate relates to the increased levels of disordered regions in human and other eukaryotic proteins in comparison to simpler organisms (Lui et al., 2002). These disordered regions likely cause aggregation and misfolding in E. coli expression systems leading to proteins or domains with low expression and/or solubility, again, greatly interfering with their production.


To circumvent these issues, the NESG Construct Optimization Software and High ThroughPut (HTP) Molecular Cloning and Expression Screening Platform and Automated Purification Pipeline methods were developed for assaying multiple alternative constructs to identify soluble proteins or domains (Methods in Enzymology, Vol. 493, Burlington: Academic Press, 2011, pp. 21-60.). Briefly, the NESG Construct Optimization Software used reports from the from the DisMeta Server (http://www-nmr.cabm.rutgers.edu/bioinformatics/disorder), a metaserver that generated a consensus analysis of eight sequence-based disorder predictors to identify protein regions that are likely to be disordered. In addition, secondary structure, transmembrane and signal peptides among others were also predicted. This data along with multiple sequence alignments of homologous proteins were used to predict possible structural domain boundaries. Based on this information, the NESG Construct Optimization software generated nested sets of alternative constructs, for full-length proteins, multidomain constructs, and single domain constructs. Primers for cloning were then designed using the software Primer Primer (Everett, J.K.; Acton, T.B.; Montelione, G.T.J. Struct. Funct. Genomics 2004, 5: 13-21. Primer Prim′r: A web based server for automated primer design.). Thus for a single targeted region, multiple open reading frames were generally designed varying the N and/or C-terminal sequences. These alternative constructs often possessed significantly better expression, solubility and biophysical behavior than their full-length parent sequences, increasing the possibility of successfully producing a protein reagent.


Although the NESG Construct Optimization Software identified protein subsequences that were more likely to produce soluble well-behaved samples, several variants of each were assayed to identify constructs amenable to protein sample production. Therefore the high-throughput NESG Molecular Cloning and Expression Screening Platform was developed utilizing 96-well parallel cloning/E. coli expression and Qiagen BioRobotS000-based liquid handling. Briefly, protein target sequences (constructs) were PCR amplified from Reverse Transcriptase (RT) generated cDNA pools or genomic DNA, gel purified and extracted in 96-well format (robotic liquid handling) and subcloned into pET_NESG, a series of T7 based (Novagen) bacterial expression vectors generated at Rutgers, using InFusion (Clonetech) Ligation Independent Cloning (LIC). The RT generated cDNA pools were derived from normal and disease tissue (tumor cells and cell lines) allowing for the isolation of wild-type and polymorphic proteins. Correct clones (containing the desired protein open reading frame) were identified using plate based-PCR assays. An automated DNA Miniprep Protocol isolated the nascent expression vectors and a 96-well transformation protocol was used to introduce the plasmids into the BI21(DE3) pMgK E. coli expression strain. Following overnight growth, a single representative colony from each well (96) was transferred to LB in a 96-well S-Block and incubated for 6 hours. Automated liquid handling was then utilized to produce a 500 microliter overnight subculture of each of the 96 constructs in a single 96-well S-block. An aliquot of each well was then subcultured into the corresponding well of one of four 24-well blocks containing 2 ml of fresh media and incubated at 37° C. until mid-log phase growth. Protein expression is induced with IPTG (Isopropyl13-D-1-thiogalactopyranoside) and incubated overnight at 17° C. The cells were harvested using automated liquid handling and sonicated in 96-well format. The expression and solubility of each construct was visualized by SDS-PAGE analysis and constructs suitable for protein production were identified.


The soluble expression constructs were then fermented in large volume using parallel fermentation system, consisting of 2.5-L baffled Ultra Yield™ Fembach flasks, low-cost platform shakers, controlled temperature rooms and specialized MJ9 media (Jansson et al. 1996). This generally produced 10-100 mg of protein per liter of culture. The resulting proteins were then purified using high-throughput AKTAxpress-based parallel protein purification system. This consisted of a two-step automated Ni-affinity purification (pET_NESG imparts a 6×-His tag) followed by gel filtration chromatography. The purified proteins were then analyzed for quality including molecular weight validation by MALDI-TOF mass spectrometry, homogeneity analysis by SDS-PAGE, aggregation screening by analytical gel filtration with static light scattering, and finally concentration determination was performed.


Together the NESG Construct Optimization Software, Molecular Cloning and Expression Screening Platform and Automated Purification Pipeline allow for identification and isolation of large numbers of soluble well-behaved protein reagents in a time efficient and cost effective manner. Without this technology, many of the proteins would prove elusive in regard to production as a protein reagent.


In this process, target protein expression constructs were designed using proprietary bioinformatics methods, cloning was done using robotic methods and protocols, and Expression (E, ranging from 0 to 5) and Solubility (S, ranging from 0 to 5) screening were performed in a high throughput fashion and assessed using SDS-PAGE analysis. The read out (ES score=E score×S score, ranging from 0 to 25) provided a measure of the usability of a particular target construct and expression vector system combination for large-scale protein sample production. In general, constructs providing ES scores≧9 in this high throughout expression and solubility assay provided milligram-per-liter (or tens-of-milligram per liter) quantities of protein samples in medium scale (0.5-3 L) shake flask fermentations.


As a demonstration of the TOEET technology, a set of approximately 96 human transcription factor genes and epigenetic regulatory factor genes were cloned into the pET15_NESG vector (Acton et al., 2011) lacking a TOEET sequence, and into both the pNESG_Avi6HT and pNESG_Nano6HT vectors. These expression vectors were constructed, and the expression and solubility of target proteins assessed, using the technology outlined above. The results of this study are summarized in Table 1.


It was found that, using the pET15_NESG vector, only 20 of 99 constructs provided expression and solubility levels that can support scale-up protein sample production (ES score≧9; highlighted in grey shade in Table 1). In contrast, using the pNESG_Nano6HT or pNESG_Avi6HT on this same set of target genes provided a significant increase in the number of highly-expressed and soluble targets suitable for scale-up production. As shown in Table 1, 42 of 98 tested, and 34 of 94 tested protein targets exhibited an ES score≧9 (highlighted in grey shade in Table 1) in the pNESG_Avi6HT and pNESG_Nano6HT vectors, respectively. Several SDS-PAGE gels illustrating these expression and solubility enhancements are shown in FIG. 3. Not only were more of these 99 human protein target genes expressed using TOEET, but both expression levels and solubility were generally increased. For example, while about half of the 99 protein targets had expression value E=0 (i.e. no detectable expression) in the pET15_NESG vector (lacking TOEET), 95 of the 99 protein targets had expression values E≧2 in either the pNESG_Nano6HT and pNESG_Avi6HT vectors (Table 1); many have E values E=5 (the maximum level typically observed) in the expression vectors using TOEET.


Construct designs for a larger set of more than 2,000 human transcription factor proteins and domains are listed in Table 2. A large number of the proteins listed in Table 2 have been cloned into vectors optimized by TOEET, such as the pNESG_Nano6HT and pNESG_Avi6HT vectors, and exhibit high levels expression and solubility. Analysis of these data indicates that both the pNESG_Nano6HT vector and pNESG_Avi6HT vectors produced greater expression and solubility levels than a standard pET15_NESG vector that has not been optimized using the TOETT technology described in this disclosure.


Overall, TOEET allows for the production of a significantly greater number of human proteins and protein domains. The higher ES values obtained using TOETT also allow for simpler production and purification of the target proteins, since high ES scores mean that the cell extract has a larger amount of the target protein relative to background proteins.


The pNESG_Avi6HT also allows for the production of protein samples that can be readily biotinylated in the EET tag sequence. The pNESG_Nano6HT tag also provides a means for simple production of a streptavidin-binding protein (Scholle et al., 2004). Such biotinylated or Nano-tagged protein samples can be used for a variety of processes, including phage display antibody production, as well as for screening and discovering protein-protein and protein—nucleic acid interactions.


Example 3

In certain applications, proteins that are expressed but not soluble in cell extracts can be solubilized and used successfully as antigens using various methods of solubilization, including urea and guanidine denaturants (Agaton et al. 2003). Accordingly, the ability to express a protein target, even it is not soluble in the high throughput Expression-Solubility screen described above [NESG High ThroughPut (HTP) Molecular Cloning and Expression Screening Platform methods] is critical, since if the protein cannot be expressed at all it is not possible to generate a suitable antigen. Accordingly, a particularly important value of the TOEET technology is enhancement of protein expression (E), regardless of the resulting solubility. To illustrate this point, histogram plots are presented in FIGS. 7a and 7b comparing Expression scores (E ranging from 0 to 5) using the TOEET technology (E_TOEET) compared to expression scores for the same target protein using a pET vector lacking TOEET technology (E_pET). The data shown in FIG. 7a is for 98 protein target genes cloned into the pNESG_Avi6HT TOEET vector compared with the exact same genes cloned into the pET15_NESG vector (lacking TOEET). The data shown in FIG. 7b is for 94 protein target genes cloned pNESG_Nano6HT TOEET vectors compared with the exact same genes cloned into pET15_NESG vector (lacking TOEET). In these histogram plots, a value E_TOEET−E_pET=0 indicates that the expression levels for both vectors were identical; values E_TOEET−E_pET>0 indicate that the TOEET technology provided higher level expression, values E_TOEET−E_pET<0 indicate that the TOEET technology provided lower level expression. For both target sets, the vast majority of genes exhibit much higher expression in the pNESG_Avi6HT TOEET and pNESG_Nano6HT TOEET vectors compared with the pET15_NESG vector (lacking TOEET). In many cases, E_TOEET−E_pET is 4 or 5, indicating that the expression in the non-TOEET vector was 0 or 1, which is too low to be useful for antigen production. Thus the TOEET vectors often provide high level expression of proteins which cannot be expressed at all, or those with are otherwise expressed as such marginal levels as to be useless for antigen production.


Example 4

A representative method for practicing certain embodiments of the invention is described below.


The first step in the method is to identify the residues of the chosen tag/protein and the corresponding DNA sequences to be modified, for example, the 1st 30 residues of the tag/protein. Low usage codons are identified and are changed to optimal codons either manually or using servers, for example, such as http://www.jcat.de/ or http://genomes.urv.es/OPTIMIZER/, among others (Step 2). The transcription start site of vector and the resulting 5′ untranslated region is then identified (Step 3). The 5′ UTR RNA sequence is fused in silico with the optimized RNA sequence encoding the tag/protein (e.g., the first 30 residues of the tag/protein) (Step 4). Various RNA secondary structure prediction methods may then be used to analyze the fused sequence, such as, for example: http://www.genebee.msu.su/services/rna2_reduced.html, http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi (Maximum Free Energy with partition function) or http://www.ncrna.org/centroidfold/ (Centroid Estimators-Statistical Decision Theory) (Step 5). The RBS and Initiation codon (IC) are then identified in the secondary structure prediction and the RNA positions in the first, e.g., 30 residues of the tag/protein that pair to the RBS/IC regions are determined (Step 6). Subsequently, alternative high frequency codons for the given residues base pairing with the RBS/IC are substituted and secondary structure is recalculated (Step 7). Steps 5 through 7 may be repeated until the secondary structure in RBS/IC is minimized and there is general agreement with the between the prediction servers (e.g., multiple predication servers may be used, such as the three servers listed above). This information is then used to design and produce the TOEET-optimized expression vector. Target proteins may then be cloned and expressed into the resulting expression system using the NESG Construct Optimization Software and High ThroughPut (HTP) Molecular Cloning and Expression Screening Platform and Automated Purification Pipeline methods, as outlined above.









TABLE 1





Expression Results




embedded image



















embedded image







E = Expression; E = 0-5 (no to high expression)


S = Solubility; S = 0-5 (no to high solubility)


ES = E * S = (0-25) ES ≧ 9 usability (highlighted with grey fill)


ES ≧ 9 (typically results in ≧5 milligrams of protein per one liter of E. coli Fermentation)













TABLE 2







Human transcription factor protein and domain constructs designed using the NESG Construct


Optimization Software for production using TOEET technologies. Each line in the table


describes a unique protein construct for RT-PCR cloning, defined by the NESG Vector ID,


the HUGO protein identifier, the Uniprot protein identifier, the first 15 amino acid


residues in the targeted construct, the last 15 amino acid residues in the target


construct, and the length of the targeted gene. The actual length of the targeted


gene obtained by RT-PCR may be shorter or longer than indicated in the table


due RNA spicing variations.

















Construct


Vector
HUGO
Uniprot
First 15aa
Last 15aa
Length















HR7152A-140-202-TEV
ADAR
P55265
PVHYNGPSKAGYVDF
YSHGLPRCSPYKKLT
63





HR7675A-754-849-NHT
ADNP
Q9H2P0
LDPKGHEDDSYEARK
KHEMDFDAEWLFENH
96





HR7633A-1032-1131-NHT
ADNP2
Q6IQ32
KDEALQILALDPKKY
ELKNVKHRLNFEYEP
100





HR4425-1-595-15
AHR
P35869
MNSSSANITYASRKR
ILTYVQDSLSKSPFI
595





HR4425B-277-391-14
AHR
P35869
MILEIRTKNFIFRTK
DYIIVTQRPLTDEEG
116





HR4425B-277-406-14
AHR
P35869
MILEIRTKNFIFRTK
TEHLRKRNTKLPFMF
131





HR4425B-282-386-14
AHR
P35869
MTKNFIFRTKHKLDF
KNGRPDYIIVTQRPL
106





HR4425B-282-403-14
AHR
P35869
MTKNFIFRTKHKLDF
EEGTEHLRKRNTKLP
123





HR4425C-102-179-15
AHR
P35869
MRAANFREGLNLQEG
EDRAEFQRQLHWALN
79





HR4425C-108-178-14
AHR
P35869
MEGLNLQEGEFLLQA
TEDRAEFQRQLHWAL
72





HR4425C-97-184-15
AHR
P35869
MGQDNCRAANFREGL
FQRQLHWALNPSQCT
89





HR4425D-318-386-14
AHR
P35869
MRGSGYQFIHAADML
KNGRPDYIIVTQRPL
70





HR6398A-1-104-15
AIRE
O43918
MATDAALRRLLRLHR
YGRLQPILDSFPKDV
104





HR6398A-1-91-15
AIRE
O43918
MATDAALRRLLRLHR
FWRVLFKDYNLERYG
91





HR6398A-1-96-15
AIRE
O43918
MATDAALRRLLRLHR
FKDYNLERYGRLQPI
96





HR4766B-14-107-14
AKAP8
O43823
MGPANTQGAYGTGVA
IAKINQRLDMMSKEG
95





HR4766B-19-107-14
AKAP8
O43823
MQGAYGTGVASWQGY
IAKINQRLDMMSKEG
90





HR8040A-384-551-Av6HT
AKAP8L
Q9ULX6
VERIQFVCSLCKYRT
KKLERYLKGENPFTD
168





HR6457-14
ALX1
Q15699
MEFLSEKFALKSPPS
RMKAKEHTANISWAM
326





HR7916A-159-235-Av6HT
ALX3
O95076
TFSTFQLEELEKVFQ
RNPFTAAYDISVLPR
77





HR4490C-209-280-NHT
ALX4
Q9H161
SNKGKKRRNRTTFTS
RAKWRKRERFGQMQQ
72





HR6941A-510-703-NHT
ANAPC2
Q9UJX6
GSKDLFINEYRSLLA
VALLRRRMSVWLQQG
194





HR6941A-511-695-Av6HT
ANAPC2
Q9UJX6
SKDLEINEYRSLLAD
LSKAVKMPVALLRRR
185





HR6941B-732-822-Av6HT
ANAPC2
Q9UJX6
SDDESDSGMASQADQ
LVYSAGVYRLPKNCS
91





HR6941B-765-822-Av6HT
ANAPC2
Q9UJX6
LESLSLDRIYNMLRM
LVYSAGVYRLPKNCS
58





HR6941C-498-713-Av6HT
ANAPC2
Q9UJX6
SSDIISLLVSIYGSK
WLQQGVLREEPPGTF
216





HR6941C-510-713-Av6HT
ANAPC2
Q9UJX6
GSKDLFINEYRSLLA
WLQQGVLREEPPGTF
204





HR8423A-486-593-Av6HT
ANKZF1
Q9H8Y5
AKAPGQPELWNALLA
STRNEFRRFMEKNPD
108





HR5083-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
DPSSRCNFFLWSRPS
518





HR5083A-1-319-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
CPVGAVLSVSSVPAK
319





HR5083A-1-323-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
AVLSVSSVPAKQCPP
323





HR5083A-1-352-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
KILRFLVPLEQSPVL
352





HR5083A-1-357-14
APEX2
Q9UBZ4
MLRVVSWNINGIRRP
LVPIEQSPVLEQSTL
357





HR8294A-15-116-TEV
APTX
Q7Z2E3
RVCWLVRQDSRHQRI
HMVNELYPYIVEFEE
100





HR7650B-267-331-TEV
ARHGAP35
Q9NRY4
SQQIATAKDKYEWLV
AKKLFLQHIHRLKHE
65





HR7542A-507-616-NHT
ARID2
Q68CP9
QHVAPPPGIVEIDSE
RAIPLPIQMYYQQQP
110





HR4394C-14
ARID3A
Q99856
MPDHGDWTYEEQFKQ
ELQAAIDSNRREGRR
135





HR4394C-15
ARID3A
Q99856
MPDHGDWTYEEQFKQ
ELQAAIDSNRREGRR
135





HR4394C-218-351-Av6HT
ARID3A
Q99856
MPDHGDWTYEEQFKQ
ELQAAIDSNRREGRR
135





HR4394C-218-351-TEV
ARID3A
Q99856
PDHGDWTYEEQFKQL
ELQAAIDSNRREGRR
134





HR8410A-318-424-TEV
ARID5B
Q14865
RADEQAFLVALYKYM
KGEEDKPLPPIKPRK
107





HR7845A-354-470-TEV
ARNT
P27540
SNVCQPTEFISRHNI
YIICTNTNVKNSSQE
116





HR7821A-334-439-TEV
ARNT2
Q9HBZ2
PTEFLSRHNSDGIIT
SDEIEYIICTNTNVK
106





HR7274A-178-295-NHT
ARNTL2
Q8WYA1
QDNELRHLILKTAEG
SFFCRIKSCKISVKE
118





HR6915A-334-389-TEV
ARX
Q96Q53
TFTSYQLEELERAFQ
WFQNRRAKWRKREKA
56





HR4461B-112-194-14
ASCL1
P50553
MLPQQQPAAVARRNE
VSAAFQAGVLSPTIS
84





HR4461B-112-210-14
ASCL1
P50553
MLPQQQPAAVARRNE
NYSNDLNSMAGSPVS
100





HR4461B-132-189-14
ASCL1
P50553
MKLVNLGFATLREHV
DEHDAVSAAFQAGVL
59





HR4461B-132-206-14
ASCL1
P50553
MKLVNLGFATLREHV
TISPNYSNDLNSMAG
76





HR4461B-146-206-14
ASCL1
P50553
MPNGAANKKMSKVET
TISPNYSNDLNSMAG
62





HR4510B-64-138-14
ASCL2
Q99929
MKLVNLGFQALRQHV
AVRPSAPRGPPGTTP
76





HR7137A-2665-2824-TEV
ASH1L
Q9NR48
YLMRDSRRTPDGHPV
PKKLTPKKDFSPHYV
160





HR3149-106-270-14
ATF1
P18846
SGQYIAIAPNGALQL
IEELKTLKDLYSNKS
165





HR3149-14
ATF1
P18846
MEDSHKSTTSETAPQ
EELKTLKDLYSNKSV
271





HR3149-15
ATF1
P18846
MEDSHKSTTSETAPQ
EELKTLKDLYSNKSV
271





HR3149-21
ATF1
P18846
MEDSHKSTTSETAPQ
EELKTLKDLYSNKSV
271





HR3149-87-270-14
ATF1
P18846
GVSAAVTSMSVPTPI
IEELKTLKDLYSNKS
184





HR3149-96-270-14
ATF1
P18846
SVPTPIYQTSSGQYI
IEELKTLKDLYSNKS
175





HR4498B-354-414-TEV
ATF2
P15386
KRRKFLERNRAAASR
LLRNEVAQLKQLLLA
61





HR4572-21-181-14
ATF3
P18847
MPCLSPPGSLVFEDF
RNLFIQQIKEGTLQS
162





HR4572B-103-170-14
ATF3
P18847
MCRNKKKEKTECLQK
RAQNGRTPEDERNLF
69





HR4572B-103-181-14
ATF3
P18847
MCRNKKKEKTECLQK
RNLFIQQIKEGTLQS
80





HR4572B-77-181-14
ATF3
P18847
MTKAEVAPEEDERKK
RNLFIQQIKEGTLQS
106





HR6914A-280-341-Av6HT
ATF4
P18848
MKKLKKMEQNKTAAT
LAKEIQYLKDLIEEV
63





HR6914A-280-341-TEV
ATF4
P18848
KKLKKMEQNKTAATR
LAKEIQYLKDLIEEV
62





HR4531-39-469-14
ATF7
P17544
MPARTDSVIIADQTP
SAAEAVATSVLTQMA
432





HR8374A-151-218-Av6HT
ATOH1
Q92858
KQVNGVQKQRRLAAN
AQIYINALSELLQTP
68





HR7270A-225-288-NHT
ATOH8
Q96SQ7
KALQQTRRLLANARE
IACNYILSLARLADL
64





HR7350A-7-128-TEV
BACH1
O14867
SVFAYESSVHSTNVI
SVHNIEESCFQFLKF
122





HR8413A-12-132-Av6HT
BACH2
Q9BYV9
YVYESTVHCTNILLG
MHNLEDSCFSFLQTQ
121





HR7112A-169-265-NHT
BARHL1
Q9BZE3
DSPPVRLKKPRKART
SALQRMFPSPYFYPQ
97





HR7390A-223-314-NHT
BARHL2
Q9NY43
ESPPVRAKKPRKART
EAGNYSALQRMFPSP
92





HR7183A-133-199-TEV
BARX1
Q9HBU1
GEPGTKAKKGRRSRT
QVKTWYQNRRMKWKK
67





HR7561-1-174-Av6HT
BARX2
Q9UMQ3
HCHAELRLSSPGQLK
TPDRLDLAQSLGLTQ
173





HR7561-1-187-Av6HT
BARX2
Q9UMQ3
HCHAELRLSSPGQLK
TQLQVKTWYQNRRMK
186





HR7561-1-196-Av6HT
BARX2
Q9UMQ3
HCHAELRLSSPGQLK
QNRRMKWKKMVLKGG
195





HR7561A-118-196-Av6HT
BARX2
Q9UMQ3
SSESETEQPTPRQKK
QNRRMKWKKMVLKGG
79





HR6459-34-125-14
BATF
Q16520
EKNRIAAQKSRQRQT
HAFHQPHVSSPRFQP
92





HR6459-34-125-15
BATF
Q16520
EKNRIAAQKSRQRQT
HAFHQPHVSSPRFQP
92





HR6459A-19-125-14
BATF
Q16520
GKQDSSDDVRRVQRR
HAFHQPHVSSPRFQP
107





HR6459A-34-118-14
BATF
Q16520
EKNRIAAQKSRQRQT
PEVVYSAHAFHQPHV
85





HR7115A-1107-1202-NHT
BAZ1A
Q9NRL2
RSYKTVLDRWRESLL
GDWFCPECRPKQRSR
96





HR7115B-420-468-Av6HT
BAZ1A
Q9NRL2
LPPEIFGDALMVLEF
LEVLEEALVGNDSEG
49





HR7115B-420-486-Av6HT
BAZ1A
Q9NRL2
LPPEIFGDALMVLEF
ELLFFFLTAIFQAIA
67





HR7115C-1408-1534-Av6HT
BAZ1A
Q9NRL2
CRKRQSPEPSPVTLG
TRLQAFFHIQAQKLG
127





HR7115D-1420-1534-Av6HT
BAZ1A
Q9NRL2
TLGRRSSGRQGGVHE
TRLQAFFHIQAQKLG
115





HR7115D-1432-1534-Av6HT
BAZ1A
Q9NRL2
VHELSAFEQLVVELV
TRLQAFFHIQAQKLG
103





HR7115E-1-122-Av6HT
BAZ1A
Q9NRL2
PLLHRKPFVRQKPPA
IFAYVKDRYFVEETV
121





HR7115E-1-129-Av6HT
BAZ1A
Q9NRL2
PLLHRKPFVRQKPPA
RYFVEETVEVIRNNG
128





HR7115E-1-142-Av6HT
BAZ1A
Q9NRL2
PLLHRKPFVRQKPPA
NGARLQCRILEVLPP
141





HR7115E-22-122-Av6HT
BAZ1A
Q9NRL2
EEVFYCKVTNEIFRH
IFAYVKDRYFVEETV
101





HR7115E-22-129-Av6HT
BAZ1A
Q9NRL2
EEVFYCKVTNEIFRH
RYFVEETVEVIRNNG
108





HR7115E-22-142-Av6HT
BAZ1A
Q9NRL2
EEVFYCKVTNEIFRH
NGARLQCRILEVLPP
121





HR7190A-1634-1742-NHT
BAZ2A
Q9UIF9
SYEITPRIRVWRQTL
VEGEFTQKPGFPKRG
109





HR8090A-2062-2166-TEV
BAZ2B
Q9UIF8
DSKDLALCSMILTEM
NMRKYFEKKWTDTFK
105





HR7285A-80-154-TEV
BBX
Q8WY36
ARRPMNAFLLFCKRH
FMKANPGYKWCPTTN
75





HR4436B-523-602-14
BCL6
P41182
MCDCRFSEEASLKRH
NLKTHTRIHSGEKPY
81





HR4436B-523-606-14
BCL6
P41182
MCDCRFSEEASLKRH
HTRIHSGEKPYKCET
85





HR4436B-528-601-14
BCL6
P41182
MSEEASLKRHTLQTH
ANLKTHTRIHSGEKP
75





HR4436B-540-602-14
BCL6
P41182
MTHSDKPYKCDRCQA
NLKTHTRIHSGEKPY
64





HR4436B-542-598-14
BCL6
P41182
MSDKPYKCDRCQASF
NRPANLKTHTRIHSG
58





HR4436C-5-129-TEV
BCL6
P41182
ADSCIQFTRHASDVL
EHVVDTCRKFIKASE
125





HR7156A-284-387-Av6HT
BDP1
A6H8Y1
ERGSTTTYSSFRKNY
KVLAEEEKRKQKSVK
104





HR8401A-71-161-Av6HT
BHLHA15
Q7RTS1
DSSIQRRLESNERER
PKLYQHYQQQQQVAG
91





HR7639A-64-125-Av6HT
BHLHA9
Q7RTU4
KARRMAANVRERKRI
IHRIAALSLVLRASP
62





HR8288A-236-314-Av6HT
BHLHE22
Q8NFJ8
KSKEQKALRLNINAR
LEEMRRLVAYLNQGQ
79





HR7576A-47-183-NHT
BHLHE4
O14503
EDSKETYKLPHRLIE
SQLVTHLHRVVSELL
137





HR7576B-142-174-Av6HT
BHLHE40
O14503
FCSGFQTCAREVLQY
HENTRDLKSSQLVTH
33





HR7576B-142-181-Av6HT
BHLHE40
O14503
FCSGFQTCAREVLQY
KSSQLVTHLHRVVSE
40





HR7518A-44-116-NHT
BHLHE41
Q9C0J9
TYKLPHRLIEKKRRD
LTEQQHQKIIALQNG
73





HR3082 1-125 pET15TEV_NESG (in
BLOC1S1
P78537
MLSRLLKEHQAKQNE
ALEYVYKGQLQSAPS
125


progress)





HR3082-1-119-14
BLOC1S1
P78537
MLSRLLKEHQAKQNE
MRTIATALEYVYKGQ
119





HR3082-14
BLOC1S1
P78537
MLSRLLKEHQAKQNE
ALEYVYKGQLQSAPS
125





HR3082-MBP3
BLOC1S1
P78537
MLSRLLKEHQAKQNE
LEYVYKGQLQSAPS*
126





HR3082A-32-125-14
BLOC1S1
P78537
TCLTEALVDHLNVGV
ALEYVYKGQLQSAPS
94





HR3082B-43-125-15
BLOC1S1
P78537
MNVGVAQAYMNQRKL
ALEYVYKGQLQSAPS
84





HR7816A-294-396-NHT
BMP2
P12643
SSCKRHPLYVDFSDV
LKNYQDMVVEGCGCR
103





HR7816A-294-396-TEV
BMP2
P12643
SSCKRHPLYVDFSDV
LKNYQDMVVEGCGCR
103





HR7409A-9-128-TEV
BOLA1
Q9Y3E2
GLVSMAGRVCLCQGS
WRENSQIDTSPPCLG
120





HR8185-1-86-TEV
BOLA2B
Q9H3K6
ASAKSLDRWKARLLE
EYLREKLQRDLEAEH
85





HR7562-8-107-Av6HT
BOLA3
Q53533
AAAPLLRGIRGLPLH
KEMHGLRIFTSVPKR
100





HR7886A-6-308-TEV
BPNT1
O95861
TVLMRLVASAYSIAQ
YASRVPESIKNALVP
303





HR7955A-134-243-TEV
BRD9
Q9H8M2
KDKIVANEYKSVTEF
EPEGNACSLTDSTAE
110





HR6995B-633-746-TEV
BRPF1
P55201
FLILLRKTLEQLQEK
GAVLRQARRQAEKMG
114





HR8142A-104-176-Av6HT
BSX
Q3C1V8
PGKHGRRRKARTVFS
RMKHKKQLRKSQDEP
73





HR1875-14
C12orf28
Q96LU7
MAFCALTIVALYILS
IFFTDYFFYFYRRCA
275





HR7476A-824-884-NHT
C14orf43
Q6PIG2
TYHYTGSDQWKMAER
FYYTYKKQVKIGRNG
61





HR7019A-867-954-TEV
CAMTA1
Q9Y6Y1
SGRVFMVTDYSPEWS
NNQIISNSVVFEYKA
88





HR7019B-108-183-TEV
CAMTA1
Q9Y6Y1
ILYNRKKVKYRKDGY
LQNPDIVLVHYLNVP
76





HR7019B-69-183-TEV
CAMTA1
Q9Y6Y1
KERHRWNTNEEIAAY
LQNPDIVLVHYLNVP
115





HR7019B-73-183-TEV
CAMTA1
Q9Y6Y1
RWNTNEEIAAYLITF
LQNPDIVLVHYLNVP
111





HR7019C-1029-1162-Av6HT
CAMTA1
Q9Y6Y1
ALGSCFESRVVVVCE
LGIARSRGHVKLAEC
134





HR7019C-1029-1168-Av6HT
CAMTA1
Q9Y6Y1
ALGSCFESRVVVVCE
RGHVKLAECLEHLQR
140





HR7019C-1058-1162-Av6HT
CAMTA1
Q9Y6Y1
IHSKTFRGMTLLHLA
LGIARSRGHVKLAEC
105





HR7019C-1058-1168-Av6HT
CAMTA1
Q9Y6Y1
IHSKTFRGMTLLHLA
RGHVKLAECLEHLQR
111





HR7019D-1486-1624-Av6HT
CAMTA1
Q9Y6Y1
KPNLPSAADWSEFLS
CGKRRQARRTAVIVQ
139





HR7019D-1486-1660-Av6HT
CAMTA1
Q9Y6Y1
KPNLPSAADWSEFLS
FLRRCRHSPLVDHRL
175





HR7019D-1501-1673-Av6HT
CAMTA1
Q9Y6Y1
ASTSEKVENEFAQLT
RLYKRSERIEKGQGT
173





HR7019D-1513-1624-Av6HT
CAMTA1
Q9Y6Y1
QLTLSDHEQRELYEA
CGKRRQARRTAVIVQ
112





HR7019D-1513-1660-Av6HT
CAMTA1
Q9Y6Y1
QLTLSDHEQRELYEA
FLRRCRHSPLVDHRL
148





HR7295A-60-130-Av6HT
CARHSP1
Q9Y2V2
GPVYKGVCKCFCRSK
PKNEKLQAVEVVITH
71





HR8150A-1916-1982-Av6HT
CASP8AP2
Q9UKL3
KNVIKKKGEIIILWT
RFQQLMKLFEKSKCR
67





HR7269A-2-135-Av6HT
CBFB
Q13951
MPRVVPDQRSKFENE
GMGCLEFDEERAQQE
135





HR7269A-2-135-TEV
CBFB
Q13951
PRVVPDQRSKFENEE
GMGCLEFDEERAQQE
134





HR7615A-104-190-NHT
CBLL1
Q75N03
TPVHFCDKCGLPIKI
YLSQRDLQAHINHRH
87





HR6520A-9-62-Av6HT
CBX2
Q14781
MEQVFAAECILSKRL
NILDPRLLLAFQKKE
55





HR6520A-9-62-TEV
CBX2
Q14781
EQVFAAECILSKRLR
NILDPRLLLAFQKKE
54





HR8494A-624-717-Av6HT
CCDC79
Q8NA31
IVEAEDRYKSELRKS
QQGRKAVDLAHKYHK
94





HR8086A-57-112-TEV
CDC5L
Q99459
SIKKIEWSREEEEKL
EHYEFLLDKAAQRDN
56





HR7252A-160-214-Av6HT
CDX1
P47902
VYTDHQRLELEKEFH
IWFQNRRAKERKVNK
55





HR7064A-185-251-Av6HT
CDX2
Q99626
TKDKYRVVYTDHQRL
RRAKERKINKKKLQQ
67





HR7957A-172-246-Av6HT
CDX4
O14627
TKEKYRVVYTDHQRL
IKKKISQFENSGGSV
75





HR7823A-281-340-TEV
CEBPA
P49715
NSNEYRVRRERNNIA
KRVEQLSRELDTLRG
60





HR4764B-273-336-TEV
CEBPB
P17676
EYKIRRERNNIAVRK
RELSTLRNLFKQLPE
64





HR7557A-190-272-15
CEBPE
Q15744
MAGPLHKGKKAVNKD
DTLRNLFRQIPEAAN
84





HR7557A-195-268-15
CEBPE
Q15744
MKGKKAVNKDSLEYR
TQELDTLRNLFRQIP
75





HR7557A-195-281-15
CEBPE
Q15744
MKGKKAVNKDSLEYR
IPEAANLIKGVGGCS
88





HR7557A-203-281-15
CEBPE
Q15744
MDSLEYRLRRERNNI
IPEAANLIKGVGGCS
80





HR6439-59-150-Av6HT
CEBPG
P53567
DRNSDEYRQRRERNN
ISTENTTADGDNAGQ
92





HR8022A-431-525-Av6HT
CENPT
Q96BT3
EPAEPLLVRHPPRPR
KPEDLELLMRRQGLV
95





HR7210A-268-373-Av6HT
CHD1
O14646
MEEEFETIERFMDCR
TKRWLKNASPEDVEY
107





HR7210A-268-373-TEV
CHD1
O14646
EEEFETIERFMDCRI
TKRWLKNASPEDVEY
106





HR7330A-260-394-NHT
CHD2
O14647
SETIEKVLDSRLGKK
VERVIAVKTSKSTLG
135





HR7397A-371-431-TEV
CHD6
Q8TD26
NPDYVEVDRILEVAH
DVDPAKVKEFESLQV
61





HR7397B-679-941-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
LDKAVLQDINRKGGT
262





HR7397B-679-968-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
DLLRKGAYGALMDEE
289





HR7397B-679-974-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
AYGALMDEEDEGSKF
295





HR7397B-679-997-Av6HT
CHD6
Q8TD26
LRRLKDDVEKNLAPK
LQRRTHTITIQSEGK
318





HR8217A-2631-2715-TEV
CHD7
Q9P2D1
RNPNKLDINTLTGEE
DRLLTGPVVRGEGAS
85





HR8217B-2561-2614-TEV
CHD7
Q9P2D1
GQLDPDTRIPVINLE
TYTVDMPSYVPKNAD
54





HR7629A-1-98-NHT
CHRAC1
Q9NRG0
ADVVVGKDKGGEQRL
SETFQFLADILPKKI
97





HR7688A-98-186-NHT
CLOCK
O15516
QDWKPTFLSNEEFTQ
THLLESDSLTPEYLK
89





HR7654A-1987-2362-TEV
CNOT1
A5YKK6
QLPYHRIFIMLLLEL
EIEKLFQSVAQCCMG
376





HR7654B-1987-2369-TEV
CNOT1
A5YKK6
QLPYHRIFIMLLLEL
SVAQCCMGQKQAQQV
383





HR7654B-1987-2376-TEV
CNOT1
A5YKK6
QLPYHRIFIMLLLEL
GQKQAQQVMEGTGAS
390





HR2981-28-443-15
COPS2
P61201
MPNVDLENQYYNSKA
NQLNSLNQAVVSKLA
417





HR2981-301-418-14
COPS2
P61201
PYKNDPEILAMTNLV
QVNQLLELDHQKRGG
118





HR2981-45-443-15
COPS2
P61201
MDDPKAALSSFQKVL
NQLNSLNQAVVSKLA
400





HR2981A-306-415-14
COPS2
P61201
PEILAMTNLVSAYQN
RIDQVNQLLELDHQK
110





HR2981B-339-418-14
COPS2
P61201
DDPFIREHIEELLRN
QVNQLLELDHQKRGG
80





HR2981C-45-163-15
COPS2
P61201
MDDPKAALSSFQKVL
FKTNTKLGKLYLERE
120





HR2981C-45-184-15
COPS2
P61201
MDDPKAALSSFQKVL
KILRQLHQSCQTDDG
141





HR2981C-45-210-15
COPS2
P61201
MDDPKAALSSFQKVL
EIYALEIQMYTAQKN
167





HR3016-1-411-14
COPS3
Q9UNS2
MASALEQFVNSVRQL
ITVNPQFVQKSMGSQ
411





HR3016-14
COPS3
Q9UNS2
MASALEQFVNSVRQL
GSQEDDSGNKPSSYS
423





HR3016A-49-114-15
COPS3
Q9UNS2
LDVQEHSLGVLAVLF
FAGLCHQLTNALVER
66





HR3016B-88-154-15
COPS3
Q9UNS2
CNGEHIRYATDTFAG
SIHADLCQLCLLAKC
67





HR3016C-270-368-15
COPS3
Q9UNS2
NNPSELRNLVNKHSE
KDGMVSFHDNPEKYN
99





HR3016C-270-396-15
COPS3
Q9UNS2
NNPSELRNLVNKHSE
KCIELDERLKAMDQE
127





HR3016C-270-411-15
COPS3
Q9UNS2
NNPSELRNLVNKHSE
ITVNPQFVQKSMGSQ
142





HR3016D-352-413-15
COPS3
Q9UNS2
NQKDGMVSFHDNPEK
VNPQFVQKSMGSQED
62





HR3016D-358-409-15
COPS3
Q9UNS2
VSFHDNPEKYNNPAM
QEITVNPQFVQKSMG
52





HR3105-1-292-15
COPS4
Q9BT78
MAAAVRQDLAQLMNS
LQEFAAMLMPHQKAT
292





HR3105-1-297-15
COPS4
Q9BT78
MAAAVRQDLAQLMNS
AMLMPHQKATTADGS
297





HR3105-15
COPS4
Q9BT78
MAAAVRQDLAQLMNS
APEWTAQAMEAQMAQ
406





HR6309A-15
CPSF4
O95639
MSGEKTVVCKHWLRG
NKECPFLHIDPESKI
62





HR7458A-62-130-NHT
CPSF4L
A6NMK7
GEKMVVCKHWLRGLC
KPAFKSQDCPWYDQG
69





HR3140-21
CREB1
P16220
MTMESGAENQQSGDA
EELKALKDLYCHKSD
341





HR6927-139-461-Av6HT
CREB3L3
Q68CJ9
PVIQVPEASVTIDLE
TGSGRAGLEAAGDEL
323





HR7960-1-298-Av6HT
CREB3L4
Q8TEY5
DLGIPDLLDAWLEPP
IAQTSNKAAQTSTCV
297





HR6873A-34-89-Av6HT
CRX
O43186
SAPRKQRRERTTFTR
KINLPESRVQVWFKN
56





HR6873A-45-103-Av6HT
CRX
O43186
TFTRSQLEELEALFA
NRRAKCRQQRQQQKQ
59





HR8272A-84-160-NHT
CSDA
P16989
KKVLATKVLGTVKWF
VEGEKGAEAANVTGP
77





HR7792B-673-744-TEV
CSDE1
O75534
LRRATVECVKDQFGF
CSACNVWRVCEGPKA
72





HR7173A-399-462-TEV
CTCF
P49711
RTHSGEKPYECYICH
RKSDLGVHLRKQHSY
64





HR7173B-515-592-Av6HT
CTCF
P49711
MRTHTGEKPYACSHC
AGPDGVEGENGGETK
79





HR7173B-515-592-TEV
CTCF
P49711
RTHTGEKPYACSHCD
AGPDGVEGENGGETK
78





HR7558A-411-776-TEV
CUL1
Q13616
AQSSSKSPELLARYC
LERVDGEKDTYSYLA
365





HR7558B-15-410-Av6HT
CUL1
Q13616
IGLDQIWDDLRAGIQ
DKACGRFINNNAVTK
396





HR3327B-643-745-14
CUL2
Q13617
NFSSKRTKFKITTSM
IERSQASADEYSYVA
103





HR3327B-655-745-14
CUL2
Q13617
TSMQKDTPQEMEQTR
IERSQASADEYSYVA
91





HR3327C-1-408-15
CUL2
Q13617
MSLKPRVVDFDETWN
YCDNLLKKSAKGMTE
408





HR3327D-4-745-TEV
CUL2
Q13617
KPRVVDFDETWNKLL
IERSQASADEYSYVA
742





HR3437D-677-768-TEV
CUL3
Q13618
VAAKQGESDPERKET
LARTPEDRKVYTYVA
92





HR3342C-672-759-TEV
CUL4A
Q13619
IQMKETVEEQVSTTE
MERDKDNPNQYHYVA
88





HR7263A-808-895-TEV
CUL4B
Q13620
IQMKETVEEQASTTE
MERDKENPNQYNYIA
88





HR3340C-7-395-Av6HT
CUL5
Q93034
LKNKGSLQFEDKWDF
TIFKLELPLKQKGVG
389





HR8510A-825-917-TEV
CUX2
O14529
PRGDEAPVPPEDEAA
RQVKEKLAKNGICQR
93





HR7807A-15-94-Av6HT
CXXC1
Q9P0U4
EDSKSENGENAPIYC
LEIRYRHKKSRERDG
80





HR7690A-184-282-TEV
DACH1
Q9UI36
TPQNNECKMVDLRGA
LISRKDFETLYNDCT
99





HR6867A-61-162-TEV
DACH2
Q96NX9
GNTNTNECRMVDMHG
TRKDFETLFTDCTNA
102





HR7176A-249-325-Av6HT
DBP
Q10586
VPEEQKDEKYWSRRY
YRAVLSRYQAQHGAL
77





HR7176A-254-325-Av6HT
DBP
Q10586
KDEKYWSRRYKNNEA
YRAVLSRYQAQHGAL
72





HR7911A-178-244-Av6HT
DBX2
Q6ZNG2
DSNSKARRGILRRAV
VKIWFQNRRMKWRNS
67





HR7702A-201-279-NHT
DEAF1
O75398
SELPVRCRNISGTLY
CLIQDGILNPHAASG
79





HR7922A-11-108-TEV
DEPDC1A
Q5TB30
YRATKLWNEVTTSFR
SENVDDNNQLFRFPA
98





HR7073A-153-209-TEV
DLX2
Q07687
RKPRTIYSSFQLAAL
QVKIWFQNRRSKFKK
57





HR8208A-130-186-TEV
DLX3
O60479
RKPRTIYSSYQLAAL
QVKIWFQNRRSKFKK
57





HR7595A-138-194-TEV
DLX5
P56178
RKPRTIYSSFQLAAL
QVKIWFQNKRSKIKK
57





HR8524A-46-106-TEV
DLX6
P56179
GKKIRKPRTIYSSLQ
QVKIWFQNKRSKFKK
61





HR4696-44-404-15
DMAP1
Q9NPF5
MTLTFKRPEGMHREV
MLRHRHEALARAGVL
362





HR4696-49-403-15
DMAP1
Q9NPF5
MRPEGMHREVYALLY
QMLRHRHEALARAGV
356





HR4696B-208-404-15
DMAP1
Q9NPF5
MVPGTDLKIPVFDAG
MLRHRHEALARAGVL
198





HR4696B-213-404-15
DMAP1
Q9NPF5
MLKIPVFDAGHERRR
MLRHRHEALARAGVL
193





HR4696B-236-403-15
DMAP1
Q9NPF5
MRTPEQVAEEEYLLQ
QMLRHRHEALARAGV
169





HR7582A-79-146-Av6HT
DMBX1
Q8NFW5
TAQQLEALEKTFQKT
SLQKEQLQKQKEAEG
68





HR7142-1-340-TEV
DMC1
Q14565
KEDQVVAEEPGFQDE
ATFAITAGGIGDAKE
339





HR8371A-114-182-Av6HT
DMRT2
Q9Y5R5
PRKLSRTPKCARCRN
LRRQQATEDKKGLSG
69





HR7805A-20-88-NHT
DMRT3
Q9NQL9
RAPLQRTPKCARCRN
LRRQQANESLESLIP
69





HR6947A-318-361-NHT
DMRTA1
Q5VZB9
SLPTVSSRPRDPLDI
GILRFCKGDVVQAIE
44





HR7753A-1-53-NHT
DMRTB1
Q96MA1
ADKMVRTPKCSRCRN
KCYLISERQKIMAAQ
52





HR7387A-44-84-Av6HT
DMRTC2
Q8IXT2
RCRNHGVTAHLKGHK
KCVLILERRRVMAAQ
41





HR8011A-205-276-15
DMTF1
Q9Y222
MSTEPGDIVTQGVSW
RIAELDVADENDINW
78





HR8011A-205-293-15
DMTF1
Q9Y222
MSTEPGDIVTQGVSW
LAEGWSSVRSPQWLR
90





HR8011B-255-339-15
DMTF1
Q9Y22
MDEINLILRIAELDV
QKNNPTLLENKSGSG
86





HR8011B-255-356-15
DMTF1
Q9Y222
MDEINLILRIAELDV
NSNTNSSVQHVQIRV
103





HR8011B-268-339-15
DMTF1
Q9Y222
MVADENDINWDLLAE
QKNNPTLLENKSGSG
73





HR8011B-268-356-15
DMTF1
Q9Y222
MVADENDINWDLLAE
NSNTNSSVQHVQIRV
90





HR6887A-327-385-TEV
DNAIC1
Q96KC8
APEWTEEDLSQLTRS
AKQLKDSVTCSPGMV
59





HR7581A-1-76-NHT
DNAJC21
Q5F1R6
KCHYEALGVRRDASE
RAWYDNHREALLKGG
75





HR8109A-314-391-Av6HT
DPF2
Q92785
AAVKTYRWQCIECKC
LLKEKASIYQNQNSS
77





HR8202A-15-83-Av6HT
DPRX
A6NFQ7
HSHRKRTMFTKKQLE
AKLKKAKCKHIHQKQ
69





HR7601-1-176-Av6HT
DR1
Q01658
MASSSGNDDDLTIPR
NQAGSSQDEEDDDDI
176





HR7601-1-176-TEV
DR1
Q01658
ASSSGNDDDLTIPRA
NQAGSSQDEEDDDDI
175





HR6975A-1-77-TEV
DRAP1
Q14919
PSKKKKYNARFPPAR
KTMTTSHLKQCIELE
76





HR7517A-25-174-NHT
DUSP12
Q9UNI6
GQMLEVQPGLYFGGA
WQLKLYQAMGYEVDT
150





HR7523A-86-164-NHT
DUXA
A6NLW8
SQGQDQPGVEFQSRE
QNRRSRLLLQRKREP
79





HR4713B-251-345-TEV
DVL1
O14640
TVTLNMERHHFLGIS
ISLTVAKCWDPTPRS
95





HR5191A-15
DVL1L1
P54792
MTVTLNMERHHFLGI
ISLTVAKAWDPTPRS
96





HR4606C-408-551-14
DVL2
O14641
MLPDGCEGRGLSVHT
APLPGATPWPLLPTF
145





HR4606C-412-526-14
DVL2
O14641
MCEGRGLSVHTDMAS
CESYLVNLSLNDNDG
116





HR4606C-417-519-14
DVL2
O14641
MLSVHTDMASVTKAM
FGDLSGGCESYLVNL
104





HR4606C-417-551-14
DVL2
O14641
MLSVHTDMASVTKAM
APLPGATPWPLLPTF
136





HR4606D-260-358-TEV
DVL2
O14641
TMSLNIITVTLNMEK
PGPIVLTVAKCWDPS
99





HR5528A-14
DVL2
O14641
MTITSGSSLPDGCEG
SEQCYYVFGDLSGGC
113





HR5528A-15
DVL2
O14641
MTITSGSSLPDGCEG
SEQCYYVFGDLSGGC
113





HR7051A-248-338-TEV
DVL3
Q92997
ITVTLNMEKYNFLGI
HKPGPITLTVAKGWD
91





HR7051B-397-504-15
DVL3
Q92997
MDTERLDDFHLSIHS
CYYIFGDLCGNMANL
109





HR7051B-397-511-15
DVL3
Q92997
MDTERLDDFHLSIHS
LCGNMANLSLHDHDG
116





HR7051B-397-530-15
DVL3
Q92997
MDTERLDDFHLSIHS
SDQDTLAPLPHPGAA
135





HR7051B-403-504-15
DVL3
Q92997
MDFHLSIHSDMAAIV
CYYIFGDCGGNMANL
103





HR7051B-403-530-15
DVL3
Q92997
MDFHLSIHSDMAAIV
SDQDTLAPLPHPGAA
129





HR7051C-1-79-TEV
DVL3
Q92997
GETKIIYHLDGQETP
AKLPCFNGRVVSWLV
78





HR4672B-14
E2F1
Q01094
PGEKSRYETSLNLTT
QGPIDVFLCPEETVG
183





HR4672C-116-196-14
E2F1
Q01094
MGKGVKSPGEKSRYE
KKSKNHIQWLGSHTT
82





HR4672C-121-192-14
E2F1
Q01094
MSPGEKSRYETSLNL
QLIAKKSKNHIQWLG
73





HR4672C-122-196-14
E2F1
Q01094
MPGEKSRYETSLNLT
KKSKNHIQWLGSHTT
76





HR4672C-127-192-14
E2F1
Q01094
MRYETSLNLTTKRFL
QLIAKKSKNHIQWLG
67





HR4672C-147-192-14
E2F1
Q01094
MADGVVDLNWAAEVL
QLIAKKSKNHIQWLG
47





HR4672D-192-301-TEV
E2F1
Q01094
GSHTTVGVGGRLEGL
KSKQGPIDVFLCPEE
110





HR6383-65-437-14
E2F2
Q14209
ATPHGPEGQVVRCLP
SDLFDSYDLGDLLIN
373





HR6383-70-437-14
E2F2
Q14209
PEGQVVRCLPAGRLP
SDLFDSYDLGDLLIN
368





HR6383A-195-308-15
E2F2
Q14209
RGMFEDPTRPGKQQQ
TQGPIEVYLCPEEVQ
114





HR6383A-198-296-15
E2F2
Q14209
FEDPTRPGKQQQLGQ
RTEDNLQIYLKSTQG
99





HR6383B-114-200-15
E2F2
Q14209
MGLPSPKTPKSPGEK
AKNNIQWVGRGMFED
88





HR6383B-114-204-15
E2F2
Q14209
MGLPSPKTPKSPGEK
IQWVGRGMFEDPTRP
92





HR6383B-119-195-15
E2F2
Q14209
MKTPKSPGEKTRYDT
LIRKKAKNNIQWVGR
78





HR6383B-119-195-Av6HT
E2F2
Q14209
KTPKSPGEKTRYDTS
LIRKKAKNNIQWVGR
77





HR6383B-119-115-TEV
E2F2
Q14209
KTPKSPGEKTRYDTS
LIRKKAKNNIQWVGR
77





HR6383C-126-200-15
E2F2
Q14209
MEKTRYDTSLGLLTK
AKNNIQWVGRGMFED
76





HR6383C-131-195-15
E2F2
Q14209
MDTSLGLLTKKFIYL
LIRKKAKNNIQWVGR
66





HR6383C-131-202-15
E2F2
Q14209
MDTSLGLLTKKFIYL
NNIQWVGRGMFEDPT
73





HR4418C-14
E2F3
O00716
KTRYDTSLGLLTKKF
QGPIEVYLCPEETET
182





HR4418D-14
E2F3
O00716
NNVQWMGCSLSEDGG
LCPEETETHSPMKTN
128





HR4470C-84-203-14
E2F4
Q16254
MVGPGCNTREIADKL
PIEVLLVNKEAWSSP
121





HR4470C-89-200-14
E2F4
Q16254
MNTREIADKLIELKA
VSGPIEVLLVNKEAW
113





HR4470D-11-86-TEV
E2F4
Q16254
PPGTPSRHEKSLGLL
EKKSKNSIQWKGVGP
76





HR4678B-113-232-14
E2F5
Q15329
MQWKGVGAGCNTKEV
KSHSGPIHVLLINKE
121





HR4678B-119-232-14
E2F5
Q15329
MAGCNTKEVIDRLRY
KSHSGPIHVLLINKE
115





HR4622-1-237-15
E2F6
O75461
MSQQRPARKLPSLLL
HIRSTNGPIDVYLCE
237





HR4622-1-242-15
E2F6
O75461
MSQQRPARKLPSLLL
NGPIDVYLCEVEQGQ
242





HR4622-19-242-15
E2F6
O75461
MEETVRRRCRDPINV
NGPIDVYLCEVEQGQ
225





HR4622-19-281-15
E2F6
O75461
MEETVRRRCRDPINV
EENPQQSEELLEVSN
264





HR4622-24-237-15
E2F6
O75461
MRRCRDPINVEGLLP
HIRSTNGPIDVYLCE
215





HR4622-24-281-15
E2F6
O75461
MRRCRDPINVEGLLP
EENPQQSEELLEVSN
259





HR4622-24-281-Av6HT
E2F6
O75461
RRCRDPINVEGLLPS
EENPQQSEELLEVSN
258





HR4622-24-281-TEV
E2F6
O75461
RRCRDPINVEGLLPS
EENPQQSEELLEVSN
258





HR4622B-128-247-15
E2F6
O75461
GSDLSNFGAVPQQKK
VYLCEVEQGQTSNKR
120





HR46228-133-243-15
E2F6
O75461
NFGAVPQQKKLQEEL
GPIDVYLCEVEQGQT
111





HR4622C-127-242-15
E2F6
O75461
IGSDLSNFGAVPQQK
NGPIDVYLCEVEQGQ
116





HR4622C-132-237-15
E2F6
O75461
SNFGAVPQQKKLQEE
HIRSTNGPIDVYLCE
106





HR4622D-54-137-15
E2F6
O75461
RKALKVKRPRFDVSL
HIRWIGSDLSNFGAV
84





HR4622D-54-180-15
E2F6
O75461
RKALKVKRPSFDVSL
QQLFELTDDKENERL
127





HR4622D-54-242-15
E2F6
O75461
RKALKVKRPRFDVSL
NGPIDVYLCEVEQGQ
189





HR4622D-58-132-15
E2F6
O75461
KVKRPRFDVSLVYLT
KKSKNHIRWIGSDLS
75





HR4622D-58-175-15
E2F6
O75461
KVKRPRFDVSLVYLT
IKDCAQQLFELTDDK
118





HR4622D-58-237-15
E2F6
O75461
KVKRPRFDVSLVYLT
HIRSTNGPIDVYLCE
180





HR8499A-141-251-Av6HT
E2F7
Q96AV8
SRKQKSLGLLCQKFL
YLQQKELDLIDYKFG
111





HR7611A-112-223-NHT
E2F8
A0AVK6
SRKEKSLGLLCHKFL
IKKKEYEQEFDFIKS
112





HR8342-1-508-Av6HT
E4F1
Q66K89
EGAMAVRVTAAHTAE
GDCGKLYKTIAHVRG
507





HR8342-1-600-Av6HT
E4F1
Q66K89
EGAMAVRVTAAHTAE
EHGTLNRHLRTKGGC
599





HR8342A-522-586-15
E4F1
Q66K89
MPKCGKRYKTKNAQQ
EKPFKCYKCGRGFAE
66





HR8342A-523-600-15
E4F1
Q66K89
MKCGKRYKTKNAQQV
EHGTLNRHLRTKGGC
79





HR8342A-527-581-15
E4F1
Q66K89
MRYKTKNAQQVHFRT
RHHTGEKPFKCYKCG
56





HR8342A-527-600-15
E4F1
Q66K89
MRYKTKNAQQVHFRT
EHGTLNRHLRTKGGC
75





HR8342B-51-219-15
E4F1
Q66K89
MEEDEDDVHRCGRCQ
SILKAHMVTHSSRKD
170





HR8342B-51-231-15
E4F1
Q66K89
MEEDEDDVHRCGRCQ
RKDHECKLCGASFRT
182





HR8342B-51-249-15
E4F1
Q66K89
MEEDEDDVHRCGRCQ
LIRHHRRHTDERPYK
200





HR8342B-56-214-15
E4F1
Q66K89
MDVHRCGRCQAEFTA
TFKTGSILKAHMVTH
160





HR8342B-56-226-15
E4F1
Q66K89
MDVHRCGRCQAEFTA
VTHSSRKDHECKLCG
172





HR8342B-56-244-15
E4F1
Q66K89
MDVHRCGRCQAEFTA
RTKGSLIRHHRRHTD
190





HR3014A-10-250-TEV
EBF1
Q9UH73
RSGSSMKEEPLGSGM
NNSKHGRRARRLDPS
241





HR7745A-10-250-TEV
EBF3
Q9H4W6
RGGTTMKEEPLGSGM
NNSKHGRRARRLDPS
241





HR6883A-10-251-TEV
EBF4
Q9BQW3
NLKEEPLLPAGLGSV
HGRRARRLDPSEAAT
242





HR7307A-71-148-Av6HT
EDF1
O60869
MDRVTLEVGKVIQQG
GKDIGKPIEKGPRAK
79





HR7307A-71-148-TEV
EDF1
O60869
DRVTLEVGKVIQQGR
GKDIGKPIEKGPRAK
78





HR7944A-1347-1411-TEV
EEA1
Q15075
RKWAEDNEVQNCMAC
KPVRVCDACFNDLQG
65





HR4555D-366-418-Av6HT
EGR1
P18146
MKPFQCRICMRNFSR
KFARSDERKRHTKIH
54





HR4555D-366-418-TEV
EGR1
P18146
KPFQCRICMRNFSRS
KFARSDERKRHTKIH
53





HR8206A-368-420-TEV
EGR2
P11161
KPFQCRICMRNFSRS
KFARSDERKRHTKIH
53





HR8198A-273-328-TEV
EGR3
Q06889
RPHACPAEGCDRRFS
FSRSDHLTTHIRTHT
56





HR8048A-204-299-TEV
EHF
Q9NZC4
PRGTHLWEFIRDILL
VYKFGKNARGWRENE
96





HR7395A-770-879-NHT
EIF3C
Q99613
PEADKVRTMLVRKIQ
SLVENNERVFDHKQG
110





HR2095-14
EIF3K
Q9UBQ5
MAMFEQMRANVGKLL
KIDFDSVSSIMASSQ
218





HR564-14
EIF3K
Q9UBQ5
MAMFEQMRANVGKLL
KIDFDSVSSIMASSQ
218





HR6332A-198-348-15
ELF1
P32519
KKNKDGKGNTIYLWE
SPGVKGGATTVLKPG
151





HR6332A-198-353-15
ELF1
P32519
KKNKDGKGNTIYLWE
GGATTVLKPGNSKAA
156





HR6332A-203-348-15
ELF1
P32519
GKGNTIYLWEFLLAL
SPGVKGGATTVLKPG
146





HR6332B-152-304-15
ELF1
P32519
ETQQVQEKYADSPGA
KEMPKDLIYINDEDP
153





HR6332B-157-299-15
ELF1
P32519
QEKYADSPGASSPEQ
LVYQFKEMPKDLIYI
143





HR6332B-157-304-15
ELF1
P32519
QEKYADSPGASSPEQ
KEMPKDLIYINDEDP
148





HR6332B-198-304-15
ELF1
P32519
KKNKDGKGNTIYLWE
KEMPKDLIYINDEDP
107





HR6332C-203-353-15
ELF1
P32519
GKGNTIYLWEFLLAL
GGATTVLKPGNSKAA
151





HR7067A-150-308-15
ELF2
Q15723
MLWEFLLDLLQDKNT
GVARVVNITSPGHDA
160





HR7067A-157-303-15
ELF2
Q15723
MLLQDKNTCPRYIKW
SRAEKGVARVVNITS
148





HR7067A-200-308-15
ELF2
Q15723
MNYETMGRALRYYYQ
GVARVVNITSPGHDA
110





HR7867A-45-132-TEV
ELF3
P78545
SNPQMSLEGTEKASW
GDQLHAQLRDLTSSS
88





HR7867B-269-371-TEV
ELF3
P78545
APRGTHLWEFIRDIL
NSSGWKEEEVLQSRN
103





HR8186A-1-104-TEV
ELF4
Q99607
AITLQPSDLIFEFAS
HTMSTAEVLLNMESP
103





HR8186A-1-87-TEV
ELF4
Q99607
AITLQPSDLIFEFAS
QILEGSFLLTDDNEA
86





HR8186A-1-94-TEV
ELF4
Q99607
AITLQPSDLIFEFAS
LLTDDNEATSHTMST
93





HR7396A-166-265-TEV
ELF5
Q9UKW6
SRTSLQSSHLWEFVR
YKFGKNAHGWQEDKL
100





HR7616A-1-93-TEV
ELF3
P41970
ESAITLWQFLLQLLL
KFVYKFVSFPEILKM
92





HR4449C-1-93-TEV
ELK4
P28324
DSAITLWQFLLQLLQ
KFVYKFVSYPEILNM
92





HR8153A-249-313-Av6HT
EN2
P19622
TAFTAEQLQRLKAEF
IKKATGNKNTLAVHL
66





HR7174A-264-457-Av6HT
EOMES
O95936
GFRAHVYLCNRPLWL
LKIDHNPFAKGFRDN
194





HR4540F-1221-1288-14
EP300
Q09472
MQPQTTINKEQFSKR
GCLKKSARTRKENKF
69





HR4540F-1226-1281-14
EP300
Q09472
MINKEQFSKRKNDTL
PAGFVCDGCLKKSAR
57





HR4540F-1236-1281-14
EP300
Q09472
MNDTLDPELFVECTE
PAGFVCDGCLKKSAR
47





HR4540G-323-423-TEV
EP300
Q09472
GSGAHTADPEKRKLI
HDCPVCLPLKNAGDK
100





HR4540H-1045-1161-Av6HT
EP300
Q09472
KKKIFKPEELRQALM
EVFEQEIDPVMQSLG
117





HR4540I-1726-1817-Av6HT
EP300
Q09472
SPGDSRRLSIQRCIQ
VPFCLNIKQKLRQQQ
92





HR4540J-1135-1205-15
EP300
Q09472
MTSRVYKYCSKLSEV
YYSYQNRYHFCEKCF
72





HR4540J-1135-1220-15
EP300
Q09472
MTSRVYKYCSKLSEV
NEIQGESVSLGDDPS
87





HR4540J-1165-1205-15
EP300
Q09472
MGRKLEFSPQTLCCY
YYSYQNRYHFCEKCF
42





HR4540J-1165-1220-15
EP300
Q09472
MGRKLEFSPQTLCCY
NEIQGESVSLGDDPS
57





HR7040A-1285-1379-Av6HT
EP400
Q96L91
HVLKCRLSNRQKALY
RDFWKEADLSMFDLI
95





HR8188A-239-350-TEV
EPAS1
Q99814
LDSKTFLSRHSMDMK
CIMCVNYVLSEIEKN
112





HR6944A-8-123-Av6HT
ERF
P50548
GFAFPDWAYKPESSP
NKLVLVNYPFIDVGL
116





HR6944A-8-160-NHT
ERF
P50548
GFAFPDWAYKPESSP
PSTPSEVLSPTEDPR
153





HR6944B-24-123-Av6HT
ERF
P50548
SRQIQLWHFILELLR
NKLVLVNYPFIDVGL
109





HR6944B-24-160-Av6HT
ERF
P50548
SRQIQLWHFILELLR
PSTPSEVLSPTEDPR
137





HR4801B-180-254-TEV
ESR1
P03372
KETRYCAVCNDYASG
CRLRKGYEVGMMKGG
75





HR4685B-144-218-TEV
ESR2
Q92731
RDAHFCAVCSDYASG
CRLRKCYEVGMVKCG
75





HR7097A-77-146-15
ESRRA
P11474
MRLCLVCGDVASGYH
QACRFTKCLRVGMLK
71





HR7097A-77-146-Av6HT
ESRRA
P11474
RLCLVCGDVASGYHY
QACRFTKCLRVGMLK
70





HR7097A-77-146-TEV
ESRRA
P11474
RLCLVCGDVASGYHY
QACRFTKCLRVGMLK
70





HR7097A-77-168-15
ESRRA
P11474
MRLCLVCGDVASGYH
VRGGRQKYKRRPEVD
93





HR7097A-77-168-Av6HT
ESRRA
P11474
RLCLVCGDVASGYHY
VRGGRQKYKRRPEVD
92





HR7097A-77-168-TEV
ESRRA
P11474
RLCLVCGDVASGYHY
VRGGRQKYKRRPEVD
92





HR7097B-179-423-15
ESRRA
P11474
MGPLAVAGGPRKTAA
PMHKLFLEMLEAMMD
246





HR7097B-179-423-Av6HT
ESRRA
P11474
GPLAVAGGPRKTAAP
PMHKLFLEMLEAMMD
245





HR7097B-179-423-TEV
ESRRA
P11474
GPLAVAGGPRKTAAP
PMHKLFLEMLEAMMD
245





HR7097C-193-423-15
ESRRA
P11474
MPVNALVSHLLVVEP
PMHKLFLEMLEAMMD
232





HR7097C-193-423-Av6HT
ESRRA
P11474
PVNALVSHLLVVEPE
PMHKLFLEMLEAMMD
231





HR7097C-193-423-TEV
ESRRA
P11474
PVNALVSHLLVVEPE
PMHKLFLEMLEAMMD
231





HR8438A-101-433-15
ESRRB
O95718
MRLCLVCGDIASGYH
VPMHKLFLEMLEAKA
334





HR8438A-78-435-15
ESRRB
O95718
MDCASGIMEDSAIKC
MHKLFLEMLEAKAWA
359





HR8438B-169-433-15
ESRRB
O95718
MLKEGVRLDRVRGGR
VPMHKLFLEMLEAKA
266





HR8438B-182-433-15
ESRRB
O95718
MRQKYKRRLDSESSP
VPMHKLFLEMLEAKA
253





HR8438B-203-433-15
ESRRB
O95718
MPPAKKPLTKIVSYL
VPMHKLFLEMLEAKA
232





HR7566D-122-219-Av6HT
ESRRG
P62508
MSMPKRLCLVCGDIA
GGRQKYKRRIDAENS
99





HR7566D-122-219-TEV
ESRRG
P62508
SMPKRLCLVCGDIAS
GGRQKYKRRIDAENS
98





HR6900A-130-214-NHT
ESX1
Q8N693
AEGPQPPERKRRRRT
VLMLRNTATADLAHP
85





HR8013A-320-415-Av5HT
ETS1
P14921
VIPAAALAGYTGSGP
IIHKTAGKRYVYRFV
96





HR8013A-320-415-TEV
ETS1
P14921
VIPAAALAGYTGSGP
IIHKTAGKRYVYRFV
96





HR5529-1-329-15
ETS2
P15036
MNDFGIKNMDQVAPV
EDDCSQSLCLNKPTM
329





HR5529A-14
ETS2
P15036
MHDSANCELPLLTPC
EHLEQMIKENQEKTE
116





HR5529A-15
ETS2
P15036
MHDSANCELPLLTPC
EHLEQMIKENQEKTE
116





HR8505A-240-333-Av6HT
ETV2
O00321
IQLWQFLLELLHDGA
FGGRVPSLAYPDCAG
94





HR7364A-15-174-NHT
ETV3
P41162
GGYQFPDWAYKTESS
PTNDVQPGRFSASSL
160





HR6967A-1-136-NHT
ETV3L
Q6ZN32
HCSCLAEGIPANPGN
SKLIVVNYPLWEVRA
135





HR5533A-14
ETV4
P43268
MREGPPYQRRGALQL
QRPALKAEFDRPVSE
122





HR5533A-15
ETV4
P43268
MREGPPYQRRGALQL
QRPALKAEFDRPVSE
122





HR8084A-311-445-Av6HT
ETV4
P43268
CVVPEKFEGDIKQEG
AFPDNQRPALKAEFD
135





HR7423A-333-470-NHT
ETV5
P41161
LYFDDTCVVPERLEG
SMAFPDNQRPFLKAE
138





HR6884A-338-443-TEV
ETV6
P41212
CRLLWDYVYQLLSDS
GRTDRLEHLESQELD
106





HR6884B-47-129-TEV
ETV6
P41212
SIRLPAHLRLQPIYW
ELLQHILKQRKPRIL
83





HR7437A-8-133-NHT
ETV7
Q9Y603
ISPISPVAAMPPLGT
ALVCGPFFGGIFRLK
126





HR7509A-183-242-TEV
EVX1
P49640
RRYRTAFTREQIARL
KVWFQNRRMKDKRQR
59





HR7284A-188-247-TEV
EVX2
Q03828
VRRYRTAFTREQIAR
KVWFQNRRMKDKRQR
60





HR7802A-349-453-TEV
EWSR1
Q01844
PPVDPDEDSDNSAIY
LKVSLARKKPPMNSM
105





HR7511A-1-99-TEV
EXOC2
Q96KP1
SRSRQPPLVTGISPN
TSTVSFKLLKPEKIG
98





HR6516A-463-729-NHT
EZH1
Q92800
KTCKQVFQFAVKESL
RAIQAGEELFFDYRY
267





HR6323-214-746-14
EZH2
Q15910
PPRKFPSDKIFEAIS
DALKYVGIEREMEIP
533





HR7273-1-589-TEV
FARSB
Q9NSD9
PTVSVKRDLLFQALG
TMPCSSLEINVGPFL
588





HR8271C-2054-2125-NHT
FBN1
P35555
QDLRMSYCYAKFEGG
CPYGSGIIVGPDDSA
72





HR6868A-99-166-NHT
FERD3L
Q96RJ6
TYAQRQAANIRERKR
FMTELLESCEKKESG
68





HR6882A-43-139-TEV
FEV
Q99581
GSGQIQLWQFLLELL
RFDFQGLAQACQPPP
97





HR6968A-258-310-NHT
FEZF1
A0PJY2
KVFTCEVCGKVFNAH
GFRQASTLCRHKIIH
53





HR7661A-275-327-NHT
FEZF2
Q8TBJ5
KNFTCEVGGKVFNAH
GFRQASTLCRHKIIH
53





HR3605C-806-930-14
FGD1
P98174
MRRRSILEKQASVAA
LGRAGRGDTFCPGPT
126





HR3605C-811-925-14
FGD1
P98174
MLEKQASVAAENSVI
RWMAVLGRAGRGDTF
116





HR8434A-55-150-Av6HT
FIGLA
Q6QHK4
SSTENLQLVLERRRV
SYSNNSSESHTSSAR
96





HR8078A-77-129-Av6HT
FIZ1
Q96SL8
RPYRCSACPKGFRDS
RFSSRSSLGRHLKRQ
53





HR4739B-114-198-Av6HT
FLI1
Q01543
MPPNMTTNERRVIVP
TEVLLSHLSYLRESS
86





HR4739B-114-198-TEV
FLI1
Q01543
PPNMTTNERRVIVPA
TEVLLSHLSYLRESS
85





HR6395-41-355-15
FOS
P01100
MGSPVNAQDFCTDLA
FVFTYPEADSFPSCA
316





HR6395-41-361-15
FOS
P01100
MGSPVNAQDFCTDLA
EADSFPSCAAAHRKG
322





HR6395-46-350-15
FOS
P01100
MAQDFCTDLAVSSAN
AYTSSFVFTYPEADS
306





HR6395-46-361-15
FOS
P01100
MAQDFCTDLAVSSAN
EADSFPSCAAAHRKG
317





HR3160-41-293-15
FOSL2
P15408
MPGSGSAFIPTINAI
NLVFTYPSVLEQESP
254





HR3160-44-288-15
FOSL2
P15408
MGSAFIPTINAITTS
TPGTSNLVFTYPSVL
246





HR7662A-167-264-NHT
FOXA1
P55317
PHAKPPYSYISLITM
SGNMFENGCYLRRQK
98





HR7840A-114-211-NHT
FOXA3
P55318
AHAKPPYSYISLITM
SGNMFENGCYLRRQK
98





HR7656A-11-100-NHT
FOXB1
Q99853
DQKPPYSYISLTAMA
FWALHPSCGDMFENG
90





HR7565A-15-100-NHT
FOXB2
Q5VYV0
PYSYISLTAMAIQHS
FWALHPDCGDMFENG
86





HR8399A-76-168-TEV
FOXC1
Q12948
VKPPYSYIALITMAI
LDPDSYNMFENGSFL
92





HR6945A-70-162-TEV
FOXC2
Q99958
LVKPPYSYIALITMA
LDPDSYNMFENGSFL
93





HR8366A-126-222-NHT
FOXD2
O60548
VKPPYSYIALITMAI
ADMFDNGSFLRRRKR
97





HR8366A-126-222-TEV
FOXD2
O60548
VKPPYSYIALITMAI
ADMFDNGSFLRRRKR
97





HR7150A-140-236-Av6HT
FOXD3
Q9UJU5
VKPPYSYIALITMAI
EDMFDNGSFLRRRKR
97





HR7150A-140-236-TEV
FOXD3
Q9UJU5
VKPPYSYIALITMAI
EDMFDNGSFLRRRKR
97





HR7841A-104-204-TEV
FOXD4
Q12950
KPPSSYIALITMAIL
NGSFLRRRKRFQRHQ
101





HR6889A-107-207-TEV
FOXD4L1
Q9NU39
KPPSSYIALITMAIL
NGSFLRRRKRFKRHQ
101





HR8496-108-208-Av6HT
FOXD4L3
Q6VB84
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101





HR7982-108-208-Av6HT
FOXD4L4
Q6VB85
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101





HR7029A-108-208-TEV
FOXD4L5
Q5VV16
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101





HR7874-108-208-Av6HT
FOXD4L6
Q3SYB3
KPPYSYIALITMAIL
NGSFLRRRKRFKRHQ
101





HR5544A-14
FOXE1
O00358
MAGAGVPGEATGRGA
FLRRRKRFKRSDLST
131





HR5544A-15
FOXE1
O00358
MAGAGVPGEATGRGA
FLRRRKRFKRSDLST
131





HR6991A-51-146-NHT
FOXE1
O00358
RGKPPYSYIALIAMA
NAEDMFESGSFLRRR
96





HR7179A-69-165-NHT
FOXE3
Q13461
RGKPPYSYIALIAMA
AADMFDNGSFLRRRK
97





HR8233A-48-138-15
FOXF1
Q12946
MKPPYSYIALIVMAI
IDPASEFMFEEGSFR
92





HR8233A-48-138-Av6HT
FOXF1
Q12946
KPPYSYIALIVMAIQ
IDPASEFMFEEGSFR
91





HR7975A-101-190-Av6HT
FOXF2
Q12947
PPYSYIALIVMAIQS
IDPASEFMFEEGSFR
90





HR4505B-182-298-14
FOXG1
P55316
PPFSYNALIMMAIRQ
LAFKRGARLTSTGLT
117





HR4505B-183-294-14
FOXG1
P55316
PFSYNALIMMAIRQS
SRAKLAFKRGARLTS
112





HR4505C-183-276-Av6HT
FOXG1
P55316
PFSYNALIMMAIRQS
DDVFIGGTTGKLRRR
94





HR5526A-14
FOXH1
O75593
MYLRHDKPPYTYLAM
RLQNTALCRRWQNGG
109





HR5526A-15
FOXH1
O75593
MYLRHDKPPYTYLAM
RLQNTALCRRWQNGG
109





HR8014A-138-239-Av6HT
FOXI3
A8MTJ6
EDLMKMVRPPYSYSA
CEKMFDNGNFRRKRK
102





HR6903A-121-211-NHT
FOXJ1
Q92949
KPPYSYATLICMAMQ
IDPQYAERLLSGAFK
91





HR8000A-64-153-Av6HT
FOXJ2
Q9P0K8
DGKPRYSYATLITYA
YWTIDTCPDISRKRR
90





HR7453A-82-173-NHT
FOXJ3
Q9UPW0
SYASLITFAINSSPK
KEDVLPTRPKKRARS
92





HR7148A-303-403-TEV
FOXK1
P85037
ESKPPFSYAQLIVQA
LVEQAFRKRRQRGVS
101





HR8426A-256-353-Av6HT
FOXK2
Q01167
MDSKPPYSYAQLIVQ
ESKLIEQAFRKRRPR
99





HR8426A-256-353-TEV
FOXK2
Q01167
DSKPPYSYAQLIVQA
ESKLIEQAFRKRRPR
98





HR8426B-34-133-Av6HT
FOXK2
Q01167
GWAVARLEGREFEYL
NGVFVDGVFQRRGAP
100





HR8426B-34-153-Av6HT
FOXK2
Q01167
GWAVARLEGREFEYL
RVCTFRFPSTNIKIT
120





HR8426B-58-139-TEV
FOXK2
Q01167
RNSSQGSVDVSMGHS
GVFQRRGAPPLQLPR
82





HR8426B-58-143-TEV
FOXK2
Q01167
RNSSQGSVDVSMGHS
RRGAPPLQLPRVCTF
86





HR8426B-63-133-TEV
FOXK2
Q01167
GSVDVSMGHSSFISR
NGVFVDGVFQRRGAP
71





HR8426B-63-139-TEV
FOXK2
Q01167
GSVDVSMGHSSFISR
GVFQRRGAPPLQLPR
77





HR8426B-63-153-Av6HT
FOXK2
Q01167
GSVDVSMGHSSFISR
RVCTFRFPSTNIKIT
91





HR8426B-70-133-Av6HT
FOXK2
Q01167
GHSSFISRRHLEIFT
NGVFVDGVFQRRGAP
64





HR8426B-70-153-Av6HT
FOXK2
Q01167
GHSSFISRRHLEIFT
RVCTFRFPSTNIKIT
84





HR7608A-10-139-Av6HT
FOXL1
Q12952
PALAASPMLYLYGPE
LDPRCLDMFENGNYR
130





HR7608A-43-139-15
FOXL1
Q12952
MRAETPQKPPYSYIA
LDPRCLDMFENGNYR
98





HR7608A-48-111-15
FOXL1
Q12952
MQKPPYSYIALIAMA
IRHNLSLNDCFVKVP
65





HR7608A-48-139-15
FOXL1
Q12952
MQKPPYSYIALIAMA
LDPRCLDMFENGNYR
93





HR7608B-10-134-Av6HT
FOXL1
Q12952
PALAASPMLYLYGPE
GSYWTLDPRCLDMFE
125





HR7608B-50-164-Av6HT
FOXL1
Q12952
PPYSYIALIAMAIQD
GAPEAKRPRAETHQR
115





HR7161A-56-143-NHT
FOXL2
P58012
PYSYVALIAMAIRES
TLDPACEDMFEKGNY
88





HR6909A-222-360-Av6HT
FOXM1
Q08050
MPSRPSASWQNSVSE
NPELRRNMTIKTELP
140





HR6909A-222-360-TEV
FOXM1
Q08050
PSRPSASWQNSVSER
NPELRRNMTIKTELP
139





HR7300A-268-368-NHT
FOXN1
Q15353
LFPKPIYSYSILIFM
DKMQEELQKWKRKDP
101





HR7988A-110-208-Av6HT
FOXN2
P32314
TSKPPYSFSLLIYMA
KPNLIQALKKQPFSS
99





HR6979A-111-207-NHT
FOXN3
Q00409
PNCKPPYSFSCLIFM
PEYRQNLIQALKKTP
97





HR7465A-193-285-NHT
FOXN4
Q96NZ1
KPIYSYSCLIAMALK
NLARIDKMEEEMHKW
93





HR4552B-151-249-TEV
FOXO1
Q12778
KSSSSRRNAWGNLSY
SWWMLNPEGGKSGKS
99





HR5548A-14
FOXO1
Q12778
MPPAAAGPLAGQPRK
SKFAKSRSRAAKKKA
139





HR5548A-15
FOXO1
Q12778
MPPAAAGPLAGQPRK
SKFAKSRSRAAKKKA
139





HR5549A-14
FOXO3
O43524
MLPPPQPGAAGGSGQ
NKYTKSRGRAAKKKA
141





HR5549A-15
FOXO3
O43524
MLPPPQPGAAGGSGQ
NKYTKSRGRAAKKKA
141





HR4610C-102-197-TEV
FOXO4
P98177
GNQSYAELISQAIES
EGGKSGKAPRRRAAS
96





HR7590A-462-548-TEV
FOXP1
Q9H334
AEVRPPFTYASLIRQ
WTVDEVEFQKRRPQK
87





HR7934A-501-587-TEV
FOXP2
O15409
DVRPPFTYATLIRQA
TVDEVEYQKRRSQKI
87





HR6897A-464-550-TEV
FOXP4
Q8IVH2
ADVRPPFTYASLIRQ
WTVDEREYQKRRPPK
87





HR8323A-118-217-NHT
FOXQ1
Q9C009
PKPPYSYIALIAMAI
TFADGVFRRRRKRLS
100





HR8323A-118-217-TEV
FOXQ1
Q9C009
PKPPYSYIALIAMAI
TFADGVFRRRRKRLS
100





HR7058A-170-271-NHT
FOXR1
Q6PIV2
LWSRPPLNYFHLIAL
GHRRFAEEARALAST
102





HR8252A-189-311-Av6HT
FOXR2
Q6PJQ5
SWQRPPLNCSHLIAL
ECMSQPELLTSLFDL
123





HR7804A-20-110-NHT
FOXS1
O43638
PYSYIALIAMAIQSS
PDCHDMFEHGSFLRR
91





HR8359A-35-121-TEV
GABPA
Q06546
AECVSQAIDINEPIG
KLNILEIVKPADTVE
87





HR7128A-251-311-TEV
GATA1
P15976
SKRAGTQCTNCQTTT
MRKDGIQTRNRKASG
61





HR4414D-340-402-TEV
GATA2
P23769
SAARRAGTCCANCQT
MKKEGIQTRNRKMSN
63





HR7641A-308-370-TEV
GATA3
P23771
LSAARRAGTSCANCQ
TMKKEGIQTRNRKMS
63





HR4783B-262-321-TEV
GATA4
P43694
SASRRVGLSCANCQT
PLAMRKEGIQTRKRK
60





HR8231A-242-324-15
GBX1
Q14549
MTGAEEGAPVTAGVT
QNRRAKWKRIKAGNV
84





HR8231A-242-324-Av6HT
GBX1
Q14549
TGAEEGAPVTAGVTA
QNRRAKWKRIKAGNV
83





HR6959A-1-173-TEV
GCM1
Q9NP62
EPDDFDSEDKEILSW
TKLEAEARRAMKKVN
172





HR8430A-6-165-Av6HT
GCM2
O75603
VQEAVGVCSYGMQLS
FQAKGVHDHPRPESK
160





HR4429D-233-303-14
GFI1
Q99684
MKGAGVKVESELLCT
CGKTFGHAVSLEQHK
72





HR4429D-233-315-14
GFI1
Q99684
MKGAGVKVESELLCT
QHKAVHSQERSFDCK
84





HR4429D-238-298-14
GFI1
Q99684
MKVESELLCTRLLLG
FACEMCGKTFGHAVS
62





HR4429D-238-310-14
GFI1
Q99684
MKVESELLCTRLLLG
AVSLEQHKAVHSQER
74





HR4429E-311-392-TEV
GFI1
Q99684
SFDCKICGKSFKRSS
SQSSNLITHSRKHTG
82





HR7937A-234-388-TEV
GLI1
P08151
YVCKLPGCTKRYTDP
RLDQLHQLRPIGTRG
155





HR7924A-436-590-TEV
GLI2
P10070
ETNCHWEDCTKEYDT
TDPSSLRKHVKTVHG
155





HR7118A-479-633-TEV
GLI3
P10071
ETNCHWEGCAREFDT
TDPSSLRKHVKTVHG
155





HR7155A-189-350-NHT
GLIS1
Q8NBF1
RVVAGRQACRWVDCC
PSSLRKHVKAHSAKE
162





HR7416A-116-298-Av6HT
GLIS2
Q9BZE0
DFQPLRYLDGVPSSF
TRTHYVDKPYYCKMP
183





HR7416A-116-318-Av6HT
GLIS2
Q9BZE0
DFQPLRYLDGVPSSF
YTDPSSLRKHIKAHG
203





HR7416A-150-318-Av6HT
GLIS2
Q9BZE0
LTPPKDKCLSPDLPL
YTDPSSLRKHIKAHG
169





HR7416A-163-298-Av6HT
GLIS2
Q9BZE0
PLPKQLVCRWAKCNQ
TRTHYVDKPYYCKMP
136





HR7416A-163-318-Av6HT
GLIS2
Q9BZE0
PLPKQLVCRWAKCNQ
YTDPSSLRKHIKAHG
156





HR7200A-261-553-TEV
GLYR1
Q49A26
GSITPTDKKIGFLGL
QSDNDMSAVYRAYIH
293





HR7763A-87-182-TEV
GMEB1
Q9Y692
ANEDMEIAYPITCGE
YQHDKVCSNTCRSTK
96





HR7418A-64-203-NHT
GMEB2
Q9UKD1
AFTASSQLKEAVLVK
LSSPTSAEYIPLTPA
140





HR7418A-87-176-Av6HT
GMEB2
Q9UKD1
EAEIVYPITCGDSRA
LDFYQHDKVCSNTCR
90





HR7418A-87-203-Av6HT
GMEB2
Q9UKD1
EAEIVYPITCGDSRA
LSSPTSAEYIPLTPA
117





HR7418B-64-179-Av6HT
GMEB2
Q9UKD1
AFTASSQLKEAVLVK
YQHDKVCSNTCRSTK
116





HR7418B-83-179-Av6HT
GMEB2
Q9UKD1
GENLEAEIVYPITCG
YQHDKVCSNTCRSTK
97





HR7418B-83-203-Av6HT
GMEB2
Q9UKD1
GENLEAEIVYPITCG
LSSPTSAEYIPLTPA
121





HR8221A-2125-2211-NHT
GON4L
Q3T8J9
PEGEQQPKAAEATVC
RELMQLFHTACEASS
87





HR7528A-714-848-NHT
GPR155
Q7Z3F1
DKHLIILPFKRRLEF
LQKSPEQSPPAINAN
135





HR7997A-174-442-Av6HT
GRHL1
Q9NZI5
VYHPEPTERVVVFDR
KIRDEERKQSKRKVS
269





HR7758A-219-444-Av6HT
GRHL2
Q6ISB3
SFKDAATEKFRSASV
RKQNRKKGKGQASQT
226





HR7267A-161-223-TEV
GSC
P56915
RRHRTIFTDEQLEAL
KNRRAKWRRQKRSSS
63





HR8103A-123-177-Av6HT
GSC2
O15499
QRRTRRHRTIFSEEQ
IRLREERVEVWFKNR
55





HR7705A-139-207-NHT
GSX1
Q9H4S2
SSSNQLPSSKRMRTA
IWFQNRRVKHKKEGK
69





HR8308A-66-146-TEV
GTF2E2
P29084
ALSGSSGYKFGVLAK
VIDGKYAFKPKYNVR
81





HR8128A-449-517-Av6HT
GTF2F1
P35269
SGDVQVTEDAVRRYL
ERKMINDKMHFSLKE
69





HR8128A-449-517-TEV
GTF2F1
P35269
SGDVQVTEDAVRRYL
ERKMINDKMHFSLKE
69





HR7967A-175-243-TEV
GTF2F2
P13984
RARADKQHVLDMLFS
HKNTWELKPEYRHYQ
69





HR7205-1-238-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
DESHYKELLTHHLSP
238





HR7205-1-327-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
VSAPHLARSYHHLFP
327





HR7205-1-332-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
LARSYHHLFPLDAFQ
332





HR7205-10-327-15
GTF2H2C
Q6P1K8
MRWEGGYERTWEILK
VSAPHLARSYHHLFP
319





HR7205-10-395-15
GTF2H2C
Q6P1K8
MRWEGGYERTWEILK
CCPGCIHKIPAPSGV
387





HR7205-15
GTF2H2C
Q6P1K8
MDEEPERTKRWEGGY
CPGCIHKIPAPSGV*
396





HR7205A-328-386-TEV
GTF2H2C
Q6P1K8
LDAFQEIPLEEYNGE
DVFVHDSLHCCPGCI
59





HR7205B-10-216-15
GTF2H2C
Q6P1K8
MRWEGGYERTWEILK
SAEVRVCTVLARETG
208





HR7205B-48-220-15
GTF2H2C
Q6P1K8
MEHHGQVRLGMMRHL
RVCTVLARETGGTYH
174





HR7205B-48-238-15
GTF2H2C
Q6P1K8
MEHHGQVRLGMMRHL
DESHYKELLTHHLSP
192





HR7205B-53-216-15
GTF2H2C
Q6P1K8
MVRLGMMRHLYVVVD
SAEVRVCTVLARETG
165





HR7205B-53-236-15
GTF2H2C
Q6P1K8
MVRLGMMRHLYVVVD
ILDESHYKELLTHHL
185





HR7205C-1-216-TEV
GTF2H2C
Q6P1K8
DEEPERTKRWEGGYE
SAEVRVCTVLARETG
215





HR7205C-1-255-TEV
GTF2H2C
Q6P1K8
DEEPERTKRWEGGYE
ASSSSECSLIRMGFP
254





HR7205C-10-236-TEV
GTF2H2C
Q6P1K8
RWEGGYERTWEILKE
ILDESHYKELLTHHL
227





HR7205C-10-255-TEV
GTF2H2C
Q6P1K8
RWEGGYERTWEILKE
ASSSSECSLIRMGFP
246





HR7820A-107-194-TEV
GTF2IRD2
Q86UP8
LRKAVEDYFCFCYGK
NRPFLGPESQLGGPG
88





HR7355A-318-415-TEV
GTF2IRD2B
Q6EKJ0
NEKERLSSIEKIKQL
KFTVIRPLPGLELSN
98





HR7357A-130-188-NHT
GTF3A
Q92664
KQYICSFEDCKKTFK
ASPSKLKRHAKAHEG
59





HR7579A-1-143-NHT
GZF1
Q9H116
ESGAVLLESKSSPFN
KKQMLESVLLELQNF
142





HR7057A-44-107-Av6HT
H1FX
Q92522
QPGKYSQLVVETIRR
IKALVQNDTLLQVKG
64





HR7057A-44-123-Av6HT
H1FX
Q92522
QPGKYSQLVVETIRR
GANGSFKLNRKKLEG
80





HR7057A-61-123-Av6HT
H1FX
Q92522
ERNGSSLAKIYTEAK
GANGSFKLNRKKLEG
63





HR4599B-103-162-14
HAND2
P61296
MTANRKERRRTQSIN
IAYLMDLLAKDDQNG
61





HR4798B-422-503-TEV
HBP1
Q50381
SSGTVSATSPNKCKR
ALAEEQKRLNPDCWK
82





HR7788A-435-507-TEV
HDX
Q7Z353
KYRLMGIEVPPPRGG
SSQEEPNEVVPNDAR
73





HR7299A-109-148-Av6HT
HES1
Q14469
KYRAGFSECMNEVTR
EVRTRLLGHLANCMT
40





HR7299A-109-153-Av6HT
HES1
Q14469
KYRAGFSECMNEVTR
LLGHLANCMTQINAM
45





HR7306A-7-75-NHT
HES2
Q9Y543
AGDAAELRKSLKPLL
EMTVRFLQELPASSW
69





HR8387-1-122-Av6HT
HES3
Q5TGS1
EKKRRARINVSLEQL
GLGQEAPALFRPCTP
121





HR6986-1-108-TEV
HES5
Q5TA89
APSTVAVELLSPKEK
WCLQEAVQFLTLHAA
107





HR6986-1-122-TEV
HES5
Q5TA89
APSTVAVELLSPKEK
ASDTQMKLLYHFQRP
121





HR6986-49-166-TEV
HES5
Q5TA89
RHQPNSKLEKADILE
AAAAHQPACGLWRPW
118





HR6986A-11-108-Av6HT
HES5
Q5TA89
LSPKEKNRLRKPVVE
WCLQEAVQFLTLHAA
98





HR6986A-11-80-Av6HT
HES5
Q5TA89
LSPKEKNRLRKPVVE
VSYLKHSKAFVAAAG
70





HR6986A-21-108-Av6HT
HES5
Q5TA89
KPVVEKMRRDRINSS
WCLQEAVQFLTLHAA
88





HR6986A-25-108-Av6HT
HES5
Q5TA89
EKMRRDRINSSIEQL
WCLQEAVQFLTLHAA
84





HR6872A-108-174-TEV
HESX1
Q9UBX0
GRRPRTAFTQNQIEV
RAKLKRSHRESQFLM
67





HR7863A-111-167-TEV
HEY1
Q9Y5J3
AGGKGYFDAHALAMD
PLRVRLVSHLNNYAS
57





HR7070A-110-166-TEV
HEY2
Q9UBP5
GYFDAHALAMDFMSI
RLVSHLSTCATQREA
57





HR7572A-104-158-15
HEYL
Q9NQ87
MTGFFDARALAVDFR
PVRIRLLSHLNSYAA
56





HR7572A-77-163-15
HEYL
Q9NQ87
MQGSSKLEKAEVLQM
LLSHLNSYAAEMEPS
88





HR7572A-82-158-15
HEYL
Q9NQ87
MLEKAEVLQMTVDHL
PVRIRLLSHLNSYAA
78





HR7851A-138-194-Av6HT
HHEX
Q03014
MKGGQVRFSNDQTIE
QVKTWFQNRRAKWRR
58





HR7851A-138-194-TEV
HHEX
Q03014
KGGQVRFSNDQTIEL
QVKTWFQNRRAKWRR
57





HR7402A-1-153-NHT
HIC1
Q14526
TFPEADILLKSGECA
PDLVALCKKRLKRHG
152





HR7195A-20-139-NHT
HIC2
Q96JB3
GPDMELPSHSKQLLL
YLQLPELAALCRRKL
120





HR3603B-775-826-TEV
HIF1A
Q16665
PSDLACRLLGQSMDE
LLQGEELLRALDQVN
52





HR7384A-39-112-TEV
HIST1H1A
Q02339
AGPSVSELIVQAASS
QTKGTGASGSFKLNK
74





HR7165A-40-112-TEV
HIST1H1B
P16401
GPPVSELITKAVAAS
QTKGTGASGSFKLNK
73





HR7583A-36-109-TEV
HIST1H1C
P16403
SGPPVSELITKAVAA
QTKGTGASGSFKLNK
74





HR7583A-37-110-TEV
HIST1H1C
P16403
GPPVSELITKAVAAS
TKGTGASGSFKLNKK
74





HR8248A-2087-2143-TEV
HIVEP1
P15822
KYICEECGIRCKKPS
GNLTKHMKSKAHSKK
57





HR7166A-1798-1854-TEV
HIVEP2
P31629
KYICEECGIRCKKPS
GNLTKHMKSKAHMKK
57





HR7042A-1753-1809-TEV
HIVEP3
Q5T1R4
KYVCEECGIRCKKPS
GNLTKHMKSKAHSKK
57





HR7786A-523-577-NHT
HKR1
P10072
KPFVCAECGRGFNDK
RQKPNLFRHKRAHSG
55





HR7711A-33-224-TEV
HLA-DQB1
P01920
RDSPEDFVFQFKGMC
PSLQSPITVEWRAQS
192





HR7053A-30-228-TEV
HLA-DRB1
P01911
GDTRPRFLWQPKREC
TVEWRARSESAQSKM
199





HR8520A-30-221-TEV
HLA-DRB1
P04229
GDTRPRFLWQLKFEC
PSVTSPLTVEWRARS
192





HR7721A-30-219-TEV
HLA-DRB3
P79483
GDTRPRFLELRKSEC
EHPSVTSALTVEWRA
190





HR7380A-30-221-TEV
HLA-DRB5
Q30154
GDTRPRFLQQDKYEC
PSVTSPLTVEWRAQS
192





HR7352A-219-295-TEV
HLF
Q16534
IPDDLKDDKYWARRR
CKNILAKYEARHGPL
77





HR8006A-269-334-Av6HT
HLX
Q14774
PQTYKRKRSWSRAVF
VKVWFQNRRMKWRHS
66





HR7519A-268-352-TEV
HMBOX1
Q6NT76
RGSRFTWRKECLAVM
KRRANIEAAILESHG
85





HR1506-15
HMG20A
Q9NP66
MENLMTSSTLPPLFA
SSNAAEGNEQRHEDE
79





HR1506-15.2wt
HMG20A
Q9NP66
MENLMTSSTLPPLFA
SSNAAEGNEQRHEDE
79





HR7093A-68-149-TEV
HMG20B
Q9P0W2
NGPKAPVTGYVRFLN
RAYQQSEAYKMCTEK
82





HR7828-30
HMGB1
P09429
MGKGDPKKPRGKMSS
EDEEDEDEEEDDDDE
215





HR7828A-8-78-Av6HT
HMGB1
P09429
KPRGKMSSYAFFVQT
AKADKARYEREMKTY
71





HR7828A-8-78-TEV
HMGB1
P09429
KPRGKMSSYAFFVQT
AKADKARYEREMKTY
71





HR7828B-30
HMGB1
P09429
KKKFKDPNAPKRPPS
LKEKYEKDIAAYRAK
80





HR8516A-8-78-TEV
HMGB1P1
B2RPK0
KPRGKMSSYAFFVQT
AKADKTHYERQMKTY
71





HR8015A-1-77-Av6HT
HMGB2
P26583
MGKGDPNKPRGKMSS
MAKSDKARYDREMKN
77





HR8015A-1-77-TEV
HMGB2
P26583
GKGDPNKPRGKMSSY
MAKSDKARYDREMKN
76





HR8319A-1-79-TEV
HMGB3
Q15347
AKGDPKKPKGKMSAY
KADKVRYDREMKDYG
78





HR8540A-11-186-Av6HT
HMGB4
Q8WW32
ANVSSYVHFLLNYRN
MSARNRCRGKRVRQS
176





HR7956-381-466-Av6HT
HMGXB4
Q9UGU5
LHTDGHSEKKKKKEE
DKLIWKQKAQYLQHK
86





HR7411A-1-264-TEV
HMOX2
P30519
SAEVETSEGVDESEK
EDGFPVHDGKGDMRK
263





HR7000A-188-261-NHT
HMX1
Q9NP08
AAGETRGGVGVGGGR
VKIWFQNRRNKWKRQ
74





HR8029A-131-216-Av6HT
HMX2
A2RU54
PGSERPRDGGAERQA
NKWKRQLSAELEAAN
86





HR6871A-218-296-NHT
HMX3
A6NHT5
SPEKKPACRKKKTRT
WKRQLAAELEAANLS
79





HR8251A-233-325-NHT
HNF1B
P35680
RNRFKWGPASQQILY
QKLAMDAYSSNQTHS
93





HR8251A-233-325-TEV
HNF1B
P35680
RNRFKWGPASQQILY
QKLAMDAYSSNQTHS
93





HR7522A-142-391-15
HNF4A
P41235
MSSYEDSSLPSINAL
GSPSDAPHAHHPLHP
251





HR7522A-142-391-Av6HT
HNF4A
P41235
SSYEDSSLPSINALL
GSPSDAPHAHHPLHP
250





HR7522A-142-391-TEV
HNF4A
P41235
SSYEDSSLPSINALL
GSPSDAPHAHHPLHP
250





HR7522B-142-378-15
HNF4A
P41235
MSSYEDSSLPSINAL
AKIDNLLQEMLLGGS
238





HR7522B-142-378-Av6HT
HNF4A
P41235
SSYEDSSLPSINALL
AKIDNLLQEMLLGGS
237





HR7522B-142-378-TEV
HNF4A
P41235
SSYEDSSLPSINALL
AKIDNLLQEMLLGGS
237





HR7522C-148-377-15
HNF4A
P41235
MSLPSINALLQAEVL
MAKIDNLLQEMLLGG
231





HR7522C-148-377-Av6HT
HNF4A
P41235
SLPSINALLQAEVLS
MAKIDNLLQEMLLGG
230





HR7522C-148-377-TEV
HNF4A
P41235
SLPSINALLQAEVLS
MAKIDNLLQEMLLGG
230





HR7522D-58-135-15
HNF4A
P41235
MALCAICGDRATGKH
FRAGMKKEAVQNERD
79





HR7522D-58-135-Av6HT
HNF4A
P41235
ALCAICGDRATGKHY
FRAGMKKEAVQNERD
78





HR7522D-58-135-TEV
HNF4A
P41235
ALCAICGDRATGKHY
FRAGMKKEAVQNERD
78





HR7469A-9-77-15
HNF4G
Q14541
MVLDPTYTTLEFETM
ASSCDGCKGFFRRSI
70





HR7469A-9-91-15
HNF4G
Q14541
MVLDPTYTTLEFETM
IRKSHVYSCRFSRQC
84





HR7469A-9-91-Av6HT
HNF4G
Q14541
VLDPTYTTLEFETMQ
IRKSHVYSCRFSRQC
83





HR7469A-9-91-TEV
HNF4G
Q14541
VLDPTYTTLEFETMQ
IRKSHVYSCRFSRQC
83





HR7469A-9-95-15
HNF4G
Q14541
MVLDPTYTTLEFETM
HVYSCRFSRQCVVDK
88





HR7469A-9-95-Av6HT
HNF4G
Q14541
VLDPTYTTLEFETMQ
HVYSCRFSRQCVVDK
87





HR7469A-9-95-TEV
HNF4G
Q14541
VLDPTYTTLEFETMQ
HVYSCRFSRQCVVDK
87





HR7469B-103-328-15
HNF4G
Q14541
MYCRLRKCFRAGMKK
RQYDSRGRFGELLLL
227





HR7469B-103-328-Av6HT
HNF4G
Q14541
YCRLRKCFRAGMKKE
RQYDSRGRFGELLLL
226





HR7469B-103-328-TEV
HNF4G
Q14541
YCRLRKCFRAGMKKE
RQYDSRGRFGELLLL
226





HR8063A-429-485-TEV
HOMEZ
Q8IX15
SFQDPAIPTPPPSTR
AAHQQLRETDIPQLS
57





HR6881-1-73-TEV
HOPX
Q9BPY8
SAETASGPTEDQVEI
RRSEGLPSECRSVTD
72





HR7310A-197-291-TEV
HOXA1
P49639
ETSSPAQTFDWMKVK
FQNRRMKQKKREKEG
95





HR4742B-299-369-14
HOXA10
P31260
MKDSLGNSKGENAAN
SVHLTDRQVKIWFQN
72





HR4742B-299-393-14
HOXA10
P31260
MKDSLGNSKGENAAN
RENRIRELTANFNFS
96





HR4742C-309-369-14
HOXA10
P31260
MNAANWLTAKSGRKK
SVHLTDRQVKIWFQN
62





HR4742C-314-393-14
HOXA10
P31260
MLTAKSGRKKRCPYT
RENRIRELTANFNFS
81





HR4742C-320-393-14
HOXA10
P31260
MRKKRCPYTKHQTLE
RENRIRELTANFNFS
75





HR8427A-342-397-Av6HT
HOXA10
P31260
PYTKHQTLELEKEFL
WFQNRRMKLKKMNRE
56





HR8104A-227-302-Av6HT
HOXA11
P31270
GHTEDKAGGSSGQRT
WFQNRRMKEKKINRD
76





HR8104A-227-313-Av6HT
HOXA11
P31270
GHTEDKAGGSSGQRT
INRDRLQYYSANPLL
87





HR8104B-227-296-Av6HT
HOXA11
P31270
GHTEDKAGGSSGQRT
DRQVKIWFQNRRMKE
70





HR7749A-317-379-TEV
HOXA13
P31271
SSYRRGRKKRVPYTK
QVTIWFQNRRVKEKK
63





HR7478A-131-205-NHT
HOXA2
O43364
ESLEIADGSGGGSRR
FQNRRMKHKRQTQCK
75





HR7187A-190-266-Av6HT
HOXA3
O43365
SSKRARTAYTSAQLV
GKGMLTSSGGQSPSR
77





HR7193A-222-275-TEV
HOXA4
Q00056
YTRQQVLELEKEFHF
IWFQNRRMKWKKDHK
54





HR7149A-201-257-TEV
HOXA5
P20719
AYTRYQTLELEKEFH
FQNRRMKWKKDNKLK
57





HR7149A-202-258-TEV
HOXA5
P20719
YTRYQTLELEKEFHF
QNRRMKWKKDNKLKS
57





HR7925A-156-215-TEV
HOXA6
P31267
RRGRQTYTRYQTLEL
IWFQNRRMKWKKENK
60





HR4674B-194-270-TEV
HOXA9
P31269
NNPAANWLHARSTRK
NRRMKMKKINKDRAK
77





HR8367A-171-266-TEV
HOXB1
P14653
EPNTPTARTFDWMKV
QNRRMKQKKREREEG
96





HR8236A-216-273-TEV
HOXB13
Q92826
GRKKRIPYSKGQLRE
QITIWFQNRRVKEKK
58





HR7791A-149-216-Av6HT
HOXB2
P14652
AYTNTQLLELEKEFH
TQHREPPDGEPACPG
68





HR8135A-187-244-Av6HT
HOXB3
P14651
ASKRARTAYTSAQLV
RQIKIWFQNRRMKYK
58





HR8135A-196-252-Av6HT
HOXB3
P14651
TSAQLVELEKEFHFN
NRRMKYKKDQKAKGL
57





HR8135B-179-239-Av6HT
HOXB3
P14651
DKSPPGSAASKRART
LNLSERQIKIWFQNR
61





HR8135B-179-244-Av6HT
HOXB3
P14651
DKSPPGSAASKRART
RQIKIWFQNRRMKYK
66





HR8335A-169-222-Av6HT
HOXB4
P17483
MYTRQQVLELEKEFH
IWFQNRRMKWKKDHK
55





HR8335A-169-222-NHT
HOXB4
P17483
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHK
54





HR8335A-169-222-TEV
HOXB4
P17483
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHK
54





HR8261-201-257-Av6HT
HOXB5
P09067
YTRYQTLELEKEFHF
QNRRMKWKKDNKLKS
57





HR7319A-147-206-Av6HT
HOXB6
P17509
MRRGRQTYTRYQTLE
IWFQNRRMKWKKESK
61





HR7319A-147-206-TEV
HOXB6
P17509
RRGRQTYTRYQTLEL
IWFQNRRMKWKKESK
60





HR8504A-143-202-TEV
HOXB7
P09629
TYTRYQTLELEKEFH
RRMKWKKENKTAGPG
60





HR7846A-146-205-TEV
HOXB8
P17481
RRRGRQTYSRYQTLE
KIWFQNRRMKWKKEN
60





HR7230A-174-249-TEV
HOXB9
P17482
NPSANWLHARSSRKK
NRRMKMKKMNKEQGK
76





HR4478B-250-312-14
HOXC10
Q9NYD6
MKEEIKAENTTGNWL
RLEISKTINLTDRQV
64





HR4478B-255-342-14
HOXC10
Q9NYD6
MAENTTGNWLTAKSG
RENRIRELTSNFNFT
89





HR4478B-263-312-14
HOXC10
Q9NYD6
MLTAKSGRKKRCPYT
RLEISKTINLTDRQV
51





HR4478B-268-342-14
HOXC10
Q9NYD6
MGRKKRCPYTKHQTL
RENRIRELTSNFNFT
76





HR4478C-247-342-14
HOXC10
Q9NYD6
MNEAKEEIKAENTTG
RENRIRELTSNFNFT
97





HR7286A-240-304-Av6HT
HOXC11
O43248
SKFQIRELEREFFFN
LSRDRLQYFSGNPLL
65





HR7847A-205-271-NHT
HOXC12
P31275
APWYPINSRSRKKRK
QVKIWFQNRRMKKKR
67





HR7251A-255-316-Av6HT
HOXC13
P31276
SSYRRGRKKRVPYTK
RQVTIWFQNRRVKEK
62





HR8257A-163-216-NHT
HOXC4
P09017
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHR
54





HR8257A-163-216-TEV
HOXC4
P09017
YTRQQVLELEKEFHY
IWFQNRRMKWKKDHR
54





HR7011A-156-219-TEV
HOXC5
Q00444
KRSRTSYTRYQTLEL
NRRMKWKKDSKMKSK
64





HR7839A-148-201-TEV
HOXC6
P09630
YSRYQTLELEKEFHF
IWFQNRRMKWKKESN
54





HR6394A-149-208-TEV
HOXC8
P31273
RRSGRQTYSRYQTLE
KIWFQNRRMKWKKEN
60





HR7283A-180-255-TEV
HOXC9
P31274
SNPVANWIHARSTRK
QNRRMKMKKMNKEKT
76





HR8256A-200-280-Av6HT
HOXD1
Q9GZZ0
AAFSTFEWMKVKRNA
LHLNDTQVKIWFQNR
81





HR8148A-269-340-15
HOXD10
P28358
MKRCPYTKHQTLELE
RENRIRELTANLTFS
73





HR8148A-274-327-Av6HT
HOXD10
P28358
TKHQTLELEKEFLFN
WFQNRRMKLKKMSRE
54





HR8148A-274-340-15
HOXD10
P28358
MTKHQTLELEKEELF
RENRIRELTANLTFS
68





HR8017A-257-326-Av6HT
HOXD11
P31277
SSSAVAPQRSRKKRC
IWFQNRRMKEKKLNR
70





HR7443A-276-333-TEV
HOXD13
P35453
GRKKRVPYTKLQLKE
QVTIWFQNRRVKDKK
58





HR7220A-181-257-Av6HT
HOXD3
P31249
GESCEDKSPPGPASK
QNRRMKYKKDQKAKG
77





HR7700A-161-220-TEV
HOXD4
P09016
YTRQQVLELEKEFHF
RMKWKKDHKLPNTKG
60





HR7832A-197-256-TEV
HOXD8
P13378
RRRGRQTYSRFQTLE
KIWFQNRRMKWKKEN
60





HR6999A-263-337-TEV
HOXD9
P28356
SQPQQQQLDPNNPAA
NLTERQVKIWFQNRR
75





HR7031A-153-237-TEV
HP1BP3
Q5SSJ5
ASSPRPKMDAILTEA
GASGSFVVVQKSRKT
84





HR7031B-249-3355-15
HP1BP3
Q5SSJ5
MSAVDPEPQVKLEDV
GASGTFQLKKSGEKP
88





HR7031B-254-330-15
HP1BP3
Q5SSJ5
MEPQVKLEDVLPLAF
QITGKGASGTFQLKK
78





HR7031B-262-330-Av6HT
HP1BP3
Q5SSJ5
VLPLAFTRLCEPKEA
QITGKGASGTFQLKK
69





HR7031C-332-407-15
HP1BP3
Q5SSJ5
MGEKPLLGGSLMEYA
KNGWMEQISGKGFSG
77





HR7031C-332-418-15
HP1BP3
Q5SSJ5
MGEKPLLGGSLMEYA
GFSGTFQLCFPYYPS
88





HR7031C-337-403-15
HP1BP3
Q5SSJ5
MLGGSLMEYAILSAI
QKCEKNGWMEQISGK
68





HR7031C-337-413-15
HP1BP3
Q5SSJ5
MLGGSLMEYAILSAI
QISGKGFSGTFQLCF
78





HR3023-1-506-15
HSF1
Q00613
MDLPVGPGAAGPSNV
FELGEGSYFSEGDGF
506





HR3023-1-506-Av6HT
HSF1
Q00613
DLPVGPGAAGPSNVP
FELGEGSYFSEGDGF
505





HR3023-1-506-TEV
HSF1
Q00613
DLPVGPGAAGPSNVP
FELGEGSYFSEGDGF
505





HR3023A-14
HSF1
Q00613
MDLPVGPGAAGPSNV
PERDDTEFQHPCFLR
106





HR3023A-15
HSF1
Q00613
MDLPVGPGAAGPSNV
PERDDTEFQHPCFLR
106





HR3023C-1-123-15
HSF1
Q00613
MDLPVGPGAAGPSNV
EQLLENIKRKVTSVS
123





HR3023C-10-123-15
HSF1
Q00613
MAGPSNVPAFLTKLW
EQLLENIKRKVTSVS
115





HR3023C-15-118-15
HSF1
Q00613
MVPAFLTKLWTLVSD
FLRGQEQLLENIKRK
105





HR3023C-7-118-15
HSF1
Q00613
MPGAAGPSNVPAFLT
FLRGQEQLLENIKRK
113





HR8180A-12-124-15
HSF4
Q9ULV5
MPGPSPVPAFLGKLW
REQLLERVRRKVPAL
114





HR8180A-12-97-15
HSF4
Q9ULV5
MPGPSPVPAFLGKLW
VVSIEQGGLLRPERD
87





HR8180A-17-119-15
HSF4
Q9ULV5
MVPAFLGKLWALVGD
SFVRGREQLLERVRR
104





HR8180A-17-93-15
HSF4
Q9ULV5
MVPAFLGKLWALVGD
GFRKVVSIEQGGLLR
78





HR8170A-9-94-Av6HT
HSF5
Q4G112
INPNNFPAKLWRLVN
FIRQLNLYGFRKVVL
86





HR7245A-97-218-NHT
HSFX1
Q9UBD0
LPFPQKLWRLVSSNQ
LLVRMKRRVGVKSAP
122





HR3123-1-116-15
ID1
P41134
MKVASGSTATAAAGP
IRDLQLELNSESEVG
116





HR3123-1-121-15
ID1
P41134
MKVASGSTATAAAGP
LELNSESEVGTPGGR
121





HR3123-15
ID1
P41134
MKVASGSTATAAAGP
AEAACVPADDRILCR
155





HR3123-21
ID1
P41134
MKVASGSTATAAAGP
AEAACVPADDRILCR
155





HR3123A-14
ID1
P41134
ALKAGKTASGAGEVV
RDLQLELNSESEVGT
100





HR3123B-14
ID1
P41134
ALKAGKTASGAGEVV
AEAACVPADDRILCR
138





HR3123C-14
ID1
P41134
KTASGAGEVVRCLSE
RDLQLELNSESEVGT
95





HR3123D-14
ID1
P41134
KTASGAGEVVRCLSE
AEAACVPADDRILCR
133





HR3123E-14
ID1
P41134
AGEVVRCLSEQSVAI
RDLQLELNSESEVGT
90





HR3123F-14
ID1
P41134
AGEVVRCLSEQSVAI
AEAACVPADDRILCR
128





HR3123G-54-145-15
ID1
P41134
MPALLDEQQVNVLLY
TLNGEISALTAEAAC
93





HR3123G-59-139-15
ID1
P41134
MEQQVNVLLYDMNGC
VRAPLSTLNGEISAL
82





HR2921-14
ID2
Q02363
MKAFSPVRSVRKNSL
FPSELMSNDSKALCG
134





HR2921-15
ID2
Q02363
MKAFSPVRSVRKNSL
FPSELMSNDSKALCG
134





HR2921-17-85-14
ID2
Q02363
DHSLGISRSKTPVDD
YILDLQIALDSHPTI
69





HR2921-21
ID2
Q02363
MKAFSPVRSVRKNSL
FPSELMSNDSKALCG
134





HR2921-22-134-15
ID2
Q02363
MISRSKTPVDDPMSL
FPSELMSNDSKALCG
114





HR2921-22-85-14
ID2
Q02363
ISRSKTPVDDPMSLL
YILDLQIALDSHPTI
64





HR2921-27-124-15
ID2
Q02363
MTPVDDPMSLLYNMN
ISILSLQASEFPSEL
99





HR2921-27-134-15
ID2
Q02363
MTPVDDPMSLLYNMN
FPSELMSNDSKALCG
109





HR2921-27-85-14
ID2
Q02363
TPVDDPMSLLYNMND
YILDLQIALDSHPTI
59





HR2921-40-134-15
ID2
Q02363
MNDCYSKLKELVPSI
FPSELMSNDSKALCG
96





HR3111-14
ID3
Q712G9
MKALSPVRGCYEAVC
APELVISNDKRSFCH
119





HR3111-15
ID3
Q712G9
MKALSPVRGCYEAVC
APELVISNDKRSFCH
119





HR3111-21
ID3
Q712G9
MKALSPVRGCYEAVC
APELVISNDKRSFCH
119





HR3111A-27-83-15
ID3
Q712G9
MGRGKGPAAEEPLSL
ILQRVIDYILDLQVV
58





HR3111A-32-83-15
ID3
Q712G9
MPAAEEPLSLLDDMN
ILQRVIDYILDLQVV
53





HR4584C-53-112-14
ID4
P47928
DEPALCLQCDMNDCY
IDYILDLQLALETHP
55





HR4626B
IFI16
Q16666
QVTPRRNVLQKRPVI
ISEMHSFIQIKKKTN
202





HR3005-100-519-15
IKZF1
Q13422
MGSSALSGVGGIRLP
FSSHITRGEHRFHMS
421





HR3005-108-519-15
IKZF1
Q13422
MGGIRLPNGKLKCDI
FSSHITRGEHRFHMS
413





HR3005-93-519-15
IKZF1
Q13422
MNGSHRDQGSSALSG
FSSHITRGEHRFHMS
428





HR3005A-IDT-14
IKZF1
Q13422
HARNGLSLKEEHRAY
FSSHITRGEHRFHMS
99





HR3005B-IDT-14
IKZF1
Q13422
EKMNGSHRDQGSSAL
DRLASNVAKRKSSMP
190





HR3064-99-509-15
IKZF3
Q9UKT9
IKLERHVVSFDSSRP
FSSHIARGEHRALLK
411





HR6479A-436-509-NHT
IKZF3
Q9UKT9
RDSVKVINKEGEVMD
FSSHIARGEHRALLK
74





HR7992A-150-221-15
IKZF4
Q9H2S9
MGGIRLPNGKLKCDV
KLHSGEKPFKCPFCN
73





HR7992A-150-232-15
IKZF4
Q9H2S9
MGGIRLPNGKLKCDV
PFCNYACRRRDALTG
84





HR7992A-150-246-15
IKZF4
Q9H2S9
MGGIRLPNGKLKCDV
GHLRTHSVSSPTVGK
98





HR7992A-155-216-15
IKZF4
Q9H2S9
MPNGKLKCDVCGMVC
LLRHIKLHSGEKPFK
63





HR7992A-155-216-15.7-15TEV
IKZF4
Q9H2S9
MPNGKLKCDVCGMVC
LLRHIKLHSGEKPFK
63





HR7992A-155-239-15
IKZF4
Q9H2S9
MPNGKLKCDVCGMVC
RRRDALTGHLRTHSV
86





HR7992B-513-585-15
IKZF4
Q9H2S9
MSKEVLRVVGESGEP
YEFSSHIVRGEHKVG
74





HR7992B-518-585-15
IKZF4
Q9H2S9
MRVVGESGEPVKAFK
YEFSSHIVRGEHKVG
69





HR7992B-523-585-15
IKZF4
Q9H2S9
MSGEPVKAFKCEHCR
YEFSSHIVRGEHKVG
64





HR7992B-528-585-15
IKZF4
Q9H2S9
MKAFKCEHCRILFLD
YEFSSHIVRGEHKVG
59





HR7992C-155-272-Av6HT
IKZF4
Q9H2S9
PNGKLKCDVCGMVCI
KQQSTLEEHKERCHN
118





HR7992C-159-272-Av6HT
IKZF4
Q9H2S9
LKCDVCGMVCIGPNV
KQQSTLEEHKERCHN
114





HR7992C-159-283-Av6HT
IKZF4
Q9H2S9
LKCDVCGMVCIGPNV
RCHNYLQSLSTEAQA
125





HR7992D-197-260-Av6HT
IKZF4
Q9H2S9
TQKGNLLRHIKLHSG
KPYKCNYCGRSYKQQ
64





HR7992D-208-283-Av6HT
IKZF4
Q9H2S9
LHSGEKPFKCPFCNY
RCHNYLQSLSTEAQA
76





HR7992D-210-260-Av6HT
IKZF4
Q9H2S9
SGEKPFKCPFCNYAC
KPYKCNYCGRSYKQQ
51





HR7630A-358-419-NHT
IKZF5
Q9H5V7
QDPQLLHHCQHCDMY
YDFACHFARGQHNQH
62





HR7614A-263-300-15
INSM1
Q01101
MPLGEFICQLCKEEY
KCSRIVRVEYRCPEC
39





HR7614A-263-319-15
INSM1
Q01101
MPLGEFICQLCKEEY
SCPANLASHRRWHKP
58





HR7614B-424-497-15
INSM1
Q01101
MGDGEGAGVLGLSAS
GLTRHINKCHPSENR
75





HR7614B-429-493-15
INSM1
Q01101
MAGVLGLSASAECHL
YSSPGLTRHINKCHP
66





HR7614B-432-497-15
INSM1
Q01101
MLGLSASAECHLCPV
GLTRHINKCHPSENR
67





HR8043A-261-315-Av6HT
INSM2
Q96T92
GEFICQLCKEQYADP
SCPANLASHRRWHKP
55





HR6405A-1-113-TEV
IRF1
P10914
PITRMRMRPWLEMQI
RNKGSSAVRVYRMLP
112





HR7043A-1-113-Av6HT
IRF2
P14316
MPVERMRMRPWLEEQ
IKKGNNAFRVYRMLP
113





HR7043A-1-113-TEV
IRF2
P14316
PVERMRMRPWLEEQI
IKKGNNAFRVYRMLP
112





HR7278A-1-113-TEV
IRF3
Q14653
GTPKPRILPWLVSQL
DPHDPHKIYEFVNSG
112





HR7278B-196-386-TEV
IRF3
Q14653
LVPGEEWEFEVTAFY
LRALVEMARVGGASS
191





HR3173-1-119-14
IRF5
Q13568
MNQSIPVAPTRPRRV
DGPRDMPPQPYKIYE
119





HR3173A-14
IRF5
Q13568
MNQSIPVAPTPPRRV
PPQPYKIYEVCSNGP
125





HR3173A-15
IRF5
Q13568
MNQSIPVAPTPPRRV
PPQPYKIYEVCSNGP
125





HR3173F-8-114-14
IRF5
Q13568
APTPPRRVRLKPWLV
FRLIYDGPRDMPPQP
107





HR3173G-232-477-TEV
IRF5
Q13568
EQLLPDLLISPHMLP
HIWQSQQRLQPVAQA
246





HR7755A-198-455-Av6HT
IRF6
O14896
LEMEVPQAPIQPFYS
RILQTQESWQPMQPT
258





HR5527A-14
IRF7
Q92985
MALAPERAAPRVLFG
RRFVMLRDNSGDPAD
117





HR5527A-15
IRF7
Q92985
MALAPERAAPRVLFG
RRFVMLRDNSGDPAD
117





HR8215A-8-154-TEV
IRF7
Q92985
AAPRVLFGEWLLGEI
EAEAPAAVPPPQGGP
147





HR7337A-9-115-TEV
IRF8
Q02556
RLRQWLIEQIDSSMY
LDISEPYKVYRIVPE
107





HR7302A-205-393-Av6HT
IRF9
Q00978
QRSLEFLLPPEPDYS
LEQTPEQQAAILSLV
189





HR7302A-209-393-Av6HT
IRF9
Q00978
EFLLPPEPDYSLLLT
LEQTPEQQAAILSLV
185





HR7431A-121-188-NHT
IRX1
P78414
GQFQYGDPGRPKNAT
VSTWFANARRRLKKE
68





HR7304A-126-209-NHT
IRX6
P78412
PYERTLGQYQYERYG
TWFANARRRLKKENK
84





HR8326A-180-244-TEV
ISL1
P61371
KTTRVRTVLNEKQLH
QNKRCKDKKRSIMMK
65





HR8291A-190-254-TEV
ISL2
Q96A47
KTTRVRTVLNEKQLH
QNKRCKDKKKSILMK
65





HR8400A-617-732-TEV
JARID2
Q92833
LGRRWGPNVQRLACI
RLEKEVLMEKEILEK
116





HR8400B-804-1099-Av6HT
JARID2
Q92833
KGVLNDFHKCIYKGR
LDELRDTELRQRRQL
296





HR8400B-809-1099-Av6HT
JARID2
Q92833
DFHKCIYKGRSVSLT
LDELRDTELRQRRQL
291





HR8400B-809-1104-Av6HT
JARID2
Q92833
DFHKCIYKGRSVSLT
DTELRQRRQLFEAGL
296





HR8400C-900-1086-Av6HT
JARID2
Q92833
GSILRHLGAVPGVTI
KENGPTLSTISALLD
187





HR8400C-900-1104-Av6HT
JARID2
Q92833
GSILRHLGAVPGVTI
DTELRQRRQLFEAGL
205





HR7951-28-149-Av6HT
IDP2
Q8WYK2
SALTVEELKYADIRN
HRPTCIVRTDSVKTP
122





HR4484C-253-308-Av6HT
JUN
P05412
MIKAERKRMRNRIAA
LASTANMLREQVAQL
57





HR4484C-253-308-TEV
JUN
P05412
IKAERKRMRNRIAAS
LASTANMLREQCAQL
56





HR4765B-273-324-TEV
JUNB
P17275
RKRLRNRLAATKCRK
LSSTAGLLREQVAQL
52





HR4754B-269-324-TEV
JUND
P17535
IKAERKRLRNRIAAS
LASTASLLREQVAQL
56





HR2962A-5-79-Av6HT
KAT5
Q92993
GEIIEGCRLPVLRRN
LKKIQFPKKEAKTPT
75





HR7375A-94-208-TEV
KDM5B
Q9UGL1
EAQTRVKLNFLDQIA
LQKPNLTTDTKDKEY
115





HR7375B-685-750-Av6HT
KDM5B
Q9UGL1
LPDDERQCVKCKTTC
YTLDDLYPMMNALKL
66





HR7375B-696-750-Av6HT
KDM5B
Q9UGL1
KTTCFMSAISCSCKP
YTLDDLYPMMNALKL
55





HR7375C-1487-1544-Av6HT
KDM5B
Q9UGL1
CPAVSCLQPEGDEVD
YICVRCTVKDAPSRK
58





HR7375D-1485-1536-Av6HT
KDM5B
Q9UGL1
AICPAVSCLQPEGDE
PEMAEKEDYICVRCT
52





HR7375E-1123-1227-Av6HT
KDM5B
Q9UGL1
ESLSDLERALTESKE
LRIWLCPHCRRSEKP
105





HR7375E-1123-1241-Av6HT
KDM5B
Q9UGL1
ESLSDLERALTESKE
PPLEKILPLLASLQR
119





HR7375E-1132-1230-Av6HT
KDM5B
Q9UGL1
LTESKETASAMATLG
WLCPHCRRSEKPPLE
99





HR7375E-1134-1241-Av6HT
KDM5B
Q9UGL1
ESKETASAMATLGEA
PPLEKILPLLASLQR
108





HR7375E-1143-1230-Av6HT
KDM5B
Q9UGL1
ATLGEARLREMEALQ
WLCPHCRRSEKPPLE
88





HR7375E-1143-1241-Av6HT
KDM5B
Q9UGL1
ATLGEARLREMEALQ
PPLEKILPLLASLQR
99





HR7188A-306-385-TEV
KDM5D
Q9BY66
HSSAQFIDSYICQVC
EAFGFEQATQEYSLQ
80





HR7714A-77-157-Av6HT
KIAA1683
Q9H0B3
RRVPRLRAVVESQAF
RHILHSSKSLVKKTR
81





HR7682A-10-80-Av6HT
KIAA2018
Q68DE3
PTKKQHRKKNRETHN
ITELKRQNDELLLNG
71





HR8201A-51-160-TEV
KIN
Q60870
QRQLLLASENPQQFM
PETIRRQLELEKKKK
110





HR7553A-272-338-15
KLF1
Q13351
MARKRQAAHTCAHPG
DELTRHYRKHTGQRP
68





HR7553A-292-335-Av6HT
KLF1
Q13351
KSSHLKAHLRTHTGE
ARSDELTRHYRKHTG
44





HR7553B-319-362-Av6HT
KLF1
Q13351
RFARSDELTRHYRKH
FSRSDHLALHMKRHL
44





HR6400A-353-423-TEV
KLF10
Q13118
SAAKVTPQIDSSRIR
REARSDELSRHRRTH
71





HR6390-1-497-15
KLF11
O14901
MHTPDFAGPDDARAV
PGWQAEVGKLNRIAS
497





HR6390-1-501-15
KLF11
O14901
MHTPDFAGPDDARAV
AEVGKLNRIASAESP
501





HR6390-12-512-15
KLF11
O14901
ARAVDIMDICESILE
AESPGSPLVSMPASA
501





HR6390-123-512-15
KLF11
O14901
VSPQVTDSKACTATD
AESPGSPLVSMPASA
390





HR6390-128-512-15
KLF11
O14901
TDSKACTATDVLQSS
AESPGSPLVSMPASA
385





HR6390-15
KLF11
O14901
MHTPDEAGPDDARAV
AESPGSPLVSMPASA
512





HR6390-7-512-15
KLF11
O14901
AGPDDARAVDIMDIC
AESPGSPLVSMPASA
506





HR6390A-379-501-15
KLF11
O14901
SQNCVPQVDFSRRRN
AEVGKLNRIASAESP
123





HR6390A-384-497-15
KLF11
O14901
PQVDFSRRRNYVCSF
PGWQAEVGKLNRIAS
114





HR6390B-397-462-15
KLF11
O14901
SFPGCRKTYFKSSHL
HTGEKKFVCPVCDRR
66





HR6390B-402-457-15
KLF11
O14901
RKTYFKSSHLKAHLR
RHRRTHTGEKKFVCP
56





HR7238A-306-400-TEV
KLF12
Q9Y4X4
SESPDSRKRRIHRCD
FSRSDHLALHRRRHM
95





HR8436A-125-193-Av6HT
KLF16
Q9BXK1
KSHRCPFPDCAKAYY
RTHTGEKRFSCPLCS
69





HR7123A-272-355-TEV
KLF2
Q9Y5W3
HTCSYAGCGKTYTKS
FSRSDHLALHMKRHM
84





HR7880A-251-343-TEV
KLF3
P57682
PDTQRKRRIHRCDYD
FSRSDHLALHRKRHM
93





HR4433-1-347-14
KLF5
Q13887
MATRVLSMSARLGPV
ASKLAIHNPNLPTTL
347





HR4433-9-342-14
KLF5
Q13887
MSARLGPVPQPPAPQ
YAATIASKLAIHNPN
335





HR4668C-168-283-21
KLF6
Q99612
MELPSPGKVRSGTSG
FSRSDHLALHMKRHL
117





HR4668C-173-283-21
KLF6
Q99612
MGKVRSGTSGKPGDK
FSRSDHLALHMKRHL
112





HR4668C-173-283-Av6HT
KLF6
Q99612
GKVRSGTSGKPGDKG
FSRSDHLALHMKRHL
111





HR4668C-173-283-TEV
KLF6
Q99612
GKVRSGTSGKPGDKG
FSRSDHLALHMKRHL
111





HR4668C-191-283-21
KLF6
Q99612
MASPDGRRRVHRCHF
FSRSDHLALHMKRHL
94





HR4668C-196-283-21
KLF6
Q99612
MRRRVHRCHFNGCRK
FSRSDHLALHMKRHL
89





HR4668D-205-283-21
KLF6
Q99612
MNGCRKVYTKSSHLK
FSRSDHLALHMKRHL
80





HR4668D-210-283-21
KLF6
Q99612
MVYTKSSHLKAHQRT
FSRSDHLALHMKRHL
75





HR8165A-231-302-Av6HT
KLF7
O75840
TKSSHLKAHQRTHTG
FSRSDHLALHMKRHL
72





HR8376A-270-332-Av6HT
KLF8
O95600
RRRIHQCDFAGCSKV
SDELTRHFRKHTGIK
63





HR7597A-181-244-NHT
KLF9
Q13886
LKKFSRSDELTRHYR
PSMIKRSKKALANAL
64





HR6918A-877-937-TEV
KNL2
Q6P0N0
DKEWNEKELQKLHCA
MENPRGKGSQKHVTK
61





HR6489A-15
L3MBTL3
Q96JM7
RRKRRGDSAVLKQGL
QPPLSPLELMEASEH
346





HR6489A-Av6HT
L3MBTL3
Q96JM7
RRKRRGDSAVLKQGL
QPPLSPLELMEASEH
346





HR6489A-TEV
L3MBTL3
Q96JM7
RRKRRGDSAVLKQGL
QPPLSPLELMEASEH
346





HR6490A-15
L3MBTL4
Q8NA19
MKQPNRKRKLNMDSK
SAFGCPYSDMNLKKE
414





HR6490A-30-371-15
L3MBTL4
Q8NA19
MEKKPKDSTTPLSHV
TGHPLEVPQRTNDLK
343





HR6490A-30-371-Av6HT
L3MBTL4
Q8NA19
EKKPKDSTTPLSHVP
TGHPLEVPQRTNDLK
342





HR6490A-30-371-Na6HT
L3MBTL4
Q8NA19
EKKPKDSTTPLSHVP
TGHPLEVPQRTNDLK
342





HR6490A-30-371-TEV
L3MBTL4
Q8NA19
EKKPKDSTTPLSHVP
TGHPLEVPQRTNDLK
342





HR6490A-Av6HT
L3MBTL4
Q8NA19
KQPNRKRKLNMDSKE
SAFGCPYSDMNLKKE
413





HR6490A-TEV
L3MBTL4
Q8NA19
KQPNRKRKLNMDSKE
SAFGCPYSDMNLKKE
413





HR2473-14
LARP1
Q6PKG0
MNTLFRFWSFFLRDH
AKWTSQHSNTQTLGK
185





HR7995A-377-483-Av6HT
LARP1
Q6PKG0
ISLIFAALKDSKVVE
SASLPDLDSENWIEV
107





HR6994A-210-292-NHT
LARP1B
Q659C4
VEEALLKEYIKRQIE
EVEIVDEKMRKKIEP
83





HR7969A-107-200-TEV
LARP4
Q71RC2
SGESNSAVSTEDLKE
DEKGEKVRPSHKRCI
94





HR6949A-152-237-NHT
LARP4B
Q92615
SQEDPREVLKKTLEF
DEKGEKVRPNQNRCI
86





HR7099A-69-134-NHT
LASS2
Q96G23
NIKEKTRLRAPPNAT
RRRNQDRPSLLKKFR
66





HR8001A-86-135-TEV
LASS5
Q8N5B7
AQPNAILEKVFISIT
KIQCWFRHRRNQDKP
50





HR6906A-77-127-TEV
LASS6
Q6ZMG9
APPNAILEKVFTAIT
IQRWFRQRRNQEKPS
51





HR6954A-124-198-NHT
LBX1
P52954
KRRKSRTAFTNHQIY
LEEMKADVESAKKLG
75





HR8118A-343-405-TEV
LCOR
Q96JN0
RGRYRQYNSEILEEA
GTLKNPPKKKMKLMR
63





HR7552A-519-579-TEV
LCORL
Q8N3X6
RGRYRQYDHEIMEEA
RSGTLKTPPKKKLRL
61





HR7767A-314-501-Av6HT
LENG9
Q96B70
APCQPRPTHFVALMV
RTGGPFQPLAEIRLE
188





HR8129A-23-126-Av6HT
LHX1
P48742
AWHVKCVQCCECKCN
FVCKEDYLSNSSVAK
104





HR7637A-262-334-TEV
LHX2
P50458
SSQKTKRMRTSFKHH
KFRRNLLRQENTGVD
73





HR7663A-23-150-TEV
LHX3
Q9UBR4
LARRADLRREIPLCA
FYLMEDSRLVCKADY
128





HR7789A-16-91-NHT
LHX4
Q969G2
LPEMLGVPMQQIPQC
CKEDFFKRFGTKCTA
76





HR7587A-24-119-NHT
LHX5
Q9H2C1
AWHIKCVQCCECKTN
LYVIDENKFVCKDDY
96





HR7172-1-267-TEV
LHX9
Q9NQ69
LNGTTLEAAMLFHGI
PPSQKTKRMRTSFKH
266





HR7172-1-270-15
LHX9
Q9NQ69
MLNGTTLEAAMLFHG
QKTKRMRTSFKHHQL
270





HR7525A-134-187-Av6HT
LIN28A
Q9H9Z2
MSKGDRCYNCGGLDH
SCPLKAQQGPSAQGK
55





HR7525A-134-187-TEV
LIN28A
Q9H9Z2
SKGDRCYNCGGLDHH
SCPLKAQQGPSAQGK
54





HR7198A-25-103-NHT
LIN28B
Q6ZN17
SQVLRGTGHCKWFNV
KSSKGLESIRVTGPG
79





HR7658-1-237-Av6HT
LMX1A
Q8TE12
LDGLKMEENFQSAID
KVRETLAAETGLSVR
236





HR7658-1-247-Av6HT
LMX1A
Q8TE12
LDGLKMEENFQSAID
GLSVRVVQVWFQNQR
246





HR7658-1-257-Av6HT
LMX1A
Q8TE12
LDGLKMEENFQSAID
FQNQRAKMKKLARRQ
256





HR7658-13-303-Av6HT
LMX1A
Q8TE12
SAIDTSASFSSLLGR
PYTALPTPQQLLAIE
291





HR7658A-61-153-NHT
LMX1A
Q8TE12
QCASCKEPLETTCFY
EGQLLCKGDYEKERE
93





HR7658B-13-153-Av6HT
LMX1A
Q8TE12
SAIDTSASFSSLLGR
EGQLLCKGDYEKERE
141





HR7658B-32-153-Av6HT
LMX1A
Q8TE12
KSVCEGCQRVILDRF
EGQLLCKGDYEKERE
122





HR6403A-128-207-15
LYL1
P12980
RLKRRPSHCELDLAE
RLAMKYIGFLVRLLR
80





HR6403A-133-207-15
LYL1
P12980
PSHCELDLAEGHQPQ
RLAMKYIGFLVRLLR
75





HR6403A-146-207-15
LYL1
P12980
PQKVARRVFTNSRER
RLAMKYIGFLVRLLR
62





HR6403A-146-226-15
LYL1
P12980
PQKVARRVFTNSRER
ALAAGPTPPGPRKRP
81





HR7569A-1-80-TEV
MAEL
Q96JY0
PNRKASRNAYYFFVQ
GKDPGPSEKQKPVFT
79





HR4779B-255-300-14
MAF
O75444
MLHFDDRFSDEQLVT
VIRLKQKRRTLKNRG
47





HR7214A-221-319-Av6HT
MAFA
Q8NHW3
VRLEERFSDDQLVSM
KERDLYKEKYEKLAG
99





HR7214A-225-319-Av6HT
MAFA
Q8NHW3
ERFSDDQLVSMSVRE
KERDLYKEKYEKLAG
95





HR7214A-228-313-Av6HT
MAFA
Q8NHW3
SDDQLVSMSVRELNR
EVGRLAKERDLYKEK
86





HR7214A-236-319-Av6HT
MAFA
Q8NHW3
SVRELNRQLRGFSKE
KERDLYKEKYEKLAG
84





HR7214A-246-319-Av6HT
MAFA
Q8NHW3
GFSKEEVIRLKQKRR
KERDLYKEKYEKLAG
74





HR6931A-209-305-Av6HT
MAFB
Q9Y5Q3
DRFSDDQLVSMSVRE
RDAYKVKCEKLANSG
97





HR6931B-210-236-Av6HT
MAFB
Q9Y5Q3
RFSDDQLVSMSVREL
RELNRHLRGFTKDEV
27





HR6931B-210-251-Av6HT
MAFB
Q9Y5Q3
RFSDDQLVSMSVREL
IRLKQKRRTLKNRGY
42





HR8265A-31-74-Av6HT
MAFF
Q9ULX9
GLSVRELNRHLRGLS
KNRGYAASCRVKRVC
44





HR7795A-21-123-TEV
MAFG
Q15525
GTSLTDEELVTMSVR
SKYEALQTFARTVAR
103





HR7958A-24-123-TEV
MAFK
O60675
LSDDELVSMSVRELN
SKYEALQTFARTVAR
100





HR8183A-390-479-Av6HT
MATR3
P43243
MQKGRVETSRVVHIM
PVRVHLSQKYKRIKK
91





HR8183A-390-479-TEV
MATR3
P43243
QKGRVETSRVVHIMD
PVRVHLSQKYKRIKK
90





HR8110A-22-107-TEV
MAX
P61244
ADKRAHHNALERKRR
ALLEQQVRALEKARS
86





HR8332A-230-361-NHT
MAZ
P56270
ACEMCGKAFRDVYHL
SRPDHLNSHVRQVHS
82





HR8332A-280-361-TEV
MAZ
P56270
ACEMCGKAFRDVYHL
SRPDHLNSHVRQVHS
82





HR8039A-131-243-TEV
MBD1
Q9UIS9
GCCENCGISFSGDGT
RGCQTQEDCGHCPIC
113





HR8039A-131-262-TEV
MBD1
Q9UIS9
GCCENCGISFSGDGT
RPGLRRQWKCVQRRC
132





HR5530A-14
MBD2
Q9UBB5
MEPVPFPSGSAGPGP
NDPLNQNKGKPDLNT
118





HR5530A-15
MBD2
Q9UBB5
MEPVPFPSGSAGPGP
NDPLNQNKGKPDLNT
118





HR6416-1-220-15
MBD3
O95983
MERKRWECPALPQGW
VWLNTTQPLCKAFMV
220





HR6416-1-226-15
MBD3
O95983
MERKRWECPALPQGW
QPLCKAFMVTDEDIR
226





HR6416-1-261-15
MBD3
O95983
MERKRWECPALPQGW
MLAHVEELARDGEAP
261





HR6416-15
MBD3
O95983
MERKRWECPALPQGW
EEEEEPDPDPEMEHV
291





HR6416-33-291-15
MBD3
O95983
VFYYSPSGKKFRSKP
EEEEEPDPDPEMEHV
259





HR6416-55-291-15
MBD3
O95983
MGSMDLSTFDFRTGK
EEEEEPDPDPEMEHV
238





HR6416A-1-106-15
MBD3
O95983
MERKRWECPALPQGW
KPDLNTALPVRQTAS
106





HR6416A-1-111-15
MBD3
O95983
MERKRWECPALPQGW
TALPVRQTASIFKQP
111





HR6416A-1-117-15
MBD3
O95983
MERKRWECPALPQGW
QTASIFKQPVTKITN
117





HR6416B-1-72-15
MBD3
O95983
MERKRWECPALPQGW
DLSTFDFRTGKMLMS
72





HR6416B-1-77-15
MBD3
O95983
MERKRWECPALPQGW
DFRTGKMLMSKMNKS
77





HR4635B-14
MBD4
O95243
MTECRKSVPCGWERV
VLSKRGIKSRYKDCS
81





HR4635B-15
MBD4
O95243
MTECRKSVPCGWERV
VLSKRGIKSRYKDCS
81





HR4635C-14
MBD4
O95243
RSSECNHLLQEPIAS
FTVLSKRGIKSRYKD
101





HR4635D-55-161-14
MBD4
O95243
MIKRSSECNPLLQEP
SKRGIKSRYKDCSMA
108





HR4635D-55-161-Av6HT
MBD4
O95243
IKRSSECNPLLQEPI
SKRGIKSRYKDCSMA
107





HR4635D-55-161-TEV
MBD4
O95243
IKRSSECNPLLQEPI
SKRGIKSRYKDCSMA
107





HR4635D-55-191-14
MBD4
O95243
MIKRSSECNPLLQEP
NLRTRSKCKKDVFMP
138





HR4635D-61-156-14
MBD4
O95243
MCNPLLQEPIASAQF
DFTVLSKRGIKSRYK
97





HR4635D-61-186-14
MBD4
O95243
MCNPLLQEPIASAQF
NNSNWNLRTRSKCKK
127





HR4635E-437-574-TEV
MBD4
O95243
KWTPPRSPFNLVQET
DHKLNKYHDWLWENH
138





HR8088A-178-246-TEV
MBNL1
Q9NR56
RTDRLEVCREYQRGN
EKCKYFHPPAHLQAK
69





HR7551A-175-243-TEV
MBNL2
Q5VZF2
RTDKLEVCREFQRGN
EKCKYFHPPAHLQAK
69





HR7762A-173-241-TEV
MBNL3
Q9NUK0
RCSREKCKYFHPPAH
NGATPVFNPTVFHCQ
69





HR3168-14
MDS1
Q13465
MRSKGRARKLATNNE
QADVYMPGLQCAFLS
169





HR7632A-77-171-TEV
MECP2
P51608
SEGSGSAPAVPEASA
VGDTSLDPNDFDFTV
95





HR4583C-2-78-TEV
MEF2A
Q02078
GRKKIQITRIMDERN
KVLLKYTEYNEPHES
77





HR8120A-2-94-TEV
MEF2B
Q02080
GRKKIQISRILDQRN
TNTDILETLKRRGIG
93





HR4550C-2-78-TEV
MEF2D
Q14814
GRKKIQIQRITDERN
KVLLKYTEYNEPHES
77





HR8225A-277-341-NHT
MEIS1
O00470
GIFPKVATNIMRAWL
RRRIVQPMIDQSNRA
65





HR8225A-277-341-TEV
MEIS1
O00470
GIFPKVATNIMRAWL
RRRIVQPMIDQSNRA
65





HR8514A-250-313-TEV
MEIS3P2
A8K058
GIFPKVATNIMRAWL
ARRRMVQPMIDQSNR
64





HR7119A-175-247-NHT
MEOX2
P50222
QEGNYKSEVNSKPRK
VWFQNRRMKWKRVKG
73





HR7798B-1047-1351-Av6HT
MET
P08581
LQNTVHIDLSALNPE
ISAIFSTFIGEHYVH
305





HR8521A-1-179-TEV
MGMT
P16455
DKDCEMKRTTLDSPL
KEWLLAHEGHRLGKP
178





HR7181A-199-243-TEV
MIER1
Q8N108
YKENEKVYENDDQLL
KDASRRTGDEKGVEA
45





HR7181A-199-265-TEV
MIER1
Q8N108
YKENEKVYENDDQLL
KDNEQALYELVKCNF
67





HR7181A-203-243-TEV
MIER1
Q8N108
EKVYENDDQLLWDPE
KDASRRTGDEKGVEA
41





HR7181A-203-265-TEV
MIER1
Q8N108
EKVYENDDQLLWDPE
KDNEQALYELVKCNF
63





HR7181A-208-260-TEV
MIER1
Q8N108
NDDQLLWDPEYLPED
EGSHIKDNEQALYEL
53





HR3622D-1-299-14
MINK1
Q8N4C8
MGDPAPARSLDDIDL
KFPFIRDQPTERQVR
299





HR3622D-13-294-14
MINK1
Q8N4C8
MIDLSALRDPAGIFE
TEQLLKFPFIRDQPT
283





HR3622D-8-299-14
MINK1
Q8N4C8
MRSLDDIDLSALRDP
KFPFIRDQPTERQVR
293





HR3622D-9-294-14
MINK1
Q8N4C8
MSLDDIDLSALRDPA
TEQLLKFPFIRDQPT
287





HR3622E-1180-1284-14
MINK1
Q8N4C8
MIYGSSAGFHAVDVD
GEKAIEIRSVETGHL
106





HR3622E-1185-1282-14
MINK1
Q8N4C8
MAGFHAVDVDSGNSY
GWGEKAIEIRSVETG
99





HR7746A-86-152-Av6HT
MIXL1
Q9H2W2
QRRKRTSFSAEQLQL
RAKSRRQSGKSFQPL
67





HR7244A-248-367-NHT
MKRN1
Q9UHC7
DAAQRSQHIKSCIEA
EKQKLILKYKEAMSN
120





HR7430A-278-369-NHT
MKRN3
Q13064
DAAQREEHMRACIEA
NRIVKSCPQCRVTSE
92





HR7905A-54-146-Av6HT
MKX
Q8IYA7
NLGLRHRRTGARQNG
VRQPDLSWALRIKLY
93





HR4516M-1422-1490-15
MLL
Q03164
MILTSVPITPRVVCF
CRRCKFCHVCGRQHQ
70





HR4516M-1422-1514-15
MLL
Q03164
MILTSVPITPRVVCF
KCRNSYHPECLGPNY
94





HR4516M-1427-1486-15
MLL
Q03164
MPITPRVVCFLCASS
ENWCCRRCKFCHVCG
61





HR4516M-1427-1514-15
MLL
Q03164
MPITPRVVCFLCASS
KCRNSYHPECLGPNY
89





HR4516N-1476-1537-15
MLL
Q03164
MCRRCKFCHVCGRQH
KVWICTKCVRCKSCG
63





HR4516O-2012-2081-15
MLL
Q03164
MNGLEPENIHMMIGS
YTCKIVECRPPVVEP
71





HR4516O-2017-2076-15
MLL
Q03164
MENIHMMIGSMTIDC
RKRCVYTCKIVECRP
61





HR4516O-2017-2082-15
MLL
Q03164
MENIHMMIGSMTIDC
TCKIVECRPPVVEPD
67





HR8195A-1-143-Av6HT
MLLT1
Q03111
DNQCTVQVRLELGHR
TEFRYKLLRAGGVMV
142





HR7909A-1-139-Av6HT
MLLT3
P42568
ASSCAVQVKLELGHR
NNPTEDFRRKLLKAG
138





HR7716A-121-220-NHT
MLX
Q9UH92
AYKESYKDRRRRAHT
TALKIMKVNYEQIVK
100





HR7887A-717-802-Av6HT
MLXIP
Q9HAP2
LKNRQMKHISAEQKR
EELNATIISCQQLLP
86





HR7887A-726-802-Av6HT
MLXIP
Q9HAP2
SAEQKRRFNIKMCFD
EELNATIISCQQLLP
77





HR7434A-647-736-NHT
MLXIPL
Q9NP71
TENRRITHISAEQKR
EELNAAINLCQQQLP
90





HR7223A-347-541-Av6HT
MRF
Q9Y2G1
NYQSIKWQPHQQNKW
IIVRASNPGQFESDS
195





HR7242A-112-186-TEV
MRRF
Q96E11
ESGMNLNPEVEGTLI
DTVSEDTIRLIEKQI
75





HR4485B-103-183-14
MSC
O60682
MECKQSQRNAANARE
ENGYVHPVNLTWPFV
82





HR4485B-103-188-14
MSC
O60682
MECKQSQRNAANARE
HPVNLTWPFVVSGRP
87





HR4485B-103-188-Av6HT
MSC
O60682
ECKQSQRNAANARER
HPVNLTWPFVVSGRP
86





HR4485B-103-188-TEV
MSC
O60682
ECKQSQRNAANARER
HPVNLTWPFVVSGRP
86





HR4485B-103-194-14
MSC
O60682
MECKQSQRNAANARE
WPFVVSGRPDSDTKE
93





HR4485B-103-199-14
MSC
O60682
MECKQSQRNAANARE
SGRPDSDTKEVSAAN
98





HR4485B-135-194-14
MSC
O60682
MPWVPPDTKLSKLDT
WPFVVSGRPDSDTKE
61





HR4485C-103-174-14
MSC
O60682
MECKQSQRNAANARE
RQLLQEDRYENGYVH
73





HR7186A-122-193-NHT
MSGN1
A6NI15
SVQRRRKASEREKLR
TDLLNRGREPRAQSA
72





HR7207A-25-769-TEV
MST1R
Q04912
EDWQCPRTPYAASRD
GAQVPGSWTFQYRED
745





HR4585B-167-224-TEV
MSX1
P28360
RKPRTPFTTAQLLAL
VKIWFQNRRAKAKRL
58





HR7691A-143-200-TEV
MSX2
P35548
RKPRTPFTTSQLLAL
VKIWFQNRRAKAKRL
58





HR4538-1-540-14
MTA1
Q13330
MAANMYRVGDYVYFE
LKQAVRKPLEAVLRY
540





HR4538-1-540-15
MTA1
Q13330
MAANMYRVGDYVYFE
LKQAVRKPLEAVLRY
540





HR4538-1-545-14
MTA1
Q13330
MAANMYRVGDYVYFE
RKPLEAVLRYLETHP
545





HR4538-1-545-15
MTA1
Q13330
MAANMYRVGDYVYFE
RKPLEAVLRYLETHP
545





HR4538C-375-438-14
MTA1
Q13330
MGVVNGTGAPGQSPG
WKKYGGLKMPTRLDG
65





HR4538C-380-433-14
MTA1
Q13330
MTGAPGQSPGAGRAC
SCWTYWKKYGGLKMP
55





HR4538D-15
MTA1
Q13330
ALVPQGGPVLCRDEM
QVYIPNYNKPNPNQI
97





HR4538D-Av6HT
MTA1
Q13330
ALVPQGGPVLCRDEM
QVYIPNYNKPNPNQI
97





HR4538D-TEV
MTA1
Q13330
ALVPQGGPVLCRDEM
QVYIPNYNKPNPNQI
97





HR4621B-352-412-15
MTA2
O94776
MSKPGMNGAGFQKGL
WKKYGGLKTPTQLEG
62





HR4621B-357-407-15
MTA2
O94776
MNGAGFQKGLTCESC
SCWIYWKKYGGLKTP
52





HR4621C-1-140-15
MTA2
O94776
MAANMYRVGDYVYFE
CFFYSLVFDPVQKTL
140





HR4621C-1-145-15
MTA2
O94776
MAANMYRVGDYVYFE
LVFDPVQKTLLADQG
145





HR4621C-1-161-15
MTA2
O94776
MAANMYRVGDYVYFE
IRVGCKYQAEIPDRL
161





HR4621C-1-166-15
MTA2
O94776
MAANMYRVGDYVYFE
KYQAEIPDRLVEGES
166





HR4468C-268-324-TEV
MTA3
Q9BIC8
AISALVPQGGPVLCR
IQQDFLPWKSLTSII
57





HR6907A-148-207-NHT
MTF1
Q14872
PRTYSTAGNLRTHQK
VHTKEKPFECDVQGC
60





HR6878A-57-136-TEV
MXD1
Q05195
SRSTHNEMEKNRRAH
LQREQRHLKRQLEKL
80





HR6454A-24-140-14
MXD4
Q14582
EHGYASVLPFDGDFA
LKRRLEQLSVQSVER
117





HR6454A-44-143-14
MXD4
Q14582
AAGLVRKAPNNRSSH
RLEQLSVQSVERVRT
100





HR6454A-44-143-15
MXD4
Q14582
AAGLVRKAPNNRSSH
RLEQLSVQSVERVRT
100





HR6454A-49-140-14
MXD4
Q14582
RKAPNNRSSHNELEK
LKRRLEQLSVQSVER
92





HR6454A-56-136-14
MXD4
Q14582
SSHNELEKHRRAKLR
EHRFLKRRLEQLSVQ
81





HR6454A-56-136-15
MXD4
Q14582
SSHNELEKHRRAKLR
EHRFLKRRLEQLSVQ
81





HR6436A-58-155-14
MXI1
P50539
SSGSSNTSTANRSTH
KWRLEQLQGPQEMER
98





HR6436A-63-149-14
MXI1
P50539
NTSTANRSTHNELEK
REQRFLKWRLEQLQG
87





HR6436A-63-155-14
MXI1
P50539
NTSTANRSTHNELEK
KWRLEQLQGPQEMER
93





HR6436A-68-149-14
MXI1
P50539
NRSTHNELEKNRRAH
REQRRLKWRLEQLQG
82





HR8112A-85-136-TEV
MYBL1
P10243
LIKGPWTKEEDQRVI
GKQCRERWHNHLNPE
52





HR3593B-28-78-TEV
MYBL2
P10244
SKCKVKWTHEEDEQL
RTDQQCQYRWLRVLN
51





HR4620B-353-438-TEV
MYC
P01106
NVKRRTHNVLERQRR
REQLKHKLEQLRNSC
86





HR7184A-279-364-NHT
MYCL1
P12524
DVTKRKNHNFLERKR
RQQQLQKRIAYLIGY
86





HR8502A-1-111-Av6HT
MYCL2
P12525
DRDSYHHYFYDYDGG
EPLERAVSDLLAVGA
110





HR6419A-367-464-14
MYCN
P04198
AKSLSPRNSDSEDSE
RQQQLLKKIEHARTC
98





HR7983A-4-117-TEV
MYNN
Q9NPC7
SHHCEHLLERLNKQR
KVEEVVTKCKIKMED
114





HR4693-66-224-14
MYOG
P15173
MLPWACKVCKRKSVS
VEDVSVAFPDETMPN
160





HR4693B-71-145-14
MYOG
P15173
MKVCKRKSVSVDRRR
RLQALLSSLNQEERD
76





HR4693B-73-156-14
MYOG
P15173
MCKRKSVSVDRRRAA
EERDLRYRGGGGPQP
85





HR4693B-76-138-14
MYOG
P15173
MKSVSVDRRRAATLR
SAIQYIERLQALLSS
64





HR4693B-78-156-14
MYOG
P15173
MVSVDRRRAATLREK
EERDLRYRGGGGPQP
80





HR7507A-115-181-TEV
MYSM1
Q5VVJ2
ASYSVKWTIEEKELF
VKCGLDKETPNQKTG
67





HR7507B-367-470-TEV
MYSM1
Q5VVJ2
HEEEELKPPEQEIEI
IGAINFGGEQAVYNR
104





HR4437B-298-605-NHT
MYST2
O95251
LENLTSEYDLDLFRR
RSNSNKTMDPSCLKW
308





HR8033A-559-650-TEV
MYT1
Q01538
SYRPNVAPATPRANL
LSTRCWEMPENLSTK
92





HR6948A-486-549-TEV
MYT1L
Q9UL68
HVKKPYYDPSRTEKK
PPEILAMHESVLKCP
64





HR7215A-37-128-TEV
MZF1
P28698
DPGPEAARLRFRCFR
EAAALVDGLRREPGG
92





HR6963A-75-157-TEV
NANOG
Q9H9S0
KQPTSAEKSVAKKED
FQNQRMKSKRWQKNN
83





HR7935-106-160-Av6HT
NANOGNB
Q7Z5D8
KRLVSKSLMHTLWAK
ISQWFCKTRKKYNKE
55





HR8537A-41-101-Av6HT
NANOGP1
Q8N7R0
TRTVFSSTQLCVLND
QNQRMKSKRWQKNNW
61





HR3639F-24-96-15
NCOA1
Q15788
MCDTLASSTEKRRRE
RMEQEKSTTDDDVQK
74





HR3639F-29-91-15
NCOA1
Q15788
MSSTEKRRREQENKY
IQLMKRMEQEKSTTD
64





HR3639G-104-174-15
NCOA1
Q15788
MQGVIEKESLGPLLL
LHVGDHAEFVKNLLP
72





HR3639G-107-179-15
NCOA1
Q15788
MIEKESLGPLLLEAL
HAEFVKNLLPKSLVN
74





HR3639G-112-174-15
NCOA1
Q15788
MLGPLLLEALDGFFF
LHVGDHAEFVKNLLP
64





HR3639G-112-203-15
NCOA1
Q15788
MLGPLLLEALDGFFF
RRNSHTFNCRMLIHP
93





HR3639G-99-179-15
NCOA1
Q15788
MISSSSQGVIEKESL
HAEFVKNLLPKSLVN
82





HR3639H-1185-1441-15
NCOA1
Q15788
MSPFSQLAANPEASL
PQAQQKSLLQQLLTE
258





HR3639H-1190-1441-15
NCOA1
Q15788
MLAANPEASLANRNS
PQAQQKSLLQQLLTE
253





HR3639H-1205-1441-15
NCOA1
Q15788
MVSRGMTGNIGGQFG
PQAQQKSLLQQLLTE
238





HR3639H-1210-1441-15
NCOA1
Q15788
MTGNIGGQFGTGINP
PQAQQKSLLQQLLTE
233





HR3639H-1216-1441-15
NCOA1
Q15788
MQFGTGINPQMQQNV
PQAQQKSLLQQLLTE
227





HR4453I-100-258-Av6HT
NCOA3
Q9Y6Q9
MVSSTGQGVIDKDSL
SCMICVARRITTGER
160





HR4453I-100-258-NHT
NCOA3
Q9Y6Q9
VSSTGQGVIDKDSLG
SCMICVARRITTGER
159





HR7885A-433-486-TEV
NCOR1
O75376
DRQFMNVWTDHEKEI
PDCVLYYYLTKKNEN
54





HR4636E-602-671-14
NCOR2
Q9Y618
MAELASMELNESSRW
KKRQNLDEILQQHKL
71





HR4636E-608-670-14
NCOR2
Q9Y618
MELNESSRWTEEEME
YKKRQNLDEILQQHK
64





HR7360A-102-160-TEV
NEUROD1
Q13562
RRMKANARERNRMHG
AKNYIWALSEILRSG
59





HR7134A-122-180-TEV
NEUROD2
Q15784
RRQKANARERNRMHD
AKNYIWALSEILRSG
59





HR7078A-87-146-TEV
NEUROD4
Q9HD90
ARRVKANARERTRMH
ARNYIWALSEVLETG
60





HR8276A-95-153-NHT
NEUROD6
Q96NK8
RRQEANARERNRMHG
AKNYIWALSEILRIG
59





HR8276A-95-153-TEV
NEUROD6
Q96NK8
RRQEANARERNRMHG
AKNYIWALSEILRIG
59





HR6971A-104-175-NHT
NEUROG2
Q9H2A3
ETVQRIKKTRRLKAN
IWALTETLRLADHCG
72





HR7673A-76-167-NHT
NEUROG3
Q9Y4Z2
ALSKQRRSRRKKAND
APHCGELGSPGGSPG
92





HR7259A-264-544-TEV
NFAT5
O94916
KKSPMLCGQYPVKSE
AGRSHDVQPFTYTPD
281





HR8282A-416-591-Av6HT
NFATC1
O95644
MDWQLPSHSGPYELR
SLQVASNPIECSQRS
177





HR8282A-416-591-TEV
NFATC1
O95644
DWQLPSHSGPYELRI
SLQVASNPIECSQRS
176





HR7889A-421-595-TEV
NFATC3
Q12968
DWPLPAHFGQCELKI
SLQIASIPVECSQRS
175





HR4653B-214-293-14
NFE2
Q16621
MAKPTARGEAGSRDE
AAQNCRKRKLETIVQ
81





HR4653B-218-293-14
NFE2
Q16621
MARGEAGSRDERRAL
AAQNCRKRKLETIVQ
77





HR4653B-223-293-14
NFE2
Q16621
MGSRDERRALAMKIP
AAQNCRKRKLETIVQ
72





HR4653B-234-293-14
NFE2
Q16621
MKIPFPTDKIVNLPV
AAQNCRKRKLETIVQ
61





HR4653C-259-338-14
NFE2
Q16621
MLTESQLALVRDIRR
QQLTELYRDIFQHLR
81





HR4653C-274-338-14
NFE2
Q16621
MGKNKVAAQNCRKRK
QQLTELYRDIFQHLR
66





HR7672A-605-674-NHT
NFE2L1
Q14494
DFLDKQMSRDEHRAR
RRGKNKMAAQNCRKR
70





HR3520B-21
NFE2L2
Q16236
MMDLELPPPGLPSQQ
TSGSANYSQVAHIPK
110





HR3520F-21
NFE2L2
Q16236
DMDLIDILWRQDIDL
TSGSANYSQVAHIPK
95





HR3520L-455-594-14
NFE2L2
Q16236
TRDELRAKALHIPFP
EYSLQQTRDGNVFLV
140





HR3520L-455-599-14
NFE2L2
Q16236
TRDELRAKALHIPFP
QTRDGNVFLVPKSKK
145





HR3520M-435-523-15
NFE2L2
Q16236
MGHRKTPFTKDKHSS
VAAQNCRKRKLENIV
90





HR3520M-440-523-15
NFE2L2
Q16236
MPFTKDKHSSRLEAH
VAAQNCRKRKLENIV
85





HR3520N-489-570-15
NFE2L2
Q16236
MQFNEAQLALIRDIR
QLSTLYLEVFSMLRD
83





HR3520O-445-523-15
NFE2L2
Q16236
MKHSSRLEAHLTRDE
VAAQNCRKRKLENIV
80





HR7720A-530-598-NHT
NFE2L3
Q9Y4A8
DTDRNLSRDEQRAKA
RRGKNKVAAQNCRKR
69





HR7383A-63-165-TEV
NFIA
Q12857
EKPEVKQKWASRLLA
VKSPQCSNPGLCVQP
103





HR7383A-63-184-TEV
NFIA
Q12857
EKPEVKQKWASRLLA
VSVKELDLYLAYFVH
122





HR7383A-7-165-TEV
NFIA
Q12857
LTQDEFHPFIEALLP
VKSPQCSNPGLCVQP
159





HR7279A-8-166-Av6HT
NFIB
O00712
LTQDEFHPFIEALLP
MKSPHCTNPALCVQP
159





HR7320A-61-170-TEV
NFIC
P08651
LLGEKPEVKQKWASR
QCGHPVLCVQPHHIG
110





HR7320A-61-186-TEV
NFIC
P08651
LLGEKPEVKQKWASR
AVKELDLYLAYFVRE
126





HR7320A-64-166-TEV
NFIC
P08651
EKPEVKQKWASRLLA
VKAAQCGHPVLCVQP
103





HR7320A-8-166-TEV
NFIC
P08651
LTQDEFHPFIEALLP
VKAAQCGHPVLCVQP
159





HR3633C-804-893-TEV
NFKB1
P19838
AQGDMKQLAEDVKLQ
MGYTEAIEVIQAASS
90





HR3633D-248-354-Av6HT
NFKB1
P19838
SNLKIVRMDRTAGCV
ETSEPKPFLYYPEIK
107





HR5561A-15
NFKB1
P19838
MQLVRDLLEVTSGLI
GADPLVENFEPLYDL
201





HR4541C-445-696-14
NFKB2
Q00653
MEYNARLFGLAQRSA
TLTRLLLKAGADIHA
253





HR4541C-477-696-14
NFKB2
Q00653
MQRHLLTAQDENGDT
TLTRLLLKAGADIHA
221





HR4541C-482-696-14
NFKB2
Q00653
MTAQDENGDTPLHLA
TLTRLLLKAGADIHA
216





HR4541D-37-329-TEV
NFKB2
Q00653
GPYLVIVEQPKQRGF
GDVSDSKQFTYYPLV
293





HR6920A-980-1063-NHT
NFX1
Q12986
SKFSDSLKEDARKDL
DSEPKRNVVVTAIRG
84





HR6427-1-270-14
NFYA
P23511
MEQYTANSNSSTEQI
GAEMLEEEPLYVNAK
270





HR6427-1-290-14
NFYA
P23511
MEQYTANSNSSTEQI
LKRRQARAKLEAEGK
290





HR6427-1-295-14
NFYA
P23511
MEQYTANSNSSTEQI
ARAKLEAEGKIPKER
295





HR6427A-38-145-14
NFYA
P23511
EAQVASASGQQVQTL
QIIIQQPQTAVTAGQ
108





HR6427A-42-150-14
NFYA
P23511
ASASGQQVQTLQVVQ
QPQTAVTAGQTQTQQ
109





HR6427A-47-145-14
NFYA
P23511
QQVQTLQVVQGQPLM
QIIIQQPQTAVTAGQ
99





HR4613B-51-143-TEV
NFYB
P25208
SFREQDIYLPIANVA
SYVEPLKLYLQKFRE
93





HR3512B-166-288-15
NKRF
O15226
VVAEKQYFIEKLTAT
LQKRIEVRVVRRKFK
123





HR3512B-166-293-15
NKRF
O15226
VVAEKQYFIEKLTAT
EVRVVRRKFKHTFGE
128





HR3512B-188-288-15
NKRF
O15226
PEMTSGSDKINYTYM
LQKRIEVRVVRRKFK
101





HR4600-161-227-Av6HT
NKX2-1
P43699
RRKRVLFSQAQVYE
RYKMKRQAKDKAAQQ
67





HR7114A-123-196-TEV
NKX2-2
O95096
GDAGKKRKRRVLFSK
KMKRARAEKGMEVTP
74





HR4758B-148-211-TEV
NKX2-3
Q8TAU0
RRKPRVLFSQAQVFE
QNRRYKCKRQRQDKS
64





HR7998A-189-255-TEV
NKX2-4
Q9H2Z4
RRKRRVLFSQAQVYE
RYKMKRQAKDKAAQQ
67





HR5518A-127-207-14
NKX2-5
P52952
MADNAERPRARRRRK
CKRQRQDQTLELVGL
82





HR5518A-127-207-Av6HT
NKX2-5
P52952
ADNAERPRARRRRKP
CKRQRQDQTLELVGL
81





HR5518A-127-207-TEV
NKX2-5
P52952
ADNAERPRARRRRKP
CKRQRQDQTLELVGL
81





HR5518A-14
NKX2-5
P52952
MRPRARRRRKPRVLF
DQTLELVGLPPPPPP
83





HR5518A-15
NKX2-5
P52952
MRPRARRRRKPRVLF
DQTLELVGLPPPPPP
83





HR5518B-128-224-14
NKX2-5
P52952
MDNAERPRARRRRKP
PPPPPARRIAVPVLV
98





HR5518B-128-233-14
NKX2-5
P5295
MDNAERPRARRRRKP
AVPVLVRDGKPCLGD
107





HR5518B-143-224-14
NKX2-5
P52952
MVLFSQAQVYELERR
PPPPPARRIAVPVLV
83





HR5518B-143-228-14
NKX2-5
P52952
MVLFSQAQVYELERR
PARRIAVPVLVRDGK
87





HR5518B-143-233-14
NKX2-5
P52952
MVLFSQAQVYELERR
AVPVLVRDGKPCLGD
92





HR7861A-83-143-TEV
NKX2-8
O15522
KRKKRRVLFSKAQTL
KIWFQNHRYKLKRAR
61





HR6470A-127-195-15
NKX3-1
Q99801
SRAAFSHTQVIELER
RKQLSSELGDLEKHS
69





HR6470A-132-189-15
NKX3-1
Q99801
SHTQVIELERKFSHQ
RRYKTKRKQLSSELG
58





HR6470A-97-163-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
LSAPERAHLAKNLKL
67





HR6470A-97-168-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
RAHLAKNLKLTETQV
72





HR6470A-97-189-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
RRYKTKRKQLSSELG
93





HR6470A-97-195-15
NKX3-1
Q99801
RHLGSYLLDSENTSG
RKQLSSELGDLEKHS
99





HR8303A-212-271-Av6HT
NKX3-2
P78367
AFSHAQVFELERRFN
RRYKTKRRQMAADLL
60





HR6930A-227-296-NHT
NKX6-1
P78426
SILLDKDGKRKHTRP
VWFQNRRTKWRKKHA
70





HR7948A-199-323-Av6HT
NOC3L
Q8WTT2
TIEEHLIERKKKLQE
LENLEQMVKDWKQRK
125





HR8350A-301-458-Av6HT
NOC4L
Q9BVI4
GGALSLLALNGLFIL
HYHPEVSKAASVINQ
158





HR6913A-130-201-NHT
NPAS1
Q99742
VSEVFEQHLGGHILQ
HPGDHSEVLEQLGLR
72





HR8115A-87-146-Av6HT
NPAS2
Q99743
QLMLEALDGFIIAVT
FLPEQEHSEVYKILS
60





HR7386A-142-213-NHT
NPAS3
Q8IXF0
AIEVFEAHLGSHILQ
HPGDHVEMAEQLGMK
72





HR7814A-184-329-NHT
NPAS4
Q8IUM7
GNPVFTAFCAPLEPR
SDMEAWSLRQQINSE
146





HR7372A-210-470-15
NR0B1
P51843
MGSTLYCVPTSTNQA
VSMDDMMLEMLCTKI
262





HR7372A-210-470-Av6HT
NR0B1
P51843
GSTLYCVPTSTNQAQ
VSMDDMMLEMLCTKI
261





HR7372A-210-470-TEV
NR0B1
P51843
GSTLYCVPTSTNQAQ
VSMDDMMLEMLCTKI
261





HR7372A-237-470-15
NR0B1
P51843
MDTSSGALRPVALKS
VSMDDMMLEMLCTKI
235





HR7372A-237-470-Av6HT
NR0B1
P51843
DTSSGALRPVALKSP
VSMDDMMLEMLCTKI
234





HR7372A-237-470-TEV
NR0B1
P51843
DTSSGALRPVALKSP
VSMDDMMLEMLCTKI
234





HR7372A-245-470-15
NR0B1
P51843
MPVALKSPQVVCEAA
VSMDDMMLEMLCTKI
227





HR7372A-245-470-Av6HT
NR0B1
P51843
PVALKSPQVVCEAAS
VSMDDMMLEMLCTKI
226





HR7372A-245-470-TEV
NR0B1
P51843
PVALKSPQVVCEAAS
VSMDDMMLEMLCTKI
226





HR8369A-14-257-15
NR0B2
Q15466
MAASRPAILYALLSS
DVDIAGLLGDMLLLR
245





HR8278A-123-216-15
NR1D1
P20393
MTKLNGMVLLCKVCG
AVRFGRIPKREKQRM
95





HR8278A-123-216-Av6HT
NR1D1
P20393
TKLNGMVLLCKVCGD
AVRFGRIPKREKQRM
94





HR8278A-123-216-TEV
NR1D1
P20393
TKLNGMVLLCKVCGD
AVRFGRIPKREKQRM
94





HR8341A-100-171-15
NR1D2
Q14995
MVLLCKVCGDVASGF
QQCRFKKCLSVGMSR
73





HR8341A-100-171-Av6HT
NR1D2
Q14995
VLLCKVCGDVASGFH
QQCRFKKCLSVGMSR
72





HR8341A-100-171-TEV
NR1D2
Q14995
VLLCKVCGDVASGFH
QQCRFKKCLSVGMSR
72





HR8341A-100-181-15
NR1D2
Q14995
MVLLCKVCGDVASGF
VGMSRDAVRFGRIPK
83





HR8341A-100-181-Av6HT
NR1D2
Q14995
VLLCKVCGDVASGFH
VGMSRDAVRFGRIPK
82





HR8341A-100-181-TEV
NR1D2
Q14995
VLLCKVCGDVASGFH
VGMSRDAVRFGRIPK
82





HR8341A-100-200-15
NR1D2
Q14995
MVLLCKVCGDVASGF
RMLIEMQSAMKTMMN
102





HR8341A-100-200-Av6HT
NR1D2
Q14995
VLLCKVCGDVASGFH
RMLIEMQSAMKTMMN
101





HR8341A-100-200-TEV
NR1D2
Q14995
VLLCKVCGDVASGFH
RMLIEMQSAMKTMMN
101





HR8341B-381-579-15
NR1D2
Q14995
MHLVCPMSKSPYVDP
NNMHSEELLAFKVHP
200





HR8341B-381-579-Av6HT
NR1D2
Q14995
HLVCPMSKSPYVDPH
NNMHSEELLAFKVHP
199





HR8341B-381-579-TEV
NR1D2
Q14995
HLVCPMSKSPYVDPH
NNMHSEELLAFKVHP
199





HR7370A-209-460-15
NR1H2
P55055
MSQGSGEGEGVQLTA
DKKLPPLLSEIWDVH
253





HR7370A-209-460-Av6HT
NR1H2
P55055
SQGSGEGEGVQLTAA
DKKLPPLLSEIWDVH
252





HR7370A-209-460-TEV
NR1H2
P55055
SQGSGEGEGVQLTAA
DKKLPPLLSEIWDVH
252





HR8107E-205-447-TEV
NR1H3
Q13133
QLSPEQLGMIEKLVA
KKLPPLLSEIWDVHE
243





HR4469B-125-217-14
NR1H4
Q96RI1
MGASAGRIKGDELCV
LAECMYTGLLTEIQC
94





HR4469B-125-234-14
NR1H4
Q96RI1
MGASAGRIKGDELCV
KRLRKNVKQHADQTV
111





HR4469B-129-217-14
NR1H4
Q96RI1
MGRIKGDELCVVCGD
LAECMYTGLLTEIQC
90





HR4469B-129-234-14
NR1H4
Q96RI1
MGRIKGDELCVVCGD
KRLRKNVKQHADQTV
107





HR4469B-130-213-14
NR1H4
Q96RI1
MRIKGDELCVVCGDR
EMGMLAECMYTGLLT
85





HR4469B-130-229-14
NR1H4
Q96RI1
MRIKGDELCVVCGDR
IQCKSKRLRKNVKQH
101





HR4469B-134-213-14
NR1H4
Q96RI1
MDELCVVCGDRASGY
EMGMLAECMYTGLLT
81





HR4469B-134-229-14
NR1H4
Q96RI1
MDELCVVCGDRASGY
IQCKSKRLRKNVKQH
97





HR7870A-37-107-15
NR1I2
O75469
MGPQJCRVCGDKATG
QCQACRLRKCLESGM
72





HR7870A-37-107-Av6HT
NR1I2
O75469
GPQICRVCGDKATGY
QCQACRLRKCLESGM
71





HR7870A-37-107-TEV
NR1I2
O75469
GPQICRVCGDKATGY
QCQACRLRKCLESGM
71





HR7870A-37-130-15
NR1I2
O75469
MGPQICRVCGDKATG
EAVEERRALIKRKKS
95





HR7870A-37-130-Av6HT
NR1I2
O75469
GPQICRVCGDKATGY
EAVEERRALIKRKKS
94





HR7870A-37-130-TEV
NR1I2
O75469
GPQICRVCGDKATGY
EAVEERRALIKRKKS
94





HR7870B-130-434-15
NR1I2
O75469
MSERTGTQPLGVQGL
FATPLMQELFGITGS
306





HR7870B-130-434-Av6HT
NR1I2
O75469
SERTGTQPLGVQGLT
FATPLMQELFGITGS
305





HR7870B-130-434-TEV
NR1I2
O75469
SERTGTQPLGVQGLT
FATPLMQELFGITGS
305





HR7870C-142-434-15
NR1I2
O75469
MGLTEEQRMMIRELM
FATPLMQELFGITGS
294





HR7870C-142-434-Av6HT
NR1I2
O75469
GLTEEQRMMIRELMD
FATPLMQELFGITGS
293





HR7870C-142-434-TEV
NR1I2
O75469
GLTEEQRMMIRELMD
FATPLMQELFGITGS
293





HR7475A-6-105-15
NR1I3
Q14994
MDELRNCVVCGDQAT
RAKQAQRRAQQTPVQ
101





HR7475A-6-105-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
RAKQAQRRAQQTPVQ
100





HR7475A-6-105-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
RAKQAQRRAQQTPVQ
100





HR7475A-6-120-15
NR1I3
Q14994
MDELRNCVVCGDQAT
LSKEQEELIRTLLGA
116





HR7475A-6-120-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
LSKEQEELIRTLLGA
115





HR7475A-6-120-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
LSKEQEELIRTLLGA
115





HR7475B-6-77-15
NR1I3
Q14994
MDELRNCVVCGDQAT
CPACRLQKCLDAGMR
73





HR7475B-6-77-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
CPACRLQKCLDAGMR
72





HR7475B-6-77-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
CPACRLQKCLDAGMR
72





HR7475B-6-82-15
NR1I3
Q14994
MDELRNCVVCGDQAT
LQKCLDAGMRKDMIL
78





HR7475B-6-82-Av6HT
NR1I3
Q14994
DELRNCVVCGDQATG
LQKCLDAGMRKDMIL
77





HR7475B-6-82-TEV
NR1I3
Q14994
DELRNCVVCGDQATG
LQKCLDAGMRKDMIL
77





HR7475C-103-352-15
NR1I3
Q14994
MPVQLSKEQEELIRT
QGLSAMMPLLQEICS
251





HR7475C-103-352-Av6HT
NR1I3
Q14994
PVQLSKEQEELIRTL
QGLSAMMPLLQEICS
250





HR7475C-103-352-TEV
NR1I3
Q14994
PVQLSKEQEELIRTL
QGLSAMMPLLQEICS
250





HR8155A-108-196-Av6HT
NR2C1
P13056
KVFDLCVVCGDKASG
SVQCERKPIEVSREK
89





HR6956-16-584-15
NR2C2
P49116
MAVASPQRIQGSEPA
RLMSSNITEELFFTG
570





HR6956-16-584-Av6HT
NR2C2
P49116
AVASPQRIQGSEPAS
RLMSSNITEELFFTG
569





HR6956-16-584-TEV
NR2C2
P49116
AVASPQRIQGSEPAS
RLMSSNITEELFFTG
569





HR6956A-115-584-15
NR2C2
P49116
MSASVERLLGKTDVQ
RLMSSNITEELFFTG
471





HR6956A-115-584-TEV
NR2C2
P49116
SASVERLLGKTDVQR
RLMSSNITEELFFTG
470





HR6956B-170-584-15
NR2C2
P49116
MYSCRSNQDCIINKH
RLMSSNITEELFFTG
416





HR6956B-170-584-Av6HT
NR2C2
P49116
YSCRSNQDCIINKHH
RLMSSNITEELFFTG
415





HR6956B-170-584-TEV
NR2C2
P49116
YSCRSNQDCIINKHH
RLMSSNITEELFFTG
415





HR6956B-181-584-15
NR2C2
P49116
MNKHHRNRCQFCRLK
RLMSSNITEELFFTG
405





HR6956B-181-584-Av6HT
NR2C2
P49116
NKHHRNRCQFCRLKK
RLMSSNITEELFFTG
404





HR6956B-181-584-TEV
NR2C2
P49116
NKHHRNRCQFCRLKK
RLMSSNITEELFFTG
404





HR6956B-218-584-15
NR2C2
P49116
MEKPSNCAASTEKIY
RLMSSNITEELFFTG
368





HR6956B-218-584-Av6HT
NR2C2
P49116
EKPSNCAASTEKIYI
RLMSSNITEELFFTG
367





HR6956B-218-584-TEV
NR2C2
P49116
EKPSNCAASTEKIYI
RLMSSNITEELFFTG
367





HR6956C-110-188-15
NR2C2
P49116
MQIVTDSASVERLLG
SNQDCIINKHHRNRC
80





HR6956C-110-205-15
NR2C2
P49116
MQIVTDSASVERLLG
CRLKKCLEMGMKMES
97





HR6956C-115-183-15
NR2C2
P49116
MSASVERLLGKTDVQ
TYSCRSNQDCIINKH
70





HR6956C-115-183-Av6HT
NR2C2
P49116
SASVERLLGKTDVQR
TYSCRSNQDCIINKH
69





HR6956C-115-183-TEV
NR2C2
P49116
SASVERLLGKTDVQR
TYSCRSNQDCIINKH
69





HR6956C-115-200-15
NR2C2
P49116
MSASVERLLGKTDVQ
NRCQFCRLKKCLEMG
87





HR6956C-115-200-Av6HT
NR2C2
P49116
SASVERLLGKTDVQR
NRCQFCRLKKCLEMG
86





HR6956C-115-200-TEV
NR2C2
P49116
SASVERLLGKTDVQR
NRCQFCRLKKCLEMG
86





HR7378A-18-385-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
PITRLLSDMYKSSDI
369





HR7378A-18-385-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
PITRLLSDMYKSSDI
368





HR7378A-18-385-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
PITRLLSDMYKSSDI
368





HR7378B-134-385-Av6HT
NR2E1
Q9Y466
VTQLEPHGLELAAVS
PITRLLSDMYKSSDI
252





HR7378B-134-385-TEV
NR2E1
Q9Y466
VTQLEPHGLELAAVS
PITRLLSDMYKSSDI
252





HR7378B-65-385-15
NR2E1
Q9Y466
MTHRNQCRACRLKKC
PITRLLSDMYKSSDI
322





HR7378B-65-385-Av6HT
NR2E1
Q9Y466
THRNQCRACRLKKCL
PITRLLSDMYKSSDI
321





HR7378B-65-385-TEV
NR2E1
Q9Y466
THRNQCRACRLKKCL
PITRLLSDMYKSSDI
321





HR7378B-76-385-15
NR2E1
Q9Y466
MKKCLEVNMNKDAVQ
PITRLLSDMYKSSDI
311





HR7378B-76-385-Av6HT
NR2E1
Q9Y466
KKCLEVNMNKDAVQH
PITRLLSDMYKSSDI
310





HR7378B-76-385-TEV
NR2E1
Q9Y466
KKCLEVNMNKDAVQH
PITRLLSDMYKSSDI
310





HR7378C-18-109-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
RTSTIRKQVALYFRG
93





HR7378C-18-109-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
RTSTIRKQVALYFRG
92





HR7378C-18-109-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
RTSTIRKQVALYFRG
92





HR7378C-18-83-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
QCRACRLKKCLEVNM
67





HR7378C-18-83-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
QCRACRLKKCLEVNM
66





HR7378C-18-83-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
QCRACRLKKCLEVNM
66





HR7378C-18-96-15
NR2E1
Q9Y466
MVCGDRSSGKHYGVY
NMNKDAVQHERGPRT
80





HR7378C-18-96-Av6HT
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
NMNKDAVQHERGPRT
79





HR7378C-18-96-TEV
NR2E1
Q9Y466
VCGDRSSGKHYGVYA
NMNKDAVQHERGPRT
79





HR7906-Av6HT
NR2E3
Q9Y5X4
ETRPTALMSSTVAAA
NTPMEKLLCDMFKN*
410





HR7906B-101-410-Av6HT
NR2E3
Q9Y5X4
QACRLKKCLQAGMNQ
GNTPMEKLLCDMFKN
310





HR7906B-101-410-TEV
NR2E3
Q9Y5X4
QACRLKKCLQAGMNQ
GNTPMEKLLCDMFKN
310





HR7906B-114-410-15
NR2E3
Q9Y5X4
MNQDAVQNERQPRST
GNTPMEKLLCDMFKN
298





HR7906B-114-410-Av6HT
NR2E3
Q9Y5X4
NQDAVQNERQPRSTA
GNTPMEKLLCDMFKN
297





HR7906B-114-410-TEV
NR2E3
Q9Y5X4
NQDAVQNERQPRSTA
GNTPMEKLLCDMFKN
297





HR7906B-164-410-Av6HT
NR2E3
Q9Y5X4
SAARALGHHFMASLI
GNIPMEKLLCDMFKN
247





HR7906C-45-119-15
NR2E3
Q9Y5X4
MLQCRVCGDSSSGKH
LKKCLQAGMNQDAVQ
76





HR7906C-45-131-15
NR2E3
Q9Y5X4
MLQCRVCGDSSSGKH
AVQNERQPRSTAQVH
88





HR7906C-45-142-15
NR2E3
Q9Y5X4
MLQCRVCGDSSSGKH
AQVHLDSMESNTESR
99





HR7906C-50-114-15
NR2E3
Q9Y5X4
MCGDSSSGKHYGIYA
CQACRLKKCLQAGMN
66





HR7906C-50-126-15
NR2E3
Q9Y5X4
MCGDSSSGKHYGIYA
GMNQDAVQNERQPRS
78





HR7906C-50-126-Av6HT
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
GMNQDAVQNERQPRS
77





HR7906C-50-126-TEV
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
GMNQDAVQNERQPRS
77





HR7906C-50-135-Av6HT
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
ERQPRSTAQVHLDSM
86





HR7906C-50-135-TEV
NR2E3
Q9Y5X4
CGDSSSGKHYGIYAC
ERQPRSTAQVHLDSM
86





HR7906D-36-410-Av6HT
NR2E3
Q9Y5X4
EDPTGVSPSLQCRVC
GNTPMEKLLCDMFKN
375





HR3061D-77-164-TEV
NR2F1
P10589
SGQSQQHIECVVCGD
GMRREAVQRGRMPPT
88





HR6377A-77-157-TEV
NR2F2
P24468
IECVVCGDKSSGKHY
GMRREAVQRGRMPPT
81





HR7636A-56-394-Av6HT
NR2F6
P10588
CVVCGDKSSGKHYGV
TPIETLIRDMLLSGS
339





HR7636A-56-394-TEV
NR2F6
P10588
CVVCGDKSSGKHYGV
TPIETLIRDMLLSGS
339





HR7636B-113-394-15
NR2F6
P10588
MLKKCFRVGMRKEAV
TPIETLIRDMLLSGS
283





HR7636B-113-394-Av6HT
NR2F6
P10588
LKKCFRVGMRKEAVQ
TPIETLIRDMLLSGS
282





HR7636B-113-394-TEV
NR2F6
P10588
LKKCFRVGMRKEAVQ
TPIETLIRDMLLSGS
282





HR7636B-159-394-Av6HT
NR2F6
P10588
DLFPGQPVSELIAQL
TPIETLIRDMLLSGS
236





HR7636B-159-394-TEV
NR2F6
P10588
DLFPGQPVSELIAQL
TPIETLIRDMLLSGS
236





HR7636C-56-133-15
NR2F6
P10588
MCVVCGOKSSGKHYG
VGMRKEAVQRGRIPH
79





HR4533-15
NR3C1
P04150
MDSKESLTPGREENP
KYSNGNIKKLLFHQK
777





HR7785-601-673-15
NR3C2
P08235
MKICLVCGDEASGCH
RLQKCLQAGMNLGAR
74





HR7785A-601-673-Av6HT
NR3C2
P08235
KICLVCGDEASGCHY
RLQKCLQAGMNLGAR
73





HR7785A-601-673-TEV
NR3C2
P08235
KICLVCGDEASGCHY
RLQKCLQAGMNLGAR
73





HR7785A-601-685-15
NR3C2
P08235
MKICLVCGDEASGCH
GARKSKKLGKLKGIH
86





HR7785A-601-685-Av6HT
NR3C2
P08235
KICLVCGDEASGCHY
GARKSKKLGKLKGIH
85





HR7785A-601-685-TEV
NR3C2
P08235
KICLVCGDEASGCHY
GARKSKKLGKLKGIH
85





HR7785B-712-984-15
NR3C2
P08235
MAPAKEPSVNTALVP
KVESGNAKPLYFHRK
274





HR7785B-712-984-Av6HT
NR3C2
P08235
APAKEPSVNTALVPQ
KVESGNAKPLYFHRK
273





HR7785B-712-984-TEV
NR3C2
P08235
APAKEPSVNTALVPQ
KVESGNAKPLYFHRK
273





HR7785C-731-984-Av6HT
NR3C2
P08235
SRALTPSPVMVLENI
KVESGNAKPLYFHRK
254





HR7785C-731-984-TEV
NR3C2
P08235
SRALTPSPVMVLENI
KVESGNAKPLYFHRK
254





HR4793B-265-353-TEV
NR4A1
P22736
GRCAVCGDNASCQHY
TDSLKGRRGRLPSKP
89





HR8241A-261-342-15
NR4A2
P43354
MGLCAVCGDNAACQH
MVKEVVRTDSLKGRR
83





HR8241A-261-342-Av6HT
NR4A2
P43354
GLCAVCGDNAACQHY
MVKEVVRTDSLKGRR
82





HR8241A-261-342-TEV
NR4A2
P43354
GLCAVCGDNAACQHY
MVKEVVRTDSLKGRR
82





HR8241A-264-328-15
NR4A2
P43354
MAVCGDNAACQHYGV
RCQYCRFQKCLAVGM
66





HR8241A-264-328-Av6HT
NR4A2
P43354
AVCGDNAACQHYGVR
RCQYCRFQKCLAVGM
65





HR8241A-264-328-TEV
NR4A2
P43354
AVCGDNAACQHYGVR
RCQYCRFQKCLAVGM
65





HR8241B-328-598-15
NR4A2
P43354
MVKEVVRTDSLKGRR
PPAIIDKLFLDTLPF
271





HR8241B-328-598-Av6HT
NR4A2
P43354
VKEVVRTDSLKGRRG
PPAIIDKLFLDTLPF
270





HR8241B-328-598-TEV
NR4A2
P43354
VKEVVRTDSLKGRRG
PPAIIDKLFLDTLPF
270





HR7224A-291-626-15
NR4A3
Q92570
MTCAVCGDNAACQHY
PPSIIDKLFLDTLPF
337





HR7224B-363-626-15
NR4A3
Q92570
MRTDSLKGRRGRLPS
PPSIIDKLFLDTLPF
265





HR7224B-363-626-Av6HT
NR4A3
Q92570
RTDSLKGRRGRLPSK
PPSIIDKLFLDTLPF
264





HR7224B-363-626-TEV
NR4A3
Q92570
RTDSLKGRRGRLPSK
PPSIIDKLFLDTLPF
264





HR7224B-396-626-15
NR4A3
Q92570
MICMMNALVRALTDS
PPSIIDKLFLDTLPF
232





HR7224B-396-626-Av6HT
NR4A3
Q92570
ICMMNALVRALTDST
PPSIIDKLFLDTLPF
231





HR7224B-396-626-TEV
NR4A3
Q92570
ICMMNALVRALTDST
PPSIIDKLFLDTLPF
231





HR7224B-411-626-15
NR4A3
Q92570
MPRDLDYSRYCPTDQ
PPSIIDKLFLDTLPF
217





HR7224B-411-626-Av6HT
NR4A3
Q92570
PRDLDYSRYCPTDQA
PPSIIDKLFLDTLPF
216





HR7224B-411-626-TEV
NR4A3
Q92570
PRDLDYSRYCPTDQA
PPSIIDKLFLDTLPF
216





HR7224C-291-374-15
NR4A3
Q92570
MTCAVCGDNAACQHY
EVVRTDSLKGRRGRL
85





HR7224C-291-374-Av6HT
NR4A3
Q92570
TCAVCGDNAACQHYG
EVVRTDSLKGRRGRL
84





HR7224C-291-374-TEV
NR4A3
Q92570
TCAVCGDNAACQHYG
EVVRTDSLKGRRGRL
84





HR7224C-294-356-15
NR4A3
Q92570
MVCGDNAACQHYGVR
NRCQYCRFQKCLSVG
64





HR7224C-294-356-Av6HT
NR4A3
Q92570
VCGDNAACQHYGVRT
NRCQYCRFQKCLSVG
63





HR7224C-294-356-TEV
NR4A3
Q92570
VCGDNAACQHYGVRT
NRCQYCRFQKCLSVG
63





HR7993A-220-461-15
NR5A1
Q13285
MGPNVPELILQLLQL
PRNNLLIEMLQAKQT
243





HR7993A-220-461-Av6HT
NR5A1
Q13285
GPNVPELILQLLQLE
PRNNLLIEMLQAKQT
242





HR7993A-220-461-TEV
NR5A1
Q13285
GPNVPELILQLLQLE
PRNNLLIEMLQAKQT
242





HR7993B-10-111-15
NR5A1
O13285
MDELCPVCGDKVSGY
PMYKRDRALKQQKKA
103





HR7993B-10-111-Av6HT
NR5A1
Q13285
DELCPVCGDKVSGYH
PMYKRDRALKQQKKA
102





HR7993B-10-111-TEV
NR5A1
Q13285
DELCPVCGDKVSGYH
PMYKRDRALKQQKKA
102





HR8211A-79-187-Av6HT
NR5A2
O00482
MDEDLEELCPVCGDK
KRDRALKQQKKALIR
110





HR8211A-79-187-NHT
NR5A2
O00482
DEDLEELCPVCGDKV
KRDRALKQQKKALIR
109





HR8211A-79-187-TEV
NR5A2
O00482
DEDLEELCPVCGDKV
KRDRALKQQKKALIR
109





HR7049A-49-474-15
NR6A1
Q15406
MDRAEQRTCLICGDR
LFKVVLHSCKTSVGK
427





HR7049A-49-474-Av6HT
NR6A1
Q15406
DRAEQRTCLICGDRA
LFKVVLHSCKTSVGK
426





HR7049A-49-474-TEV
NR6A1
Q15406
DRAEQRTCLICGDRA
LFKVVLHSCKTSVGK
426





HR7049B-117-474-15
NR6A1
Q15406
MLQMGMNRKAIREDG
LFKVVLHSCKTSVGK
359





HR7049B-117-474-Av6HT
NR6A1
Q15406
LQMGMNRKAIREDGM
LFKVVLHSCKTSVGK
358





HR7049B-117-474-TEV
NR6A1
Q15406
LQMGMNRKAIREDGM
LFKVVLHSCKTSVGK
358





HM7049C-49-143-15
NR6A1
Q15406
MDRAEQRTCLICGDR
DGMPGGRNKSIGPVQ
96





HR7049C-49-143-Av6HT
NR6A1
Q15406
DRAEQRTCLICGDRA
DGMPGGRNKSIGPVQ
95





HR7049C-49-143-TEV
NR6A1
Q15406
DRAEQRTCLICGDRA
DGMPGGRNKSIGPVQ
95





HR7049C-49-159-15
NR6A1
Q15406
MDRAEQRTCLICGDR
SEEEIERIMSGQEFE
112





HR7049C-49-159-Av6HT
NR6A1
Q15406
DRAEQRTCLICGDRA
SEEEIERIMSGQEFE
111





HR7049C-49-159-TEV
NR6A1
Q15406
DRAEQRTCLICGDRA
SEEEIERIMSGQEFE
111





HR7049C-58-143-15
NR6A1
Q15406
MICGDRATGLHYGII
DGMPGGRNKSIGPVQ
87





HR7049C-58-159-15
NR6A1
Q15406
MICGDRATGLHYGII
SEEEIERIMSGQEFE
103





HR7049C-58-159-Av6HT
NR6A1
Q15406
ICGDRATGLHYGIIS
SEEEIERIMSGQEFE
102





HR7049C-58-159-TEV
NR6A1
Q15406
ICGDRATGLHYGIIS
SEEEIERIMSGQEFE
102





HR8346A-59-490-Av6HT
NRF1
Q16656
LNSTAADEVTAHLAA
AMAPVTTRISDSAVT
432





HR7765A-130-171-Av6HT
NRL
P54845
ERFSDAALVSMSVRE
ALRLKQRRRTLKNRG
42





HR8036A-96-176-Av6HT
OLIG1
Q8TAK6
PDAKEEQQQQLRRKI
LLLGSSLQELRRALG
81





HR7010A-102-190-15
OLIG2
Q13516
MTEPELQQLRLKINS
IYGGHHAGFHPSACG
90





HR7010A-136-190-15
OLIG2
Q13516
MPYAHGPSVRKLSKI
IYGGHHAGFHPSACG
56





HR7010A-97-191-15
OLIG2
Q13516
MDKKQMTEPELQQLR
YGGHHAGFHPSACGG
96





HR6912A-76-168-NHT
OLIG3
Q7RTU3
LSEQDLQQLRLKING
GHHSAFHCGTVGHSA
93





HR4667C-291-437-TEV
ONECUT1
Q9UBC0
EINTKEVAQRITTEL
GLELSTVSNFFMNAR
147





HR8108A-313-459-TEV
ONECUT2
O95948
ERPPSSSSGSQVATS
FKENKRPSKEMQITI
147





HR7555A-320-466-TEV
ONECUT3
O60422
EINTKEVAQRITAEL
GLELNTVSNFFMNAR
147





HR8321A-165-256-TEV
OSR1
Q8TAX0
GRLPSKTKKEFVCKF
QSRTLAVHKTLHSQV
92





HR6892A-160-254-TEV
OSR2
Q8N2R0
SRGRLPSKTKKEFIC
SRTLAVHKTLHMQES
95





HR7032A-39-109-TEV
OTX1
P32242
RRERTTFTRSQLDVL
QQQQSGSGTKSRPAK
71





HR7869A-39-106-TEV
OTX2
P32243
PAATPRKQRRERTTF
VWFKNRRAKCRQQQQ
68





HR8136A-96-170-Av6HT
OVOL1
O14753
RDHGFLRTKMKVTLG
NDTFDLKRHVRTHTG
75





HR8149A-102-172-Av6HT
OVOL2
Q9BRP0
ARSKIKFTTGTCSDS
DTFDLKRHVRTHTGI
71





HR8517-1-166-Av6HT
OVOL3
O00110
PRAFLVRSRRPQPPN
YRERREKLHVCEDCG
165





HR6980A-489-684-TEV
PARP12
Q9H0J9
DSSALPDPGFQKITL
YPEYVIQYTTSSKPS
196





HR8222A-355-438-TEV
PATZ1
Q9HBE1
VACEICGKIFRDVYH
RPDHLNGHIKQVHTS
84





HR7455A-96-228-NHT
PAX1
P15863
EQTYGEVNQLGGVFV
VSSISRILRNKIGSL
133





HR7856A-1-149-TEV
PAX5
Q02548
DLEKNYPTPRTSRTG
INRIIRTKVQQPPNQ
148





HR8074A-4-136-TEV
PAX6
P26367
SHSGVNQLGGVFVNG
SINRVLRNLASEKQQ
133





HR7676A-217-276-TEV
PAX7
P23759
QRRSRTTFTAEQLEE
QVWFSNRRARWRKQA
60





HR7297A-1-146-TEV
PAX8
Q06710
PHNSIRSGHGGLNQL
IRTKVQQPFNLPMDS
145





HR7882A-388-494-TEV
PBRM1
Q86U86
YYQQIKMPISLQQIR
RKSKKNIRKQRMKIL
107





HR7526A-233-295-TEV
PBX1
P40424
ARRKRRNFNKQATEI
SNWFGNKRIRYKKNI
63





HR7154A-244-306-TEV
PBX2
P40425
ARRKRRNFSKQATEV
SNWFGNKRIRYKKNI
63





HR7892A-235-297-Av6HT
PBX3
P40426
KTAVTAAHAVAAAVQ
NGDSYQGSQVGANVQ
63





HR7892A-235-297-TEV
PBX3
P40426
KTAVTAAHAVAAAVQ
NGDSYQGSQVGANVQ
63





HR7406A-210-272-Av6HT
PBX4
Q9BYU1
MARRKRRNFSKQATE
SNWFGNKRIRYKKNM
64





HR7406A-210-272-TEV
PBX4
Q9BYU1
ARRKRRNFSKQATEV
SNWFGNKRIRYKKNM
63





HR7140A-124-182-TEV
PCGF6
Q9BYE7
NLSELTPYILCSICK
RCPKCNIVVHQTQPL
59





HR7140B-130-350-TEV
PCGF6
Q9BYE7
PYILCSICKGYLIDA
LVLHYGLVVSPLKIT
221





HR7140B-134-350-TEV
PCGF6
Q9BYE7
CSICKGYLIDATTIT
LVLHYGLVVSPLKIT
217





HR7140B-143-350-TEV
PCGF6
Q9BYE7
DATTITECLHTFCKS
LVLHYGLVVSPLKIT
208





HR7140B-182-350-TEV
PCGF6
Q9BYE7
LYNIRLDRQLQDIVY
LVLHYGLVVSPLKIT
169





HT6303A-249-350-Av6HT
PCGF6
Q9BYE7
IPPELDMSLLLEFIG
GLLVLHYGLVVSPLK
102





HT6303A-249-350-TEV
PCGF6
Q9BYE7
IPPELDMSLLLEFIG
GLLVLHYGLVVSPLK
102





HR7628A-146-206-TEV
PDX1
P52945
NKRTRTAYTRAQLLE
IWFQNRRMKWKKEED
61





HR4675D-563-641-TEV
PGR
P06401
PQKICLICGDEASGC
CCQAGMVLGGRKFKK
79





HR6832-1-194-15
PHB2
Q99623
MAQNLKDLAGRLPAG
DDVAITELSFSREYT
194





HR6832-1-194-Av6HT
PHB2
Q99623
AQNLKDLAGRLPAGP
DDVAITELSFSREYT
193





HR6832-1-291-15
PHB2
Q99623
MAQNLKDLAGRLPAG
NLVLNLQDESFTRGS
291





HR6832-1-291-Av6HT
PHB2
Q99623
AQNLKDLAGRLPAGP
NLVLNLQDESFTRGS
290





HR6832-15
PHB2
Q99623
MAQNLKDLAGRLPAG
SFTRGSDSLIKGKK*
300





HR6832-33-299-15
PHB2
Q99623
MAYGVRESVFTVEGG
ESFTRGSDSLIKGKK
268





HR6832-33-299-Av6HT
PHB2
Q99623
AYGVRESVFTVEGGH
ESFTRGSDSLIKGKK
267





HR6832-38-299-15
PHB2
Q99623
MESVFTVEGGHRAIF
ESFTRGSDSLIKGKK
263





HR6832-38-299-Av6HT
PHB2
Q99623
ESVFTVEGGHRAIFF
ESFTRGSDSLIKGKK
262





HR6832-Av6HT
PHB2
Q99623
AQNLKDLAGRLPAGP
SFTRGSDSLIKGKK*
299





HR6832A-33-194-15
PHB2
Q99623
MAYGVRESVFTVEGG
DDVAITELSFSREYT
163





HR6832A-33-194-Av6HT
PHB2
Q99623
AYGVRESVFTVEGGH
DDVAITELSFSREYT
162





HR6832A-33-207-15
PHB2
Q99623
MAYGVRESVFTVEGG
YTAAVEAKQVAQQEA
176





HR6832A-33-207-Av6HT
PHB2
Q99623
AYGVRESVFTVEGGH
YTAAVEAKQVAQQEA
175





HR6832A-33-207-NHT
PHB2
Q99623
AYGVRESVFTVEGGH
YTAAVEAKQVAQQEA
175





HR6832A-72-194-15
PHB2
Q99623
MIPWFQYPIIYDIRA
DDVAITELSFSREYT
124





HR6832A-72-194-Av6HT
PHB2
Q99623
IPWFQYPIIYDIRAR
DDVAITELSFSREYT
123





HR6832A-72-207-15
PHB2
Q99623
MIPWFQYPIIYDIRA
YTAAVEAKQVAQQEA
137





HR6832A-72-207-Av6HT
PHB2
Q99623
IPWFQYPIIYDIRAR
YTAAVEAKQVAQQEA
136





HR7710A-641-719-NHT
PHF20
Q9BVI0
ELDGDDRYDFEVVRC
PGFKYWYDKEWLSRG
79





HR6973A-486-543-TEV
PHF21A
Q96BD5
IHEDFCSVCRKSGQL
CPRCQDQMLKKEEAI
58





HR6412A-62-149-14
PHOX2A
O14813
LRDHQPAPYSAVPYK
QVWFQNRRAKFRKQE
88





HR6412A-67-144-14
PHOX2A
O14813
PAPYSAVPYKFFPEP
TEARVQVWFQNRRAK
78





HR6412B-71-149-14
PHOX2A
O14813
SAVPYKFFPEPSGLH
QVWFQNRRAKFRKQE
79





HR6412B-76-144-14
PHOX2A
O14813
KFFPEPSGLHEKRKQ
TEARVQVWFQNRRAK
69





HR7334A-91-148-Av6HT
PHOX2B
Q99453
GLNEKRKQRRIRTTF
KIDLTEARVQVWFQN
58





HR8156A-1-65-TEV
PIAS1
O75925
ADSAELKQMVMSLRV
PAVQMKIKELYRRRP
64





HR7952-96-424-Av6HT
PIAS2
O75928
LAVAGIHSLPSTSVT
CSDVDEIKFQEDGSW
329





HR3483-121-628-14
PIAS3
Q9Y6X2
MQPVHPDVTMKPLPF
GPSLTGCRSDIISLD
509





HR3483-126-628-14
PIAS3
Q9Y6X2
MDVTMKPLPFYEVYG
GPSLTGCRSDIISLD
504





HR3042-1-425-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
KERSCSPQGAILVLG
425





HR3042A-1-55-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
RALQLVQFDCSPELF
55





HR3042A-1-68-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
LFKKIKELYETRYAK
68





HR3042A-1-73-14
PIAS4
Q8N2W9
MAAELVEAKNMVMSF
KELYETRYAKKNSEP
73





HR7108A-119-222-Av6HT
PIKFYVE
Q9Y2I7
GHDPRTAVQLRSLST
RACTYCRKIALSYAH
104





HR7108A-119-241-Av6HT
PIKFYVE
Q9Y2I7
GHDPRTAVQLRSLST
NSIGEDLNALSDSAC
123





HR7108A-143-222-Av6HT
PIKFYVE
Q9Y2I7
EGKSQDSDLKQYWMP
RACTYCRKIALSYAH
80





HR7108A-143-241-Av6HT
PIKFYVE
Q9Y2I7
EGKSQDSDLKQYWMP
NSIGEDLNALSDSAC
99





HR7108A-150-222-Av6HT
PIKFYVE
Q9Y2I7
DLKQYWMPDSQCKEC
RACTYCRKIALSYAH
73





HR7108A-150-241-NHT
PIKFYVE
Q9Y2I7
DLKQYWMPDSQCKEC
NSIGEDLNALSDSAC
92





HR7108B-586-943-Av6HT
PIKFYVE
Q9Y2I7
GWHHNNLELLREENG
LLELRIVFEKGEQEN
358





HR7108B-610-943-Av6HT
PIKFYVE
Q9Y2I7
SANHNHMMALLQQLL
LLELRIVFEKGEQEN
334





HR7108C-1761-2058-Av6HT
PIKFYVE
Q9Y2I7
KRETLRGADSAYYQV
DKKLEMVVKSTGILG
298





HR7108C-1761-2088-Av6HT
PIKFYVE
Q9Y2I7
KRETLRGADSAYYQV
TRFCEAMDKYFLMVP
328





HR7108C-1807-2058-Av6HT
PIKFYVE
Q9Y2I7
PHVELQFSDANAKFY
DKKLEMVVKSTGILG
252





HR7108C-1807-2088-Av6HT
PIKFYVE
Q9Y2I7
PHVELQFSDANAKFY
TRFCEAMDKYFLMVP
282





HR7108D-342-488-Av6HT
PIKFYVE
Q9Y2I7
TEDERKILLDSVQLK
DSDTEQIAEEGDDNL
147





HR7108D-353-488-Av6HT
PIKFYVE
Q9Y2I7
VQLKDLWKKICHHSS
DSDTEQIAEEGDDNL
136





HR8214A-89-149-TEV
PITX1
P78337
QRRQRTHFTSQQLQE
VWFKNRRAKWRKRER
61





HR4722B-274-317-Av6HT
PITX2
Q99697
RDTCNSSLASLRLKA
ASNLSACQYAVDRPV
44





HR7801A-85-145-TEV
PITX3
O75364
RYPDMSTREEIAVWT
GSFAAPLGGIVPPYE
61





HR7268A-257-319-TEV
PKNOX1
P55347
GSSKNKRGVLPKHAT
QVNNWFINARRRILQ
63





HR7428A-289-348-TEV
PKNOX2
Q96KN3
KNKRGVLPKHATNIM
QVNNWFINARRRILQ
60





HR7109-1-351-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
SSTSYAISIPEKEQP
351





HR7109-1-356-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
AISIPEKEQPLKGEI
356





HR7109-1-368-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
GEIESYLMELQGGVP
368





HR7109-1-436-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
FNFIPLNGPPYNPLS
436





HR7109-1-441-15
PLAG1
Q6DJT9
MATVIPGDLSEVRDT
LNGPPYNPLSVGSLG
441





HR7109A-70-128-Av6HT
PLAG1
Q6DJT9
TKAFVSKYKLQRHMA
HDPNKETFKCEECGK
59





HR7109A-70-163-Av6HT
PLAG1
Q6DJT9
TKAFVSKYKLQRHMA
DLTCKVCLQTFESTG
94





HR7109A-72-107-Av6HT
PLAG1
Q6DJT9
AFVSKYKLQRHMATH
KCNYCEKMFHRKDHL
36





HR7109B-36-237-Av6HT
PLAG1
Q6DJT9
CQLCDKAFNSVEKLK
GRKDHLTRHMKKSHN
202





HR7109C-119-174-Av6HT
PLAG1
Q6DJT9
ETFKCEECGKNYNTK
ESTGVLLEHLKSHAG
56





HR7109C-122-170-Av6HT
PLAG1
Q6DJT9
KCEECGKNYNTKLGF
LQTFESTGVLLEHLK
49





HR7109D-183-233-Av6HT
PLAG1
Q6DJT9
KKHQCEHCDRRFYTR
AQRFGRKDHLTRHMK
51





HR7109D-183-237-Av6HT
PLAG1
Q6DJT9
KKHQCEHCDRRFYTR
GRKDHLTRHMKKSHN
55





HR7109D-188-233-Av6HT
PLAG1
Q6DJT9
EHCDRRFYTRKDVRR
AQRFGRKDHLTRHMK
46





HR7895-1-337-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
KGFCNISLFEDLPLQ
336





HR7895-1-397-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
LLGFWQLPPPATQNT
396





HR7895-159-463-Av6HT
PLAGL1
Q9UM63
DHCERCFYTRKDVRR
GTGSAILPHFHHAFR
305





HR7895-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
TGSAILPHFHHAFR*
463





HR7895A-149-212-15
PLAGL1
Q9UM63
MSGTKEKKHQCDHCE
HLTRHTKKTHSQELM
65





HR7895A-154-207-15
PLAGL1
Q9UM63
MKKHQCDHCERLFYT
FGRKDHLTRHTKKTH
55





HR7895A-159-199-Av6HT
PLAGL1
Q9UM63
DHCERCFYTRKDVRR
LCQFCAQRFGRKDHL
41





HR7895B-1-209-AV6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
RKDHLTRHTKKTHSQ
208





HR7895C-1-69-Av6HT
PLAGL1
Q9UM63
ATFPCQLCGKTFLTL
THSPQKSHQCAHCEK
68





HR7895C-12-69-Av6HT
PLAGL1
Q9UM63
TFLTLEKFTIHNYSH
THSPQKSHQCAHCEK
58





HR7996A-189-243-Av6HT
PLAGL2
Q9UPG8
KKHPCDHCDRRFYTR
GRKDHLTRHVKKSHS
55





HR8052A-121-223-TEV
PLEK
P08567
PETIDLGALYLSMKD
FLDNPDAFYYFPDSG
103





HR7739A-238-353-TEV
PLEK2
Q9NYT0
SLSTVELSGTVVKQG
KAERAEWIEAIKKLT
116





HR7495A-45-167-TEV
PLEKHA4
Q9H4M7
NALRRDPNLPVHIRG
RAEGDDYGQPRSPAR
123





HR8545A-1266-1889-Av6HT
PLXNA1
Q9UIW2
AYKRKSRDADRTLKR
QARRQRLRSKLEQVV
624





HR7225A-1259-1890-TEV
PLXNA2
O75051
AYKRKSRENDLTLKR
RQRLAYKVEQLINAM
632





HR8315A-1241-1867-TEV
PLXNA3
P51805
AYKRKTQDADRTLKR
KHKLRQKLEQIISLV
627





HR7815A-1736-1862-Av6HT
PLXNB1
O43157
DNRLLREDVEYRPLT
ALVPCLTKHVLRENQ
127





HR7815A-1736-1862-TEV
PLXNB1
O43157
DNRLLREDVEYRPLT
ALVPCLTKHVLRENQ
127





HR8081A-1224-1827-NHT
PLXNB2
O15031
SQQAEREYEKIKSQL
PAAQKMQLAFRLQQI
604





HR8081A-1224-1827-TEV
PLXNB2
O15031
SQQAEREYEKIKSQL
PAAQKMQLAFRLQQI
604





HR6985A-1280-1902-TEV
PLXNB3
Q9ULL4
GVGMGAAVLIAAVLL
LYNHIHRYYDQIISA
623





HR7941A-1198-1305-TEV
PLXNC1
O60486
TVALNVVFEKIPENE
HYEISNGSTIKVFKK
108





HR8405A-1553-1678-NHT
PLXND1
Q9Y4D7
AKPRNLNVSFQGCGM
RVKDLDTEKYFHLVL
126





HR6974A-571-650-TEV
PMS1
P54277
IKKPMSASALFVQDH
KRAIEQESQMSLKDG
80





HR6952A-34-103-NHT
POGK
Q9P215
QKVRICSEGGWVPAL
PFPKPDMITRLEGEE
70





HR7570A-37-117-NHT
POLE4
Q9NR33
RLSRLPLARVKALVK
IEAVDEFAFLEGTLD
81





HR7808-15
POLR2L
P62875
MIIPVRCFTCGKIVG
DLIEKLLNYAPLEK*
68





HR8543A-1-154-Av6HT
POTEKP
Q9BYX7
DDDTAVLVIDNGSGM
LSLYTSGRTTGIVMD
153





HR4466B-129-273-TEV
POU1F1
P28069
IRELEKFANEFKVRR
RVWFCNRRQREKRVK
145





HR7752A-297-359-TEV
POU2F2
P09086
EKSFLANQKPTSEEI
APMLPSPGKPASYSP
63





HR7822A-187-257-TEV
POU2F3
Q9UKI9
DLEELEKFAKTFKQR
CKLKPLLEKWLNDAE
71





HR7177A-250-322-Av6HT
POU3F1
Q03052
PSSDDLEQFAKQFKQ
KLKPLLNKWLEETDS
73





HR6946A-348-418-15
POU3F2
P20265
MIAAQGRKRKKRTSI
NRRQKEKRMTPPGGT
72





HR6946A-353-407-Av6HT
POU3F2
P20265
RKRKKRTSIEVSVKG
LEKEVVRVWFCNRRQ
55





HR6946A-353-414-15
POU3F2
P20265
MRKRKKRTSIEVSVK
VWFCNRRQKEKRMTP
63





HR6946A-356-432-15
POU3F2
P20265
MKKRTSIEVSVKGAL
TLPGAEDVYGGSRDT
78





HR6946A-361-427-15
POU3F2
P20265
MIEVSVKGALESHFL
TPPGGTLPGAEDVYG
58





HR6946A-377-427-15
POU3F2
P20265
MPKPSAQEITSLADS
TPPGGTLPGAEDVYG
52





HR8066A-320-388-TEV
POU3F3
P20264
DDLEQFAKQFKQRRI
CKLKPLLNKWLEEAD
69





HR8200A-192-260-TEV
POU3F4
P49335
DELEQFAKQFKQRRI
CKLKPLLNKWLEEAD
69





HR7341A-253-330-NHT
POU4F2
Q12837
ADPRDLEAFAERFKQ
KPILQAWLEEAEKSH
78





HR7479A-183-261-NHT
POU4F3
Q15319
DPRELEAFAERFKQR
VLQAWLEEAEAAYRE
79





HR7056A-224-289-TEV
POU5F1
Q01860
ETLVQARKRKRTSIE
RVWFCNRRQKGKRSS
66





HR8237A-224-288-NHT
POU5F1B
Q06416
ETLMQARKRKRTSIE
RVWFCNRRQKGKRSS
65





HR8392A-142-292-TEV
POU6F1
Q14863
INLEEIREFAKNFKI
VRVWFCNRRQTLKNT
151





HR7133A-97-168-15
PPARA
Q07869
MALNIECRICGDKAS
QYCRFHKCLSVGMSH
73





HR7133A-97-168-Av6HT
PPARA
Q07869
ALNIECRICGDKASG
QYCRFHKCLSVGMSH
72





HR7133A-97-168-TEV
PPARA
Q07869
ALNIECRICGDKASG
QYCRFHKCLSVGMSH
72





HR7133A-97-174-15
PPARA
Q07869
MALNIECRICGDKAS
KCLSVGMSHNAIRFG
79





HR7133A-97-174-Av6HT
PPARA
Q07869
ALNIECRICGDKASG
KCLSVGMSHNAIRFG
78





HR7133A-97-174-TEV
PPARA
Q07869
ALNIECRICGDKASG
KCLSVGMSHNAIRFG
78





HR7133A-97-187-15
PPARA
Q07869
MALNIECRICGDKAS
FGRMPRSEKAKLKAE
92





HR7133A-97-187-Av6HT
PPARA
Q07869
ALNIECRICGDKASG
FGRMPRSEKAKLKAE
91





HR7133A-97-187-TEV
PPARA
Q07869
ALNIECRICGDKASG
FGRMPRSEKAKLKAE
91





HR7133B-182-468-15
PPARA
Q07869
MAKLKAEILTGEHDI
AALHPLLQEIYRDMY
288





HR7133B-182-468-Av6HT
PPARA
Q07869
AKLKAEILTCEHDIE
AALHPLLQEIYRDMY
287





HR7133B-182-468-TEV
PPARA
Q07869
AKLKAEILTCEHDIE
AALHPLLQEIYRDMY
287





HR7133C-192-468-15
PPARA
Q07869
MEHDIEDSETADLKS
AALHPLLQEIYRDMY
278





HR7133C-192-468-Av6HT
PPARA
Q07869
EHDIEDSETADLKSL
AALHPLLQEIYRDMY
277





HR7133C-192-468-TEV
PPARA
Q07869
EHDIEDSETADLKSL
AALHPLLQEIYRDMY
277





HR8028A-67-146-15
PPARD
Q03181
MCGSLNMECRVCGDK
KCLALGMSHNAIRFG
81





HR8028A-67-146-Av6HT
PPARD
Q03181
CGSLNMECRVCGDKA
KCLALGMSHNAIRFG
80





HR8028A-67-146-TEV
PPARD
Q03181
CGSLNMECRVCGDKA
KCLALGMSHNAIRFG
80





HR8028A-67-156-15
PPARD
Q03181
MCGSLNMECRVCGDK
AIRFGRMPEAEKRKL
91





HR8028A-67-156-Av6HT
PPARD
Q03181
CGSLNMECRVCGDKA
AIRFGRMPEAEKRKL
90





HR8028A-67-156-TEV
PPARD
Q03181
CGSLNMECRVCGDKA
AIRFGRMPEAEKRKL
90





HR8028A-73-146-15
PPARD
Q03181
MECRVCGDKASGFHY
KCLALGMSHNAIRFG
75





HR8028A-73-146-Av6HT
PPARD
Q03181
ECRVCGDKASGFHYG
KCLALGMSHNAIRFG
74





HR8028A-73-146-TEV
PPARD
Q03181
ECRVCGDKASGFHYG
KCLALGMSHNAIRFG
74





HR8028A-73-156-15
PPARD
Q03181
MECRVCGDKASGFHY
AIRFGRMPEAEKRKL
85





HR8028A-73-156-Av6HT
PPARD
Q03181
ECRVCGDKASGFHYG
AIRFGRMPEAEKRKL
84





HR8028A-73-156-TEV
PPARD
Q03181
ECRVCGDKASGFHYG
AIRFGRMPEAEKRKL
84





HR80288-163-441-15
PPARD
Q03181
MNEGSQYNPQVADLK
TSLHPLLQEIYKDMY
280





HR8028B-163-441-Av6HT
PPARD
Q03181
NEGSQYNPQVADLKA
TSLHPLLQEIYKDMY
279





HR8028B-163-441-TEV
PPARD
Q03181
NEGSQYNPQVADLKA
TSLHPLLQEIYKDMY
279





HR4464B-222-504-TEV
PPARG
P37231
LAEISSDIDQLNPES
DMSLHPLLQEIYKDL
283





HR7373A-58-198-NHT
PPP1R10
Q96QC0
RSPEILVKFIDVGGY
AEEAPEKKREKPKSL
141





HR7854A-111-311-Av6HT
PPP2R3B
Q9Y5P8
TRKEEPLPPATSQSI
LLEEEADINQLTEFF
201





HR6538A-2-187-TEV
PRDM1
O75626
LDICLEKRVGTTLAA
LAACQNGMNIYFYTI
186





HR7699A-188-339-TEV
PRDM10
Q9NQV6
KHGPLHPIPNRPVLT
YAASYAEFVNQKIHD
152





HR6506A-60-229-TEV
PRDM12
Q9H4Q4
KTAFTAEVLAQSFSG
VPGLEEDQKKNKHED
170





HR7923A-243-372-Av6HT
PRDM14
Q9GZV8
DKDSLQLPEGLCLMQ
QNQELLVWYGDCYEK
130





HR8160A-72-214-Av6HT
PRDM16
Q9HAZ2
VYIPEDIPIPADFEL
IEPGEELLVHVKEGV
143





HR4804B-1144-1216-14
PRDM2
Q13029
MLSIKDLTKHLSIHA
FLCNLQQHQRDLHPD
74





HR4804B-1144-1221-14
PRDM2
Q13029
MLSIKDLTKHLSIHA
QQHQRDLHPDKVCTH
79





HR4804B-1144-1230-14
PRDM2
Q13029
MLSIKDLTKHLSIHA
DKVCTHHEFESGTLR
88





HR4804B-1158-1216-14
PRDM2
Q13029
MEEWPFKCEFCVQLF
FLCNLQQHQRDLHPD
60





HR4804B-1158-1221-14
PRDM2
Q13029
MEEWPFKCEFCVQLF
QQHQRDLHPDKVCTH
65





HR4804B-1158-1230-14
PRDM2
Q13029
MEEWPFKCEFCVQLF
DKVCTHHEFESGTLR
74





HR4804C-342-415-14
PRDM2
Q13029
MQIPRTKEEANGDVF
TQINRRRHERRHEAG
75





HR4804C-356-417-14
PRDM2
Q13029
METFMFPCQHCERKF
INRRRHERRHEAGLK
63





HR4804C-360-422-14
PRDM2
Q13029
MFPCQHCERKFTTKQ
HERRHEAGLKRKPSQ
64





HR4804C-367-417-14
PRDM2
Q13029
MRKFTTKQGLERHMH
INRRRHERRHEAGLK
52





HR4804D-2-148-TEV
PRDM2
Q13029
NQNTTEPVAATETLA
EELLVWYNGEDNPEI
147





HR6504A-390-540-TEV
PRDM4
Q9UKN5
EHGPVTFVPDTPIES
FYYSRDYAQQIGVPE
151





HR7347A-1-135-NHT
PRDM5
Q9NQX1
LGMYVPDRFSLKSSR
IGYLDSDMEAEEEEQ
134





HR8295A-234-370-Av6HT
PRDM6
Q9NQX0
PPELPEWLRDLPREV
RGTELLVWYNDSYTS
137





HR7077A-196-395-NHT
PRDM7
Q9NQW5
EPQDDDYLYCEMCQN
VNCWSGMGMSMARNW
200





HR8098A-623-689-Av6HT
PRDM8
Q9NQV8
AQNWCAKCNASFRMT
FRERHHLSRHMTSHN
67





HR8069A-197-382-Av6HT
PRDM9
Q9NQV7
PQDDDYLYCEMCQNF
KWGSKWKKELMAGRE
186





HR7506-125-390-Av6HT
PREB
Q9HCU5
EKKCGAETQHEGLEL
SRCQLHLLPSRRSVP
266





HR7506A-125-312-Av6HT
PREB
Q9HCU5
EKKCGAETQHEGLEL
CGHEVVSCLDVSESG
188





HR7506A-133-315-Av6HT
PREB
Q9HCU5
QHEGLELRVENLQAV
EVVSCLDVSESGTFL
183





HR7506A-155-312-15
PREB
Q9HCU5
MPLQKVVCFNHDNTL
CGHEVVSCLDVSESG
159





HR8329A-190-376-Av6HT
PREX2
Q70Z35
KHSDYAAVMEALQAM
RRKGLKLGMEQDTWV
187





HR8329B-674-751-Av6HT
PREX2
Q70Z35
PRETVKIPDSADGLG
AHVTACRKYRRPTKQ
78





HR8329B-674-760-Av6HT
PREX2
Q70Z35
PRETVKIPDSADGLG
RRPTKQDSIQWVYNS
87





HR2833A-1-98-NHT
PRKRIR
O43422
GQLKFNTSEEHHADM
ERYENGRKRLKAYLR
97





HR3353-149-736-14
PRKRIR
O43422
MDEDILPLTLEEKEN
LLNINFDIKHDLDLM
589





HR3353-154-731-14
PRKRIR
O43422
MPLTLEEKENKEYLK
SSNLALLNINFDIKH
579





HR4564B-74-136-14
PROP1
O75360
MTTFSPVQLEQLESA
AKQRKQERSLLQPLA
64





HR4660B-14
PROX1
Q92786
MAMQEGLSPNHLKKA
EIFKSPNCLQELLHE
164





HR4660B-15
PROX1
Q92786
MAMQEGLSPNHLKKA
EIFKSPNCLQELLHE
164





HR4660C-546-737-14
PROX1
Q92786
MTAEGLSLSLIKSEC
EIFKSPNCLQELLHE
193





HR4660C-550-737-14
PROX1
Q92786
MLSISLIKSECGDLQ
EIFKSPNCLQELLHE
189





HR4660C-566-737-14
PROX1
Q92786
MSEISPYSGSAMQEG
EIFKSPNCLQELLHE
173





HR4660C-572-737-14
PROX1
Q92786
MSGSAMQEGLSPNHL
EIFKSPNCLQELLHE
167





HR4660C-577-737-14
PROX1
Q92786
MQEGLSPNHLKKAKL
EIFKSPNCLQELLHE
162





HR8100A-409-592-Av6HT
PROX2
Q3B8N5
LPLLPSVKMEQRGLH
DSDIPEIFKSSSYPQ
184





HR6440-1-237-14
PRRX1
P54821
MTSSYGHVLERQPAL
SIANLRLKAKEYSLQ
237





HR6440-14
PRRX1
P54821
MTSSYGHVLERQPAL
AKEYSLQRNQVPTVN
245





HR6440-22-245-14
PRRX1
P54821
PGNLDTLQAKKNFSV
AKEYSLQRNQVPTVN
224





HR6440-27-245-14
PRRX1
P54821
TLQAKKNFSVSHLLD
AKEYSLQRNQVPTVN
219





HR7233A-95-168-Av6HT
PRRX2
Q99811
GSAAKRKKKQRRNRT
NRRAKFRRNERAMLA
74





HR7750A-100-341-Av6HT
PSMD11
O00231
EAATGQEVELCLECI
YDNLLEQNLIRVIEP
242





HR7208-1-335-TEV
PSMD12
O00232
ADGGSERADGRIVKM
VEDYGMELRKGSLES
334





HR7208-11-335-TEV
PSMD12
O00232
GRIVKMEVDYSATVD
VEDYGMELRKGSLES
325





HR7208-TEV
PSMD12
O00232
ADGGSERADGRIVKM
THLIAKEEMIHNLQ*
456





HR7208A-338-425-15
PSMD12
O00232
MTDVFGSTEEGEKRW
GIINFQRPKDPNNLL
89





HR7208A-338-456-15
PSMD12
O00232
MTDVFGSTEEGEKRW
TTHLIAKEEMIHNLQ
120





HR7208A-343-420-15
PSMD12
O00232
MSTEEGEKRWKDLKN
VDRLAGIINFQRPKD
79





HR7208A-343-456-15
PSMD12
O00232
MSTEEGEKRWKDLKN
TTHLIAKEEMIHNLQ
115





HR7208A-371-456-15
PSMD12
O00232
MTRITMKRMAQLLDL
TTHLIAKEEMIHNLQ
87





HR7208B-300-417-TEV
PSMD12
O00232
PKYKDLLKLFTTMEL
FAKVDRLAGIINFQR
118





HR7208C-300-456-TEV
PSMD12
O00232
PKYKDLLKLFTTMEL
TTHLIAKEEMIHNLQ
157





HR5110A-437-891-Av6HT
Q6ZU11
Q6ZU11
LNKDQATALIQIAQM
HCEGREDGLQHANQY
455





HR7981A-147-199-TEV
RABGEF1
Q9UJ41
KTFHKTGQEIYKQTK
FYHNVAERMQTRGKV
53





HR8212A-1-114-NHT
RAD51
Q06609
AMQMQLEANADTSVE
IQITTGSKELDKLLQ
113





HR7353A-268-383-TEV
RAG1
P15918
NCSKIHLSTKLLAVD
LEKYNHHISSHKESK
116





HR7829A-213-923-TEV
RAPGEF3
O95398
PDALLTVALRKPPGQ
DNQRELSRLSRELEP
711





HR7829B-33-923-TEV
RAPGEF3
O95398
DVVPEGTLLNMVLRR
DNQRELSRLSRELEP
891





HR8365C-81-160-NHT
RARA
P10276
LPRIYKPCFVCQDKS
QKCFEVGMSKESVRN
80





HR8365C-81-160-TEV
RARA
P10276
LPRIYKPCFVCQDKS
QKCFEVGMSKESVRN
80





HR6970C-82-160-TEV
RARB
P10826
FVCQDKSSGYHYGVS
MSKESVRNDRNKKKK
79





HR7515A-85-154-15
RARG
P13631
MRVYKPCFVCNDKSS
NRCQYCRLQKCFEVG
71





HR7515A-85-154-Av6HT
RARG
P13631
RVYKPCFVCNDKSSG
NRCQYCRLQKCFEVG
70





HR7515A-85-154-TEV
RARG
P13631
RVYKPCFVCNDKSSG
NRCQYCRLQKCFEVG
70





HR7515A-85-166-15
RARG
P13631
MRVYKPCFVCNDKSS
EVGMSKEAVRNDRNK
83





HR7515A-85-166-Av6HT
RARG
P13631
RVYKPCFVCNDKSSG
EVGMSKEAVRNDRNK
82





HR7515A-85-166-TEV
RARG
P13631
RVYKPCFVCNDKSSG
EVGMSKEAVRNDRNK
82





HR7515A-97-166-15
RARG
P13631
MSSGYHYGVSSCEGC
EVGMSKEAVRNDRNK
71





HR7515A-97-166-Av6HT
RARG
P13631
SSGYHYGVSSCEGCK
EVGMSKEAVRNDRNK
70





HR7515A-97-166-TEV
RARG
P13631
SSGYHYGVSSCEGCK
EVGMSKEAVRNDRNK
70





HR7515B-178-423-15
RARG
P13631
MDSYELSPQLEELIT
PPLIREMLENPEMFE
247





HR7515B-178-423-Av6HT
RARG
P13631
DSYELSPQLEELITK
PPLIREMLENPEMFE
246





HR7515B-178-423-TEV
RARG
P13631
DSYELSPQLEELITK
PPLIREMLENPEMFE
246





HR7515C-183-417-15
RARG
P13631
MSPQLEELITKVSKA
EIPGPMPPLIREMLE
236





HR7515C-183-417-Av6HT
RARG
P13631
SPQLEELITKVSKAH
EIPGPMPPLIREMLE
235





HR7515C-183-417-TEV
RARG
P13631
SPQLEELITKVSKAH
EIPGPMPPLIREMLE
235





HR7515D-84-169-15
RARG
P13631
MPRVYKPCFVCNDKS
MSKEAVRNDRNKKKK
87





HR7515D-84-169-Av6HT
RARG
P13631
PRVYKPCFVCNDKSS
MSKEAVRNDRNKKKK
86





HR7515D-84-169-TEV
RARG
P13631
PRVYKPCFVCNDKSS
MSKEAVRNDRNKKKK
86





HR8219A-137-208-Av6HT
RAX
Q9Y2V3
RRNRTTFTTYQLHEL
QEKLEVSSMKLQDSP
72





HR8168A-24-86-Av6HT
RAX2
Q96IS3
KKKHRRNRTTFTTYQ
QVWFQNRRAKWRRQE
63





HR7540-167-714-15
RBAK
Q9NYW8
MECGKTYHGEKMCEF
IHRRGNMNVLDVENL
549





HR7540-171-714-15
RBAK
Q9NYW8
MTYHGEKMCEFNQNG
IHRRGNMNVLDVENL
545





HR7540-183-714-15
RBAK
Q9NYW8
MNGDTYSHNEENILQ
IHRRGNMNVLDVENL
533





HR7540-188-714-15
RBAK
Q9NYW8
MSHNEENILQKISIL
IHRRGNMNVLDVENL
528





HR7540-7-562-15
RBAK
Q9NYW8
MPVSFKDVAVDFTQE
FNELSYYTEHYRSHS
557





HR7540A-397-562-TEV
RBAK
Q9NYW8
GEKLYKCNECGKSYY
FNELSYYTEHYRSHS
166





HR7540A-397-591-TEV
RBAK
Q9NYW8
GEKLYKCNECGKSYY
SHNSSLFRHQRVHTG
195





HR7540A-428-562-TEV
RBAK
Q9NYW8
PYQCSECGKFFSRVS
FNELSYYTEHYRSHS
135





HR7540A-428-591-TEV
RBAK
Q9NYW8
PYQCSECGKFFSRVS
SHNSSLFRHQRVHTG
164





HR7540B-1-64-Av6HT
RBAK
Q9NYW8
NTLQGPVSFKDVAVD
DTTKPNVIIKLEQGE
63





HR7540C-633-701-Av6HT
RBAK
Q9NYW8
SRMSNLTVHYRSHSG
KFHHRSAFNSHQRIH
69





HR7540C-649-701-Av6HT
RBAK
Q9NYW8
KPYECNECGKVFSQK
KFHHRSAFNSHQRIH
53





HR7540C-653-701-Av6HT
RBAK
Q9NYW8
CNECGKVFSQKSYLT
KFHHRSAFNSHQRIH
49





HR8531A-503-605-Av6HT
RBM20
Q5T481
LASVGTTFAQRKGAG
SKRYKELQLKKPGKA
103





HR7548A-227-304-TEV
RBM22
Q9NW64
EDKTITTLYVGGLGD
KLIVNGRRLNVKWGR
78





HR7417A-596-679-NHT
RBM27
Q9P2N5
QYTNTKLEVKKIPQE
RFIRVLWHRENNEQP
84





HR7740A-184-325-NHT
RBM5
P52756
DWLCNKCCLNNFRKR
DFAKSARKDLVLSDG
142





HR6987A-23-453-TEV
RBPJ
Q06330
GERPPPKRLTREAMR
SLTFTYTPEPGPRPH
431





HR7414A-356-477-NHT
RBPJL
Q9UBG7
SSCWTIIGTESVEFS
DGLFYPSAFSFTYTP
122





HR8038A-1-79-Av6HT
RC3H2
Q9HBD1
PVQAAQWTEFLSCPI
PVNFALLQLVGAQVP
78





HR7631A-308-440-TEV
RCOR1
Q9UKL0
RKPPKGMFLSQEDVE
RRFNIDEVLQEWEAE
133





HR7631B-158-237-Av6HT
RCOR1
Q9UKL0
GYNMEQALGMLFWHK
IASLVKFYYSWKKTR
80





HR7631B-158-247-Av6HT
RCOR1
Q9UKL0
GYNMEQALGMLFWHK
WKKTRTKTSVMDRHA
90





HR7631B-172-237-Av6HT
RCOR1
Q9UKL0
KHNIEKSLADLPNFT
IASLVKFYYSWKKTR
66





HR7631B-172-247-Av6HT
RCOR1
Q9UKL0
KHNIEKSLADLPNFT
WKKTRTKTSVMDRHA
76





HR7640A-292-387-NHT
RCOR2
Q8IZ40
ISLKRQVQSMKQTNS
YRRRFNLEEVLQEWE
96





HR2844A-14
REL
Q04864
EKDTYGNKAKKQKTT
NEQLSDSFPYEFFQV
337





HR2844B-14
REL
Q04864
EKDTYGNKAKKQKTT
NSQGIPPFLRIPVGN
171





HR2844C-14
REL
Q04864
DLNASNACIYNNADD
NEQLSDSFPYEFFQV
166





HR2845-14
RELA
Q04206
MDELFPLIFPAEPAQ
IADMDFSALLSQISS
551





HR2845B-14
RELA
Q04206
TDDRHRIEEKRKRTY
QFDDEDLGALLGNST
167





HR2845C-14
RELA
Q04206
DPAVFTDLASVDNSE
IADMDFSALLSQISS
93





HR2845D-191-291-Av6HT
RELA
Q04206
TAELKICRVNRNSGS
DRELSEPMEFQYLPD
101





HR2845D-191-291-TEV
RELA
Q04206
TAELKICRVNRNSGS
DRELSEPMEFQYLPD
101





HR2846-40-579-15
RELB
Q01201
MLSSLSLAVSRSTDE
AAFGGGLLSPGPEAT
541





HR2846B-14
RELB
Q01201
DHDSYGVDKKRKRGM
AAFGGGLLSPGPEAT
179





HR6006B-21
RERE
Q9P2R6
STQGEIRVGPSHQAK
LITFYYYWKKTPEAA
165





HR6006C-21
RERE
Q9P2R6
STQGEIRVGPSHQAK
RLVKKPVPKLIEKCW
116





HR6006D-21
RERE
Q9P2R6
STQGEIRVGPSHQAK
DLLMYLRAARSMAAF
60





HR6006E-21
RERE
Q9P2R6
VTQHEELVWMPGVND
ETGELITFYYYWKKT
132





HR6006F-21
RERE
Q9P2R6
VTQHEELVWMPGVND
RLVKKPVPKLIEKCW
87





HR6006H-21
RERE
Q9P2R6
QGEIRVGPSHQAKLP
ETGELITFYYYWKKT
159





HR6969A-342-413-NHT
REST
Q13127
SNQHEVTRHARQVHN
SKKCNLQYHFKSKHP
72





HR8119A-438-513-TEV
RFX1
P22670
TVQWLLDNYETAEGV
RGNSKYHYYGLRIKA
76





HR7754A-200-273-TEV
RFX2
P48378
LQWLLDNYETAEGVS
TRGNSKYHYYGIRLK
74





HR7471A-184-257-TEV
RFX3
P48380
LQWLLDNYETAEGVS
TRGNSKYHYYGIRVK
74





HR8007A-101-167-15
RFX5
P48382
MEEHTDTCLPKQSVY
GRGQSKYCYSGIRRK
68





HR8007A-76-173-15
RFX5
P48382
MDKSSEPSTLSNEEY
YCYSGIRRKTLVSMP
99





HR8007A-81-167-15
RFX5
P48382
MPSTLSNEEYMYAYR
GRGQSKYCYSGIRRK
88





HR7289A-107-205-NHT
RFX6
Q8HWS3
KKTITQIVKDKKKQT
HYYGIGIKESSAYYH
99





HR7790-68-260-TEV
RFXANK
O14593
KHSTTLTNRQRGNEV
ILKLFQSNLVPADPE
193





HR7790-79-260-TEV
RFXANK
O14593
GNEVSALPATLDSLS
ILKLFQSNLVPADPE
182





HR7790A-101-248-15
RFXANK
O14593
MGELDQLKEHLRKGD
GYRKVQQVIENHILK
149





HR7790A-101-260-15
RFXANK
O14593
MGELDQLKEHLRKGD
ILKLFQSNLVPADPE
161





HR7790A-79-248-15
RFXANK
O14593
MGNEVSALPATLDSL
GYRKVQQVIENHILK
171





HR7790A-86-251-15
RFXANK
O14593
MPATLDSLSIHQLAA
KVQQVIENHILKLFQ
167





HR7790A-91-248-15
RFXANK
O14593
MSLSIHQLAAQGELD
GYRKVQQVIENHILK
159





HR7790A-91-260-15
RFXANK
O14593
MSLSIHQLAAQGELD
ILKLFQSNLVPADPE
171





HR7361A-325-470-TEV
RGS6
P49758
PSQQRVKRWGFSFDE
KGKSLAGKRLTGLMQ
146





HR6895A-323-449-TEV
RGS7
P49802
SQQRVKRWGFGMDEA
YPRFIRSSAYQELLQ
127





HR6935A-279-424-TEV
RGS9
O75916
DLNAKLVEIPTKMRV
YKDMLAKAIEPQETT
146





HR7291A-130-236-NHT
RHOXF2
Q9BQY4
PGNAQQPNVHAFTPL
PLFISGMRDDYFWDH
107





HR7532A-130-236-NHT
RHOXF2B
P0C7M4
PGNAQQPNVHAFTPL
PLFISGMRDDYFWDH
107





HR7189A-91-307-Av6HT
RIOK2
Q9BVS4
RQVVESVGNQMGVGK
EDTLDVEVSASGYTK
217





HR7201A-769-825-Av6HT
RLF
Q13129
LRYKCELNGCNIVFS
FYYSKIEYQNHLSMH
57





HR7201A-769-837-NHT
RLF
Q13129
LRYKCELNGCNIVFS
SMHNVENSNGDIKKS
69





HR7201B-707-825-Av6HT
RLF
Q13129
LDMKNRREKCTYCRR
FYYSKIEYQNHLSMH
119





HR7201B-707-837-Av6HT
RLF
Q13129
LDMKNRREKCTYCRR
SMHNVENSNGDIKKS
131





HR7201B-716-825-Av6HT
RLF
Q13129
CTYCRRHFMSAFHLR
FYYSKIEYQNHLSMH
110





HR7201B-716-837-Av6HT
RLF
Q13129
CTYCRRHFMSAFHLR
SMHNVENSNGDIKKS
122





HR7201C-707-770-Av6HT
RLF
Q13129
LDMKNRREKCTYCRR
VNELLNHKQKHDDLR
64





HR7201C-725-770-Av6HT
RLF
Q13129
SAFHLREHEQVHCGP
VNELLNHKQKHDDLR
46





HR7461A-26-161-TEV
RNASE2
P10153
HVKPPQFTWAQWFET
PPQYPVVPVHLDRII
136





HR7865A-252-319-TEV
RNF113A
O15541
GSDDEEIPFKCFICR
GVFNPAKELIAKLEK
68





HR7107A-246-319-TEV
RNF113B
Q8IZP6
GSEEEEIPFRCFICR
KELMAKLQKLQAAEG
74





HR7482A-1-89-NHT
RNF114
Q9Y508
AAQQRDCGGAAQLAG
VRAVELERQIESTET
88





HR7645A-17-100-NHT
RNF125
Q96EQ8
ATARALERRRDPELP
ATDVAKRMKSEYKNC
84





HR4563B-87-210-14
RORA
P35398
MKEDKEVQTGYMNAQ
HRMQQQQRDHQQQPG
125





HR4563B-92-174-14
RORA
P35398
MVQTGYMNAQIEIIP
HCRLQKCLAVGMSRD
84





HR4563B-92-193-14
RORA
P35398
MVQTGYMNAQIEIIP
GRMSKKQRDSLYAEV
103





HR4563B-93-210-14
RORA
P35398
MQTGYMNAQIEIIPC
HRMQQQQRDHQQQPG
119





HR4563B-98-174-14
RORA
P35398
MNAQIEIIPCKICGD
HCRLQKCLAVGMSRD
78





HR4563B-98-193-14
RORA
P35398
MNAQIEIIPCKICGD
GRMSKKQRDSLYAEV
97





HR7194B-260-507-TEV
RORC
P51449
PEAPYASLTEIEHLV
VVQAAFPPLYKELFS
248





HR7255A-172-270-Av6HT
RPA2
P15927
ANSQPSAGRAPISNP
YSTVDDDHFKSTDAE
99





HR7255A-172-270-TEV
RPA2
P15927
ANSQPSAGRAPISNP
YSTVDDDHFKSTDAE
99





HR7006A-95-145-NHT
RREB1
Q92766
ADHSCSICGKSLSSA
GQSFTTNGNMHRHMK
51





HR4447C-46-185-Av6HT
RUNX1
Q01196
MSGDRSMVEVLADHP
DGPREPRRHRQKLDD
141





HR4447C-46-185-TEV
RUNX1
Q01196
SGDRSMVEVLADHPG
DGPREPRRHRQKLDD
140





HR4568B-112-233-TEV
RUNX2
Q13950
ELVRTDSPNFLCSVL
VTVDGPREPRRHRQK
122





HR7324A-53-189-TEV
RUNX3
Q13761
QAAVGPGGRARPEVR
TQVATYHRAIKVTVD
137





HR4643B-135-200-TEV
RXRA
P19793
CAICGDRSSGKHYGV
RCQYCRYQKCLAMGM
66





HR8407C-205-270-NHT
RXRB
P28702
CAICGDRSSGKHYGV
RCQYCRYQKCLATGM
66





HR8407C-205-270-TEV
RXRB
P28702
CAICGDRSSGKHYGV
RCQYCRYQKCLATGM
66





HR47518-139-204-TEV
RXRG
P48443
CAICGDRSSGKHYGV
RCQYCRYQKCLVMGM
66





HR7653A-909-977-NHT
SALL2
Q9Y467
SRKACEVCGQAFPSQ
HHQVQPFAPHGPQNI
69





HR7433A-975-1045-NHT
SALL3
Q9BXA9
PSTVCGVCGKPFACK
ELPSQLFDPNFALGP
71





HR6875A-376-433-Av6HT
SALL4
Q9UJQ4
MEAALYKHKCKYCSK
FTTKGNLKVHFHRHP
59





HR6875A-376-433-NHT
SALL4
Q9UJQ4
EAALYKHKCKYCSKV
FTTKGNLKVHFHRHP
58





HR4435B-174-250-14
SATB1
Q01826
MPKLEDLPPEQWSHT
FGRWYKHFKKTKDMM
78





HR4435B-174-254-14
SATB1
Q01826
MPKLEDLPPEQWSHT
YKHFKKTKDMMVEMD
82





HR4435B-179-244-14
SATB1
Q01826
MLPPEQWSHTTVRNA
AAKCQEFGRWYKHFK
67





HR4435B-179-250-14
SATB1
Q01826
MLPPEQWSHTTVRNA
FGRWYKHFKKTKDMM
73





HR4435C-368-452-TEV
SATB1
Q01826
NTEVSSEIYQWVRDE
AERDRIYQDERERSL
85





HR4435D-53-254-15
SATB1
Q01826
MQGVPLKHSGHLMKT
YKHFKKTKDMMVEMD
203





HR4435D-56-250-15
SATB1
Q01826
MPLKHSGHLMKTNLR
FGRWYKHFKKTKDMM
196





HR4435E-53-178-15
SATB1
Q01826
MQGVPLKHSGHLMKT
VTLKIQLHSCPKLED
127





HR4435E-56-175-15
SATB1
Q01826
MPLKHSGHLMKTNLR
YHVVTLKIQLHSCPK
121





HR7571A-350-437-NHT
SATB2
Q9UPW6
KPEPTNSSVEVSPDI
NLPEVERDRIYQDER
88





HR7571B-610-674-TEV
SATB2
Q9UPW6
SCAKKPRSRTKISLE
IKFFQNQRYHVKHHG
65





HR5092A-90-156-Av6HT
SCAPER
Q9BY12
RHPRKIDLRARYWAF
DFKALIDWIQLQEKL
67





HR8394A-256-325-Av6HT
SCRT1
Q9BWW7
AFSRPWLLQGHMRSH
KSFALKSYLNKHYES
70





HR7196A-158-206-NHT
SCRT2
Q9NQ03
ACAECCKTYATSSNL
GKAYVSMPALAMHLL
51





HR3583D-653-871-15
SETDB1
Q15047
MLFLEMFCLDPYVLV
LDHIESVENFKEGYE
220





HR3583D-658-867-15
SETDB1
Q15047
MFCLDPYVLVDRKFQ
YFANLDHIESVENFK
211





HR3583E-555-676-15
SETDB1
Q15047
MLERAPAEPSYRAPM
PYVLVDRKFQPYKPF
123





HR3583E-584-681-15
SETDB1
Q15047
MSRVRPMRNEQYRGK
DRKFQPYKPFYYILD
99





HR3583E-590-676-15
SETDB1
Q15047
MRNEQYRGKNPLLVP
PYVLVDRKFQPYKPF
88





HR8073A-102-182-Av6HT
SHOX
Q15266
EDVKSEDEDGQTKLK
RRAKCRKQENQMHKG
81





HR6933A-647-727-Av6HT
SHPRH
Q149N8
NTMSPFNTSDYRFEC
VSTRATLIISPSSIC
81





HR6933A-647-739-NHT
SHPRH
Q149N8
NTMSPFNTSDYRFEC
SICHQWVDEINRHVR
93





HR6933A-654-727-Av6HT
SHPRH
Q149N8
TSDYRFECICGELDQ
VSTRATLIISPSSIC
74





HR6933A-654-739-Av6HT
SHPRH
Q149N8
TSDYRFECICGELDQ
SICHQWVDEINRHVR
86





HR6933B-437-502-Av6HT
SHPRH
Q149N8
VQCPPTRVMILTAVK
KCLIFEGLVKQIKGH
66





HR6933B-437-512-Av6HT
SHPRH
Q149N8
VQCPPTRVMILTAVK
QIKGHGFSGTFTLGK
76





HR6933C-1495-1636-Av6HT
SHPRH
Q149N8
KANQEEDIPVKGSHS
GQTKPTIVHRFLIKA
142





HR6933C-1495-1646-Av6HT
SHPRH
Q149N8
KANQEEDIPVKGSHS
FLIKATIEERMQAML
152





HR6933C-1495-1659-Av6HT
SHPRH
Q149N8
KANQEEDIPVKGSHS
MLKTAERSHTNSSAK
165





HR7129A-227-345-NHT
SIM1
P81133
LHSNMFMFRASLDMK
VLTDTEYKGLQLSLD
119





HR8357A-72-194-Av6HT
SIM2
Q14190
PLDGVAKELGSHLLQ
YKVIHCSGYLKIRQY
123





HR7143A-205-281-Av6HT
SIX3
Q95343
DGEQKTHCFKERTRS
KNRLQHQAIGPSGMR
77





HR7095A-206-294-Av6HT
SIX4
Q9UIU6
DKYRLRRKFPLPRTI
NPSETQSKSESDGNP
89





HR8072A-125-195-Av6HT
SIX6
O95475
IWDGEQKTHCFKERT
QRDRAAAAKNRLQQQ
71





HR4810B-218-313-TEV
SKI
P12755
VRVYHECFGKCKGLL
RLGRCLDDVKEKFDY
96





HR8491B-28-132-Av6HT
SKOR2
Q2VWA4
QPRPGHANLKPNQVG
ITKREAERLCKSFLG
105





HR8491C-141-237-Av6HT
SKOR2
Q2VWA4
DNFAFDVSHECAWGC
ELVFAWEDVKAMFNG
97





HR8491C-141-244-Av6HT
SKOR2
Q2VWA4
DNFAFDVSHECAWGC
DVKAMFNGGSRKRAL
104





HR8491D-43-132-Av6HT
SKOR2
Q2VWA4
QVILYGIPIVSLVID
ITKREAERLCKSFLG
90





HR7664A-124-217-TEV
SLC30A9
Q6PML9
KYTQNNFITGVRAIN
ERLFRNQKILREYRD
94





HR8337A-9-132-TEV
SMAD1
Q15797
FTSPAVKRLLGWKQG
KEVCINPYHYKRVES
124





HR8337B-248-465-TEV
SMAD1
Q15797
APPLPSEINRGDVQA
LTQMGSPHNPISSVS
218





HR4670B-55-191-14
SMAD2
Q15796
MTGRLDELEKAITTQ
PVLVPRHTEILTELP
138





HR4670B-55-196-14
SMAD2
Q15796
MTGRLDELEKAITTQ
RHTEILTELPPLDDY
143





HR4670B-55-202-14
SMAD2
Q15796
MTGRLDELEKAITTQ
TELPPLDDYTHSIPE
149





HR4670B-55-202-Av6HT
SMAD2
Q15796
TGRLDELEKAITTQN
TELPPLDDYTHSIPE
148





HR4670B-55-202-TEV
SMAD2
Q15796
TGRLDELEKAITTQN
TELPPLDDYTHSIPE
148





HR4670B-6-173-14
SMAD2
Q15796
MPFTPPVVKRLLGWK
EVCVNPYHYQRVETP
169





HR4670C-101-173-14
SMAD2
Q15796
MLYSFSEQTRSLDGR
EVCVNPYHYQRVETP
74





HR4670C-106-173-14
SMAD2
Q15796
MEQTRSLDGRLQVSH
EVCVNPYHYQRVETP
69





HR4670D-261-456-Av6HT
SMAD2
Q15796
LDLQPVTYSEPAFWC
LNGPLQWLDKVLTQM
196





HR4503B-1-148-14
SMAD4
Q13485
MDNMSITNTPTSNDA
ERVVSPGIDLSGLTL
148





HR4503B-1-166-14
SMAD4
Q13485
MDNMSITNTPTSNDA
APSSMMVKDEYVHDF
166





HR4503B-10-160-14
SMAD4
Q13485
MPTSNDACLSIVHSL
LTLQSNAPSSMMVKD
152





HR4503B-11-142-14
SMAD4
Q13485
MTSNDACLSIVHSLM
VNPYHYERVVSPGID
133





HR4503C-9-149-14
SMAD4
Q13485
MTPTSNDACLSIVHS
RVVSPGIDLSGLTLQ
142





HR4503D-314-552-Av6HT
SMAD4
Q13485
ISNHPAPEYWCSIAY
EVLHTMPIADPQPLD
239





HR5565A-14
SMAD6
O43541
MRLSPRDEYKPLDLS
TSCPCWLEILLNNPR
217





HR5560A-14
SMAD7
O15105
MVPSSAETGGTNYLA
ISSCPCWLEVIFNSR
199





HR5560A-15
SMAD7
O15105
MVPSSAETGGTNYLA
ISSCPCWLEVIFNSR
199





HR7626A-769-932-TEV
SMARCA1
P28370
VSEPKIPKAPRPPKQ
QIERGEARIQRRISI
164





HR7914A-754-917-TEV
SMARCA5
O60264
VSEPKAPKAPRPPKQ
QIERGEARIQRRISI
164





HR7256A-607-680-TEV
SMARCC1
Q92922
SKKTLAKSKGASAGR
IEDPYLENSDASLGP
74





HR7400B-419-526-Av6HT
SMARCC2
Q8TAQ2
EQTHHIIIPSYAAWF
YQVDAESRPTPMGPP
108





HR7400B-419-538-Av6HT
SMARCC2
Q8TAQ2
EQTHHIIIPSYAAWF
GPPPTSHFHVLADTP
120





HR7400B-421-520-Av6HT
SMARCC2
Q8TAQ2
THHIIIPSYAAWFDY
QWGLINYQVDAESRP
100





HR7400C-421-514-Av6HT
SMARCC2
Q8TAQ2
THHIIIPSYAAWFDY
VHAFLEQWGLINYQV
94





HR7811A-46-134-NHT
SMARCE1
Q969G3
GTNSRVTASSGITIP
EAEKIEYNESMKAYH
89





HR7811A-46-146-Av6HT
SMARCE1
Q969G3
GTNSRVTASSGITIP
AYHNSPAYLAYINAK
101





HR7520-1-242-15
SNAI1
O95863
MPRSELVRKPSDPNR
QTHSDVKKYQCQACA
242





HR7520-1-247-15
SNAI1
O95863
MPRSFLVRKPSDPNR
VKKYQCQACARTFSR
247





HR7520-1-253-TEV
SNAI1
O95863
PRSFLVRKPSDPNRK
QACARTFSRMSLLHK
252





HR7520-15
SNAI1
O95863
MPRSFLVRKPSDPNR
LHKHQESGCSGCPR*
265





HR7520-34-264-Av6HT
SNAI1
O95863
PYDQAHLLAAIPPPE
LLHKHQESGCSGCPR
231





HR7520-40-264-15
SNAI1
O95863
MLLAAIPPPEILNPT
LLHKHQESGCSGCPR
226





HR7520-45-264-15
SNAI1
O95863
MPPPEILNPTASLPM
LLHKHQESGCSGCPR
221





HR7012A-122-179-NHT
SNAI2
O43623
AIEAEKFQCNLCNKT
DKEYVSLGALKMHIR
58





HR7849A-212-292-NHT
SNAI3
Q3KNW1
KICGKAFSRPWLLQG
SLLARHEESGCCPGP
81





HR7971A-346-397-Av6HT
SNAPC4
Q5SXM2
RKEWTEEEDRMLTQL
DSMQLIYRWTKSLDP
52





HR7549A-165-287-NHT
SOHLH2
Q9NX45
EHLGYFPTDLFACSE
RFCKKQQTPIELSLP
123





HR7723A-49-131-TEV
SOX1
O00570
DRVKRPMNAFMVWSR
DYKYRPRRKTKTLLK
83





HR7246A-102-183-15
SOX10
P56693
MPHVKRPMNAFMVWA
PDYKYQPRRRKNGKA
83





HR7246A-109-178-15
SOX10
P56693
MNAFMVWAQAARRKL
HKKDHPDYKYQPRRR
71





HR7246A-127-178-15
SOX10
P56693
MPHLHNAELSKTLGK
HKKDHPDYKYQPRRR
53





HR7246A-91-179-15
SOX10
P56693
MPVRVNGASKSKPHV
KKDHPDYKYQPRRRK
90





HR7180A-31-110-Av6HT
SOX12
O15370
GWCKTPSGHIKRPMN
LRLKHMADYPDYKYR
80





HR7313A-421-500-TEV
SOX13
Q9UN79
SSHIKRPMNAFMVWA
EKYPDYKYKPRPKRT
80





HR7773A-2-88-TEV
SOX14
O95416
SKPSDHIKRPMNAFM
DYKYRPRRKPKNLLK
87





HR7489A-83-161-TEV
SOX18
P35713
SRIRRPMNAFMVWAK
RDHPNYKYRPRRKKQ
79





HR8317A-38-121-TEV
SOX2
P48431
PDRVKRPMNAFMVWS
DYKYRPRRKTKTLMK
84





HR8041A-6-88-TEV
SOX21
Q9Y651
DHVKRPMNAFMVWSR
DYKYRPRRKPKTLLK
83





HR7838A-132-219-TEV
SOX3
P41225
GGTDQDRVKRPMNAF
DYKYRPRRKTKTLLK
88





HR8424A-45-130-Av6HT
SOX4
Q06945
KADDPSWCKTPSGHI
RLKHMADYPDYKYRP
86





HR7351A-554-632-TEV
SOX5
P35711
PHIKRPMNAFMVWAK
EKYPDYKYKPRPKRT
79





HR7953A-619-697-TEV
SOX6
P35712
HNSNISKILGSRWKS
YKQLMRSRRQEMRQF
78





HR7275A-43-121-TEV
SOX7
Q9BT81
SRIRRPMNAFMVWAK
QDYPNYKYRPRRKKQ
79





HR7103A-102-174-Av6HT
SOX8
P57073
VKRPMNAFMVWAQAA
VQHKKDHPDYKYQPR
73





HR7103A-63-143-Av6HT
SOX8
P57073
RFPACIRDAVSQVLK
NAELSKTLGKLWRLL
81





HR7103A-63-150-Av6HT
SOX8
P57073
RFPACIRDAVSQVLK
LGKLWRLLSESEKRP
88





HR7103A-63-173-NHT
SOX8
P57073
RFPACIRDAVSQVLK
RVQHKKDHPDYKYQP
111





HR7103A-82-143-Av6HT
SOX8
P57073
SLVPMPVRGGGGGAL
NAELSKTLGKLWRLL
62





HR7103A-82-150-Av6HT
SOX8
P57073
SLVPMPVRGGGGGAL
LGKLWRLLSESEKRP
69





HR7103A-82-173-Av6HT
SOX8
P57073
SLVPMPVRGGGGGAL
RVQHKKDHPDYKYQP
92





HR6433-64-495-15
SOX9
P48436
SEEDKFPVCIREAVS
ADTSGVPSIPQTHSP
432





HR6433-64-509-14
SOX9
P48436
SEEDKFPVCIREAVS
PQHWEQPVYTQLTRP
446





HR6433-68-490-15
SOX9
P48436
KFPVCIREAVSQVLK
MYTPIADTSGVPSIP
423





HR6433-68-509-14
SOX9
P48436
KFPVCIREAVSQVLK
PQHWEQPVYTQLTRP
442





HR4634C-496-558-14
SP1
P08047
MSSSNTTLTPIASAA
VHPIQGLPLAIANAP
64





HR4744B-38-153-14
SP100
P23497
MFTEDQGVDDRLLYD
HIYKGFENVIHDKLP
117





HR4744B-42-149-14
SP100
P23497
MQGVDDRLLYDIVFK
PDLIHIYKGFENVIH
109





HR4744B-70-135-14
SP100
P23497
MKTFPFLEGLRDRDL
VLEALFSDVNMQEYP
67





HR4744B-70-149-14
SP100
P23497
MKTFPFLEGLRDRDL
PDLIHIYKGFENVIH
81





HR4744C-595-684-TEV
SP100
P23497
DENINFKQSELPVTC
MENKFLPEPPSTRKK
90





HR7625A-677-739-NHT
SP140
Q13342
SQNNSSVDPCMRNLD
RTPWNCIFCRMKESP
63





HR7855A-523-581-Av6HT
SP2
Q02086
KKHVCHIPDCGKTFR
TRSDELQRHARTHTG
59





HR8154A-336-382-Av6HT
SP5
Q6BEB4
SFTRSDELQRHLRTH
SDHLAKHVKTHQNKK
47





HR7866A-256-329-Av6HT
SP6
Q3SY56
CHIPGCGKAYAKTSH
PCAVCSRVFMRSDHL
74





HR7872A-292-352-Av6HT
SP7
Q8TDD2
PIHSCHIPGCGKVYG
SDELERHVRTHTREK
61





HR7447A-131-213-TEV
SPDEF
O95238
LKDIETACKLLNITA
GDVLHAHLDIWKSAA
83





HR8383A-169-257-NHT
SPI1
P17947
KKIRLYQFLLDLLRS
KKVKKKLTYQFSGEV
89





HR4679B-130-262-14
SPIB
Q01892
MEEEDLPLDSPALEV
TYQFDSALLPAVRRA
134





HR4679B-134-262-14
SPIB
Q01892
MLPLDSPALEVSDSE
TYQFDSALLPAVRRA
130





HR4679B-163-262-14
SPIB
Q01892
MAGTRKKLRLYQFLL
TYQFDSALLPAVRRA
101





HR4679B-168-262-14
SPIB
Q01892
MKLRLYQFLLGLLTR
TYQFDSALLPAVRRA
96





HR7954A-111-207-Av6HT
SPIC
Q8N5J4
LRLFEYLHESLYNPE
FSEAILQRLSPSYFL
97





HR7260A-815-910-NHT
SRCAP
Q6ZRS2
IEGSQEYNEGLVKRL
QLRKVCNHPNLFDPR
96





HR7260B-583-850-Av6HT
SRCAP
Q6ZRS2
EITDIAAAAESLQPK
FLLRRVKVDVEKQMP
268





HR7260B-597-840-Av6HT
SRCAP
Q6ZRS2
KGYTLATTQVKTPIP
VKRLHKVLRPFLLRR
244





HR7260B-601-850-Av6HT
SRCAP
Q6ZRS2
LATTQVKTPIPLLLR
FLLRRVKVDVEKQMP
250





HR7260B-607-840-Av6HT
SRCAP
Q6ZRS2
KTPIPLLLRGQLREY
VKRLHKVLRPFLLRR
234





HR7260B-607-850-Av6HT
SRCAP
Q6ZRS2
KTPIPLLLRGQLREY
FLLRRVKVDVEKQMP
244





HR4448F-14
SREBF1
P36956
VLLFVYGEPVTRPHS
VVRTSLWRQQQPPAP
432





HR4448G-521-624-14
SREBF1
P36956
MVYHSPGRNVLGTES
RALGRPLPTSHLDLA
105





HR4448G-521-643-14
SREBF1
P36956
MVYHSPGRNVLGTES
WNLIRHLLQRLWVGR
124





HR4448G-526-619-14
SREBF1
P36956
MGRNVLGTESRDGPG
LWLALRALGRPLPTS
95





HR4448G-526-638-14
SREBF1
P36956
MGRNVLGTESRDGPG
ACSLLWNLIRHLLQR
114





HR4448G-530-624-14
SREBF1
P36956
MLGTESRDGPGWAQW
RALGRPLPTSHLDLA
96





HR4448G-530-643-14
SREBF1
P36956
MLGTESRDGPGWAQW
WNLIRHLLQRLWVGR
115





HR4448G-535-619-14
SREBF1
P36956
MRDGPGWAQWLLPPV
LWLALRALGRPLPTS
86





HR4448G-535-638-14
SREBF1
P36956
MRDGPGWAQWLLPPV
ACSLLWNLIRHLLQR
105





HR4448H-319-400-TEV
SREBF1
P36956
QSRGEKRTAHNAIEK
SLRTAVHKSKSLKDL
82





HR4448H-TEV
SREBF1
P36956
QSRGEKRTAHNAIEK
SLRTAVHKSKSLKDL
82





HR6329A-1075-1134-14
SREBF2
Q12772
MPGQRERATAILLAC
RSCNDCQQMIVKLGG
61





HR4543C-132-223-TEV
SRF
P11831
SGAKPGKKTRGRVKI
ETGKALIQTCLNSPD
92





HR6924A-56-131-Av6HT
SRY
Q05066
VQDRVKRPMNAFIVW
QAMHREKYPNYKYRP
76





HR6924A-56-131-TEV
SRY
Q05066
VQDRVKRPMNAFIVW
QAMHREKYPNYKYRP
76





HR7075A-105-202-Av6HT
SSB
P05455
KNDVKNRSVYIKGFP
YFAKKNEERKQNKVE
98





HR7075A-105-202-TEV
SSB
P05455
KNDVKNRSVYIKGFP
YFAKKNEERKQNKVE
98





HR7013A-305-448-TEV
SSH2
Q76I76
DSPTQIFEHVFLGSE
SFMRQLEEYQGILLA
143





HR7844A-287-452-NHT
SSH3
Q8TE77
DLESVTSKEIRQALE
QALRHVQELRPIARP
166





HR3575-1-551-14
SSRP1
Q08945
MAETLEFNDVYQEVK
EVKKGKDPNAPKRPM
551





HR3575-1-556-14
SSRP1
Q08945
MAETLEFNDVYQEVK
KDPNAPKRPMSAYML
556





HR3575-1-573-14
SSRP1
Q08945
MAETLEFNDVYQEVK
NASREKIKSDHPGIS
573





HR5522A-14
SSRP1
Q08945
MLKKAKMAKDRKSRK
RDYEKAMKEYEGGRG
101





HR5522A-15
SSRP1
Q08945
MLKKAKMAKDRKSRK
RDYEKAMKEYEGGRG
101





HR7020A-812-906-TEV
ST18
O60284
PELKCPVIGCDGQGH
GCPLNAQVIKKGKVS
95





HR8389A-136-710-Av6HT
STAT1
P42224
LDKQKELDSKVRNVK
PKGTGYIKTELISVS
575





HR8389A-136-710-NHT
STAT1
P42224
LDKQKELDSKVRNVK
PKGTGYIKTELISVS
575





HR8389A-136-710-TEV
STAT1
P42224
LDKQKELDSKVRNVK
PKGTGYIKTELISVS
575





HR3569D-573-771-14
STAT2
P52630
NDGRIMGFVSRSQER
STLEPVIEPTLGMVS
199





HR3569E-1-131-14
STAT2
P52630
MAQWEMLQNLDSPFQ
RILIQAQRAQLEQGE
131





HR3569E-1-186-14
STAT2
P52630
MAQWEMLQNLDSPFQ
VFCFRYKIQAKGKTP
186





HR5539A-14
STAT2
P52630
MAQWEMLQNLDSPFQ
LEEKRILIQAQRAQL
127





HR5539A-15
STAT2
P52630
MAQWEMLQNLDSPFQ
LEEKRILIQAQRAQL
127





HR5535A-1-101-14
STAT3
P40763
MAQWNQLQQLDTRYL
KQFLQSRYLEKPMEI
101





HR5535A-14
STAT3
P40763
MAQWNQLQQLDTRYL
WEESRLLQTAATAAQ
124





HR5535B-1-116-14
STAT3
P40763
MAQWNQLQQLDTRYL
ARIVARCLWEESRLL
116





HR5535B-1-133-14
STAT3
P40763
MAQWNQLQQLDTRYL
AATAAQQGGQANHPT
133





HR3612-187-748-14
STAT4
Q14765
MNSAMVNQEVLTLQE
PTTIETAMKSPYSAE
563





HR5542A-14
STAT5A
P42229
MAGWIQAQQLQGDAL
NEQRLVREANNCSSP
129





HR5542A-15
STAT5A
P42229
MAGWIQAQQLQGDAL
NEQRLVREANNCSSP
129





HR55428-128-712-NHT
STAT5A
P42229
SPAGILVDAMSQKHL
QIKQVVPEFVNASAD
585





HR5541A-1-102-14
STAT5B
P51692
MAVWIQAQQLQGEAL
GHYATQLQNTYDRCP
102





HR5541A-1-106-14
STAT5B
P51692
MAVWIQAQQLQGEAL
TQLQNTYDRCPMELV
106





HR5541A-14
STAT5B
P51692
MAVWIQAQQLQGEAL
NEQRLVREANNGSSP
129





HR5541A-15
STAT5B
P51692
MAVWIQAQQLQGEAL
NEQRLVREANNGSSP
129





HR5541B-1-127-14
STAT5B
P51692
MAVWIQAQQLQGEAL
LYNEQRLVREANNGS
127





HR5541B-1-135-14
STAT5B
P51692
MAVWIQAQQLQGEAL
REANNGSSPAGSLAD
135





HR5541C-1-684-TEV
STAT5B
P51692
AVWIQAQQLQGEALH
FPDRPKDEVYSKYYT
683





HR3396C-1-127-14
STAT6
P42226
MSLWGLVSKMPPEKV
QFRHLPMPFHWKQEE
127





HR3396C-1-169-14
STAT6
P42226
MSLWGLVSKMPPEKV
AEAGQVSLHSLIETP
169





HR3396C-1-174-14
STAT6
P42226
MSLWGLVSKMPPEKV
VSLHSLIETPANGTG
174





HR3396D-72-655-14
STAT6
P42226
GEGSTILQHISTLES
YVPATIKMTVERDQP
584





HR3396E-90-279-14
STAT6
P42226
RDPLKLVATFRQILQ
LRTLVTSCFLVEKQP
190





HR3396E-90-327-14
STAT6
P42226
RDPLKLVATFRQILQ
ADMVTEKQARELSVP
238





HR3396F-1-630-TEV
STAT6
P42226
SLWGLVSKMPPEKVQ
YPKKPKDEAFRSHYK
629





HR7864A-355-443-TEV
TADA2A
O75478
SNSGRRSAPPLNLTG
KIYDFLIREGYITKG
89





HR8503A-244-333-Av6HT
TADA2B
B3KX99
KEDGKDSEFAAIENL
LNSLTESGWISRDAS
90





HR4753B-177-253-14
TAL1
P17542
MEITDGPHTKVVRRI
LAKLLNDQEEEGTQR
78





HR4753B-177-280-14
TAL1
P17542
MEITDGPHTKVVRRI
GGGGGGGGGAPPDDL
105





HR4753B-182-247-14
TAL1
P17542
MPHTKVVRRIFTNSR
MKYINFLAKLLNDQE
67





HR4753B-182-262-14
TAL1
P17542
MPHTKVVRRIFTNSR
EEGTQRAKTGKDPVV
82





HR4753B-182-262-Av6HT
TAL1
P17542
PHTKVVRRIFTNSRE
EEGTQRAKTGKDPVV
81





HR4753B-182-262-TEV
TAL1
P17542
PHTKVVRRIFTNSRE
EEGTQRAKTGKDPVV
81





HR4753B-182-287-14
TAL1
P17542
MPHTKVVRRIFTNSR
GGAPPDDLLQDVLSP
107





HR6460A-1-79-15
TAL2
Q16559
MTRKIFTNTRERWRQ
QTGVAAQGNILGLFP
79





HR6460A-1-84-15
TAL2
Q16559
MTRKIFTNTRERWRQ
AQGNILGLFPQGPHL
84





HR6460A-1-96-15
TAL2
Q16559
MTRKIFTNTRERWRQ
PHLPGLEDRTLLENY
96





HR6460A-34-96-15
TAL2
Q16559
PDKKLSKNETLRLAM
PHLPGLEDRTLLENY
63





HR464-14
TAX1BP1
Q86VP1
MTSFQEVPLQTSNFA
NSDMLVVTTKAGLLE
151





HR464-21
TAX1BP1
Q86VP1
MTSFQEVPLQTSNFA
NSDMLVVTTKAGLLE
151





HR7030-1-512-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
TSASTVDVKPSPSAA
511





HR7030-1-529-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
DFDIVTKGQVCEMTK
528





HR7030-1-588-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
ENVKLELAEVQDNYK
587





HR7030-1-597-TEV
TAX1BP1
Q86VP1
TSFQEVPLQTSNFAH
VQDNYKELKRSLENP
596





HR7030A-15-466-TEV
TAX1BP1
Q86VP1
AHVIFQNVAKSYLPN
KFKECQRLQKQINKL
452





HR7030A-15-470-TEV
TAX1BP1
Q86VP1
AHVIFQNVAKSYLPN
CQRLQKQINKLSDQS
456





HR8311A-205-394-Av6HT
TBR1
Q16650
QVYLCNRPLWLKFHR
LKIDHNPFAKGFRDN
190





HR8240A-138-330-Av6HT
TBX18
O95935
APRVDLQGAELWKRF
RLKIDRNPFAKGFRD
193





HR7379A-91-283-TEV
TBX2
Q13207
SLKSLEPEDEVEDDP
DKITQLKIDNNPFAK
193





HR7868A-127-326-Av6HT
TBX21
Q9UL17
LPAGLEVSGKLRVAL
QLKIDNNPFAKGFRE
200





HR7452A-91-277-NHT
TBX22
Q9Y458
DIQMELQGSELWKRF
QNQQITKLKIERNPF
187





HR7369A-99-311-TEV
TBX3
O15119
VEDDPKVHLEAKELW
LTLQSMRVFDERHKK
213





HR7232A-61-248-Av6HT
TBX4
P57082
EQTIENIKVGLHEKE
KITQLKIENNPFAKG
188





HR8313A-52-232-Av6HT
TBX5
Q99593
EGIKVFLHERELWLK
QNHKITQLKIENNPF
181





HR7389A-90-273-NHT
TBX6
O95947
GVSLSLENRELWKEF
QLKIAANPFAKGFRE
184





HR6334A-578-637-TEV
TCF12
Q99081
RRMANNARERLRVRD
AVAVILSLEQQVRER
60





HR6965A-1-144-Av6HT
TCF19
Q9Y242
MLPCFQLLRIGGGRG
DFAAITIPRSRGEAR
144





HR6965A-1-144-NHT
TCF19
Q9Y242
LPCFQLLRIGGGRGG
DFAAITIPRSRGEAR
143





HR8141A-73-167-Av6HT
TCF21
O43680
SQEGKQVQRNAANAR
PFMVAGKPESDLKEV
95





HR7160A-75-162-NHT
TCF23
Q7RTU1
SEASPENAARERSRV
LRYLHPLKKWPMRSR
88





HR7366A-178-588-Av6HT
TCF25
Q9BQ70
LYVEHRHLNPDTELK
DVTTQSVMGFDPLPP
411





HR4404E-550-609-TEV
TCF3
P15923
RRVANNARERLRVRD
AVSVILNLEQQVRER
60





HR4645C-565-624-TEV
TCF4
P15884
RRMANNARERLRVRD
AVAVILSLEQQVRER
60





HR8064A-27-105-TEV
TEAD1
P28347
IDNDAEGVWSPDIEQ
SSHIQVLARRKSRDF
79





HR7830A-40-115-TEV
TEAD2
Q15562
DAEGVWSPDIEQSFD
SSHIQVLARRKSREI
76





HR7697A-27-104-TEV
TEAD3
Q99594
LDNDAEGVWSPDIEQ
VSSHIQVLARKKVRE
78





HR6976A-217-434-TEV
TEAD4
Q15561
RSVASSKLWMLEFSA
SEHGAQHHIYRLVKE
218





HR7931A-446-500-Av6HT
TERF2
Q15554
KKQKWTVEESEWVKA
MIKDRWRTMKRLGMN
55





HR7931A-446-500-TEV
TERF2
Q15554
KKQKWTVEESEWVKA
MIKDRWRTMKRLGMN
55





HR7939A-132-190-Av6HT
TERF2IP
Q9NYB0
GRIAFTDADDVAILT
SWQSLKDRYLKHLRG
59





HR7939A-132-190-TEV
TERF2IP
Q9NYB0
GRIAFTDADDVAILT
SWQSLKDRYLKHLRG
59





HR8166A-153-218-TEV
TFAM
Q00059
GKPKRPRSAYNVYVA
AKEDETRYHNEMKSW
66





HR3078B-202-418-14
TFAP2A
P05549
GGVVNPNEVFCSVPG
EALKAMDKMYLSNNP
217





HR3078B-207-414-14
TFAP2A
P05549
PNEVFCSVPGRLSLL
NYLTEALKAMDKMYL
208





HR3162-15
TFAP2B
Q92481
MHSPPRDQAAIMLWK
GPGSKTGDKEEKHRK
460





HR7501-139-450-15
TFAP2C
Q92754
MRRDAYRRSDLLLPH
ADSNKTLEKMEKHRK
313





HR7501A-206-427-TEV
TFAP2C
Q92754
NLPCQKELVGAVMNP
QNYIKEALIVIDKSY
222





HR7501A-219-427-TEV
TFAP2C
Q92754
NPTEVFCSVPGRLSL
QNYIKEALIVIDKSY
209





HR7501B-128-430-Av6HT
TFAP2C
Q92754
LSGLEAGAVSARRDA
IKEALIVIDKSYMNP
303





HR7501B-128-450-Av6HT
TFAP2C
Q92754
LSGLEAGAVSARRDA
ADSNKTLEKMEKHRK
323





HR7501B-139-430-TEV
TFAP2C
Q92754
RRDAYRRSDLLLPHA
IKEALIVIDKSYMNP
292





HR7501B-206-450-TEV
TFAP2C
Q92754
NLPCQKELVGAVMNP
ADSNKTLEKMEKHRK
245





HR7501B-219-450-TEV
TFAP2C
Q92754
NPTEVFCSVPGRLSL
ADSNKTLEKMEKHRK
232





HR7272A-212-422-Av6HT
TFAP2E
Q6VUC0
TNPGEVFCSVPGRLS
YLLESLKGLDKMFLS
211





HR7122A-21-122-Av6HT
TFAP4
Q01664
EKEVIGGLCSLANIP
QQNTQLKRFIQELSG
102





HR7110A-303-394-15
TFCP2
Q12800
MLGEGNGSPNHQPEP
ALKGRMVRPRLTIYV
93





HR7110A-303-400-15
TFCP2
Q12800
MLGEGNGSPNHQPEP
VRPRLTIYVCQESLQ
99





HR7110A-303-404-15
TFCP2
Q12800
MLGEGNGSPNHQPEP
LTIYVCQESLQLREQ
103





HR7110A-332-395-15
TFCP2
Q12800
MEAQQWLHRNRFSTF
LKGRMVRPRLTIYVC
65





HR7110A-332-399-15
TFCP2
Q12800
MEAQQWLHRNRFSTF
MVRPRLTIYVCQESL
69





HR7110A-332-404-15
TFCP2
Q12800
MEAQQWLHRNRFSTF
LTIYVCQESLQEREQ
74





HR7022A-278-385-NHT
TFCP2L1
Q9NZI6
SPNSFGLGEGNASPT
MTIYVCQELEQNRVP
108





HR4671B-105-200-TEV
TFDP1
Q14186
RNRKGEKNGKGLRHF
KKEIKWIGLPTNSAQ
96





HR7048A-121-215-TEV
TFDP2
Q14188
RRRVYDALNVLMAMN
QNQGPPALNSTIQLP
95





HR7261A-244-347-NHT
TFDP3
Q5H9I0
QRPLPNSVIHVPFII
AQGTFGGVFTTAGSR
104





HR4665C-333-388-14
TFE3
P19532
MISETEAKALLKERQ
PKSSDPEMRWNKGTI
57





HR4665C-333-443-14
TFE3
P19532
MISETEAKALLKERQ
ELELQAQIHGLPVPP
112





HR4665C-338-383-14
TFE3
P19532
MAKALLKERQKKDNH
LGTLIPKSSDPEMRW
47





HR665C-338-438-14
TFE3
P19532
MAKALLKERQKKDNH
QLRIQELELQAQIHG
102





HR7480A-223-309-NHT
TFEB
P19484
TDAESRALAKERQKK
SRELENHSRRLEMTN
87





HR4411B-151-237-14
TGIF1
Q15583
MDIPLDLSSSAGSGK
LPDMLRKDGKDPNQF
88





HR4411B-170-232-14
TGIF1
Q15583
MNLPKESVQILRDWL
ARRRLLPDMLRKDGK
64





HR4411B-170-252-14
TGIF1
Q15583
MNLPKESVQILRDWL
TISRRGAKISETSSV
84





HR4411B-171-248-14
TGIF1
Q15583
MLPKESVQILRDWLY
PNQFTISRRGAKISE
79





HR4411B-189-248-14
TGIF1
Q15583
MNAYPSEQEKALLSQ
PNQFTISRRGAKISE
61





HR4411C-171-241-14
TGIF1
Q15583
MLPKESVQILRDWLY
LRKDGKDPNQFTISR
72





HR4393-12-199-15
TGIF2
Q9GZN2
LLSLAGKRKRRGNLP
PTPPEQDKEDFSSFQ
188





HR4393-12-223-15
TGIF2
Q9GZN2
LLSLAGKRKRRGNLP
AAEMELQKQQDPSLP
212





HR4393-17-220-15
TGIF2
Q9GZN2
GKRKRRGNLPKESVK
LQRAAEMELQKQQDP
204





HR4393-6-199-15
TGIF2
Q9GZN2
LGEDEGLLSLAGKRK
PTPPEQDKEDFSSFQ
194





HR4393-6-223-15
TGIF2
Q9GZN2
LGEDEGLLSLAGKRK
AAEMELQKQQDPSLP
218





HR7881A-51-127-TEV
TGIF2LX
Q8IUE1
KKRKGNLPAESVKIL
LQQRRNDPIIGHKTG
77





HR8232A-51-127-NHT
TGIF2LY
Q8IUE0
KKRKGNLPAESVKIL
LQQRRNDPIIGHKTG
77





HR8232A-51-127-TEV
TGIF2LY
Q8IUE0
KKRKGNLPAESVKIL
LQQRRNDPIIGHKTG
77





HR7047A-1-87-TEV
THAP1
Q9NVV9
VQSCSAYGCKNRYDK
KENAVPTIFLCTEPH
86





HR1517A-1-91-Av6HT
THAP10
Q9P2Z0
PARCVAAHCGNTTKS
QRLRLVAGAVPTLHR
90





HR7799A-1-67-TEV
THAP11
Q96EK4
PGFTCCVPGCYNNSH
QPTTGHRLCSVHFQG
66





HR7799A-1-72-TEV
THAP11
Q96EK4
PGFTCCVPGCYNNSH
HRLCSVHFQGGRKTY
71





HR7799A-1-82-Av6HT
THAP11
Q96EK4
PGFTCCVPGCYNNSH
GRKTYTVRVPTIFPL
81





HR8301A-1-87-TEV
THAP2
Q9H0W7
PTNCAAAGCATTYNK
MDAVPTIFDFCTHIK
86





HR7028A-1-83-NHT
THAP5
Q7Z6K1
PRYCAAICCKNRRGR
RWGIRYLKQTAVPTI
82





HR8415A-1-149-Av6HT
THAP6
Q8TBB0
VKCCSAIGCASRCLP
QFIFEHSYSVMDSPK
148





HR7818A-1-92-Av6HT
THAP7
Q9BT49
PRHCSAAGCCTRDTR
ISGYHRLKEGAVPTI
91





HR6978A-1-82-15
THAP8
Q8NA92
MPKYCRAPNCSNTAG
QWRWGVRYLRPDAVP
82





HR6978A-1-87-15
THAP8
Q8NA92
MPKYCRAPNCSNTAG
VRYLRPDAVPSIFSR
87





HR6978A-16-87-15
THAP8
Q8NA92
MRLGADNRPVSFYKF
VRYLRPDAVPSIFSR
73





HR6978A-21-82-15
THAP8
Q8NA92
MNRPVSFYKFPLKDG
QWRWGVRYLRPDAVP
63





HR7271A-1-88-NHT
THAP9
Q9H5L6
TRSCSAVGCSTRDTV
YGIRRKLKKGAVPSV
87





HR7130A-202-461-15
THRB
P10828
MEELQKSIGHKPEPT
PTELFPPLFLEVFED
261





HR7130A-202-461-Av6HT
THRB
P10828
EELQKSIGHKPEPTD
PTELFPPLFLEVFED
260





HR7130A-202-461-TEV
THRB
P10828
EELQKSIGHKPEPTD
PTELFPPLFLEVFED
260





HR7130B-104-206-15
THRB
P10828
MDELCVVCGDKATGY
IEENREKRRREELQK
104





HR7130B-104-206-Av6HT
THRB
P10828
DELCVVCGDKATGYH
IEENREKRRREELQK
103





HR7130B-104-206-TEV
THRB
P10828
DELCVVCGDKATGYH
IEENREKRRREELQK
103





HR6921A-74-139-NHT
TIGD3
Q6B0B8
SKYSGIDEALLCWYH
VRWKRRNNVGFGARH
66





HR7457A-14-77-NHT
TIGD4
Q8IY51
TVKKKKSLSIEEKID
VLEAFESLRFDPKRK
64





HR7206A-68-132-NHT
TIGD6
Q17RP2
KRMRSALYDDIDKAV
QASVGWLNRFRDRHG
65





HR7729A-62-136-NHT
TIGD7
Q6NT04
PLVGAEKRKRTTGAK
STGWLFRFRNRHAIG
75





HR7316A-298-418-NHT
TIPARP
Q7Z3E1
NDRMRMKYGGQEFWA
LFRSCFILLPYLQTL
121





HR7535A-206-260-TEV
TLX1
P31314
TSFTRLQICELEKRF
KTWFQNRRTKWRRQT
55





HR6480A-162-216-TEV
TLX2
O43763
TSFSRSQVLELERRF
KTWFQNRRTKWRRQT
55





HR7241A-171-225-TEV
TLX3
O43711
TSFSRVQICELEKRF
KTWFQNRRTKWRRQT
55





HR3551B-1-370-TEV
TNFAIP3
P21580
AEQVLPQALYLSNMR
WQENSEQGRREGHAQ
369





HR8218A-34-319-Av6HT
TOE1
Q96GM8
VPVVDVQSNNFKEMW
AYGWCPLGPQCPQSH
286





HR5174A-643-706-NHT
TOP3A
Q13472
QQEDIYPAMPEPIRK
PDSVLEASRDSSVCP
64





HR8243A-244-339-NHT
TOX
O94900
GKKPKTPKKKKKKDP
LAAYRASLVSKSYSE
96





HR8243A-244-339-TEV
TOX
O94900
GKKPKTPKKKKKKDP
LAAYRASLVSKSYSE
96





HR7258A-238-302-TEV
TOX2
Q96NM4
VASMWDSLGEEQKQA
STQANPPAKMLPPKQ
65





HR7680A-238-335-TEV
TOX3
O15405
GKKPKTPKKKKKKDP
AYRASLVSKAAAESA
98





HR7250A-206-291-TEV
TOX4
O94842
GKKQKAPKKRKKKDP
EAAKKEYLKALAAYK
86





HR6989-94-312-15-TEV
TP53
P04637
MLSSSVPSQKTYQGS
ELPPGSTKRALPNNT
221





HR6989-94-312-R175H-15-TEV
TP53
P04637
MLSSSVPSQKTYQGS
ELPPGSTKRALPNNT
221





HR6989A-20-73-Av6HT
TP53
P04637
SDLWKLLPENNVLSP
GPDEAPRMPEAAPPV
54





HR6989A-20-73-TEV
TP53
P04637
SDLWKLLPENNVLSP
GPDEAPRMPEAAPPV
54





HR3500C-14
TP63
Q9H3D4
MDALSPSPAIPSNTD
GTKRPFRQNTHGIQM
232





HR3500C-15
TP63
Q9H3D4
MDALSPSPAIPSNTD
GTKRPFRQNTHGIQM
232





HR3500D-540-614-TEV
TP63
Q9H3D4
PPPYPTDCSIVSFLA
GILDHRQLHEFSSPS
75





HR3466-110-636-14
TP73
O15350
MSPAPVIPSNTDYPG
RKQPIKEEFTEAEIH
528





HR3466-114-636-14
TP73
O15350
MVIPSNTDYPGPHHF
RKQPIKEEFTEAEIH
524





HR3466D-14
TP73
O15350
MSPAPVIPSNTDYPG
KADEDHYREQQALNE
209





HR3466D-15
TP73
O15350
MSPAPVIPSNTDYPG
KADEDHYREQQALNE
209





HR3466E-487-554-TEV
TP73
O15350
YHADPSLVSFLTGLG
TIWRGLQDLKQGHDY
68





HR8230A-78-139-TEV
TRAFD1
O14545
HEETECPLRLAVCQH
VKDLKTHPEVCGREG
62





HR4455D-876-951-14
TRERF1
Q96PN7
MCHPLANYHYAGSDK
LGRKHRTRLAEIIDD
77





HR4455D-881-945-14
TRERF1
Q96PN7
MNYHYAGSDKWTSLE
WKKIMRLGRKHRTRL
66





HR4455E-773-1200-15
TRERF1
Q96PN7
MQTVDVEPRINIGLR
LDDQDSVLLQGDAEL
429





HR4455E-778-1200-15
TRERF1
Q96PN7
MEPRINIGLRFQAEI
LDDQDSVLLQGDAEL
424





HR4455F-773-841-15
TRERF1
Q96PN7
MQTVDVEPRINIGLR
ENLLNLCCSSALPGG
70





HR4455F-778-836-15
TRERF1
Q96PN7
MEPRINIGLRFQAEI
LQQRVENLLNLCCSS
60





HR7441A-22-107-NHT
TRIM23
P36406
GTAVVKVLECGVCED
FALLELLERLQNGPI
86





HR7486A-13-98-NHT
TRIM3
O75382
QPMDKQFLVCSICLD
SLMEAMQQAPDGAHD
86





HR7466A-4-90-TEV
TRIM32
Q13049
AAASHLNLDALREVL
LTDNLTVLKIIDTAG
87





HR5056A-48-428-Av6HT
TRIT1
Q9H3H1
GGEIVSADSMQVYEG
IKSKSHLNQLKKRRR
381





HR7683A-316-386-15
TSC22D4
Q9Y3Q8
MVGIDNKIEQAMDLV
EQLAQLPSSGVPRLG
72





HR7683A-320-381-15
TSC22D4
Q9Y3Q8
MNKIEQAMDLVKSHL
ALASPEQLAQLPSSG
63





HR7683A-320-395-Av6HT
TSC22D4
Q9Y3Q8
NKIEQAMDLVKSHLM
GVPRLGPPAPNGPSV
76





HR8019A-232-335-TEV
TSHZ1
Q6ZSZ6
DKDSEKTKRWSKPRK
EPAGMAAEVALSESA
104





HR7516A-824-951-NHT
TSHZ2
Q9NRE2
DVRRFEDVSSEVSTL
TPSTYISHLESHLGF
128





HR6901A-200-303-TEV
TSHZ3
Q63HK5
SSKLYGSIFTGASKF
DLSVHMIKTKHYQKV
104





HR7321A-615-661-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
ARSSLSVALKFSQIS
47





HR7321A-615-669-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
LKFSQISSQRNRGAW
55





HR7321A-615-678-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
RNRGAWSKSETRKLI
64





HR7321A-615-687-Av6HT
TTF1
Q15361
NYKGRYSEGDTEKLK
ETRKLIKAVEEVILK
73





HR7321A-615-697-NHT
TTF1
Q15361
NYKGRYSEGDTEKLK
EVILKKMSPQELKEV
83





HR8382A-244-506-NHT
TUB
P50607
GISSSMSFDEDEEDE
QSYVLNFHGRVTQAS
263





HR8277A-291-536-TEV
TULP1
O00294
PREFVLRPAPQGRTV
LCALQAFAIALSSFD
246





HR7732A-263-520-Av6HT
TULP2
O00295
SPCPGLEEDMEAYVL
FSPLQAFSICLSSFN
258





HR6409A-100-175-14
TWIST1
Q15672
PQSYEELQTQRVMAN
QVLQSDELDSKMASC
76





HR6409A-102-171-14
TWIST1
Q15672
SYEELQTQRVMANVR
DFLYQVLQSDELDSK
70





HR7529A-43-146-TEV
U2AF1
Q01081
SQTIALLNIYRNPQN
NRWFNGQPIHAELSP
104





HR7415B-479-562-Av6HT
UBTF
P17480
MEMTWNNMEKKEKLM
NGELNHLPLKERMVE
85





HR7415B-479-562-TEV
UBTF
P17480
EMTWNNMEKKEKLMW
NGELNHLPLKERMVE
84





HR8089A-89-170-Av6HT
UNCX
A6NJT0
KLSDSGDPDKESPGC
RRAKWRKKENTKKGP
82





HR7768A-197-260-TEV
USF1
P22415
DEKRRAQHNEVERRR
KACDYIQELRQSNHR
64





HR6458A-220-346-15
USF2
Q15853
PYSPKIDGTRTPRDE
LQQHNLEMVGEGTRQ
127





HR6458A-226-279-15
USF2
Q15853
DGTRTPRDERRRAQH
CNADNSKTGASKGGI
54





HR6458A-226-346-15
USF2
Q15853
DGTRTPRDERRRAQH
LQQHNLEMVGEGTRQ
121





HR6458B-226-330-15
USF2
Q15853
DGTRTPRDERRRAQH
QQIEELKNENALLRA
105





HR6458B-231-325-15
USF2
Q15853
PRDERRRAQHNEVER
NELLRQQIEELKNEN
95





HR8005-106-565-15
USP39
Q53GS9
MPYLDTINRSVLDFD
IWKRRDNDETNQQGA
461





HR8005A-189-554-15
USP39
Q53GS9
MITYVLKPTFTKQQI
QMITLSEAYIQIWKR
367





HR8005A-189-565-15
USP39
Q53GS9
MITYVLKPTFTKQQI
IWKRRDNDETNQQGA
378





HR8005A-194-549-15
USP39
Q53GS9
MKPTFTKQQIANLDK
TDILPQMITLSEAYI
357





HR8005A-194-555-15
USP39
Q53GS9
MKPTFTKQQIANLDK
MITLSEAYIQIWKRR
363





HR8005B-210-555-15
USP39
Q53GS9
MKLSRAYDGTTYLPG
MITLSEAYIQIWKRR
347





HR8005C-106-183-TEV
USP39
Q53GS9
PYLDTINRSVLDFDF
TLKFYCLPDNYEIID
78





HR8005C-129-183-TEV
USP39
Q53GS9
SHINAYACLVCGKYF
TLKFYCLPDNYEIID
55





HR6997A-81-167-NHT
VAX1
Q5SQQ9
DAKGSIREIILPKGL
TKQKKDQGKDSELRS
87





HR8032A-81-165-Av6HT
VAX2
Q9UIW0
VRDAKGTIREIVLPK
QNRRTKQKKDQSRDL
85





HR7564A-21-427-Av6HT
VDR
P11473
PRICGVCGDRATGFH
KLTPLVLEVFGNEIS
407





HR7564A-21-427-TEV
VDR
P11473
PRICGVCGDRATGFH
KLTPLVLEVFGNEIS
407





HR7564B-16-125-15
VDR
P11473
MFDRNVPRICGVCGD
KEEEALKDSLRPKLS
111





HR7564B-16-125-Av6HT
VDR
P11473
FDRNVPRICGVCGDR
KEEEALKDSLRPKLS
110





HR7564B-16-125-TEV
VDR
P11473
FDRNVPRICGVCGDR
KEEEALKDSLRPKLS
110





HR7703A-97-158-Av6HT
VENTX
O95231
AFTMEQVRTLEGVFQ
MKHKRQMQDPQLHSP
62





HR7928A-148-214-Av6HT
VSX1
Q9NZR4
EDRNDLKASPTLGKR
KTELPEDRIQVWFQN
67





HR8065A-153-211-Av6HT
VSX2
P58304
TIFTSYQLEELEKAF
QNRRAKWRKREKCWG
59





HR7106A-20-70-TEV
VTN
P04004
DQESCKGRCTEGFNV
AECKPQVTRGDVFTM
51





HR7713A-1017-1084-TEV
WDHD1
O75717
RPKTGFQMWLEENRS
KGETASEGTEAKKRK
68





HR7541A-815-891-NHT
WHSC1
O96028
AHFTARKGKRHHAHV
KLHFQDIIWVKLGNY
77





HR8130A-318-438-TEV
WT1
P19544
HSTGYESDNHTTPII
HQRRHTGVKPFQCKT
121





HR3172-15
XBP1
P17861
MVVVAAAPNPADGTP
CQWGRHQPSWKPLMN
261





HR8228A-98-208-TEV
XPA
P23025
EFDYVICEECGKEFM
WGSQEALEEAKEVRQ
110





HR8027A-52-129-TEV
YBX1
P67809
KKVIATKVLGTVKWF
EGEKGAEAANVTGPG
78





HR7254A-87-164-TEV
YBX2
Q9Y2T7
KPVLAIQVLGTVKWF
EGEKGAEATNVTGPG
78





HR7538A-193-335-NHT
YEATS2
Q9ULM3
RNADLTDETSRLFVK
AETVVDVELHRHSLG
143





HR8298A-14-147-15
YEATS4
O95619
MGRVKGVTIVKPIVY
TVVSEFYDEMIFQDP
135





HR8137A-293-414-TEV
YY1
P25490
PRTIACPHKGCTKMF
LKSHILTHAKAKNNQ
122





HR8207A-251-371-TEV
YY2
O15391
PKTVPCSYSGCEKMF
NLKTHILTHVKTKNN
121





HR7328A-23-83-TEV
ZBED1
O96006
SKVWKYFGFDTNAEG
KNHPEEFCEFVKSNT
61





HR7606A-49-119-TEV
ZBED2
Q9BTP6
NKGTRFSEAWFYFHL
MHREELEKSGHGQAG
71





HR8174A-11-69-15
ZBP1
Q9H171
MEGHLEQRILQVLTE
ELKVSLTSPATWCLG
60





HR8174A-26-69-15
ZBP1
Q9H171
MGSPVKLAQLVKECQ
ELKVSLTSPATWCLG
45





HR8174A-6-74-15
ZBP1
Q9H171
MADPGREGHLEQRIL
LTSPATWCLGGTDPE
70





HR7903A-21-117-Av6HT
ZBTB1
Q9Y2K1
GFLCDCCIAIDDIYF
YLQLYNVPDCLEDIQ
97





HR6940A-194-334-NHT
ZBTB11
O95625
PKHCQAVLKQLNEQR
KKGEVQTVASTQDLR
141





HR6940B-764-842-Av6HT
ZBTB11
O95625
RGYHCTQCEKSFFEA
GKEFYEKALFRRHVK
79





HR4454-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
NVLEASVAEINVLIR
459





HR4454C-1-132-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
KCRNALSQFIEPKIG
132





HR4454C-1-137-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
LSQFIEPKIGLKEDG
137





HR4454C-1-151-14
ZBTB12
Q9Y330
MASGVEVLRFQLPGH
GVSEASLVSSISATK
151





HR4454D-328-447-14
ZBTB12
Q9Y330
MNPLKNIKCTKCPEV
HLKEQHGKTTAENVL
121





HR4454E-361-421-14
ZBTB12
Q9Y330
MCPRCGKQFNHSSNI
NLHSGARPYRCSYCD
62





HR4454E-366-418-14
ZBTB12
Q9Y330
MKQFNHSSNLNRHMN
DHLNLHSGARPYRCS
54





HR3471-145-673-15
ZBTB16
Q05516
MEEDRKARYLKNIFI
PDWRIEKTYLYLCYV
530





HR3471-150-673-15
ZBTB16
Q05516
MARYLKNIFISKHSS
PDWRIEKTYLYLCYV
525





HR3471-189-673-15
ZBTB16
Q05516
MTSFGLSAMSPTKAA
PDWRIEKTYLYLCYV
486





HR3471-194-673-15
ZBTB16
Q05516
MSAMSPTKAAVDSLM
PDWRIEKTYLYLCYV
481





HR4581F-2-115-TEV
ZBTB17
Q03105
DFPQHSQHVLEQLNQ
MQDIITACHALKSLA
114





HR7182A-1-107-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
VRLEQGIKFLHAYPL
107





HR7182A-1-113-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
IKFLHAYPLIQEASL
113





HR7182B-1-117-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
HAYPLIQEASLASQG
117





HR7182B-1-147-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
YGIQIADHQLRQATK
147





HR7182B-1-152-15
ZBTB2
Q8N680
MDLANHGLILLQQLN
ADHQLRQATKIASAP
152





HR7182C-227-390-15
ZBTB2
Q8N680
MSDEQPASLTIAHVK
SHWREHMYIHTGKPF
165





HR7182C-232-385-15
ZBTB2
Q8N680
MASLTIAHVKPSIMK
KFIQKSHWREHMYIH
155





HR7182C-245-390-15
ZBTB2
Q8N680
MKRNGSFPKYYACHL
SHWREHMYIHTGKPF
147





HR7182C-248-385-15
ZBTB2
Q8N680
MGSFPKYYACHLCGR
KFIQKSHWREHMYIH
139





HR7182C-252-385-15
ZBTB2
Q8N680
MKYYACHLCGRRFTL
KFIQKSHWREHMYIH
135





HR8336A-81-201-Av6HT
ZBTB20
Q9HC78
INLHNFSNSVLETLN
DECTRIVSQNVGDVF
121





HR7741A-30-151-NHT
Z8T822
O15209
AVVHVSFPEVTSALL
WHIVDKCTELLREGR
122





HR7877A-1-114-15
ZBTB25
P24278
MDTASHSLVLLQQLN
RFLHADYLSHIATEM
114





HR7877A-1-120-15
ZBTB25
P24278
MDTASHSLVLLQQLN
YLSHIATEMNQVFSP
120





HR7877A-1-138-15
ZBTB25
P24278
MDTASHSLVLLQQLN
QSSNLYGIQISTTQK
138





HR7877A-1-144-15
ZBTB25
P24278
MDTASHSLVLLQQLN
GIQISTTQKTVVKQG
144





HR7877B-231-376-15
ZBTB25
P24278
MTENSVKIHLCHYCG
SQLLEHMYTHKGKSY
147





HR7877B-236-373-15
ZBTB25
P24278
MKIHLCHYCGERFDS
PRKSQLLEHMYTHKG
139





HR7877B-244-373-15
ZBTB25
P24278
MGERFDSRSNLRQHL
PRKSQLLEHMYTHKG
131





HR7877B-261-373-15
ZBTB25
P24278
MVSGSLPFGVPASII
PRKSQLLEHMYTHKG
114





HR7877B-270-376-15
ZBTB25
P24278
MPASILESNDLGEVH
SQLLEHMYTHKGKSY
108





HR7877B-275-373-15
ZBTB25
P24278
MESNDLGEVHPLNEN
PRKSQLLEHMYTHKG
100





HR7422A-1-129-NHT
ZBTB26
Q9HCK0
SERSDLLHFKFENYG
IVERCTQALWKFIKP
128





HR6960A-46-179-NHT
ZBTB3
Q9H5J0
PSWGTMEFPEHSQQL
CKRRLQARALAEADS
134





HR7977A-1-110-Av6HT
ZBTB32
Q9Y2Y4
SLPPIRLPSPYGSDR
AARALGVQSLEEACW
109





HR7008A-1-116-TEV
ZBTB33
Q86T24
ESRKLISATDIQYSG
IKSGQLLGVKFIAEL
115





HR6893A-1-124-NHT
ZBTB34
Q8NCN2
DSSSFIQFDVPEYSS
QMQCVIDKCTQILES
123





HR7018A-1-125-NHT
ZBTB37
Q5TC79
EKGGNIQLEIPDFSN
MQHIIDKCTQILEGI
124





HR7837A-13-139-NHT
ZBTB38
Q8NAP3
DFHSDTVLSILNEQR
RNFSNSPGPYVFCIT
127





HR7896A-1-125-Av6HT
ZBTB39
O15060
GMRIKLQSTNHPNNL
MEDLLQACHSTFPDL
124





HR7527A-1-112-NHT
ZBTB40
Q9NUA8
ELPNYSRQLLQQLYT
DSLQMFDVAVSCKNL
111





HR8293A-24-183-Av6HT
ZBTB41
Q5SVQ8
EGNVAVECDQVTYTH
DAVKLLNNENVAPFH
160





HR7772A-367-467-TEV
ZBTB43
O43298
SATDKLYPCQCGKSF
SYEAAKAEQNTTEAN
101





HR7772B-1-126-15
ZBTB43
O43298
MEPGTNSFRVEFPDF
MWHVVDKCTEVLEGN
126





HR7772B-1-137-15
ZBTB43
O43298
MEPGTNSFRVEFPDF
LEGNPTVLCQKLNHG
137





HR7772C-10-126-Av6HT
ZBTB43
O43298
VEFPDFSSTILQKLN
MWHVVDKCTEVLEGN
117





HR7772C-10-131-Av6HT
ZBTB43
O43298
VEFPDFSSTILQKLN
DKCTEVLEGNPTVLC
122





HR7772C-29-131-15
ZBTB43
O43298
MQGQLCDVSIVVQGH
DKCTEVLEGNPTVLC
104





HR7772C-29-137-15
ZBTB43
O43298
MQGQLCDVSIVVQGH
LEGNPTVLCQKLNHG
110





HR7772C-33-126-15
ZBTB43
O43298
MCDVSIVVQGHIFRA
MWHVVDKCTEVLEGN
95





HR7772C-33-131-15
ZBTB43
O43298
MCDVSIVVQGHIFRA
DKCTEVLEGNPTVLC
100





HR8333A-1-128-15
ZBTB44
Q8NCP5
MGVKTFTHSSSSHSQ
FSVASTCSEFMKSSI
128





HR8333A-1-133-15
ZBTB44
Q8NCP5
MGVKTFTHSSSSHSQ
TCSEFMKSSILWNTP
133





HR7817A-6-125-NHT
ZBTB45
Q96K62
AVHHIHLQNFSRSLL
IQTVIDECTQIIARA
120





HR7445A-291-405-NHT
ZBTB48
P10074
VECPTCHKKFLSKYY
KDLQSHMIKLHGAPK
115





HR7445A-291-405-TEV
ZBTB48
P10074
VECPTCHKKFLSKYY
KDLQSHMIKLHGAPK
115





HR7445B-4-120-TEV
ZBTB48
P10074
SFVQHSVRVLQELNK
EAVELCQSFKPKTSV
117





HR7910A-1-125-Av6HT
ZBTB49
Q6ZSB9
DPVATHSCHLLQQLH
SLCHTFLKSATVVQP
124





HR7620A-1-125-NHT
ZBTB5
O15062
DFPGHFEQIFQQLNY
VVKACKHYLTTRTLP
124





HR8300A-1-134-Av6HT
ZBTB6
Q15916
AAESDVLHFQFEQQG
TEALSKYLEIDLSMK
133





HR4695C-9-128-TEV
ZBTB7A
O95365
IGIPFPDHSSDILSG
LEIPAVSHVCADLLD
120





HR8347A-1-143-Av6HT
ZBTB7B
O15156
GSPEDDLIGIPFPDH
EIPCVIAACMEILQG
142





HR7365A-6-129-NHT
ZBTB7C
A1YPR0
DELIGIPFPNHSSEV
EIQCIVNVCLEIMEP
124





HR8095A-1-121-Av6HT
ZBTB8A
Q96BR9
EISSHQSHLLQQLNE
MTDVISVCKTFIKSS
120





HR7919A-1-131-Av6HT
ZBTB8B
Q8NAP8
EMQSYYAKLLGELNE
YIRSSLDICRKMEKE
130





HR7153A-20-140-NHT
ZBTB9
Q96C00
PRTIQIEFPQHSSSL
QMMQVVDQCSEILRE
121





HR6996-34-350-Av6HT
ZC3H15
Q8WU90
KKGAKQQKFIKAVTH
LYIPRDVDETGITVA
317





HR7121A-417-503-TEV
ZC3H4
Q9UPT8
ELPKKRELCKFYITG
GAEDEKEVEELKKQG
87





HR7136A-892-947-TEV
ZC3H7A
Q8IWR0
QYCWQHRFPTGYFSI
WEERRDALKMKLNKA
56





HR6981A-218-283-NHT
ZC3H8
Q8N5P1
EIEKKKEMCKFYVQG
APLTPETQELLAKVI
66





HR8421A-724-896-TEV
ZC3HAV1
Q7Z2W4
SSKKYKLSEIHHLHP
KDQVYPQYVIEYTED
173





HR4840-1-454-14
ZCCHC4
Q9H5U6
MAASRNGFEAVEAEG
GPKHGCFICGELDHK
454





HR4840-1-459-14
ZCCHC4
Q9H5U6
MAASRNGFEAVEAEG
CFICGELDHKRSTCP
459





HR4840-102-513-14
ZCCHC4
Q9H5U6
MLSRTQCVERYLKFI
RRKKRRERAHQYLGS
413





HR4840-41-454-14
ZCCHC4
Q9H5U6
MPHGPTLLFVKVTQG
GPKHGCFICGELDHK
415





HR4840-41-459-14
ZCCHC4
Q9H5U6
MPHGPTLLFVKVTQG
CFICGELDHKRSTCP
420





HR4840-41-513-14
ZCCHC4
Q9H5U6
MPHGPTLLFVKVTQG
RRKKRRERAHQYLGS
474





HR7192A-927-1161-Av6HT
ZCCHC6
Q5VYS8
SLKEENVCEEKNSPV
LCYTMKVFTKMCDIG
235





HR4656C-161-443-14
ZEB1
P37275
MGTPDAFSQLLTCPY
LENNQANLASKEQET
284





HR4656C-165-439-14
ZEB1
P37275
MAFSQLLTCPYCDRG
IRQVLENNQANLASK
276





HR4656D-885-1017-14
ZEB1
P37275
MNDSDSTPPKKKMRK
PEILSNEHVGARASP
134





HR4656D-885-992-14
ZEB1
P37275
MNDSDSTPPKKKMRK
HMNHRYSYCKREAEE
109





HR4656D-890-1014-14
ZEB1
P37275
MTPPKKKMRKTENGM
EAGPEILSNEHVGAR
126





HR4656D-890-987-14
ZEB1
P37275
MTPPKKKMRKTENGM
GSYSQHMNHRYSYCK
99





HR4656D-897-1014-14
ZEB1
P37275
MRKTENGMYACDLCD
EAGPEILSNEHVGAR
119





HR4656D-897-987-14
ZEB1
P37275
MRKTENGMYACDLCD
GSYSQHMNHRYSYCK
92





HR4656E-583-642-TEV
ZEB1
P37275
SPSQPPLKNLLSLLK
WFEKMQAGQISVQSS
60





HR4589D-647-707-Av6HT
ZEB2
O60315
MSPINPYKDHMSVLK
EQRKVYQYSNSRSPS
62





HR4589D-647-707-TEV
ZEB2
O60315
SPINPYKDHMSVLKA
EQRKVYQYSNSRSPS
61





HR6404A-128-196-TEV
ZFAND5
O76080
SPSVSQPSTSQSEEK
DKHNCPYDYKAEAAA
69





HR8363-123-190-Av6HT
ZFAND6
Q6FIF0
SVSDTAQQPSEEQSK
SDVHNCSYNYKADAA
68





HR7859A-697-770-TEV
ZFHX2
Q9C0A1
LGSSSDSLPTSPPPD
DTHRCKLCCYGTQLK
74





HR7545B-1398-1452-Av6HT
ZFHX3
Q15911
VYKYRCNQCSLAFKT
FRTFQALKKHLETSH
55





HR7545B-1398-1483-Av6HT
ZFHX3
Q15911
VYKYRCNQCSLAFKT
ANGDLLAMGDPTLAE
86





HR7545C-2943-2998-Av6HT
ZFHX3
Q15911
RPGQKRFRTQMTNLQ
GLPKRVVQVWFQNAR
56





HR7545C-2943-3010-Av6HT
ZFHX3
Q15911
RPGQKRFRTQMTNLQ
NARAKEKKSKLSMAK
68





HR7545C-2954-3005-Av6HT
ZFHX3
Q15911
TNLQLKVLKSCFNDY
QVWFQNARAKEKKSK
52





HR7545C-2954-3010-Av6HT
ZFHX3
Q15911
TNLQLKVLKSCFNDY
NARAKEKKSKLSMAK
57





HR7573D-2953-3003-TEV
ZFHX4
Q86UP3
TPTMQECEMLGNEIG
INIGKPFMINQGGTE
51





HR8105A-360-407-Av6HT
ZFP1
Q6P2D0
TFSQRSTLRLHCRIH
SRLSVHQRVHIGEKP
48





HR7592A-1509-1806-Av6HT
ZFP106
Q9H2Y7
SSEISSEPGDDDEPT
MIYTGCYDGSIQAVR
298





HR7696A-237-310-NHT
ZFP112
Q9UJU3
GEDIMKVSLLNQESI
NYSSLLHIHQNIERE
74





HR7929A-142-207-Av6HT
ZFP14
Q9HCL3
QVKITSEKMTTYKRH
IHTGEKPYKCKECGQ
66





HR7835A-8-127-NHT
ZFP161
O43829
SETIKYNDDDHKTLF
QILGIRFLDKLCSQK
120





HR7794A-82-137-NHT
ZFP2
Q6ZN57
DATQNSELIKTQRMF
IHTGEKPYKCNVCGK
56





HR7491A-224-296-NHT
ZFP28
Q8NHY6
LFETQPGLVTIKNLA
QEKEPWWVKRELTGS
73





HR7037A-395-483-Av6HT
ZFP3
Q96NJ6
CFECGKAFRRTSHLI
RIHTGEKPYECQECQ
89





HR7776A-306-378-NHT
ZFP30
Q9Y2G7
AFLCSTGLRLHHKLH
SRGYHLTLHQRIHTG
73





HR4743B-99-171-TEV
ZFP36
P26651
TTPSRYKTELCRTFS
PYGSRCHFIHNPSED
73





HR7685A-112-181-TEV
ZFP36L1
Q07352
SSRYKTELCRPFEEN
CPYGPRCHFIHNAEE
70





HR7167A-151-220-TEV
ZFP36L2
P47974
STRYKTELCRPFEES
CPYGPRCHFIHNADE
70





HR7105A-571-623-NHT
ZFP37
Q9Y6Q3
KPYECNECEKAFNAK
TFKQNASLTKHVKTH
53





HR7063A-83-140-NHT
ZFP41
Q8N8Y5
RKKPYECSECGRIFK
HSSDVTKHQRTHTGE
58





HR7124A-165-241-NHT
ZFP42
Q96MM3
PKQLAEFARKKPPIN
VESSKLKRHFLVHTG
77





HR7554A-339-397-TEV
ZFP64
Q9NPA5
SEHPEKCSECSYSCS
PSNLSKHMKKFHGDM
59





HR7612A-318-373-Av6HT
ZFP82
Q8N141
AFLCGSGLRVHHKLH
THTGFKPYECKECGK
56





HR7734A-483-537-NHT
ZFP90
Q8TF47
AFSQQAISHPGEKPY
KPYECNECGEAFSRR
55





HR7784A-364-427-15
ZFP91
Q96JP5
MKHHTDQRDYICEYC
ASLNWHMKKHDADSF
65





HR7784A-370-422-15
ZFP91
Q96JP5
MRDYICEYCARAFKS
TCRQKASLNWHMKKH
54





HR7784A-370-456-15
ZFP91
Q96JP5
MRDYICEYCARAFKS
KDSVVAHKAKSHPEV
88





HR7784B-313-454-Av6HT
ZFP91
Q96JP5
CEMEGCGTVLAHPRY
EKKDSVVAHKAKSHP
142





HR7665A-150-204-NHT
ZFP92
A6NM28
KRYLCQQCGKAFSRS
RRSFALLEHQRIHSG
55





HR7876A-297-383-Av6HT
ZFPM1
Q8IX07
CRKSCPSASSLEIHM
TNHMVCQPGSKGEIY
87





HR7512A-673-743-NHT
ZFX
P17010
RPSELKKHVAAHKGK
RQQSELKKHMKTHSG
71





HR8053A-728-784-Av6HT
ZFYVE20
Q9H1K0
PEAEEPIEEELLLQQ
RELKHTLAKQKGGTD
57





HR8053B-133-256-15
ZFYVE20
Q9H1K0
MAFDRTNTESAKIRA
DEKDDDRIRCCTHCK
125





HR8053B-133-276-15
ZFYVE20
Q9H1K0
MAFDRTNTESAKIRA
REQQIDEKEHTPDIV
145





HR8053B-139-251-15
ZFYVE20
Q9H1K0
MTESAKIRAIEKSVV
VSSVLDEKDDDRIRC
114





HR8053B-139-273-15
ZFYVE20
Q9H1K0
MTESAKIRAIEKSVV
LLKREQQIDEKEHTP
136





HR8053B-150-251-15
ZFYVE20
Q9H1K0
MSVVPWVNDQDVPFC
VSSVLDEKDDDRIRC
103





HR8053B-150-273-15
ZFYVE20
Q9H1K0
MSVVPWVNDQDVPFC
LLKREQQIDEKEHTP
125





HR7907A-60-153-TEV
ZHX1
Q9UKY1
NQQNKKVEGGYECKY
NNQTIFEQTINQLTF
94





HR7907B-565-641-TEV
ZHX1
Q9UKY1
PDFTPQKFKEKTAEQ
EEKMEIDESNAGSSK
77





HR7907C-295-358-Av6HT
ZHX1
Q9UKY1
NNPLLLNTYNKFPYP
TPEEVEEARRKQFNG
64





HR7907D-768-820-Av6HT
ZHX1
Q9UKY1
NWDRGPSLIKFKTGT
KSHMGYEQVREWFAE
53





HR7907D-768-830-Av6HT
ZHX1
Q9UKY1
NWDRGPSLIKFKTGT
EWFAERQRRSELGIE
63





HR7907E-658-720-Av6HT
ZHX1
Q9UKY1
SGSTGKICKKTPEQL
SWFGDTRYAWKNGNL
63





HR7907E-658-728-Av6HT
ZHX1
Q9UKY1
SGSTGKICKKTPEQL
AWKNGNLKWYYYYQS
71





HR7907F-462-532-Av6HT
ZHX1
Q9UKY1
PDSFGIRAKKTKEQL
NQRNSKSNQCLHLNN
71





HR7907F-468-513-Av6HT
ZHX1
Q9UKY1
RAKKTKEQLAELKVS
KITGLTKGEIKKWFS
46





HR7907F-468-532-Av6HT
ZHX1
Q9UKY1
RAKKTKEQLAELKVS
NQRNSKSNQCLHLNN
65





HR8292A-524-605-NHT
ZHX2
Q9Y6X8
AYPDFAPQKFKEKTQ
VLDSMGSGKKGQDVG
82





HR8292A-524-605-TEV
ZHX2
Q9Y6X8
AYPDFAPQKFKEKTQ
VLDSMGSGKKGQDVG
82





HR7743A-613-675-TEV
ZHX3
Q9H4I2
PTKYKERAPEQLRAL
SERRKKVNAEETKKA
63





HR7728A-219-303-TEV
ZIC1
Q15915
QPIKQELICKWIEPE
LVNHIRVHTGEKPFP
85





HR7748A-250-334-TEV
ZIC2
O95409
QCIKQELICKWIDPE
LVNHIRVHTGEKPFP
85





HR8404A-122-262-NHT
ZIC4
Q8N9L1
QPIKQELICKWLAAD
SSDRKKHSHVHTSDK
141





HR8404A-122-262-TEV
ZIC4
Q8N9L1
QPIKQELICKWLAAD
SSDRKKHSHVHTSDK
141





HR7356A-417-487-NHT
ZIK1
Q3SY52
SQSSILIQHRRIHTG
SQCSSLIHHQKCHNT
71





HR7796A-474-527-NHT
ZIM2
Q9NZV7
VFSRNSYLIQHYRTH
YQLHSQAEKTVECDHC
54





HR8306A-277-331-Av6HT
ZIM3
Q96PE6
KSYQCNECEKSFRQN
IYKSDLVKHQRIHTG
55





HR8102A-61-140-Av6HT
ZKSCAN1
P17029
RFCYQNTFGPREALS
RAVTLLEDLELDLSG
80





HR8296A-7-131-Av6HT
ZKSCAN2
Q63HK3
SQIDAPLEVEGCLIM
VALVVHLEKETGRLR
125





HR7446A-37-132-NHT
ZKSCAN3
Q9BRR0
SPDLGSEGSRERFRG
VVLLEYLERQLDERA
96





HR7362A-49-138-NHT
ZKSCAN4
Q969J2
PERSRQRFRGFRYPE
VVVLLEYLERQLDEP
90





HR7407A-25-130-NHT
ZKSCAN5
Q9Y2L8
LFIVKVEEEDCTWMQ
ESGEEAVAVIENIQR
106





HR7288A-62-140-NHT
ZMAT2
Q96NC0
LGKTIVITKTTPQSE
FEVNKKKMEEKQKDY
79





HR7490-503-839-Av6HT
ZMIZ1
Q9ULI6
PVANYPHSPVPGNPT
VPIKSDLHIKDDPDG
337





HR7144A-212-289-NHT
ZNF10
P21506
SNECGQTFCQNIHLI
SWRSNLTRHQLIHTG
78





HR8024A-409-481-Av6HT
ZNF100
Q8IYN0
GFNWSSALTKHKRIH
NRSSQLTAHKMIHTG
73





HR8250A-364-426-Av6HT
ZNF101
Q8IZC7
KPYECTRCGKAFGWC
HERTHLAGRSQCFGR
63





HR7096A-555-620-15
ZNF107
Q9UII5
MEEHGKVFNQSSNLT
KPHKCEECGKAYNRF
67





HR7096A-560-615-15
ZNF107
Q9UII5
MVFNQSSNLTTQKII
IYTGEKPHKCEECGK
57





HR7096B-607-719-Av6HT
ZNF107
Q9UII5
PHKCEECGKAYNRFS
SNLTTHKKIHTSEKP
113





HR7096C-611-676-15
ZNF107
Q9UII5
MEECGKAYNRFSNLT
KPYKCKECGKAFNLS
67





HR7096C-616-671-15
ZNF107
Q9UII5
MAYNRFSNLTIHKRI
IHTGEKPYKCKECGK
57





HR7096D-53-131-15
ZNF107
Q9UII5
MECTGHKGGHNTVNQ
SQLTQHRRIHTRVNS
80





HR7096D-58-126-15
ZNF107
Q9UII5
MKGGHNTVNQCLTAT
SFCVLSQLTQHRRIH
70





HR7096D-69-131-15
ZNF107
Q9UII5
MTATPSKIFQCNKYV
SQLTQHRRIHTRVNS
64





HR7096D-71-126-15
ZNF107
Q9UII5
MTPSKIFQCNKYVKV
SFCVLSQLTQHRRIH
57





HR7096E-158-269-TEV
ZNF107
Q9UII5
KPYKCEECGKAFNQS
LFSNLTNHKRIHAGE
112





HR7096F-672-727-Av6HT
ZNF107
Q9UII5
AFNLSSTLTAHKKIH
IHTSEKPYKCEECGK
56





HR7096G-659-772-Av6HT
ZNF107
Q9UII5
TGEKPYKCKECGKAF
NLSSNLTTHKKIHTG
114





HR7096H-702-776-Av6HT
ZNF107
Q9UII5
NQSSNLTTHKKIHTS
NLTTHKKIHTGEKPY
75





HR7096H-716-776-Av6HT
ZNF107
Q9UII5
SEKPYKCEECGKSFN
NLTTHKKIHTGEKPY
61





HR8087A-338-417-Av6HT
ZNF114
Q8NC26
GKAFRYSLHLNKHLR
LKKHLKTHKDEKPCE
80





HR7502A-318-390-NHT
ZNF121
P58317
GKAFATSSQLIEHIR
AYNRFYLLTKHLKTH
73





HR7834A-112-166-NHT
ZNF132
P52740
KANSCDMCGPFLKDI
WLNANLHQHQKEHSG
55





HR7007A-48-120-NHT
ZNF134
P52741
TALPCDICGPILKDI
LRRDKSEASIVKNCT
73





HR8079A-458-526-Av6HT
ZNF136
P52737
SYLNSFRTHEMIHTG
AYSCRASFQRHMLTH
69





HR8523A-1-79-Av6HT
ZNF137P
P52743
NVARFLVEKHTLHVI
IHGVGKLCKCNDCHK
78





HR6957A-157-213-NHT
ZNF140
P52738
VERPYGCHECGKTFG
SQISNLVKHQMIHTG
57





HR7470A-405-474-NHT
ZNF141
Q15928
RRSTDRSQHKKIHSA
FKRFSHLNKHKKIHT
70





HR8111A-337-394-Av6HT
ZNF143
P52747
SFTTSNIRKVHVRTH
IHTGEKPYVCTVPGC
58





HR8395A-1-68-Av6HT
ZNF146
Q15072
SHLSQQRIYSGENPF
SQKQYVIKHQNTHTG
67





HR3636C-225-287-NHT
ZNF148
Q9UQR1
KPFRCDECGMRFIQK
HKRMCHENHDKKLNR
63





HR7492A-160-244-NHT
ZNF154
Q13106
CYICSECGKSFSKSY
SNLIKHRRVHTGERP
85





HR8099A-408-497-Av6HT
ZNF155
Q12901
GFYTNSQLSSHQRSH
PFKCEDCGKRLVHRT
90





HR7481A-394-466-NHT
ZNF157
P51786
AFYVKARLIEHQRMH
YVKVRLIEHQRIHTG
73





HR7426A-245-317-NHT
ZNF16
P17020
TFSQNSVLKNRHRSH
SQNSSLKKHQKSHMS
73





HR7677A-461-550-Av6HT
ZNF160
Q9HCG1
AFSMHSNLATHQVIH
PYKCIECGKSFTQKS
90





HR8279A-12-131-Av6HT
ZNF165
P49910
NSPEDEGLLIVKIEE
GEEAVTILEDLERGT
120





HR7169A-37-134-NHT
ZNF167
Q9P0L1
GQGSSLQKNYPPVCE
ESGEEAVAVVEDFQR
98





HR7079A-232-286-NHT
ZNF169
Q14929
KHHVCPECGRGFCQR
SQKASLSIHQRKHSG
55





HR8144A-504-578-Av6HT
ZNF17
P17021
GKSFRCRSTLDTHQR
SQNSHLIRHQKVHTR
75





HR7831A-37-132-TEV
ZNF174
Q15697
KNCPDPELCRQSFRR
VTLVEDFHRASKKPK
96





HR7382A-565-650-NHT
ZNF175
Q9Y473
GKAFTSKSQFKEHQR
THMGEKPYECLDCGK
86





HR8386A-246-321-Av6HT
ZNF177
Q13360
STGSYLIVHKRTHTG
LIMHKRIHNGQKLHE
76





HR8047A-6-143-Av6HT
ZNF18
P17022
GQALGLLPSLAKAED
WISIQVLGQDILSEK
138





HR7449A-517-602-Av6HT
ZNF180
Q9UIW8
GEKPFECNQCGKSFS
QSYVLVVHQRTHTGE
86





HR7508A-221-306-NHT
ZNF181
Q2M3W8
QGKSLTLPQTCNREK
PYKCIECGKAFSHVS
86





HR7707A-292-396-NHT
ZNF189
Q75820
KCKKSFSRNSLLVEH
SQLCNLTRHQRIHTG
105





HR8281A-147-213-Av6HT
ZNF19
P17023
IQGKVPRIPCARKPF
NGNSSLIRHQRIHTG
67





HR8500A-45-132-Av6HT
ZNF192
Q15776
LGQEVFRLRFRQLRY
NGEEVVTLLEDLERQ
88





HR7141A-10-132-NHT
ZNF193
O15535
SLGVQVPEAWEELLT
ESGEEAVILLEDLER
123





HR7496A-33-148-NHT
ZNF197
O14709
SSSSVWETSHLHFRQ
LVKDQDTLQKVVSAP
116





HR7949A-310-387-Av6HT
ZNF20
P17024
PYECKQCGKAFRCGS
GKGFRCASQLQIHER
78





HR7725A-16-132-NHT
NF202
O95125
EGILMVKLEDDFTCR
VTLVEGLQKQPRRPR
117





HR7127A-305-371-NHT
ZNF205
O95201
RKSYRCEQCGKGFSW
IHTGEKPYTCPACRK
67





HR8501A-1095-1149-Av6HT
ZNF208
O43345
KPYKCEECGKAFSTF
SWLSVFSKHKKIHTG
55





HR7117A-425-476-NHT
ZNF212
Q9UDV6
SSLICGYCGKSFSHP
KSFVQKQHLLQHQKI
52





HR7052A-50-129-NHT
ZNF213
O14771
QFCYGDVHGPHEAFS
EAVALVEDLQKQPVK
80





HR6908A-201-269-NHT
ZNF214
Q9UL59
VGVICQEDLLRDSME
CFSQRSDLYRHPRNH
69





HR8316A-49-130-Av6HT
ZNF215
Q9UL58
QKFRHFQYLKVSGPH
SKDMVTLIEDVIEML
82





HR7041A-127-180-NHT
ZNF217
O75362
EFSCEVCGQTFRVAF
KEPWFLKNHMRTHNG
54





HR7381A-39-109-NHT
ZNF219
Q9P2Y4
SLGMGAVSWSESRAG
AQRALLRSHLRTHQP
71





HR7603A-137-200-Av6HT
ZNF22
P17026
MKPYQCDECGRCFSQ
MKVHKEEKPRKTRGK
65





HR7603A-137-200-NHT
ZNF22
P17026
KPYQCDECGRCFSQS
MKVHKEEKPRKTRGK
64





HR7848A-283-341-Av6HT
ZNF222
Q9UK12
KLYKSEKYGRGFIDR
YLLVHQRVHTGEKPY
59





HR8507A-136-200-Av6HT
ZNF223
Q9UK11
EGLSIMHTGQKPSNC
CYISALHIHQRVHLG
65





HR7500A-576-665-Av6HT
ZNF225
Q9UK10
SFSRASSILNHKRLH
LLQCEDCGKSIVHSS
90





HR7826A-501-553-NHT
ZNF226
Q9NYT6
KPYKCNECGKSFRRN
GFSQSSYLQIHQKAH
53





HR7039-1-527-TEV
ZNF227
Q86WZ6
PSQNYDLPQKKQEKM
VHTGEKRFKCETCGK
526





HR7039-255-799-Av6HT
ZNF227
Q86WZ6
CGRGFSYSPRLPLHP
SRLTYHQKVHTGKKL
545





HR7039-320-799-Av6HT
ZNF227
Q86WZ6
GEKSYRCDSCGKGFS
SRLTYHQKVHTGKKL
480





HR7039A-21-80-Av6HT
ZNF227
Q86WZ6
EAVTFKDVAVVFSRE
PFQPDMVSQLEAEEK
60





HR7249A-552-607-NHT
ZNF229
Q9UJW7
SFGRSSDLHIHQRVH
VHTGERPYVCDVCGK
56





HR8056A-178-248-Av6HT
ZNF23
P17027
RCDSQLIQHQENNTE
SYSSHYITHQTIHSG
71





HR7277A-201-287-Av6HT
ZNF230
Q9UIE0
RGKEFSQSSCLQTRE
IHTGEKPFKCEICGK
87





HR7779A-56-136-Av6HT
ZNF232
Q9UNY5
EEEQSCEYETRLPGN
LVLEQFLTILPEELQ
81





HR7083A-324-410-NHT
ZNF233
A6NK53
SQGSHLQPHQRVSTG
RACKCDVYDKGFSQT
87





HR7425A-606-678-Av6HT
ZNF234
Q14588
SQASSLQLHQSVHTG
RSNLVSHHKIHAAGT
73





HR6869A-681-738-NHT
ZNF235
Q14590
KPYTCQQCGKGFSQA
SHLIYHQRVHTGGNL
58





HR7932A-71-144-Av6HT
ZNF236
Q9UL36
CPQTFNVEFNLTLHK
FTLQSQLAVHMEEHR
74





HR7756A-1-111-NHT
ZNF238
Q99592
EFPDHSRHLLQCLSE
VLAAASYLHMYDIVK
110





HR7813A-381-458-NHT
ZNF239
Q16600
GKGFSQSSDLRIHLR
SNLHIHQRVHKKDPR
78





HR7147A-272-331-TEV
ZNF24
P17028
IHSGEKPYGCVECGK
SQNSGLINHQRIHTG
60





HR7147B-49-112-Av6HT
ZNF24
P17028
EIFRQRFRQFGYQDS
EQFVAILPKELQTWV
64





HR7147B-49-117-Av6HT
ZNF24
P17028
EIFRQRFRQFGYQDS
ILPKELQTWVRDHHP
69





HR7147B-49-138-Av6HT
ZNF24
P17028
EIFRQRFRQFGYQDS
VTVLEDLESELDDPG
90





HR7111A-518-570-Av6HT
ZNF248
Q8NDW4
KPYKCNECGKTFCEK
TFSQRSVLTKHQRIH
53





HR7751A-154-226-NHT
ZNF25
P17030
SESKNEDLIRHQKIH
YQKPHLTEHQKTHTG
73





HR6988A-235-324-NHT
ZNF250
P15622
AFSQSSVLSKHRRIH
PYVCPLCGKAFNHST
90





HR7737A-208-296-Av6HT
ZNF253
O75346
AFNQSANLTTHKRIH
KPYKCEECGKAFKHP
89





HR6990A-584-652-NHT
ZNF254
O75437
NRSSTFTKHKVIHTG
AFNRSSHLTTDKITH
69





HR8384A-202-266-Av6HT
ZNF256
Q9Y2P7
VAFHSVKNHYNWGEC
CSLSDHLRVHTSEKP
65





HR7634A-464-533-Av6HT
ZNF26
P17031
PRKASLQIHQKTHSG
FCWNSGLRIHRKTHK
70





HR8255A-134-188-Av6HT
ZNF260
Q3ZCT1
KPYACKECGKAFNGK
SQKQYLIKHQNIHTG
55





HR7211A-35-111-NHT
ZNF263
O14978
PSPEASHLRFRRFRF
IQSRVQELHPESGEE
77





HR6888A-230-294-Av6HT
ZNF264
O43296
PYECTECGKTFIKST
IHSGEKPYKCNECGK
65





HR8327A-276-365-Av6HT
ZNF266
Q14584
AFTVSSCLSQHMKIH
PYKCKDCGKAFTQNS
90





HR6896A-62-137-NHT
ZFN268
Q14587
LEWLFISQEQPKITK
QHTKPDIIFKLEQGE
76





HR8262A-158-241-Av6HT
ZNF273
Q14593
VHKRGYNGLNQCLTT
TATRVNFYKCKTCGK
84





HR7968A-77-161-Av6HT
ZNF276
Q8N554
GHCRLCHGKFSSRSL
HSLLKSFLQRVNASP
85





HR8173A-209-282-Av6HT
ZNF277
Q9NRM2
NCNEFLCTLQKKLDN
ELGKSWEEVQLEDDR
74





HR8391A-440-492-Av6HT
ZNF280C
Q8ND82
KNLLCPFCLKVSKMA
QFLTSKEKAEHKAQH
53





HR7724A-288-373-NHT
ZNF281
Q9Y2X9
PFQCSQCSMGFIQKY
RLLKHRRTCGEVIVK
86





HR7574A-86-180-Av6HT
ZNF282
Q9UDV7
REPQLPTAEISLWTV
RRLENLENLLRNRNF
94





HR6982A-569-623-NHT
ZNF283
Q8N7M2
KPFKCKECGKAFSWG
GSGYQLSVHQRFHTG
55





HR8101A-140-217-Av6HT
ZNF284
Q2VY69
IHIGETPSEHGKCKK
YKCDVCSKAFSQNSQ
78





HR7778A-510-590-NHT
ZNF285
Q96NJ3
KPYKCDECGKGFSRN
DLLTHQRLHEQRETL
81





HR7046A-197-250-NHT
ZNF286A
Q9HBT8
SFNQKSVLITEDRVP
TYKEKKPHKCNDCGE
54





HR7764A-1340-1400-TEV
ZNF292
O60281
PEKVKKDRGRGPNGK
NPRSLGGHLSKRSYC
61





HR7764B-550-593-Av6HT
ZNF292
O60281
EFLGHRIVRHAQKHY
NSKETFVPHVTLHVK
44





HR7764C-779-824-Av6HT
ZNF292
O60281
AKCMFPKCGRIFSEA
KFTGCGKVYRSQGEL
46





HR7764C-779-829-Av6HT
ZNF292
O60281
AKCMFPKCGRIFSEA
GKVYRSQGELEKHLD
51





HR7401A-713-806-TEV
ZNF295
Q9ULJ3
ASPVENKEVYQCRLC
RHQVEVHNQNNMAPT
94





HR7401B-907-958-Av6HT
ZNF295
Q9ULJ3
SLWPCEKCGKMFTVH
KAFRTNFRLWSHFQS
52





HR7401B-907-963-Av6HT
ZNF295
Q9ULJ3
SLWPCEKCGKMFTVH
NFRLWSHFQSHMSQA
57





HR7401C-1-125-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
ISFLTNIVSKTPQAP
124





HR7401C-1-133-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
SKTPQAPFPTCPNRK
132





HR7401D-1-110-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
KSSLAAVQELGYSLG
109





HR7401D-1-114-Av6HT
ZNF295
Q9ULJ3
EGLLHYINPAHAISL
AAVQELGYSLGISFL
113





HR7438A-396-451-NHT
ZNF296
Q8WUU4
TNSSNLTVHRRSHTG
GMTPGSTRFECPHCH
56





HR7980A-567-639-Av6HT
ZNF304
Q9HCX3
AYISSSHLVQHKKVH
SRSSHLVRHQKAHTG
73





HR6886A-245-327-NHT
ZNF311
Q5JNZ3
KLHECARCGKNFSWH
NSRSALCRHKKTHSG
83





HR8348A-456-510-Av6HT
ZNF319
Q9P2F9
KPLRCTLCERRFFSS
KYASDLQRHRRVHTG
55





HR7649A-335-419-Av6HT
ZNF320
A2RRD8
DKVFSRKSHLERHRR
KLHTGEKLYECEECD
85





HR7116A-290-344-NHT
ZNF322A
Q6U7Q0
THTFKCLEYEKSFNC
FLLGMDFVAQQKMRT
55





HR7719-1-389-Av6HT
ZNF322B
Q5SYY0
YTSEEKCNQRTQKRK
GEKPFVCNVSEKGLE
388





HR7473A-7-125-NHT
ZNF323
Q96LW9
QYDLKIVKVEEDPIW
VAVVEDLEQELSEPG
119





HR7209A-240-309-NHT
ZNF324
O75467
PSTWDELGEALHAGE
SQTSHLTQHQRIHSG
70





HR7920A-181-255-Av6HT
ZNF329
Q86UD4
ENIFTLSSSLNENQR
SKNYNLIVHQRIHTG
75





HR8085A-409-463-Av6HT
ZNF331
Q9NQX6
KPYGCTECGKSFSHG
NHLNHLREHQRIHNS
55





HR8071A-542-633-Av6HT
ZNF333
Q96JL9
VLSRLSTLKSHMRTH
QCNQCEKAFRHSSSL
92





HR7926A-511-568-Av6HT
ZNF334
Q9HCZ1
NTKENLYECSEHGHA
CRKSALTHHQRTHTG
58





HR8140A-560-612-Av6HT
ZNF335
Q9H4Z2
SSFPCPVCGRVYPMQ
SFKKRYTFKMHLLTH
53





HR7962A-683-744-Av6HT
ZNF337
Q9Y3M9
KPFVCQECKRGYTSK
KHLKRHLREKRFCTG
62





HR7329A-327-374-NHT
ZNF33B
Q06732
KHFECNECGKAFWEK
NQCGKTFWEKSNLTK
48





HR7973A-53-101-Av6HT
ZNF343
Q6P1L6
EGKAQIVVPVTFRDV
YKEVMLENYRNLLSL
49





HR7782A-408-478-NHT
ZNF345
Q14585
SSGSALNRHQRIHTG
GRDSEFQQHKKSHNG
71





HR8375A-52-156-Av6HT
ZNF346
Q9UL40
QPVGREEVEHMIQKN
TFSSPVVAQSHYLGK
105





HR7359A-200-274-NHT
ZNF35
P13682
GGKYSLNSGAVKNPK
IQSANLVVHQRIHTG
75





HR7521A-532-605-NHT
ZNF354A
O60765
GQSSALIQHRRIHTG
SSLTNHYKIHIEEDP
74





HR8204A-166-238-Av6HT
ZNF354B
Q96LW1
NFYLKSVFIKQQRFA
IHNSSLRKHQKNHTG
73





HR7986A-494-548-Av6HT
ZNF354C
Q86Y25
KLYKCMECGKAYSYR
ICSSSLTQYQRFFKG
55





HR8492A-212-270-Av6HT
ZNF355P
Q9NSJ1
CKCEECGKACKQSLG
IHAGEKPYNCEKCGK
59





HR7559A-189-242-NHT
ZNF358
Q9NW07
SHGATLAQHRGIHTG
SHSGEKPHHCPVCGK
54





HR8534A-152-309-Av6HT
ZNF365
Q70YC5
DTKASFEAHVREKFN
QQASGFVRDLSGHVL
158





HR7222A-233-319-NHT
ZNF366
Q8N895
DVNVQIDDSYYVDVG
GTRPHKCQVCHKAFT
87





HR7913A-160-248-Av6HT
ZNF367
Q7RTV3
GEHSSSRIRCNICNR
SRFTHANRHCPKHPY
89





HR8143A-116-153-Av6HT
ZNF37A
P17032
EPSEYNKNGNSFWLN
IKNWEQSFEYNECGK
38





HR7024A-370-456-NHT
ZNF383
Q8NA42
ECGKAFTQSSQLRQH
RIHTGEKPYNCKECG
87





HR8244A-91-161-Av6HT
ZNF391
Q9UJN7
KDNSDLIKHQRLFSQ
SRSTHLIEHQRTHTG
71





HR7003A-55-179-NHT
ZNF394
Q53GI3
AASPDPETSRLHFRQ
TWEEWERLDPARRDF
125





HR7436A-17-136-NHT
ZNF397
Q8NF99
PEQELILVKVEDNFS
VTLLEDLEREFDDPG
120





HR6874A-291-375-Av6HT
ZNF41
P51814
RIHAGEKSRECDKSN
GKAFFQRSDLFRHLR
85





HR7062-124-478-15
ZNF410
Q86VK4
MLNLTRAGLGSSAEH
PQELLNQGDLTERRT
356





HR7062-129-478-15
ZNF410
Q86VK4
MAGLGSSAEHLVFVQ
PQELLNQGDLTERRT
351





HR7062-150-478-15
ZNF410
Q86VK4
MNDFLSSESTDSSIP
PQELLNQGDLTERRT
330





HR7062-155-478-15
ZNF410
Q86VK4
MSESTDSSIPWFLRV
PQELLNQGDLTERRT
325





HR7338A-520-571-NHT
ZNF416
Q9BWM5
RPYDCGQCGKSFIQK
KSFTQHSGLILHRKS
52





HR6922A-214-292-NHT
ZNF417
Q8TAU3
CGKRTKAFSTKHSVI
SRKSSLIQHQRVHTG
79





HR7936A-544-625-AV6HT
ZNF418
Q8TF45
GKSFHQSSSLLRHQK
RLHTRGKPYECSECG
82





HR8286A-145-234-Av6HT
ZNF420
Q8TAQ5
GKAFRRASHLTQHQS
EKPYKCEECGKAFIR
90





HR7298A-293-344-NHT
ZNF423
Q2M1K9
ADLQCIHCPEVFVDE
EQFSSVEGVYCHLDS
52





HR7298B-1204-1284-Av6HT
ZNF423
Q2M1K9
NQMFDSPAKLLCHLI
FQTELQNHTMSQHAQ
81





HR7298C-136-178-Av6HT
ZNF423
Q2M1K9
LPYPCQFCDKSFIRL
LPFKCTYCSRLFKHK
43





HR7298D-627-684-Av6HT
ZNF423
Q2M1K9
ISNGEYPCNQCDLKF
DFDSQESLLQHLTVH
58





HR7298E-750-803-Av6HT
ZNF423
Q2M1K9
YRCTACNWDFRKEAD
TFSTEVELQCHITTH
54





HR7298F-923-981-Av6HT
ZNF423
Q2M1K9
AEFIKGSHKCNVCSR
RFPSLLTLTEHKVTH
59





HR7298F-928-981-Av6HT
ZNF423
Q2M1K9
GSHKCNVCSRTFFSE
RFPSLLTLTEHKVTH
54





HR8124A-692-742-Av6HT
ZNF425
Q6IV72
RPFQCPECGKGFLQK
GRSFTYVGALKTHIA
51





HR7371A-502-554-NHT
ZNF426
Q9BUY5
KPYECKECGKAFTCS
AYSHPRSLRRHEQIH
53





HR7017A-571-643-NHT
ZNF429
Q86V71
DKAFTHSSNLSSHKK
AFTRSSRLTQHKKIH
73





HR8161A-229-300-Av6HT
ZNF43
P17038
PYTCEECGKVFNWSS
YKCKECAKAFNQSSN
72





HR8378A-511-570-Av6HT
ZNF430
Q9H8G1
TSYKYLECDKAFSQS
LIEQSNSYWRETLQM
60





HR6876A-159-226-NHT
ZNF431
Q8TF32
EGYNELNQCLTTTQS
SFCMLLHLSQHKRIH
68





HR7979A-260-324-Av6HT
ZNF432
O94892
SFICSECGKVFTMKS
NHTGEKSYICSECGK
65





HR7340A-616-673-NHT
ZNF433
Q8N7K0
KPYKCKQCGKAFGCP
SQLQVHGRAHCIDTP
58





HR7145A-271-333-NHT
ZNF434
Q9NX65
SHQSFCARDKACTHI
SRSSYLVRHQRIHTG
63





HR6863A-401-470-NHT
ZNF436
Q9C0F3
ERSDLIKHQRTHTGE
SRSSALIKHKRVHTD
70





HR6993A-498-598-NHT
ZNF438
Q7Z4V0
GFSGIKKPWHRCHVC
GHLKEVHRVVISTEP
101





HR7001A-19-66-NHT
ZNF439
Q8NDP4
VAFKDVAVNFTQEEW
FWNLTSIGKKWKDQN
48





HR7627A-522-574-NHT
ZNF44
P15621
EPYECKECGKAFSSF
AFSRFSYLKTHERTH
53





HR7091A-1-51-NHT
ZNF440
Q8IYI8
DPVAFKDVAVNFTQE
FRNLTSLGKRWKDQN
50





HR6977A-625-693-NHT
ZNF441
Q8N8Z8
SHSSYLRIHERVHTG
AFHCISSFHKHEMTH
69





HR7410A-570-627-NHT
ZNF442
Q9H7R0
KSYECQQCGKAFTRS
SSLHRHKRTHWRDTL
58





HR7294A-14-105-NHT
ZNF444
Q8N0Y2
LALDSPWHRFRRFHL
AVALLEELWGPAASP
92





HR8025A-61-139-Av6HT
ZNF445
P59923
LRYHESSGPLETLSR
EAVALLEELQRDLDG
79





HR8393A-22-126-Av6HT
ZNE446
Q9NWS9
PETARLRFRGFCYQE
LGWITAHVLKQEVLP
105





HR7503A-25-115-NHT
ZNF449
Q6P9G9
DCEVFRQRFRQFQYR
VVSLIEDLQRELEIP
91





HR7588A-340-406-Av6HT
ZNF45
Q02386
SFSYSSHLNIHCRIH
ECGKGFCRASNLLDH
67





HR7276A-252-326-Av6HT
ZNF454
Q8N9P8
AFSVSSSLTYHQKIH
RAHLTKHQNIHSGEK
75





HR7023A-306-367-NHT
ZNF460
Q14592
KPFACSECGKGFYES
QHERIHTGEKPFVCS
62





HR7305A-244-297-NHT
ZNF461
Q8TAF7
KCNECKECWKAFVHC
NYGSELTLHQRIHTG
54





HR8320A-1871-1948-TEV
ZNF462
Q96JM2
SRDLKRDFIILGNGP
KQKYADGAFADFKQE
78





HR8302A-424-504-15
NF467
Q7Z7K2
MAPSGERSFFCPDCG
AQCGRRFSRKSHLGR
82





HR8302A-429-499-15
ZNF467
Q7Z7K2
MRSFFCPDCGRGFSH
RPFACAQCGRRFSRK
72





HR8302B-485-539-15
ZNF467
Q7Z7K2
MRPFACAQCGRRFSR
SSKTNLVRHQAIHTG
56





HR8302C-540-595-TEV
ZNF467
Q7Z7K2
SRPFSCPQCGKSFSR
AWSAPPEVAPPPLFF
56





HR8962C-551-595-TEV
ZNF467
Q7Z7K2
SFSRKTHLVRHQLIH
AWSAPPEVAPPPLFF
45





HR8121A-1-49-Av6HT
ZNF468
Q5VIY5
ALPQGLLTFRDVAIE
DVMLENYRNLVSLDI
48





HR8083A-181-258-Av6HT
ZNF471
Q9BX82
TSDKKSFSKNSMVIK
KQRQHLAQHHRTHTG
78





HR7760A-205-288-Av6HT
ZNF473
Q8WTR7
GEKPYQCSECGKSFS
FSQSTYLWHQKTHTG
84





HR8431-87-906-Av6HT
ZNF474
Q6S9Z5
IPARRPGFRVCYICG
RIFTSDRLLVHQRSC
220





HR6879A-445-517-NHT
ZNF479
Q96JC4
AFSLSSTLTDHKRIH
KWHSSLAKHKIIHTG
73





HR8210A-201-255-Av6HT
ZNF480
Q8WV37
KPYECNEHSKVFRVS
SRNSHLAEHCRIHTG
55





HR7266A-379-438-TEV
ZNF483
Q8TF39
KRQKIHLGDRSQKCS
AALNKDEGNESGEKT
60





HR7735A-326-380-NHT
ZNF484
Q5JVG2
NYYKCSDYGRAPIQK
PQNSNLNIHKKIHTG
55





HR7735B-1-66-Av6HT
ZNF484
Q5JVG2
TKSLESVSFKDVTVD
PKPEVIFSLEQEEPC
65





HR7735B-6-66-Av6HT
ZNF484
Q5JVG2
ESVSFKDVTVDFSRD
PKPEVIFSLEQEEPC
61





HR7735C-259-310-Av6HT
ZNF484
Q5JVG2
VFSPKSHAFAHESIC
GSQRVYAGICTEYEK
52





HR7735C-259-316-Av6HT
ZNF484
Q5JVG2
VFSPKSHAFAHESIC
AGICTEYEKDFSLKS
58





HR8114A-115-182-Av6HT
ZNF485
Q8NCK3
EKGLDWEGRSSTEKN
MNSSSLLNHHKVHAG
68





HR8541A-108-234-Av6HT
ZNF486
Q96H40
ILRKFEKCGHGNLHF
NRSSHLTTHKITHTR
127





HR7094A-456-529-NHT
ZNF490
Q9ULM2
IYFSHLRRHERSHTG
KSLHVHERTHSRQKP
74





HR8126A-332-407-Av6HT
ZNF491
Q8N8L2
CGKAFRSAKYIRIHG
TCSIYIRIHERIHTG
76





HR7429A-33-114-NHT
ZNF496
Q96IT1
GELPSPESSRRLFRR
SWVRAQEPESGEQAV
82





HR7643A-35-118-NHT
ZNF498
Q6NSZ9
DPSPETFRLRFRQFR
EHGPESGKALAAMVE
84





HR7635A-55-136-NHT
ZNF500
O60304
LFCYQEVAGPREALS
VVLVEGLQRKPRKHR
82





HR7681A-163-225-NHT
ZNF501
Q96CX3
KCNECGKAFNQSACL
THTGEKLYKCSECEK
63





HR8192A-151-240-Av6HT
ZNF502
Q8TBZ5
QKKSWKCNECGKTFT
LTQHQRIHTGEKPYK
90





HR7474A-5-630-TEV
ZNF503
Q96F45
PSLSALRSSKHSGGG
PVPVPAATGPYYSPY
626





HR7624A-141-197-NHT
ZNF506
Q5JVG8
QRKIFQCDEYVKFLH
NQSSTRTTYKKIDAG
57





HR7678A-639-723-NHT
ZNF507
Q8TCN5
RPYRCRLCHYTSGNK
KSQLRNHEREQHSLP
85





HR7670A-34-107-15
ZNF510
Q9Y2H8
MQEQQKMNISQASVS
EVIFKLEQGEEPWFS
75





HR7670A-40-102-15
ZNF510
Q9Y2H8
MNISQASVSPKDVTI
CCFKPEVIFKLEQGE
64





HR7670B-515-683-Av6HT
ZNF510
Q9Y2H8
SFQCNQCGKTFGQKS
TLSLYQKIQGEGNPY
169





HR7670B-521-652-Av6HT
ZNF510
Q9Y2H8
CGKTFGQKSNLRIHQ
GQKSNLRIHQRTHSG
132





HR7670B-521-683-Av6HT
ZNF510
Q9Y2H8
CGKTFGQKSNLRIHQ
TLSLYQKIQGEGNPY
163





HR7670C-582-683-Av6HT
ZNF510
Q9Y2H8
ARTSTLRVHQRIHTG
TLSLYQKIQGEGNPY
102





HR7670C-595-683-Av6HT
ZNF510
Q9Y2H8
TGEKPFKCNECGKKF
TLSLYQKIQGEGNPY
89





HR7670D-552-607-Av6HT
ZNF510
Q9Y2H8
SFWRKDHLIQHQKTH
IHTGEKPFKCNECGK
56





HR8051A-493-578-TEV
ZNF512B
Q96KM6
PGGPEEQWQRAIHER
SAKPSDAEASEGGEQ
86





HR7686A-202-256-NHT
ZNF514
Q96K75
KSCKCNECGKSFHFQ
GHISSLIKHQRTHTG
55





HR7203A-240-299-NHT
ZNF516
Q92618
KPELSPGEFPCEVCG
FKEPWFLKNHMKAHG
60





HR8163A-367-458-Av6HT
ZNF517
Q6ZMY9
PHECPVCGRPFRHNS
RLHSGERPYRCRACG
92





HR6938A-228-328-NHT
ZNF518A
Q6AHZ1
RHNEIHYKCGKCHHV
ILKRYKIGASRKTFW
101





HR8175A-141-213-Av6HT
ZNF518B
Q9C0D4
RFSTKDPLQYKKHTL
AIRNDYIVKHTKRVH
73





HR8275A-281-327-Av6HT
ZNF519
Q8TB69
GHQKIHTGEKPYKCK
IHTGEKPFKCKECGK
47





HR8035A-114-170-Av6HT
ZNF521
Q96K83
PGLPYPCQFCDKSFS
KHKRSRDRHIKLHTG
57





HR8035B-928-981-Av6HT
ZNF521
Q96K83
GNYKCNVCSRTFFSE
RFPSLLTLTEHKVTH
54





HR8035C-1253-1292-Av6HT
ZNF521
Q96K83
GGTFKCPVCFTVFVQ
AHGQEDKIYDCTQCP
40





HR8035C-1253-1311-Av6HT
ZNF521
Q96K83
GGTFKCPVCFTVFVQ
FQTELQNHTMTQHSS
59





HR8035D-1177-1247-Av6HT
ZNF521
Q96K83
QVSPMPRISPSQSDE
TFDSPAKLQCHLIEH
71





HR8035D-1187-1247-Av6HT
ZNF521
Q96K83
SQSDEKKTYQCIKCQ
TFDSPAKLQCHLIEH
61





HR8035D-1193-1247-Av6HT
ZNF521
Q96K83
KTYQCIKCQMVFYNE
TFDSPAKLQCHLIEH
55





HR8035E-750-805-Av6HT
ZNF521
Q96K83
KVYRCTSCNWDFRNE
SFGTEVELQCHITTH
56





HR8035E-750-841-Av6HT
ZNF521
Q96K83
KVYRCTSCNWDFRNE
HLREKHCVFETKTPN
92





HR8035F-632-686-Av6HT
ZNF521
Q96K83
GEYICNQCGAKYTSL
EFPNQESLLKHVTIH
55





HR8035G-692-745-Av6HT
ZNF521
Q96K83
TYYICESCDKQFTSV
FDSKVSIQLHLAVKH
54





HR7651A-311-395-NHT
ZNF526
Q8TF50
QRSFSSANRLQAHGR
AHTANPLHRCRCGKT
85





HR8497A-368-478-Av6HT
ZNF527
Q8NB42
SRYAFLVEHQRIHTG
HTGEKPYECIKCGKF
111





HR7761A-499-570-NHT
ZNF528
Q3MIS6
GKVFSRSSNLVCHQK
KAFRGCSGLTAHLAI
72





HR6966A-331-386-NHT
ZNF530
Q6P9A1
SFSHSTNLYRHRSAH
VHTGVRPYECSECGK
56





HR7961A-840-894-Av6HT
ZNF532
Q9HCE3
VGFRCVHCNVVYSDV
KSAPSTHSHAYTQHP
55





HR6910A-112-178-NHT
ZNF536
O15090
GIMSQMSDIEDDARK
DHRAAQKGNLKIHLR
67





HR7987A-333-390-Av6HT
ZNF540
Q8NDQ6
GKAFSVCGQLTRHQK
THAGKKPYECKECGK
58





HR8055A-1071-1130-Av6HT
ZNF541
Q9H0D2
EPHINIGSRFQAEIP
TQDRVTELCNVACSS
60





HR8506A-95-170-Av6HT
ZNF542
Q5EBM4
CTRNVCKECGNLYCH
CNECIKTFNQRAHLT
76





HR7303A-250-315-NHT
ZNF544
Q6NX49
SLNYGSSLCFHGRTF
DECRETCSESLCLVQ
66





HR7708A-449-521-NHT
ZNF546
Q86UE3
AFRLQTELTRHHRTH
SSRYHLTQHYRIHTG
73





HR8224A-347-390-Av6HT
ZNF547
Q8IVP9
TGERPYECSECGKAF
AAKQCSECGKFERYN
44





HR7308A-303-359-NHT
ZNF552
Q9H707
KFFRHKYHLIAHQRV
VHTGQKPYECSECGK
57





HR7586A-351-442-Av6HT
ZNF554
Q86TJ5
PYECQECGRAFTHSS
RTHTGFKPYECSECG
92





HR6864A-534-597-NHT
ZNF555
Q8NEP9
KPYECKECGKVFKWP
VRIHTTEKQYKCNVG
64





HR7560A-285-337-NHT
ZNF556
Q9HAH1
RPYECKQCGKAYCWA
AFGWRSSLHKHARTH
53





HR7484-16-423-TEV
ZNF557
Q8N988
FPASQREGHTEGGEL
CGKSFTSNSYLSVHT
408





HR7484-32-423-TEV
ZNF557
Q8N988
NELLKSWLKGLVTFE
CGKSFTSNSYLSVHT
392





HR7484-TEV
ZNF557
Q8N988
AAVVLPPTAALSSLF
SYLSVHTRMHNRQM*
430





HR7484A-12-94-15
ZNF557
Q8N988
MLSSLFPASQREGHT
ASLGNQVDKPRLISQ
84





HR7484A-16-89-15
ZNF557
Q8N988
MFPASQREGHTEGGE
NCRNLASLGNQVDKP
75





HR7484A-32-89-15
ZNF557
Q8N988
MNELLKSWLKGLVTF
NCRNLASLGNQVDKP
59





HR7484B-344-408-15
ZNF557
Q8N988
MGEKPYTCNECGKSF
HMRTHTGKKPYECNY
66





HR7484B-344-423-15
ZNF557
Q8N988
MGEKPYTCNECGKSF
CGKSFTSNSYLSVHT
81





HR7484B-349-403-15
ZNF557
Q8N988
MTCNECGKSFTNSFS
SSVKKHMRTHTGKKP
56





HR7484B-349-423-15
ZNF557
Q8N988
MTCNECGKSFTNSFS
CGKSFTSNSYLSVHT
76





HR8385A-150-204-Av6HT
ZNF558
Q96NG5
KLNECNQCFKVFSTK
SSRSYLTIHKRIHNG
55





HR7908A-195-264-Av6HT
ZNF559
Q9BR84
PSSSHLRECVRIYGG
FTESSYLTQHLRTHS
70





HR8030A-275-342-Av6HT
ZNF560
Q96MR9
RLILNVQVQRKCTQD
AFTHSTSHAVNVETH
68





HR8284A-153-246-Av6HT
ZNF561
Q8N587
KDTLSVHKEASTGQE
RAVTASSHLKQCVAV
94





HR7120A-315-406-NHT
ZNF562
Q6V9R5
PHKCTECGKAFTRST
RIHTGEKPYECVECG
92





HR7101A-177-267-NHT
ZNF563
Q8TA94
TFSSRRNLRRHMVVQ
YECKQCSKALPDSSS
91





HR7852A-258-333-NHT
ZNF564
Q8TBZ8
CGKAFDRPSLFRIHE
IFPSYVRKHERTHTG
76





HR7421A-165-219-Av6HT
ZNF565
Q8N9K5
KLMECHECGKAFSRG
SRASHLVQHQRIHTG
55





HR6953A-201-290-Av6HT
ZNF566
Q969W8
CKECGKSFRHPSRLT
IHTGEKPYECKECGK
90





HR7055-1-501-TEV
ZNF567
Q8N184
DVMLENYCHLISVGC
TNLNLHQRIHTGEKP
500





HR7055A-1-62-15
ZNF567
Q8N184
MDVMLENYCHLISVG
KAEDFLVKFKEHQEK
62





HR7055A-1-67-15
ZNF567
Q8N184
MDVMLENYCHLISVG
LVKFKEHQEKYSRSV
67





HR7513A-584-636-NHT
ZNF568
Q3ZCX4
KPYECNKCGKAFSQC
AFSQRASLSIHKRGH
53





HR8322A-184-236-Av6HT
ZNF569
Q5MGW4
TPFKCNHCGKGFNQT
AFSHKEKLIKHYKIH
53





HR7036A-222-276-NHT
ZNF57
Q68EA5
KTYKCEQCRMAFNGF
IYPSTFQRHMTTHTG
55





HR8437A-468-518-Av6HT
ZNF570
Q96NI8
KPYECTVCGKAFSYC
KKTFRQHAHLAHHQR
51





HR7898A-556-609-Av6HT
ZNF571
Q7Z3V5
KPYECKECGRAFSRG
FRCPSQLTQHTRLHN
54





HR7069A-130-212-NHT
ZNF572
Q7Z3I7
RPYKCSECWKSFSNS
SNTSHLIIHERTHTG
83





HR7339A-346-414-NHT
ZNF574
Q6ZN55
PSPSSLDQHLGDHSS
FVNLTKFLYHRRTHG
69





HR7766A-185-234-NHT
ZNF575
Q86XF7
AFSFPSKLAAHRLCH
QAFGQRRLLLLHQRS
50





HR7135A-110-164-NHT
ZNF576
Q9H609
PTFPCPDCGKTFGQA
QDFAQEAGLHQHYIR
55





HR7392A-95-172-Av6HT
ZNF580
Q9UK33
PECARVFASPLRLQS
RFQDAAELAQHVRLH
78





HR7332A-85-197-NHT
ZNF581
Q9P0T4
KCYSCPVCSRVFEYM
MEQNTLQKHTRWKHP
113





HR7613A-143-226-NHT
ZNF582
Q96NG8
IIRHEEMPTFDQHAS
SRLIQHENIHSGKKP
84





HR8213A-490-546-Av6HT
ZNF583
Q96ND8
KPYECNVCGKAFSYS
RAHLAHHERIHTMES
57





HR7005A-111-199-NHT
ZNF584
Q8IVC4
EHLKSYRVIQHQDTH
RPFRCPTGRSAFKKS
89





HR7126A-700-769-NHT
ZNF585B
Q52M93
TKKSQLQVHQRIHTG
FVQKSVFSVHQSSHA
70





HR7959A-294-369-Av6HT
ZNF586
Q9NXT0
ECGKSFSLRSNLIHH
AENSSLIKHLRVHTG
76





HR8398-1-385-15
ZNF587
Q96SQ5
MAAAVPRRPTQQGTV
QRVHTGERPYKCGEC
385





HR8398A-13-68-15
ZNF587
Q96SQ5
MGTVTFEDVAVNFSQ
LGCWCGSKDEEAPCK
57





HR8398A-8-73-15
ZNF587
Q96SQ5
MRPTQQGTVTFEDVA
GSKDEEAPCKQRISV
67





HR8398B-85-147-15
ZNF587
Q96SQ5
MGVSPKKAHPCEMCG
AYLHQHQKQHIGEKF
64





HR8398B-90-144-15
ZNF587
Q96SQ5
MKAHPCEMCGLILED
DDTAYLHQHQKQHIG
56





HR7374A-223-283-NHT
ZNF589
Q86UQ0
AFNQKSNLFRQKAVT
THTGEKPYVCGECGR
61





HR7253A-8-134-TEV
ZNF593
O00488
GAHRAHSLARQMKAK
PTEVSTEVPEMDTST
127





HR7622A-658-732-NHT
ZNF594
Q96JF6
GKAFSQRSHLATHQK
MWHTAFLKHQRLHAG
75





HR8535A-211-338-Av6HT
ZNF595
Q8IYB9
RSTSLSKHKRIHTGE
SRSLNEHKNIHTGEK
128





HR7605A-165-247-NHT
ZNF596
Q8TC21
KSYGSHLFDYAFIQN
THCSDLRKHERTHTG
83





HR6958A-339-424-NHT
ZNF597
Q96LX8
KPLQCPDCDMTFPCF
LHLITHKRTHIKNTT
86





HR7504A-200-279-NHT
ZNF599
Q96NL3
TCTECGKGFSKKWAL
KRRFHLTEHQRIHTG
80





HR7536A-401-473-NHT
ZNF605
Q86T29
AFFKKSELIRHQKIH
TQKSSLISHQRTHTG
73





HR7780A-327-407-NHT
ZNF606
Q8WXB4
NQSPSFNEHPRLHVG
TYTAEKPYDYNECGT
81





HR7972A-628-696-Av6HT
ZNF607
Q96SK3
CASYLVRHESVHADG
FRLRSILEVHQRIHI
69





HR7618A-201-256-NHT
ZNF610
Q8N9Z0
SYEYECSEDGEVFRV
SRNSHLVEHWRIHTG
56





HR7693A-602-688-NHT
ZNF611
Q8N823
TFSRRSSLHCHRRLH
AEKPYKCNECGKAFN
87





HR8205A-466-535-Av6HT
ZNF613
Q6PF04
SHKSGLINHQRIHTG
FSHLSCLVYHKGMLH
70





HR7312A-239-311-NHT
ZNF614
Q8N883
KLSRSVLFTKHLKTN
TMKRYLIAHQRTHSG
73





HR7638A-239-293-NHT
ZNF616
Q08AN1
KSYQCDVCGKIFRKN
SKSSHLAVHQRIHTG
55





HR8536A-215-271-Av6HT
ZNF619
Q8N2I2
PYTCKECGKTFRYNS
SHLLQHQKLHGGQRP
57





HR7004A-342-416-Av6HT
ZNF620
Q6ZNG0
GKRLSSNTALTQHQR
SWCGRFILHQKLHTQ
75





HR6865A-260-345-NHT
ZNF621
Q6ZSS3
EKLYKCKECWKAFGC
YGSFVQHQKLHPVEK
86





HR7076A-233-357-Av6HT
ZNF622
Q969S3
MQDAEEEEAEEGPPL
FADFYDFRSSYPDHK
126





HR7076A-233-357-NHT
ZNF622
Q969S3
QDAEEEEAEEGPPLG
FADFYDFRSSYPDHK
125





HR8004A-806-858-Av6HT
ZNF624
Q9P2J8
RPYKCEECGKAFRTN
AFRSSSSLTVHQRIH
53





HR8159A-235-289-Av6HT
ZNF625
Q96I27
KPYECKQCGKAFRSA
GCASSVKIHERTHTG
55





HR8312A-451-505-Av6HT
ZNF626
Q68DY1
KFYKCEECGKAFKCS
NQSSIDTTHERIILE
55





HR7221A-166-234-Av6HT
ZNF627
Q7L945
PYDCKECGETFISLV
EKPYECKQCGKAFSC
69





HR7999A-830-869-Av6HT
ZNF629
Q9UEG4
GQNPKTLVEEKPYLC
AALLLHRSCHPGVSL
40





HR7098A-597-651-NHT
ZNF630
Q2M218
KTPECAESGMTFFWK
CQHVYFTGHQNPYRK
55





HR7646-132-485-Av6HT
ZNF639
Q9UID6
VHTAEDVPIAVEVHA
NERELISHLPVHETT
354





HR7646-158-485-Av6HT
ZNF639
Q9UID6
NSSESLQDQTDEEPP
NERELISHLPVHETT
328





HR7646-168-485-Av6HT
ZNF639
Q9UID6
DEEPPAKLCKILDKS
NERELISHLPVHETT
318





HR7646-24-485-Av6HT
ZNF639
Q9UID6
ISRIADGFNGIFSDH
NERELISHLPVHETT
462





HR7646-80-485-Av6HT
ZNF639
Q9UID6
RNQNYLVPSPVLRIL
NERELISHLPVHETT
406





HR7646-Av6HT
ZNF639
Q9UID6
NEYPKKRKRKTLHPS
ERELISHLPVHETT*
485





HR7646A-406-471-15
ZNF639
Q9UID6
MDDCGKGFSSMLEYC
DLPHKCSDCLMRFGN
67





HR7646A-406-485-15
ZNF639
Q9UID6
MDDCGKGFSSMLEYC
NERELISHLPVHETT
81





HR7646A-411-466-15
ZNF639
Q9UID6
MGFSSMLEYCKHLNS
FKHSADLPHKCSDCL
57





HR7646A-411-485-15
ZNF639
Q9UID6
MGFSSMLEYCKHLNS
NERELISHLPVHETT
76





HR7646B-233-313-Av6HT
ZNF639
Q9UID6
NVCRVCKESFSTNML
SSSSELYLHFQEHSC
81





HR7646B-256-313-Av6HT
ZNF639
Q9UID6
EEDPYICKYCDYKTV
SSSSELYLHFQEHSC
58





HR7646C-372-425-Av6HT
ZNF639
Q9UID6
NFFVCQVCGFRSRLH
GFSSMLEYCKHLNSH
54





HR7646D-202-255-Av6HT
ZNF639
Q9UID6
GLYKCELCEFNSKYF
SFSTNMLLIEHAKLH
54





HR7858A-251-323-Av6HT
ZNF642
Q49AA0
RNTYKLDLINHPTSY
SQSASLSTHQRIHTG
73





HR7770A-52-130-NHT
ZNF645
Q8N7E2
LPIHFCDKCDLPIKI
IVQQCKRTYLSQKSL
79





HR7348A-260-345-NHT
ZNF648
Q5T619
QKPSKPLSPAETRGG
GEKPYPCPDCGKAFV
86





HR7533A-232-314-NHT
ZNF649
Q9BS31
KPHGCSLCGKAFYKR
SRKSLLVVHQRTHTG
83





HR7463A-365-451-NHT
ZNF652
Q9Y209
SFKRSMSLKVHSLQH
GEKPFICETCGKSFT
87





HR8324A-526-605-Av6HT
ZNF653
Q96CK0
REFTCETCGKSFKRK
CGKRFEKLDSVKFHT
80





HR8422A-173-222-15
ZNF655
Q8N720
MGKHEHLNLTEDFQS
TEKSYKCDVCGKIFH
51





HR8422A-173-239-15
ZNF655
Q8N720
MGKHEHLNLTEDFQS
SALTRHQRIHTREKP
68





HR8422A-178-218-15
ZNF655
Q8N720
MLNLTEDFQSSECKE
SIPNTEKSYKCDVCG
42





HR8422A-178-234-15
ZNF655
Q8N720
MLNLTEDFQSSECKE
IFHQSSALTRHQRIH
58





HR8422A-182-234-TEV
ZNF655
Q8N720
EDFQSSECKESLMDL
IFHQSSALTRHQRIH
53





HR8422B-430-491-TEV
ZNF655
Q8N720
HRKEKSYECNEYEGS
AHLVQHQSIHTKENS
62





HR8422B-434-491-TEV
ZNF655
Q8N720
KSYECNEYEGSFSHS
AHLVQHQSIHTKENS
58





HR8422C-372-430-Av6HT
ZNF655
Q8N720
GIHFREKPYTCSECG
AFSQTSCLIQHHKMH
59





HR8422C-372-470-Av6HT
ZNF655
Q8N720
GIHFREKPYTCSECG
EVLTROKAFDCDVWE
99





HR8422C-372-475-Av6HT
ZNF655
Q8N720
GIHFREKPYTCSECG
QKAFDCDVWEKNSSQ
104





HR8422D-378-430-Av6HT
ZNF655
Q8N720
KPYTCSECGKDFRLN
AFSQTSCLIQHHKMH
53





HR7623A-279-349-NHT
ZNF658
Q5TYW1
CDKTTAVEYNKVHMA
SQSSAHIVHQKTQAG
71





HR8538A-1-85-Av6HT
ZNF663
Q8NDT4
YTGEKPDECKENEKA
VLKESCLTPNQRIKT
84





HR6955A-195-249-NHT
ZNF664
Q8N3J9
GEKPYRCCGCGKAFS
AFSQSTSLCIHQRVH
55





HR7621A-171-230-NHT
ZNF667
Q5HYK9
PFECSNCRKAFRQIS
ILHMRIHDGKEILDC
60





HR6925A-83-165-NHT
ZNF670
Q9BS34
TFSQDSNLNLNKKVS
ISLTSVDRHMVTHTS
83





HR7883A-267-337-Av6HT
ZNF671
Q8TAW3
KPHKSTKLVSGFLMG
SQSYDLFKHQTVHTG
71





HR7237A-1-66-NHT
ZNF672
Q499Z4
FATSGAVAAGKPYSC
ARAADLRAHRRTHAG
65





HR7236A-365-437-NHT
ZNF674
Q2M3X9
ASDEKPSPTKHWRTH
SGKSHLSVHHRTHTG
73





HR7578A-1-67-15
ZNF675
Q8TD23
MGLLTFRDVAIEFSL
ITCLEQEKEPLTVKR
67





HR7578A-1-74-15
ZNF675
Q8TD23
MGLLTFRDVAIEFSL
KEPLTVKRHEMVNEP
74





HR7578B-131-199-15
ZNF675
Q8TD23
MGLNQCLPTMQSKMF
SHLTRHERNYTKVNF
70





HR7578B-136-194-15
ZNF675
Q8TD23
MLPTMQSKMFQCDKY
SFCMLSHLTRHERNY
60





HR7578B-137-199-15
ZNF675
Q8TD23
MPTMQSKMFQCDKYV
SHLTRHERNYTKVNF
64





HR7578B-140-194-15
ZNF675
Q8TD23
MQSKMFQCDKYVKVF
SFCMLSHLTRHERNY
56





HR7891A-111-163-Av6HT
ZNF676
Q8N7Q3
KVFQCGKYANVFHKC
SFCMLSHLSQHERIY
53





HR7577A-497-565-NHT
ZNF677
Q86XU0
TERSNLTQHKKIHTG
ALFQSSNIGDHQKSY
69





HR8530A-404-487-Av6HT
ZNF678
Q5SXM1
PYKCEECGKVFKQCS
FSSLTRHKRIHTGEK
84





HR7709A-360-411-NHT
ZNF679
Q8IYX0
AFAFSSTLNTHKRIH
NHKSMHTGEKPYKCE
52





HR8058A-136-204-Av6HT
ZNF680
Q8NEM1
KEGYNELNQCLRTTQ
SFCMLSHLTQHIRIH
69





HR7323A-486-575-NHT
ZNF681
Q96N22
AFNQSSILTTHKRIH
PYQCEECGKAFNOSS
90





HR7060A-141-225-NHT
ZNF682
O95780
PSKIFPYNKCVKVFS
KWFSYLTKHKRIHTG
85





HR7991A-155-211-Av6HT
ZNF684
Q5T5D7
VENAYECSECGKAFK
SRKAHLATHQKIHNG
57





HR7327A-962-1050-Na6HT
ZNF687
Q8N1G0
GWTCGLCHSWFPERD
SSRLILEKHVQVRHG
89





HR7862A-150-239-Av6HT
ZNF689
Q96CS4
ICPDCGCTFPDHOAL
VIHTGEKPYHCPDCG
90





HR8314A-328-397-NHT
ZNF692
Q9BU19
KKHLKEHMKLHSDTR
QKASLNWHQRKHAET
70





HR7296A-298-376-NHT
ZNF695
Q8IW36
CEECGKSFKLFPYLT
NQSSHLTEHRRIHTG
79





HR8310A-158-221-Av6HT
ZNF696
Q9H7X3
CGKAFIHSSHVVRHQ
KPYACADCGKAFGQR
64





HR7368A-352-405-NHT
ZNF697
Q5TEC3
PFACGECGKGFVRRS
SWRSDLVKHQRVHTG
54





HR8203A-585-642-Av6HT
ZNF699
Q32M78
KPFECLECGKAFSCP
AYFRRHVKTHTRENI
58





HR7900-118-686-15
ZNF7
P17097
MQNPGFGDVSDSEVW
NRSSRLTQHQKIHMG
570





HR7900-123-686-15
ZNF7
P17097
MGDVSDSEVWLDSHL
NRSSRLTQHQKIHMG
565





HR7900-176-686-15
ZNF7
P17097
MSSGLDCQPLESQGE
NRSSRLTQHQKIHMG
512





HR7900-181-686-15
ZNF7
P17097
MCQPLESQGESAEGM
NRSSRLTQHQKIHMG
507





HR7900-192-686-15
ZNF7
P17097
MEGMSQRCEECGKGI
NRSSRLTQHQKIHMG
496





HR7900-98-686-Av6HT
ZNF7
P17097
DILKSESYGTVVRIS
NRSSRLTQHQKIHMG
589





HR7900A-632-686-Av6HT
ZNF7
P17097
KLHQCEDCEKIFRWR
NRSSRLTQHQKIHMG
55





HR7964A-390-437-Av6HT
ZNF70
Q9UC06
KPYTCECGKAFRHRS
LCGKSFRGSSHLIRH
48





HR8076A-25-71-Av6HT
ZNF700
Q9H0M5
AFEDVAVNFTQEEWT
FRNLTSIGKKWSDQN
47





HR7819A-251-341-Av6HT
ZNF701
Q9NV72
DFHQKRYLACHRCHT
KCEECDKVFSRKSHL
91





HR6936A-105-196-NHT
ZNF705A
Q6ZN79
TMENSLILEDPFECN
TNCFRLRRHKMTHTG
92





HR7717A-105-196-NHT
ZNF705G
A8MUZ8
TMENSLILEDPFECN
TNCFHLRRHKMTHTG
92





HR7599A-294-364-NHT
ZNF707
Q96C28
GKAFRTKENLSHHQR
GKGFRHLGFFTRHQR
71





HR8522A-127-192-Av6HT
ZNF708
P17019
GLNRCVTTTQSKIVQ
CMLSQLTQHEIIHTG
66





HR8299A-146-232-Av6HT
ZNF709
Q8N972
GKRFSFRSSFRIHER
HTGEKPYKCKECGKT
87





HR7598A-420-489-NHT
ZNF71
Q9NQZ8
SQSAYLIEHQRIHTG
FSRNTNLTRHLRIHT
70





HR7994A-273-347-Av6HT
ZNF710
Q8N1W2
RLDINVQIDDSYLVE
KQPSHLQTHLLTHQG
75





HR7730A-640-700-NHT
ZNF711
Q9Y462
IHKGRKIHQCRHCDF
RQQNELKKHMKTHTG
61





HR7315A-202-251-NHT
ZNF713
Q8N859
SIKHNSDLIYYQGNY
LTDHIHTAEKPSECG
50





HR8420A-149-221-Av6HT
ZNF718
Q3SXZ3
VKVFHKFSNSNKDKI
AFNWSSILTKHKRIH
73





HR7757A-1-62-NHT
ZNF720
Q7Z2F6
GLLTFRDVAIEFSRE
SKPOLITFLEQRKEP
61





HR8490A-143-197-Av6HT
ZNF730
Q6ZMV8
KIFQCDKYVKVFHKF
CILSHLAQHKKIHTG
55





HR8539A-16-91-Av6HT
ZNF738
Q8NE65
GYPGAERNLLEYSYF
DVSKPDLITCLEQGK
76





HR8339A-526-578-Av6HT
ZNF74
Q16587
KPYKCSECGRAFSQN
MFNWSSHLTEHQRLH
53





HR8360A-96-181-Av6HT
ZNF740
Q8NDX6
KIPKNFVCEHCFGAF
SRTDRLLRHKRMCQG
86





HR8176A-34-86-Av6HT
ZNF747
Q9BV97
PGAVSFADVAVYFSR
HLGALGESPTCLPGP
53





HR8509A-408-460-Av6HT
ZNF749
Q43361
RLYKCSECGKAFSLK
AFVRKSHLVQHQKIH
53





HR7901A-1-56-Av6HT
ZNF75A
Q96N20
YFSQEEWELLDPTQK
KVISCLEQGEEPWVQ
55





HR6964-1-358-Av6HT
ZNF76
P36508
ESLGLHTVTLSDGTT
PYTCSTCGKTYRQTS
357





HR6964-1-369-Av6HT
ZNF76
P36508
ESLGLHTVTLSDGTT
RQTSTLAMHKRSAHG
368





HR6964A-173-267-NHT
ZNF76
P36508
GRLYTTAHHLKVHER
RPFQCPFEGCGRSFT
95





HR6964B-161-251-Av6HT
ZNF76
P36508
GDRAFRCGYKGCGRL
KTSGDLQKHVRTHTG
91





HR6964C-227-276-Av6HT
ZNF76
P36508
CPEELCSKAFKTSGD
CGRSFTTSNIRKVHV
50





HR6964C-227-294-Av6HT
ZNF76
P36508
CPEELCSKAFKTSGD
TGERPYTCPEPHCGR
68





HR6964C-232-294-Av6HT
ZNF76
P36508
CSKAFKTSGDLQKHV
TGERPYTCPEPHCGR
63





HR6964C-235-276-Av6HT
ZNF76
P36508
AFKTSGDLQKHVRTH
CGRSFTTSNIRKVHV
42





HR7027A-389-461-NHT
ZNF765
Q7L2R6
SKTFSHKSSLTYHRR
YSFKSNLFIHQKIHT
73





HR7836A-303-379-NHT
ZNF766
Q5HY98
KCGKVYSSSSYLAQH
RHKFSLTVHQRNHNG
77





HR7774A-291-355-NHT
ZNF768
Q9H5H4
CEVCSKAFSQSSDLI
GQKPYKCPHCGKAFG
65





HR8123A-304-359-Av6HT
ZNF77
Q15935
SFSCYSSFRDHVRTH
THSGEKPYECKECGK
56





HR7610A-1-82-NHT
ZNF770
Q6IQ21
AENNLKMLKIQQCVV
VHLERHQLTHSLPFK
80





HR7742A-127-216-NHT
ZNF771
Q7L3S4
RFSAASNLRQHRRRH
PYACADCGTRFAQSS
90





HR7325A-385-458-NHT
ZNF772
Q68DY9
KYFGHKYRLIKHWSV
SHKHVLVQHHRIHTG
74





HR8057A-186-243-Av6HT
ZNF773
Q6PK81
AGKRHYKCSECGKAF
SHKSNLFIHQIVHTG
58





HR7824A-105-159-Av6HT
ZNF775
Q96BV0
GHFVCLDCGKRFSWW
SQKPNLARHQRHHTG
55





HR7510A-199-288-NHT
ZNF776
Q68DI1
IPLQGGKTHYICGES
WYKAHLTEHQRVHTG
90





HR7596A-583-631-NHT
ZNF780A
Q75290
KPFECKECGKAFRLH
ECGKVFSLPTQLNRH
49





HR7666A-735-815-NHT
ZNF780B
Q9Y6R6
GLLTQLAQHQIIHTG
KLVQVRNPLNVRNVG
81





HR7344A-514-586-NHT
ZNF782
Q6ZMW2
AFKLKSGLRKHHRTH
SQKSNLRVHHRTHTG
73





HR8508A-34-122-Av6HT
ZNF783
Q6ZMS7
SYLYSTEITLWTVVA
LLQRRLENVENLLRN
89





HR8227A-257-318-Av6HT
ZNF785
A8K8V0
ACSDCKSRFTYPYLL
RIHTGEKPYPCPDCG
62





HR7825A-407-473-NHT
ZNF786
Q8N393
RLRRLLQVHQHAHGG
GRNFRQRGQLLRHQR
67





HR7915A-65-146-Av6HT
ZNF787
Q6DD87
PYICNECGKSFSHWS
SWSSNLMQHQRIHTG
82





HR8290A-153-225-Av6HT
ZNF789
Q5FWF6
GFLQNLNLIQDQNAQ
RRKAWFDQHQRIHFL
73





HR7454A-424-498-NHT
ZNF79
Q15937
KFFSESSALIRHHII
CSSAFVRHQRLHAGE
75





HR7139A-544-636-NHT
ZNF790
Q6PG37
IWGSQLTRHKKIHTD
FEKAFSSSSHFISLL
93





HR8412A-506-576-Av6HT
ZNF791
Q3KP31
IYPTSFQGHMRMHTG
SVSTSLKKHMRMHNR
71





HR8238A-532-599-15
ZNF792
Q3KQV3
MRPYECSECGKTFRQ
IRERSMENVLLPCSQ
69





HR8238A-532-599-Av6HT
ZNF792
Q3KQV3
RPYECSECGKTFRQR
IRERSMENVLLPCSQ
68





HR7343A-484-570-NHT
ZNF799
Q96GE5
AFSCFQYLSQHRRTH
REKPYECQQCGKAFT
87





HR4794D-252-417-15
ZNF8
P17098
VQDKPYKCTDCGKSF
GKGFRHSSSLAQHQR
166





HR4794D-256-412-15
ZNF8
P17098
PYKCTDCGKSFNHNA
ECNHCGKGFRHSSSL
157





HR4794D-274-417-15
ZNF8
P17098
VHKRIHTGERPYMCK
GKGFRHSSSLAQHQR
144





HR4794D-280-412-15
ZNF8
P17098
TGERPYMCKECGKAF
ECNHCGKGFRHSSSL
133





HR4794E-339-417-15
ZNF8
P17098
KPYECQDCGRAFNQN
GKGFRHSSSLAQHQR
79





HR4794E-344-411-15
ZNF8
P17098
QDCGRAFNQNSSLGR
YECNHCGKGFRHSSS
68





HR7462A-85-152-NHT
ZNF80
P51504
AFPEKVDFVRPMRIH
CGKTFSYHSVFIQHR
68





HR8132A-480-640-Av6HT
ZNF800
Q2TB10
GFDFKQLYCKLCKRQ
AFAKKTYLEHHKKTH
161





HR7014A-407-492-NHT
ZNF808
Q8N4W9
AFNHQSSLARHHILH
TGEKTYKCNECRKTF
86





HR7427A-226-281-NHT
ZNF81
P51508
VFTQNSSYSHHENTH
FPIGEKANTCTEFGK
56





HR8002A-591-645-Av6HT
ZNF816A
Q0VGE8
KPYKCNECGKVFNQK
TGQSTLIHHQAIHGC
55





HR8532A-59-113-Av6HT
ZNF818P
Q6ZRF7
KRSLTNVCGKVLSQN
TQGSRFINHQIVHTG
55





HR7648A-533-610-NHT
ZNF823
P16415
GKAFSWLTCLLRHER
RSLHRHKRTHWKDTL
78





HR7405A-703-761-NHT
ZNF828
Q96JM3
KRGKGKYYCKICCCR
FLLESLLKNHVAAHG
59





HR8193A-154-208-Av6HT
ZNF829
Q3KNS6
KPWECKICGKTFNQN
SRGSLVTRHQRIHTG
55





HR7002A-127-184-15
ZNF83
P51522
MGKIFNKKSNLASHQ
IHTGEKPYKCNECGK
59





HR7002B-70-148-15
ZNF83
P51522
MTYECNFVDSLFTQK
SNLASHQRIHTGEKP
80





HR7002B-74-145-15
ZNF83
P51522
MNFVDSLFTQKEKAN
NKKSNLASHQRIHTG
73





HR7002B-89-145-15
ZNF83
P51522
MGTEHYKCSERGKAF
NKKSNLASHQRIHTG
58





HR8533A-9-176-Av6HT
ZNF833P
Q6ZTB9
PYKCKFCGKAFDNLH
FSSFHSHEGVHTGEK
168





HR8077A-450-518-Av6HT
ZNF835
Q9Y2P0
SQGSSLALHQRTHTG
AFSFSSALIRHQRTH
69





HR8234A-206-287-15
ZNF836
Q6ZNA1
MTQLEKTHIREKPYM
PYQCGVCGKIFRQNS
83





HR8234A-206-287-Av6HT
ZNF836
Q6ZNA1
TQLEKTHIREKPYMC
PYQCGVCGKIFRQNS
82





HR7704A-427-482-NHT
ZNF837
Q96EG3
AFKGRSGLVQHQRAH
LHSGEKPYICRDCGK
56





HR8403A-681-738-Av6HT
ZNF84
P51523
KPYGCSECRKAFSQK
SQLINHQRTHTVKKS
58





HR8489A-197-283-Av6HT
ZNF841
Q6ZN19
RGKPYQCDVCGRIFR
SSSLATHQTVHTGDK
87





HR8361A-897-970-Av6HT
ZNF845
Q96IR2
NQQAHLACHHRIHTG
AKLARHHRIHTGKKH
74





HR7777A-476-525-NHT
ZNF846
Q147U1
KPYACKECGKAFRYS
CGKNFTQSSALAKHL
50





HR7585A-536-595-NHT
ZNF85
Q03923
KPYTCEECGKAFNQS
LTKHKIIHTGEKLQI
60





HR8493A-449-519-Av6HT
ZNF852
B4DLD7
SYNSSLMVHQRTHTG
SQRSTFNHHQRTHAG
71





HR8177-500-555-Av6HT
ZNF880
Q6PD84
VFSHNSHLARHRQIH
IHTGEKPYRCHECGK
56





HR6923A-519-589-NHT
ZNF90
Q03938
KRSSVLSKHKIIHTG
NLSSDLNTHKRIHIG
71





HR8498A-486-572-Av6HT
ZNF98
A6NK75
GEKPYKCEECGKAFN
IAKISKYKRNCAGEK
87





HR8425A-706-753-Av6HT
ZNF99
A8MXY4
AFNNSSTLRKHEIIH
IHTGKKPYKCEECGK
48





HR7451A-925-1258-Av6HT
ZNFX1
Q9P2E3
LDLSSRWQLYRLWLQ
SKIIHTLRENNQIGP
334





HR6880A-166-356-NHT
ZRSR2
Q15696
EKDRANCPFYSKTGA
ANRDIYLSPDRTGSS
191





HR7933A-24-120-Av6HT
ZSCAN1
Q8NBBT
ADPGPASPRDTEAQR
CREAASLVEDLTQMC
97





HR7806A-1-70-NHT
ZSCAN10
Q96SZ4
GPRASLSRLRELCGH
DGEEVVLLLEGIHRE
69





HR8495A-9-132-Av6HT
ZSCAN12
O43309
AHMDQDEPLEVKIEE
VTVLEDLERELDEPG
124





HR7081A-224-291-TEV
ZSCAN16
Q9H4T2
GRSEWQQRERRRYKC
SHLIGHHRVHTGVKP
68





HR7530A-36-127-NHT
ZSCAN21
Q9Y5A6
KYLPSLEMFRQRFRQ
AEEAVTLLEDLEREL
92





HR7904A-40-135-Av6HT
ZSCAN22
P10073
DHIAHSEAARLRFRH
AVLVEDLTQVLDKRG
96





HR7247A-37-133-NHT
ZSCAN23
Q3MJ62
SRNNPHTREIFRRRF
AVTVLEDLERELDDP
97





HR8429A-9-104-Av6HT
ZSCAN29
Q8IWY8
ENGTNSETFRQRFRR
VTLVEDLEREPGRPR
96





HR6932A-12-134-NHT
ZSCAN80
Q86W11
APEEQEGLLVVKVEE
VTMLEELEKELEEPR
123





HR7089A-35-123-Av6HT
ZSCAN4
Q8NAM6
REEGISEFSRMVLNS
KSSGKNLERFIEDLT
89





HR7089A-35-130-NHT
ZSCAN4
Q8NAM6
REEGISEFSRMVLNS
ERFIEDLTDDSINPP
96





HR7089A-46-123-Av6HT
ZSCAN4
Q8NAM6
VLNSFQDSNNSYARQ
KSSGKNLERFIEDLT
78





HR7089A-46-130-Av6HT
ZSCAN4
Q8NAM6
VLNSFQDSNNSYARQ
ERPIEDLTDDSINPP
85





HR6950A-39-129-NHT
ZSCAN5A
Q9BUG6
DPEISHVNFRMFSCP
LEDLLRNNRRPKKWS
91





HR8432A-35-142-Av6HT
ZSCAN5B
A6NJL1
NHDRNPETWHMNFRM
WSIVNLLGKEYLMLN
108





HR7759A-37-130-NHT
ZSCAN5C
A6NGD5
DSDPETCHVNFRMFS
EDLLRNNRRPKKWSV
94





HR8021A-314-557-Av6HT
ZUFSP
Q96AP4
DGKTKTSGIIEALHR
LKHKQYDILAVEGAL
244





HR7812A-358-413-NHT
ZXDA
P98168
NSFKCEVCEESFPTQ
TFITVSALFSHNRAH
56





HR7168A-360-417-NHT
ZXDB
P98169
QENSFKCEVCEESFP
TFITVSALFSHNRAH
58





HR7131A-652-715-TEV
ZZZ3
Q8IYH5
NQLWTVEEQKKLEQL
KYFIKLTKAGIPVPG
64









REFERENCES



  • Acton, T. B., et al., 2011. Preparation of protein samples for NMR structure, function, and small-molecule screening studies. Methods Enzymol. 493, 21-60.

  • Agaton et al., Molecular & Cellular Proteomics 2:405-414, 2003.

  • Bindewald, E., et al., CyloFold: secondary structure prediction including pseudoknots. Nucleic Acids Res. 38, W368-72.

  • Brodskii, L. I., et al., 1995. [GeneBee-NET: An Internet based server for biopolymer structure analysis]. Biokhimiia. 60, 1221-30.

  • Crowe, J., et al., 1994. 6×His-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol Biol. 31, 371-87.

  • Ding, Y., et al., 2004. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32, W135-41.

  • Do, C. B., et al., 2006. CONTRAfold: RNA secondary structure prediction without physics-based models. Bioinformatics. 22, e90-8.

  • Gonzalez de Valdivia, E. I., Isaksson, L. A., 2004. A codon window in mRNA downstream of the initiation codon where NGG codons give strongly reduced gene expression in Escherichia coli. Nucleic Acids Res. 32, 5198-205.

  • Gruber, A. R., et al., 2008. The Vienna RNA websuite. Nucleic Acids Res. 36, W70-4.

  • Hamada, M., et al., 2009. Predictions of RNA secondary structure by combining homologous sequence information. Bioinformatics. 25, i330-8.

  • Jansson, M.; et al., 1996. High-level production of uniformly 15N- and 13C-enriched fusion proteins in Escherichia coli. B. J. Biomol. NMR. 7, 131-141.

  • Kapust, R. B., et al., 2002. The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun. 294, 949-55.

  • Kudla, G., et al., 2009. Coding-sequence determinants of gene expression in Escherichia coli. Science. 324, 255-8.

  • Lamla, T., Erdmann, V. A., 2004. The Nano-tag, a streptavidin-binding peptide for the purification and detection of recombinant proteins. Protein Expr Purif. 33, 39-47.

  • Lui et al., 2002, Loopy proteins appear conserved in evolution. J Mol Biol. 322-53-64)

  • Markham, N. R., Zuker, M., 2008. UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol. 453, 3-31.

  • Mathews, D. H., et al., 2004. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA. 101, 7287-92.

  • Netzer and Hartl, 1997. Recombination of protein domains facilitated by co-translational folding in eukaryotes. Nature. 358-343-9.

  • Nomura, M., et al., 1984. Influence of messenger RNA secondary structure on translation efficiency. Nucleic Acids Symp Ser. 173-6.

  • Quan, J., et al., 2011. Parallel on-chip gene synthesis and application to optimization of protein expression. Nat Biotechnol. 29, 449-52.

  • Reeder, J., et al., 2007. pknotsRG: RNA pseudoknot folding including near-optimal structures and sliding windows. Nucleic Acids Res. 35, W320-4.

  • Rivas, E., Eddy, S. R., 1999. A dynamic programming algorithm for RNA structure prediction including pseudoknots. J Mol Biol. 285, 2053-68.

  • Rocha, E. P., et al., 1999. Translation in Bacillus subtilis: roles and trends of initiation and termination, insights from a genome analysis. Nucleic Acids Res. 27, 3567-76.

  • Sharp, P. M., Li, W. H., 1987. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15, 1281-95.

  • Scholle, M. D., et al., 2004. In vivo biotinylated proteins as targets for phage-display selection experiments. Protein Expr Purif. 37, 243-52.

  • Schroeder, S. J., et al., 2011. Ensemble of secondary structures for encapsidated satellite tobacco mosaic virus RNA consistent with chemical probing and crystallography constraints. Biophys J. 101, 167-75.

  • Voss, B., et al., 2006. Complete probabilistic analysis of RNA shapes. BMC Biol. 4, 5.

  • Xayaphoummine, A., et al., 2005. Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots. Nucleic Acids Res. 33, W605-10.

  • Xayaphoummine, A., et al., 2003. Prediction and statistics of pseudoknots in RNA structures using exactly clustered stochastic simulations. Proc Natl Acad Sci USA. 100, 15310-5.

  • Zuker, M., Stiegler, P., 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9, 133-48.



The foregoing examples and description of the preferred embodiments should be taken as illustrating, rather than as limiting the present invention as defined by the claims. As will be readily appreciated, numerous variations and combinations of the features set forth above can be utilized without departing from the present invention as set forth in the claims. Such variations are not regarded as a departure from the scope of the invention, and all such variations are intended to be included within the scope of the following claims. All references cited herein are incorporated herein in their entireties.

Claims
  • 1. A method of preparing an expression vector, wherein the expression vector comprises, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the method comprises specifically modifying the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag to minimize RNA secondary structure both within and/or between these two regions of the mRNA.
  • 2. The method of claim 1, further comprising specifically modifying the second nucleic acid sequence to reduce the presence of rare codons.
  • 3-4. (canceled)
  • 5. The method of claim 1, wherein the expression vector further comprises a target protein coding sequence inserted into the vector in-frame with the nucleic acid tag sequence to encode a fusion protein comprising the polypeptide tag and the target protein.
  • 6. The method of claim 5, wherein the target protein coding sequence is not modified to minimize RNA secondary structure and/or is not modified to reduce the presence of rare codons.
  • 7. (canceled)
  • 8. The method of claim 1, wherein the second nucleic acid sequence encodes at least one affinity purification tag.
  • 9-12. (canceled)
  • 13. The method of claim 1, wherein the second nucleic acid sequence encodes at least one solubility enhancement tag.
  • 14-18. (canceled)
  • 19. The method of claim 5, wherein the target protein coding sequence encodes a transcription factor, a transcription factor domain, an epigenetic regulatory factor, or an epigenetic regulatory factor domain.
  • 20. (canceled)
  • 21. The method of claim 5, wherein the target protein coding sequence encodes a protein antigen for producing an affinity capture reagent.
  • 22-23. (canceled)
  • 24. The method of claim 5, wherein the expression of the target protein is 1.5 fold greater than the expression of a target protein generated from an expression vector that was not modified as described in claim 1.
  • 25. An expression vector prepared using the method of claim 1.
  • 26. An expression vector comprising, in order of position: a first nucleic acid sequence encoding a 5′ untranslated region of an expressed mRNA that comprises a ribosome binding site (RBS); a second nucleic acid sequence encoding a polypeptide tag; and a cloning site, wherein the cloning site enables a target protein coding sequence to be inserted into the vector in-frame with the second nucleic acid sequence to encode a fusion protein comprising the polypeptide tag and the target protein; and wherein the nucleic acid sequence encoding (i) the 5′ untranslated region and (ii) the adjacent polypeptide tag has been specifically modified to minimize RNA secondary structure both within and/or between these two regions of the mRNA.
  • 27. The expression vector of claim 26, wherein the second nucleic acid sequence has been specifically modified to reduce the presence of rare codons.
  • 28. The expression vector of any one of claims 26-27, wherein nucleotides within about the last 100 nucleotides of the first nucleic acid sequence have been modified.
  • 29. The expression vector of any one of claims 26-28, wherein nucleotides within about the first 90 nucleotides of the second nucleic acid sequence have been modified.
  • 30. The expression vector of claim 26, further comprising a target protein coding sequence inserted into the vector in-frame with the nucleic acid tag sequence to encode a fusion protein comprising the polypeptide tag and the target protein.
  • 31. The expression vector of claim 30, wherein the target protein coding sequence has not been modified to minimize RNA secondary structure and/or has not been modified to eliminate rare codons.
  • 32. (canceled)
  • 33. The expression vector of claim 26, wherein the second nucleic acid sequence encodes at least one affinity purification tag.
  • 34-37. (canceled)
  • 38. The expression vector of claim 26, wherein the second nucleic acid sequence encodes at least one solubility enhancement tag.
  • 39-43. (canceled)
  • 44. The expression vector of claim 30, wherein the target protein coding sequence encodes a transcription factor, a transcription factor domain, an epigenetic regulatory factor, or an epigenetic regulatory factor domain.
  • 45-48. (canceled)
  • 49. The expression vector of claim 30, wherein the target protein is expressed at a 1.5-fold higher level than a target protein generated from an expression vector that was not modified as described in claim 26.
  • 50. A host cell comprising the expression vector of claim 30.
  • 51. A method for expressing a target protein in a host cell, comprising culturing the host cell of claim 50 for a period of time under conditions permitting expression of the target protein.
  • 52-54. (canceled)
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority from U.S. Provisional Application No. 61/558,277, filed Nov. 10, 2011, which application is herein incorporated by reference.

STATEMENT OF GOVERNMENT SUPPORT

This invention was made with government support under Grant # U54-GM074958 awarded by the National Institute of General Medical Sciences Protein Structure Initiative and Grant # U01-DC011485 awarded by the National Institute on Deafness and other Communication Disorders under the auspices of the NIH Common Fund. The government has certain rights in the invention.

PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/US12/64836 11/13/2012 WO 00 5/9/2014
Provisional Applications (1)
Number Date Country
61558277 Nov 2011 US