Transcutaneous analyte sensor

Information

  • Patent Grant
  • 10524703
  • Patent Number
    10,524,703
  • Date Filed
    Friday, January 24, 2014
    10 years ago
  • Date Issued
    Tuesday, January 7, 2020
    4 years ago
Abstract
The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.
Description
FIELD OF THE INVENTION

The present invention relates generally to systems and methods for measuring an analyte in a host. More particularly, the present invention relates to systems and methods for transcutaneous measurement of glucose in a host.


BACKGROUND OF THE INVENTION

Diabetes mellitus is a disorder in which the pancreas cannot create sufficient insulin (Type I or insulin dependent) and/or in which insulin is not effective (Type 2 or non-insulin dependent). In the diabetic state, the victim suffers from high blood sugar, which can cause an array of physiological derangements associated with the deterioration of small blood vessels, for example, kidney failure, skin ulcers, or bleeding into the vitreous of the eye. A hypoglycemic reaction (low blood sugar) can be induced by an inadvertent overdose of insulin, or after a normal dose of insulin or glucose-lowering agent accompanied by extraordinary exercise or insufficient food intake.


Conventionally, a person with diabetes carries a self-monitoring blood glucose (SMBG) monitor, which typically requires uncomfortable finger pricking methods. Due to the lack of comfort and convenience, a person with diabetes normally only measures his or her glucose levels two to four times per day. Unfortunately, such time intervals are so far spread apart that the person with diabetes likely finds out too late of a hyperglycemic or hypoglycemic condition, sometimes incurring dangerous side effects. It is not only unlikely that a person with diabetes will take a timely SMBG value, it is also likely that he or she will not know if his or her blood glucose value is going up (higher) or down (lower) based on conventional method. This inhibits the ability to make educated insulin therapy decisions.


SUMMARY OF THE INVENTION

In a first aspect, a transcutaneous system for measuring an analyte concentration in a host is provided, the system comprising: a sensor adapted for transcutaneous placement through a skin of a host; and a mounting unit adapted for placement adjacent to the skin of the host, wherein the mounting unit comprises an electronics unit configured to process sensor data, and wherein the sensor is configured to extend from the mounting unit into the host.


In an embodiment of the first aspect, the sensor is configured to extend a fixed distance from the mounting unit.


In an embodiment of the first aspect, the sensor is configured to extend an adjustable distance from the mounting unit.


In an embodiment of the first aspect, the system further comprises an adhesive pad disposed on a back surface of the mounting unit, wherein the adhesive pad is configured to adhere the mounting unit to the skin of the host.


In an embodiment of the first aspect, the adhesive pad is waterproof.


In an embodiment of the first aspect, the adhesive pad comprises fibers selected from the group consisting of open-celled foam, closed-cell foam, non-woven fibers, woven fibers, and spun-laced fibers.


In an embodiment of the first aspect, the adhesive pad substantially covers the back surface of the mounting unit.


In an embodiment of the first aspect, the adhesive pad is configured to cover a surface area larger than a surface area of the back surface of the mounting unit.


In an embodiment of the first aspect, the adhesive pad is configured to cover a surface area greater than or equal to two times the surface area of the back surface of the mounting unit.


In an embodiment of the first aspect, the sensor is configured to exit the mounting unit at a position closer to a center of the mounting unit than to an edge of the mounting unit.


In an embodiment of the first aspect, the adhesive pad comprises an extensible adhesive pad disposed on a back surface of the mounting unit, wherein the extensible adhesive pad is configured to adhere the mounting unit onto the skin of the host, and wherein the extensible adhesive pad is configured to be released by stretching.


In a second aspect, a transcutaneous analyte sensor assembly for measuring an analyte in a host is provided, the assembly comprising: a housing configured for mounting on a skin of a host; a sensor comprising a distal portion and a proximal portion, wherein the distal portion is adapted to be inserted through the skin of a host, and wherein the proximal portion is operably connected to the housing; and electronics configured for measuring an analyte in the host, wherein the electronics are associated with the housing, wherein the electronics are connected to the sensor via at least one electrical contact, and wherein the electrical contact is substantially sealed from moisture in an external environment.


In an embodiment of the second aspect, the electrical contact is substantially sealed from moisture in an external environment by at least one sealing member that substantially surrounds at least a portion of the electrical contact.


In an embodiment of the second aspect, the electronics comprise an electronics unit detachably connectable to the housing, and wherein a sealing member substantially seals the electrical connection when the electronics unit is detachably connected to the housing.


In an embodiment of the second aspect, the assembly further comprises a sealant disposed adjacent to the sealing member when the electronics unit is detachable connected to the housing.


In an embodiment of the second aspect, the sealing member comprises at least one material selected from the group consisting of a flexible material, a malleable material, and an elastomer.


In an embodiment of the second aspect, the sealing member comprises a silicone material.


In an embodiment of the second aspect, the assembly further comprises a sealant disposed around the proximal portion of the sensor.


In an embodiment of the second aspect, the sensor extends from the housing adjacent to the electrical contact or extends from the housing from within the electrical contact, and wherein the sealant comprises a viscous material configured to conform to an open space between the sensor and the electrical contact.


In an embodiment of the second aspect, the sealant comprises an oil, a grease, or a gel.


In an embodiment of the second aspect, the sealant comprises a petroleum jelly.


In a third aspect, a transcutaneous analyte sensor assembly is provided, the assembly including: a mounting unit adapted for mounting on the skin of a host; and a sensor configured to measure a level of an analyte in the host, wherein the sensor extends from the mounting unit and is adapted to be inserted through the skin of the host, and wherein the mounting unit includes base and upper portions configured to pivot relative to each other between open and closed positions.


In an embodiment of the third aspect, the mounting unit is configured to guide insertion of the sensor into the host when the mounting unit is in the open position. In this embodiment, the mounting unit is configured to open to an angle adapted for insertion of the sensor into the host and the sensor measures the level of the analyte in the host when the mounting unit is in its closed position. The sensor further includes a mechanical joint for securing the base and upper portions in the closed position.


In a fourth aspect, a transcutaneous analyte sensor assembly is provided, the assembly including: a mounting unit adapted for mounting on the skin of a host; an electronics unit detachably connectable to the mounting unit; and a sensor configured to measure a level of an analyte in the host, wherein the sensor is operably connected to the electronics unit when the electronics unit is detachably connected to the mounting unit.


In an embodiment of the fourth aspect, the mounting unit includes a cavity for receiving the electronics unit. In an aspect of the second embodiment, the cavity is configured to releasably hold the electronics unit. In an aspect of the second embodiment, the mounting unit and electronics unit include mutually engaging electrical contacts that provide operable connection between the sensor and the electronics unit when connected thereto.


In a fifth aspect, a transcutaneous analyte sensor is provided, the sensor including: an in vivo portion adapted for at least partial insertion through the skin of a host, wherein the in vivo portion includes an anchoring mechanism adapted for maintaining a stable position of the in vivo portion of the sensor within the host.


In an embodiment of the fifth aspect, the anchoring mechanism includes at least one wire including a helical configuration.


In an embodiment of the fifth aspect, the anchoring mechanism includes at least one of prongs, bulbous portion, S-bend, spines, barbs, wings, and hooks extending from the in vivo portion of the sensor.


In an embodiment of the fifth aspect, the anchoring mechanism includes a rough surface topography formed on the in vivo portion of the sensor.


In an embodiment of the fifth aspect, the anchoring mechanism includes a gradually changing diameter on the in vivo portion of the sensor.


In an embodiment of the fifth aspect, the anchoring mechanism includes a porous material disposed on the in vivo portion of the sensor. The porous material can be configured to modify the host's tissue response to the sensor and the porous material can include a bioactive agent incorporated therein.


In an embodiment of the fifth aspect, the in vivo portion further includes a bioactive agent incorporated therein.


In a sixth aspect, a transcutaneous analyte sensor is provided, the sensor including a distal portion and a proximal portion, wherein the distal portion is adapted to be inserted through the skin of a host and wherein the proximal portion is adapted to remain substantially external to the host when the distal portion is inserted into the host, and wherein the sensor is configured to absorb movement of the in vivo or ex vivo portion of the sensor. In an embodiment of the sixth aspect, the sensor includes an S-bend configured to absorb movement of the in vivo or ex vivo portion of the sensor. In an embodiment of the sixth aspect, the sensor includes an expanding and contracting member configured to absorb movement of the in vivo or ex vivo portion of the sensor. In an embodiment of the sixth aspect, the expanding and contracting member is selected from the group consisting of a spring, accordion, telescoping, and bellows-type device. In an embodiment of the sixth aspect, the sensor further includes a mounting unit adapted for mounting on the skin of a host, wherein the mounting unit includes a flexible base.


In a seventh aspect, a transcutaneous analyte sensor assembly is provided, the assembly including: a mounting unit including a flexible base adapted for mounting on the skin of a host; and a sensor configured to measure a level of an analyte in the host, wherein the sensor extends from the mounting unit and is adapted to be inserted through the skin of the host.


In an embodiment of the seventh aspect, the flexible base is formed from an elastomer.


In an embodiment of the seventh aspect, the elastomer includes silicone or urethane.


In an embodiment of the seventh aspect, the flexible base includes a plurality of articulating pieces.


In an embodiment of the seventh aspect, the mounting unit further includes an upper portion attached to the base, and wherein the upper portion is formed from a material that is less flexible than the base. In an embodiment of the seventh aspect, the upper portion is pivotally mounted to the base for relative pivoting motion between first and second positions. In an aspect of the fifth embodiment, the upper portion includes an electronics unit. In an embodiment of the seventh aspect, the electronics unit is removably attached to the upper portion.


In an eight aspect, a transcutaneous analyte sensor assembly is provided for measuring a level of an analyte in a host, the assembly including: a housing for mounting on the skin; a sensor adapted to extend from the housing through the skin; and a sealing material on the housing, located to be interposed between the housing and the skin, wherein the sensor is adapted to extend through the sealing material.


In an embodiment of the eighth aspect, the sealing material is flexible material that substantially seals around the sensor. In an embodiment of the eighth aspect, the wherein the flexible material includes at least one of a malleable material, an elastomer, and a gel. In an aspect of the sixth embodiment, the flexible material includes an elastomer. In an embodiment of the eighth aspect, the elastomer includes silicone. In an embodiment of the eighth aspect, the sealing material includes a bioactive agent. In an embodiment of the eighth aspect, the bioactive agent includes at least one of anti-inflammatory, antimicrobial, antibiotics. In an aspect of the sixth embodiment, the sealing material includes a septum.


In a ninth aspect, a transcutaneous analyte sensor assembly is provided for measuring a level of an analyte in a host, the assembly including: a mounting unit including a base adapted for mounting on the skin of a host; a sensor including an in vivo portion for insertion through the skin of a host and an ex vivo portion connected to the mounting unit; and an extensible adhesive disposed on the base of the mounting unit for adhering the mounting unit onto the skin of the host, and wherein the extensible adhesive is configured to be released by stretching.


In an embodiment of the ninth aspect, the adhesive includes a non-extensible backing adhesive layer and an extensible adhesive layer, wherein the extensible adhesive layer is adapted to contact the host's skin such that the adhesive is release by pulling on the backing adhesive in a direction substantially parallel to the host's skin. In an embodiment of the ninth aspect, the adhesive is formed from an extensible material and further includes a pull-tab adapted to be grasped and pull substantially parallel to the host's skin to release the adhesive from the skin. In an embodiment of the ninth aspect, the adhesive includes first and second extensible adhesive layers with a non-extensible layer located therebetween, and wherein the adhesive is adapted to be released by pulling the non-extensible layer in a direction substantially parallel to the host's skin.


In tenth aspect, an analyte measuring system is provided, the system including: a mounting unit adapted for mounting on the skin of a host; an electronics unit detachably connectable to the mounting unit; a sensor for measuring a level of the analyte including an in vivo portion for insertion through the skin of a host and an ex vivo portion connected to the mounting unit, wherein the sensor is operably connected to the electronics unit when the electronics unit is detachably connected to the mounting unit; and a communication station for receiving and processing analyte measurements received from the electronics unit, wherein the communication station further includes a docking station for receiving the electronics unit when detached from the mounting unit.


In an embodiment of the tenth aspect, the communication station includes a hand-held receiver. In an aspect of the eighth embodiment, the communication station includes programming to search for transmissions from the electronics unit, and wherein the programming is further designed to stop searching for transmissions from the electronics unit when the electronics unit is docked on the communication station. In an embodiment of the tenth aspect, the communication station includes programming with a plurality of modes, and wherein the programming is configured to switch between the modes when the electronics unit docked on the communication station. In an embodiment of the tenth aspect, the communication station includes programming to calibrate the sensor, and wherein the programming is further configured to reset the calibration when the electronics unit is docked on the communication station. In an embodiment of the tenth aspect, the communication station is configured to recharge a battery in the electronics unit when the electronics unit is docked on the communication station. In an embodiment of the tenth aspect, the communication station is configured to measure battery voltage in the electronics unit and includes programming to disable the electronics unit if the voltage is below a predetermined threshold. In an aspect of the eighth embodiment, the communication station includes programming to initialize an electronics unit associated with the communication station. In an embodiment of the tenth aspect, the communication station includes programming to test operation of the electronics unit by stepping the electrodes through different current draws, and wherein the programming is further configured to disable usage of the electronics unit if a failure is detected. In an embodiment of the tenth aspect, the communication station includes programming to start or stop transmissions between the communication station and electronics unit when the electronics unit docked on the communication station.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a transcutaneous analyte sensor system, including an applicator, a mounting unit, and an electronics unit.



FIG. 2 is a perspective view of a mounting unit, including the electronics unit in its functional position.



FIG. 3 is an exploded perspective view of a mounting unit, showing its individual components.



FIG. 4 is an exploded perspective view of a contact subassembly, showing its individual components.



FIG. 5A is an expanded cutaway view of a proximal portion of a sensor.



FIG. 5B is an expanded cutaway view of a distal portion of a sensor.



FIG. 5C is a cross-sectional view through the sensor of FIG. 5B on line C-C, showing an exposed electroactive surface of a working electrode surrounded by a membrane system.



FIG. 6 is an exploded side view of an applicator, showing the components that facilitate sensor insertion and subsequent needle retraction.



FIGS. 7A to 7D are schematic side cross-sectional views that illustrate applicator components and their cooperating relationships.



FIG. 8A is a side view of an applicator matingly engaged to a mounting unit, prior to sensor insertion.



FIG. 8B is a side view of a mounting unit and applicator after the plunger subassembly has been pushed, extending the needle and sensor from the mounting unit.



FIG. 8C is a side view of a mounting unit and applicator after the guide tube subassembly has been retracted, retracting the needle back into the applicator.



FIG. 9A is a side view of the sensor assembly, illustrating the sensor implanted into the host with mounting unit adhered to the host's skin via an extensible adhesive. FIGS. 9B and 9C are side views of the sensor assembly that illustrate initial and continued release of the mounting unit from the host's skin by stretching the extensible adhesive of FIG. 5A.



FIGS. 10A and 10B are perspective and side cross-sectional views, respectively, of a sensor system showing the mounting unit immediately following sensor insertion and release of the applicator from the mounting unit.



FIGS. 11A and 11B are perspective and side cross-sectional views, respectively, of a sensor system showing the mounting unit after pivoting the contact subassembly to its functional position.



FIGS. 12A to 12C are perspective and side views, respectively, of the sensor system showing the sensor, mounting unit, and electronics unit in their functional positions.



FIG. 13 is a block diagram that illustrates electronics associated with a sensor system.



FIG. 14 is a perspective view of a sensor system wirelessly communicating with a receiver.



FIG. 15A is a block diagram that illustrates a configuration of a medical device including a continuous analyte sensor, a receiver, and an external device.



FIGS. 15B to 15D are illustrations of receiver liquid crystal displays showing embodiments of screen displays.



FIG. 16A is a flow chart that illustrates the initial calibration and data output of sensor data.



FIG. 16B is a graph that illustrates one example of using prior information for slope and baseline.



FIG. 17 is a flow chart that illustrates evaluation of reference and/or sensor data for statistical, clinical, and/or physiological acceptability.



FIG. 18 is a flow chart that illustrates evaluation of calibrated sensor data for aberrant values.



FIG. 19 is a flow chart that illustrates self-diagnostics of sensor data.



FIGS. 20A and 20B are graphical representations of glucose sensor data in a human obtained over approximately three days.



FIG. 21 is a perspective view of the sensor assembly in one embodiment.



FIG. 22 is an exploded perspective view of the sensor assembly of FIG. 21.



FIG. 23 is a perspective view of the sensor assembly of FIG. 21 pivoted into an open position for needle insertion.



FIG. 24 is a perspective view of the sensor assembly of FIG. 21 after sensor insertion and subsequent retraction of the needle back into the mounting unit.



FIG. 25 is a perspective view of the sensor assembly of FIG. 21 in its functional (closed) position with a cutaway of the upper portion along a longitudinal centerline of the upper portion.



FIG. 26A is a perspective exploded bottom view of a cut away portion of the mounting unit of the sensor assembly of FIG. 21 that illustrates a seal between the needle and ex vivo environment during insertion.



FIG. 26B is a perspective exploded bottom view of a cut away portion of the mounting unit of the sensor assembly of FIG. 21 that illustrates a seal between the sensor and ex vivo environment after sensor insertion.



FIGS. 27A to 27D illustrate a variety of views of a first implementation of a sensor assembly.



FIGS. 28A to 28F illustrate a variety of views of a second implementation of a sensor assembly.



FIGS. 29A to 29C illustrate a variety of views of an inserter in accordance with one embodiment.



FIG. 30 is a perspective view a system in accordance with one embodiment, including a sensor assembly and a receiver for processing and displaying sensor data.



FIGS. 31A and 31B are perspective views of a receiver in one embodiment, wherein the receiver is provided with a docking station for receiving and holding the electronics unit (from the sensor assembly) when not in use.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The following description and examples illustrate some exemplary embodiments of the disclosed invention in detail. Those of skill in the art will recognize that there are numerous variations and modifications of this invention that are encompassed by its scope. Accordingly, the description of a certain exemplary embodiment should not be deemed to limit the scope of the present invention.


Definitions


In order to facilitate an understanding of the preferred embodiments, a number of terms are defined below.


The term “analyte” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a substance or chemical constituent in a biological fluid (for example, blood, interstitial fluid, cerebral spinal fluid, lymph fluid or urine) that can be analyzed. Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensing regions, devices, and methods is glucose. However, other analytes are contemplated as well, including but not limited to acarboxyprothrombin; acylcarnitine; adenine phosphoribosyl transferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profiles (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); andrenostenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotimidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-β hydroxy-cholic acid; cortisol; creatine kinase; creatine kinase MM isoenzyme; cyclosporin A; d-penicillamine; de-ethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylator polymorphism, alcohol dehydrogenase, alpha 1-antitrypsin, cystic fibrosis, Duchenne/Becker muscular dystrophy, glucose-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin D, hemoglobin E, hemoglobin F, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual differentiation, 21-deoxycortisol); desbutylhalofantrine; dihydropteridine reductase; diptheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free β-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free tri-iodothyronine (FT3); fumarylacetoacetase; galactose/gal-1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin; glucose-6-phosphate dehydrogenase; glutathione; glutathione perioxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variants; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17-alpha-hydroxyprogesterone; hypoxanthine phosphoribosyl transferase; immunoreactive trypsin; lactate; lead; lipoproteins ((a), B/A-1, β); lysozyme; mefloquine; netilmicin; phenobarbitone; phenyloin; phytanic/pristanic acid; progesterone; prolactin; prolidase; purine nucleoside phosphorylase; quinine; reverse tri-iodothyronine (rT3); selenium; serum pancreatic lipase; sissomicin; somatomedin C; specific antibodies (adenovirus, anti-nuclear antibody, anti-zeta antibody, arbovirus, Aujeszky's disease virus, dengue virus, Dracunculus medinensis, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia duodenalisa, Helicobacter pylori, hepatitis B virus, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, Myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, poliovirus, Pseudomonas aeruginosa, respiratory syncytial virus, rickettsia (scrub typhus), Schistosoma mansoni, Toxoplasma gondii, Trepenoma pallidium, Trypanosoma cruzi/rangeli, vesicular stomatis virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine-binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. Salts, sugar, protein, fat, vitamins and hormones naturally occurring in blood or interstitial fluids can also constitute analytes in certain embodiments. The analyte can be naturally present in the biological fluid, for example, a metabolic product, a hormone, an antigen, an antibody, and the like. Alternatively, the analyte can be introduced into the body, for example, a contrast agent for imaging, a radioisotope, a chemical agent, a fluorocarbon-based synthetic blood, or a drug or pharmaceutical composition, including but not limited to insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorohydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamines, methamphetamines, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegine); depressants (barbituates, methaqualone, tranquilizers such as Valium, Librium, Miltown, Serax, Equanil, Tranxene); hallucinogens (phencyclidine, lysergic acid, mescaline, peyote, psilocybin); narcotics (heroin, codeine, morphine, opium, meperidine, Percocet, Percodan, Tussionex, Fentanyl, Darvon, Talwin, Lomotil); designer drugs (analogs of fentanyl, meperidine, amphetamines, methamphetamines, and phencyclidine, for example, Ecstasy); anabolic steroids; and nicotine. The metabolic products of drugs and pharmaceutical compositions are also contemplated analytes. Analytes such as neurochemicals and other chemicals generated within the body can also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, noradrenaline, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), and 5-hydroxyindoleacetic acid (FHIAA).


The term “host” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to mammals, particularly humans.


The term “exit-site” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to the area where a medical device (for example, a sensor and/or needle) exits from the host's body.


The phrase “continuous (or continual) analyte sensing” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to the period in which monitoring of analyte concentration is continuously, continually, and or intermittently (regularly or irregularly) performed, for example, about every 5 to 10 minutes.


The term “electrochemically reactive surface” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to the surface of an electrode where an electrochemical reaction takes place. For example, a working electrode measures hydrogen peroxide produced by the enzyme-catalyzed reaction of the analyte detected, which reacts to create an electric current. Glucose analyte can be detected utilizing glucose oxidase, which produces H2O2 as a byproduct. H2O2 reacts with the surface of the working electrode, producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2), which produces the electronic current being detected.


The term “electronic connection” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to any electronic connection known to those in the art that can be utilized to interface the sensing region electrodes with the electronic circuitry of a device, such as mechanical (for example, pin and socket) or soldered electronic connections.


The term “interferant” and “interferants,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, to refer to species that interfere with the measurement of an analyte of interest in a sensor to produce a signal that does not accurately represent the analyte measurement. In one example of an electrochemical sensor, interferants are compounds with oxidation potentials that overlap with the analyte to be measured.


The term “sensing region” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to the region of a monitoring device responsible for the detection of a particular analyte. The sensing region generally comprises a non-conductive body, a working electrode (anode), a reference electrode (optional), and/or a counter electrode (cathode) passing through and secured within the body forming electrochemically reactive surfaces on the body and an electronic connective means at another location on the body, and a multi-domain membrane affixed to the body and covering the electrochemically reactive surface.


The term “high oxygen solubility domain” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a domain composed of a material that has higher oxygen solubility than aqueous media such that it concentrates oxygen from the biological fluid surrounding the membrane system. The domain can act as an oxygen reservoir during times of minimal oxygen need and has the capacity to provide, on demand, a higher oxygen gradient to facilitate oxygen transport across the membrane. Thus, the ability of the high oxygen solubility domain to supply a higher flux of oxygen to critical domains when needed can improve overall sensor function.


The term “domain” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a region of the membrane system that can be a layer, a uniform or non-uniform gradient (for example, an anisotropic region of a membrane), or a portion of a membrane.


The phrase “distal to” as used herein is a broad term and is used in its ordinary sense, including, without limitation, the spatial relationship between various elements in comparison to a particular point of reference. In general, the term indicates an element is located relatively far from the reference point than another element.


The term “proximal to” as used herein is a broad term and is used in its ordinary sense, including, without limitation, the spatial relationship between various elements in comparison to a particular point of reference. In general, the term indicates an element is located relatively near to the reference point than another element.


The terms “in vivo portion” and “distal portion” as used herein are broad terms and are used in their ordinary sense, including, without limitation, to refer to the portion of the device (for example, a sensor) adapted for insertion into and/or existence within a living body of a host.


The terms “ex vivo portion” and “proximal portion” as used herein are broad terms and are used in their ordinary sense, including, without limitation, to refer to the portion of the device (for example, a sensor) adapted to remain and/or exist outside of a living body of a host.


The terms “raw data stream” and “data stream,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, to refer to an analog or digital signal from the analyte sensor directly related to the measured analyte. For example, the raw data stream is digital data in “counts” converted by an A/D converter from an analog signal (for example, voltage or amps) representative of an analyte concentration. The terms broadly encompass a plurality of time spaced data points from a substantially continuous analyte sensor, each of which comprises individual measurements taken at time intervals ranging from fractions of a second up to, for example, 1, 2, or 5 minutes or longer.


The term “count,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to a unit of measurement of a digital signal. For example, a raw data stream measured in counts is directly related to a voltage (for example, converted by an A/D converter), which is directly related to current from the working electrode.


The term “physiologically feasible,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to one or more physiological parameters obtained from continuous studies of glucose data in humans and/or animals. For example, a maximal sustained rate of change of glucose in humans of about 4 to 6 mg/dL/min and a maximum acceleration of the rate of change of about 0.1 to 0.2 mg/dL/min/min are deemed physiologically feasible limits. Values outside of these limits are considered non-physiological and are likely a result of, e.g., signal error.


The term “ischemia,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to local and temporary deficiency of blood supply due to obstruction of circulation to a part (for example, a sensor). Ischemia can be caused, for example, by mechanical obstruction (for example, arterial narrowing or disruption) of the blood supply.


The term “matched data pairs”, as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to reference data (for example, one or more reference analyte data points) matched with substantially time corresponding sensor data (for example, one or more sensor data points).


The term “Clarke Error Grid”, as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to an error grid analysis, for example, an error grid analysis used to evaluate the clinical significance of the difference between a reference glucose value and a sensor generated glucose value, taking into account 1) the value of the reference glucose measurement, 2) the value of the sensor glucose measurement, 3) the relative difference between the two values, and 4) the clinical significance of this difference. See Clarke et al., “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose”, Diabetes Care, Volume 10, Number 5, September-October 1987, the contents of which are hereby incorporated by reference herein in their entirety and are hereby made a part of this specification.


The term “Consensus Error Grid,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to an error grid analysis that assigns a specific level of clinical risk to any possible error between two time corresponding measurements, e.g., glucose measurements. The Consensus Error Grid is divided into zones signifying the degree of risk posed by the deviation. See Parkes et al., “A New Consensus Error Grid to Evaluate the Clinical Significance of Inaccuracies in the Measurement of Blood Glucose”, Diabetes Care, Volume 23, Number 8, August 2000, the contents of which are hereby incorporated by reference herein in their entirety and are hereby made a part of this specification.


The term “clinical acceptability”, as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to determination of the risk of an inaccuracy to a patient. Clinical acceptability considers a deviation between time corresponding analyte measurements (for example, data from a glucose sensor and data from a reference glucose monitor) and the risk (for example, to the decision making of a person with diabetes) associated with that deviation based on the analyte value indicated by the sensor and/or reference data. An example of clinical acceptability can be 85% of a given set of measured analyte values within the “A” and “B” region of a standard Clarke Error Grid when the sensor measurements are compared to a standard reference measurement.


The term “sensor” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to the component or region of a device by which an analyte can be quantified.


The term “needle,” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to a slender hollow instrument for introducing material into or removing material from the body.


The terms “operably connected” and “operably linked” as used herein are broad terms and are used in their ordinary sense, including, without limitation, to refer to one or more components linked to one or more other components. The terms can refer to a mechanical connection, an electrical connection, or a connection that allows transmission of signals between the components. For example, one or more electrodes can be used to detect the amount of analyte in a sample and to convert that information into a signal; the signal can then be transmitted to a circuit. In such an example, the electrode is “operably linked” to the electronic circuitry.


The term “baseline” as used herein is a broad term and is used in its ordinary sense, including, without limitation, is the component of an analyte sensor signal that is not related to the analyte concentration. In one example of a glucose sensor, the baseline is composed substantially of signal contribution due to factors other than glucose (for example, interfering species, non-reaction-related hydrogen peroxide, or other electroactive species with an oxidation potential that overlaps with hydrogen peroxide). In some embodiments wherein a calibration is defined by solving for the equation y=mx+b, the value of b represents the baseline of the signal.


The terms “sensitivity” and “slope,” as used herein are broad terms and are used in their ordinary sense, including, without limitation, to refer to an amount of electrical current produced by a predetermined amount (unit) of the measured analyte. For example, in one preferred embodiment, a sensor has a sensitivity (or slope) of about 3.5 to about 7.5 picoAmps of current for every 1 mg/dL of glucose analyte.


The term “membrane system,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to a permeable or semi-permeable membrane that can be comprised of two or more domains and is typically constructed of materials of a few microns thickness or more, which is permeable to oxygen and is optionally permeable to, e.g., glucose or another analyte. In one example, the membrane system comprises an immobilized glucose oxidase enzyme, which enables a reaction to occur between glucose and oxygen whereby a concentration of glucose can be measured.


The terms “processor module” and “microprocessor,” as used herein, are broad terms and are used in their ordinary sense, without limitation, to refer to a computer system, state machine, processor, or the like designed to perform arithmetic or logic operations using logic circuitry that responds to and processes the basic instructions that drive a computer.


The terms “smoothing” and “filtering,” as used herein, are broad terms and are used in their ordinary sense, without limitation, to refer to modification of a set of data to make it smoother and more continuous or to remove or diminish outlying points, for example, by performing a moving average of the raw data stream.


The term “algorithm,” as used herein, is a broad term and is used in its ordinary sense, without limitation, to refer to a computational process (for example, programs) involved in transforming information from one state to another, for example, by using computer processing.


The term “regression,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to finding a line for which a set of data has a minimal measurement (for example, deviation) from that line. Regression can be linear, non-linear, first order, second order, or the like. One example of regression is least squares regression.


The term “calibration,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, to refer to the process of determining the relationship between the sensor data and the corresponding reference data, which can be used to convert sensor data into meaningful values substantially equivalent to the reference data. In some embodiments, namely, in continuous analyte sensors, calibration can be updated or recalibrated over time as changes in the relationship between the sensor data and reference data occur, for example, due to changes in sensitivity, baseline, transport, metabolism, or the like.


The terms “interferants” and “interfering species,” as used herein, are broad terms and are used in their ordinary sense, including, without limitation, to refer to effects and/or species that interfere with the measurement of an analyte of interest in a sensor to produce a signal that does not accurately represent the analyte concentration. In one example of an electrochemical sensor, interfering species are compounds with an oxidation potential that overlap that of the analyte to be measured, thereby producing a false positive signal.


Sensor System


A transcutaneous analyte sensor system is provided that includes an applicator for inserting the transdermal analyte sensor under a host's skin. The sensor system includes a sensor for sensing the analyte, wherein the sensor is associated with a mounting unit adapted for mounting on the skin of the host. The mounting unit houses the electronics unit associated with the sensor and is adapted for fastening to the host's skin. In certain embodiments, the system further includes a receiver for receiving and/or processing sensor data.



FIG. 1 is a perspective view of a transcutaneous analyte sensor system 10. In the preferred embodiment of a system as depicted in FIG. 1, the sensor includes an applicator 12, a mounting unit 14, and an electronics unit 16. The system can further include a receiver 158, such as is described in more detail with reference to FIG. 14.


The mounting unit 14 includes a base 24 adapted for mounting on the skin of a host, a sensor adapted for transdermal insertion through the skin of a host (see FIG. 4), and one or more contacts 28 configured to provide secure electrical contact between the sensor and the electronics unit 16. The mounting unit 14 is designed to maintain the integrity of the sensor in the host so as to reduce or eliminate translation of motion between the mounting unit, the host, and/or the sensor.


In one embodiment, an applicator 12 is provided for inserting the sensor 32 through the host's skin at the appropriate insertion angle with the aid of a needle (see FIGS. 6 through 8), and for subsequent removal of the needle using a continuous push-pull action. Preferably, the applicator comprises an applicator body 18 that guides the applicator components (see FIGS. 6 through 8) and includes an applicator body base 60 configured to mate with the mounting unit 14 during insertion of the sensor into the host. The mate between the applicator body base 60 and the mounting unit 14 can use any known mating configuration, for example, a snap-fit, a press-fit, an interference-fit, or the like, to discourage separation during use. One or more release latches 30 enable release of the applicator body base 60, for example, when the applicator body base 60 is snap fit into the mounting unit 14.


The electronics unit 16 includes hardware, firmware, and/or software that enable measurement of levels of the analyte via the sensor. For example, the electronics unit 16 can comprise a potentiostat, a power source for providing power to the sensor, other components useful for signal processing, and preferably an RF module for transmitting data from the electronics unit 16 to a receiver (see FIGS. 13 to 15). Electronics can be affixed to a printed circuit board (PCB), or the like, and can take a variety of forms. For example, the electronics can take the form of an integrated circuit (IC), such as an Application-Specific Integrated Circuit (ASIC), a microcontroller, or a processor. Preferably, electronics unit 16 houses the sensor electronics, which comprise systems and methods for processing sensor analyte data. Examples of systems and methods for processing sensor analyte data are described in more detail below and in co-pending U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003, and entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA.”


After insertion of the sensor using the applicator 12, and subsequent release of the applicator 12 from the mounting unit 14 (see FIGS. 8A to 8C), the electronics unit 16 is configured to releasably mate with the mounting unit 14 in a manner similar to that described above with reference to the applicator body base 60. The electronics unit 16 includes contacts on its backside (not shown) configured to electrically connect with the contacts 28, such as are described in more detail with reference to FIGS. 2 through 4. In one embodiment, the electronics unit 16 is configured with programming, for example initialization, calibration reset, failure testing, or the like, each time it is initially inserted into the mounting unit 14 and/or each time it initially communicates with the sensor 32.


Mounting Unit



FIG. 2 is a perspective view of a sensor system of a preferred embodiment, shown in its functional position, including a mounting unit and an electronics unit matingly engaged therein. FIGS. 8 to 10 illustrate the sensor is its functional position for measurement of an analyte concentration in a host.


In preferred embodiments, the mounting unit 14, also referred to as a housing, comprises a base 24 adapted for fastening to a host's skin. The base can be formed from a variety of hard or soft materials, and preferably comprises a low profile for minimizing protrusion of the device from the host during use. In some embodiments, the base 24 is formed at least partially from a flexible material, which is believed to provide numerous advantages over conventional transcutaneous sensors, which, unfortunately, can suffer from motion-related artifacts associated with the host's movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements of the sensor (for example, relative movement between the in vivo portion and the ex vivo portion, movement of the skin, and/or movement within the host (dermis or subcutaneous)) create stresses on the device and can produce noise in the sensor signal. It is believed that even small movements of the skin can translate to discomfort and/or motion-related artifact, which can be reduced or obviated by a flexible or articulated base. Thus, by providing flexibility and/or articulation of the device against the host's skin, better conformity of the sensor system 10 to the regular use and movements of the host can be achieved. Flexibility or articulation is believed to increase adhesion (with the use of an adhesive pad) of the mounting unit 14 onto the skin, thereby decreasing motion-related artifact that can otherwise translate from the host's movements and reduced sensor performance.



FIG. 3 is an exploded perspective view of a sensor system of a preferred embodiment, showing a mounting unit, an associated contact subassembly, and an electronics unit. In some embodiments, the contacts 28 are mounted on or in a subassembly hereinafter referred to as a contact subassembly 26 (see FIG. 4), which includes a contact holder 34 configured to fit within the base 24 of the mounting unit 14 and a hinge 38 that allows the contact subassembly 26 to pivot between a first position (for insertion) and a second position (for use) relative to the mounting unit 14, which is described in more detail with reference to FIGS. 10 and 11. The term “hinge” as used herein is a broad term and is used in its ordinary sense, including, without limitation, to refer to any of a variety of pivoting, articulating, and/or hinging mechanisms, such as an adhesive hinge, a sliding joint, and the like; the term hinge does not necessarily imply a fulcrum or fixed point about which the articulation occurs.


In certain embodiments, the mounting unit 14 is provided with an adhesive pad 8, preferably disposed on the mounting unit's back surface and preferably including a releasable backing layer 9. Thus, removing the backing layer 9 and pressing the base portion 24 of the mounting unit onto the host's skin adheres the mounting unit 14 to the host's skin. Additionally or alternatively, an adhesive pad can be placed over some or all of the sensor system after sensor insertion is complete to ensure adhesion, and optionally to ensure an airtight seal or watertight seal around the wound exit-site (or sensor insertion site) (not shown). Appropriate adhesive pads can be chosen and designed to stretch, elongate, conform to, and/or aerate the region (e.g., host's skin).


In preferred embodiments, the adhesive pad 8 is formed from spun-laced, open- or closed-cell foam, and/or non-woven fibers, and includes an adhesive disposed thereon, however a variety of adhesive pads appropriate for adhesion to the host's skin can be used, as is appreciated by one skilled in the art of medical adhesive pads. In some embodiments, a double-sided adhesive pad is used to adhere the mounting unit to the host's skin. In other embodiments, the adhesive pad includes a foam layer, for example, a layer wherein the foam is disposed between the adhesive pad's side edges and acts as a shock absorber.


In some embodiments, the surface area of the adhesive pad 8 is greater than the surface area of the mounting unit's back surface. Alternatively, the adhesive pad can be sized with substantially the same surface area as the back surface of the base portion. Preferably, the adhesive pad has a surface area on the side to be mounted on the host's skin that is greater than about 1, 1.25, 1.5, 1.75, 2, 2.25, or 2.5, times the surface area of the back surface 25 of the mounting unit base 24. Such a greater surface area can increase adhesion between the mounting unit and the host's skin, minimize movement between the mounting unit and the host's skin, and/or protect the wound exit-site (sensor insertion site) from environmental and/or biological contamination. In some alternative embodiments, however, the adhesive pad can be smaller in surface area than the back surface assuming a sufficient adhesion can be accomplished.


In some embodiments, the adhesive pad 8 is substantially the same shape as the back surface 25 of the base 24, although other shapes can also be advantageously employed, for example, butterfly-shaped, round, square, or rectangular. The adhesive pad backing can be designed for two-step release, for example, a primary release wherein only a portion of the adhesive pad is initially exposed to allow adjustable positioning of the device, and a secondary release wherein the remaining adhesive pad is later exposed to firmly and securely adhere the device to the host's skin once appropriately positioned. The adhesive pad is preferably waterproof. Preferably, a stretch-release adhesive pad is provided on the back surface of the base portion to enable easy release from the host's skin at the end of the useable life of the sensor, as is described in more detail with reference to FIGS. 9A to 9C.


In some circumstances, it has been found that a conventional bond between the adhesive pad and the mounting unit may not be sufficient, for example, due to humidity that can cause release of the adhesive pad from the mounting unit. Accordingly, in some embodiments, the adhesive pad can be bonded using a bonding agent activated by or accelerated by an ultraviolet, acoustic, radio frequency, or humidity cure. In some embodiments, a eutectic bond of first and second composite materials can form a strong adhesion. In some embodiments, the surface of the mounting unit can be pretreated utilizing ozone, plasma, chemicals, or the like, in order to enhance the bondability of the surface.


A bioactive agent is preferably applied locally at the insertion site prior to or during sensor insertion. Suitable bioactive agents include those which are known to discourage or prevent bacterial growth and infection, for example, anti-inflammatory agents, antimicrobials, antibiotics, or the like. It is believed that the diffusion or presence of a bioactive agent can aid in prevention or elimination of bacteria adjacent to the exit-site. Additionally or alternatively, the bioactive agent can be integral with or coated on the adhesive pad, or no bioactive agent at all is employed



FIG. 4 is an exploded perspective view of the contact subassembly 26 in one embodiment, showing its individual components. Preferably, a watertight (waterproof or water-resistant) sealing member 36, also referred to as a sealing material, fits within a contact holder 34 and provides a watertight seal configured to surround the electrical connection at the electrode terminals within the mounting unit in order to protect the electrodes (and the respective operable connection with the contacts of the electronics unit 16) from damage due to moisture, humidity, dirt, and other external environmental factors. In one embodiment, the sealing member 36 is formed from an elastomeric material, such as silicone; however, a variety of other elastomeric or sealing materials can also be used. In alternative embodiments, the seal is designed to form an interference fit with the electronics unit and can be formed from a variety of materials, for example, flexible plastics or noble metals. One of ordinary skill in the art appreciates that a variety of designs can be employed to provide a seal surrounding the electrical contacts described herein. For example, the contact holder 34 can be integrally designed as a part of the mounting unit, rather than as a separate piece thereof. Additionally or alternatively, a sealant can be provided in or around the sensor (e.g., within or on the contact subassembly or sealing member), such as is described in more detail with reference to FIGS. 11A and 11B.


In the illustrated embodiment, the sealing member 36 is formed with a raised portion 37 surrounding the contacts 28. The raised portion 37 enhances the interference fit surrounding the contacts 28 when the electronics unit 16 is mated to the mounting unit 14. Namely, the raised portion surrounds each contact and presses against the electronics unit 16 to form a tight seal around the electronics unit.


Contacts 28 fit within the seal 36 and provide for electrical connection between the sensor 32 and the electronics unit 16. In general, the contacts are designed to ensure a stable mechanical and electrical connection of the electrodes that form the sensor 32 (see FIG. 5A to 5C) to mutually engaging contacts 28 thereon. A stable connection can be provided using a variety of known methods, for example, domed metallic contacts, cantilevered fingers, pogo pins, or the like, as is appreciated by one skilled in the art.


In preferred embodiments, the contacts 28 are formed from a conductive elastomeric material, such as a carbon black elastomer, through which the sensor 32 extends (see FIGS. 10B and 11B). Conductive elastomers are advantageously employed because their resilient properties create a natural compression against mutually engaging contacts, forming a secure press fit therewith. In some embodiments, conductive elastomers can be molded in such a way that pressing the elastomer against the adjacent contact performs a wiping action on the surface of the contact, thereby creating a cleaning action during initial connection. Additionally, in preferred embodiments, the sensor 32 extends through the contacts 28 wherein the sensor is electrically and mechanically secure by the relaxation of elastomer around the sensor (see FIGS. 7A to 7D).


In an alternative embodiment, a conductive, stiff plastic forms the contacts, which are shaped to comply upon application of pressure (for example, a leaf-spring shape). Contacts of such a configuration can be used instead of a metallic spring, for example, and advantageously avoid the need for crimping or soldering through compliant materials; additionally, a wiping action can be incorporated into the design to remove contaminants from the surfaces during connection. Non-metallic contacts can be advantageous because of their seamless manufacturability, robustness to thermal compression, non-corrosive surfaces, and native resistance to electrostatic discharge (ESD) damage due to their higher-than-metal resistance.


Sensor


Preferably, the sensor 32 includes a distal portion 42, also referred to as the in vivo portion, adapted to extend out of the mounting unit for insertion under the host's skin, and a proximal portion 40, also referred to as an ex vivo portion, adapted to remain above the host's skin after sensor insertion and to operably connect to the electronics unit 16 via contacts 28. Preferably, the sensor 32 includes two or more electrodes: a working electrode 44 and at least one additional electrode, which can function as a counter electrode and/or reference electrode, hereinafter referred to as the reference electrode 46. A membrane system is preferably deposited over the electrodes, such as described in more detail with reference to FIGS. 5A to 5C, below.



FIG. 5A is an expanded cutaway view of a proximal portion 40 of the sensor in one embodiment, showing working and reference electrodes. In the illustrated embodiments, the working and reference electrodes 44, 46 extend through the contacts 28 to form electrical connection therewith (see FIGS. 10B and 11B). Namely, the working electrode 44 is in electrical contact with one of the contacts 28 and the reference electrode 46 is in electrical contact with the other contact 28, which in turn provides for electrical connection with the electronics unit 16 when it is mated with the mounting unit 14. Mutually engaging electrical contacts permit operable connection of the sensor 32 to the electronics unit 16 when connected to the mounting unit 14, however other methods of electrically connecting the electronics unit 16 to the sensor 32 are also possible. In some alternative embodiments, for example, the reference electrode can be configured to extend from the sensor and connect to a contact at another location on the mounting unit (e.g., non-coaxially). Detachable connection between the mounting unit 14 and electronics unit 16 provides improved manufacturability, namely, the relatively inexpensive mounting unit 14 can be disposed of when replacing the sensor system after its usable life, while the relatively more expensive electronics unit 16 can be reused with multiple sensor systems.


In alternative embodiments, the contacts 28 are formed into a variety of alternative shapes and/or sizes. For example, the contacts 28 can be discs, spheres, cuboids, and the like. Furthermore, the contacts 28 can be designed to extend from the mounting unit in a manner that causes an interference fit within a mating cavity or groove of the electronics unit, forming a stable mechanical and electrical connection therewith.



FIG. 5B is an expanded cutaway view of a distal portion of the sensor in one embodiment, showing working and reference electrodes. In preferred embodiments, the sensor is formed from a working electrode 44 and a reference electrode 46 helically wound around the working electrode 44. An insulator 45 is disposed between the working and reference electrodes to provide necessary electrical insulation there between. Certain portions of the electrodes are exposed to enable electrochemical reaction thereon, for example, a window 43 can be formed in the insulator to expose a portion of the working electrode 44 for electrochemical reaction.


In preferred embodiments, each electrode is formed from a fine wire with a diameter of from about 0.001 or less to about 0.010 inches or more, for example, and is formed from, e.g., a plated insulator, a plated wire, or bulk electrically conductive material. Although the illustrated electrode configuration and associated text describe one preferred method of forming a transcutaneous sensor, a variety of known transcutaneous sensor configurations can be employed with the transcutaneous analyte sensor system of the preferred embodiments, such as are described in U.S. Pat. No. 6,695,860 to Ward et al., U.S. Pat. No. 6,565,509 to Say et al., U.S. Pat. No. 6,248,067 to Causey III, et al., and U.S. Pat. No. 6,514,718 to Heller et al.


In preferred embodiments, the working electrode comprises a wire formed from a conductive material, such as platinum, platinum-iridium, palladium, graphite, gold, carbon, conductive polymer, alloys, or the like. Although the electrodes can by formed by a variety of manufacturing techniques (bulk metal processing, deposition of metal onto a substrate, or the like), it can be advantageous to form the electrodes from plated wire (e.g., platinum on steel wire) or bulk metal (e.g., platinum wire). It is believed that electrodes formed from bulk metal wire provide superior performance (e.g., in contrast to deposited electrodes), including increased stability of assay, simplified manufacturability, resistance to contamination (e.g., which can be introduced in deposition processes), and improved surface reaction (e.g., due to purity of material) without peeling or delamination.


The working electrode 44 is configured to measure the concentration of an analyte. In an enzymatic electrochemical sensor for detecting glucose, for example, the working electrode measures the hydrogen peroxide produced by an enzyme catalyzed reaction of the analyte being detected and creates a measurable electronic current For example, in the detection of glucose wherein glucose oxidase produces hydrogen peroxide as a byproduct, hydrogen peroxide reacts with the surface of the working electrode producing two protons (2H+), two electrons (2e) and one molecule of oxygen (O2), which produces the electronic current being detected.


In preferred embodiments, the working electrode 44 is covered with an insulating material 45, for example, a non-conductive polymer. Dip-coating, spray-coating, vapor-deposition, or other coating or deposition techniques can be used to deposit the insulating material on the working electrode. In one embodiment, the insulating material comprises parylene, which can be an advantageous polymer coating for its strength, lubricity, and electrical insulation properties. Generally, parylene is produced by vapor deposition and polymerization of para-xylylene (or its substituted derivatives). However, any suitable insulating material can be used, for example, fluorinated polymers, polyethyleneterephthalate, polyurethane, polyimide, other nonconducting polymers, or the like. Glass or ceramic materials can also be employed. Other materials suitable for use include surface energy modified coating systems such as are marketed under the trade names AMC18, AMC148, AMC141, and AMC321 by Advanced Materials Components Express of Bellafonte, Pa. In some alternative embodiments, however, the working electrode may not require a coating of insulator.


The reference electrode 46, which can function as a reference electrode alone, or as a dual reference and counter electrode, is formed from silver, silver/silver chloride, or the like. Preferably, the reference electrode 46 is juxtapositioned and/or twisted with or around the working electrode 44; however other configurations are also possible. In the illustrated embodiments, the reference electrode 46 is helically wound around the working electrode 44. The assembly of wires is then optionally coated or adhered together with an insulating material, similar to that described above, so as to provide an insulating attachment.


In embodiments wherein an outer insulator is disposed, a portion of the coated assembly structure can be stripped or otherwise removed, for example, by hand, excimer lasing, chemical etching, laser ablation, grit-blasting (e.g., with sodium bicarbonate or other suitable grit), or the like, to expose the electroactive surfaces. Alternatively, a portion of the electrode can be masked prior to depositing the insulator in order to maintain an exposed electroactive surface area. In one exemplary embodiment, grit blasting is implemented to expose the electroactive surfaces, preferably utilizing a grit material that is sufficiently hard to ablate the polymer material, while being sufficiently soft so as to minimize or avoid damage to the underlying metal electrode (e.g., a platinum electrode). Although a variety of “grit” materials can be used (e.g., sand, talc, walnut shell, ground plastic, sea salt, and the like), in some preferred embodiments, sodium bicarbonate is an advantageous grit-material because it is sufficiently hard to ablate, e.g., a parylene coating without damaging, e.g., an underlying platinum conductor. One additional advantage of sodium bicarbonate blasting includes its polishing action on the metal as it strips the polymer layer, thereby eliminating a cleaning step that might otherwise be necessary.


In the embodiment illustrated in FIG. 5B, a radial window 43 is formed through the insulating material 45 to expose a circumferential electroactive surface of the working electrode. Additionally, sections 41 of electroactive surface of the reference electrode are exposed. For example, the 41 sections of electroactive surface can be masked during deposition of an outer insulating layer or etched after deposition of an outer insulating layer.


In some applications, cellular attack or migration of cells to the sensor can cause reduced sensitivity and/or function of the device, particularly after the first day of implantation. However, when the exposed electroactive surface is distributed circumferentially about the sensor (e.g., as in a radial window), the available surface area for reaction can be sufficiently distributed so as to minimize the effect of local cellular invasion of the sensor on the sensor signal. Alternatively, a tangential exposed electroactive window can be formed, for example, by stripping only one side of the coated assembly structure. In other alternative embodiments, the window can be provided at the tip of the coated assembly structure such that the electroactive surfaces are exposed at the tip of the sensor. Other methods and configurations for exposing electroactive surfaces can also be employed.


In some embodiments, the working electrode has a diameter of from about 0.001 inches or less to about 0.010 inches or more, preferably from about 0.002 inches to about 0.008 inches, and more preferably from about 0.004 inches to about 0.005 inches. The length of the window can be from about 0.1 mm (about 0.004 inches) or less to about 2 mm (about 0.078 inches) or more, and preferably from about 0.5 mm (about 0.02 inches) to about 0.75 mm (0.03 inches). In such embodiments, the exposed surface area of the working electrode is preferably from about 0.000013 in2 (0.0000839 cm2) or less to about 0.0025 in2 (0.016129 cm2) or more (assuming a diameter of from about 0.001 inches to about 0.010 inches and a length of from about 0.004 inches to about 0.078 inches). The preferred exposed surface area of the working electrode is selected to produce an analyte signal with a current in the picoAmp range, such as is described in more detail elsewhere herein. However, a current in the picoAmp range can be dependent upon a variety of factors, for example the electronic circuitry design (e.g., sample rate, current draw, A/D converter bit resolution, etc.), the membrane system (e.g., permeability of the analyte through the membrane system), and the exposed surface area of the working electrode. Accordingly, the exposed electroactive working electrode surface area can be selected to have a value greater than or less than the above-described ranges taking into consideration alterations in the membrane system and/or electronic circuitry. In preferred embodiments of a glucose sensor, it can be advantageous to minimize the surface area of the working electrode while maximizing the diffusivity of glucose in order to optimize the signal-to-noise ratio while maintaining sensor performance in both high and low glucose concentration ranges.


In some alternative embodiments, the exposed surface area of the working (and/or other) electrode can be increased by altering the cross-section of the electrode itself. For example, in some embodiments the cross-section of the working electrode can be defined by a cross, star, cloverleaf, ribbed, dimpled, ridged, irregular, or other non-circular configuration; thus, for any predetermined length of electrode, a specific increased surface area can be achieved (as compared to the area achieved by a circular cross-section). Increasing the surface area of the working electrode can be advantageous in providing an increased signal responsive to the analyte concentration, which in turn can be helpful in improving the signal-to-noise ratio, for example.


In some alternative embodiments, additional electrodes can be included within the assembly, for example, a three-electrode system (working, reference, and counter electrodes) and/or an additional working electrode (e.g., an electrode which can be used to generate oxygen, which is configured as a baseline subtracting electrode, or which is configured for measuring additional analytes). Co-pending U.S. patent application Ser. No. 11/007,635, filed Dec. 7, 2004 and entitled “SYSTEMS AND METHODS FOR IMPROVING ELECTROCHEMICAL ANALYTE SENSORS” and U.S. patent application Ser. No. 11/004,561, filed Dec. 3, 2004 and entitled “CALIBRATION TECHNIQUES FOR A CONTINUOUS ANALYTE SENSOR” describe some systems and methods for implementing and using additional working, counter, and/or reference electrodes. In one implementation wherein the sensor comprises two working electrodes, the two working electrodes are juxtapositioned (e.g., extend parallel to each other), around which the reference electrode is disposed (e.g., helically wound). In some embodiments wherein two or more working electrodes are provided, the working electrodes can be formed in a double-, triple-, quad-, etc. helix configuration along the length of the sensor (for example, surrounding a reference electrode, insulated rod, or other support structure.) The resulting electrode system can be configured with an appropriate membrane system, wherein the first working electrode is configured to measure a first signal comprising glucose and baseline and the additional working electrode is configured to measure a baseline signal consisting of baseline only (e.g., configured to be substantially similar to the first working electrode without an enzyme disposed thereon.) In this way, the baseline signal can be subtracted from the first signal to produce a glucose-only signal that is substantially not subject to fluctuations in the baseline and/or interfering species on the signal.


Although the preferred embodiments illustrate one electrode configuration including one bulk metal wire helically wound around another bulk metal wire, other electrode configurations are also contemplated. In an alternative embodiment, the working electrode comprises a tube with a reference electrode disposed or coiled inside, including an insulator there between. Alternatively, the reference electrode comprises a tube with a working electrode disposed or coiled inside, including an insulator there between. In another alternative embodiment, a polymer (e.g., insulating) rod is provided, wherein the electrodes are deposited (e.g., electro-plated) thereon. In yet another alternative embodiment, a metallic (e.g., steel) rod is provided, coated with an insulating material, onto which the working and reference electrodes are deposited. In yet another alternative embodiment, one or more working electrodes are helically wound around a reference electrode.


Preferably, the electrodes and membrane systems of the preferred embodiments are coaxially formed, namely, the electrodes and/or membrane system all share the same central axis. While not wishing to be bound by theory, it is believed that a coaxial design of the sensor enables a symmetrical design without a preferred bend radius. Namely, in contrast to prior art sensors comprising a substantially planar configuration that can suffer from regular bending about the plane of the sensor, the coaxial design of the preferred embodiments do not have a preferred bend radius and therefore are not subject to regular bending about a particular plane (which can cause fatigue failures and the like). However, non-coaxial sensors can be implemented with the sensor system of the preferred embodiments.


In addition to the above-described advantages, the coaxial sensor design of the preferred embodiments enables the diameter of the connecting end of the sensor (proximal portion) to be substantially the same as that of the sensing end (distal portion) such that the needle is able to insert the sensor into the host and subsequently slide back over the sensor and release the sensor from the needle, without slots or other complex multi-component designs.


In one such alternative embodiment, the two wires of the sensor are held apart and configured for insertion into the host in proximal but separate locations. The separation of the working and reference electrodes in such an embodiment can provide additional electrochemical stability with simplified manufacture and electrical connectivity. It is appreciated by one skilled in the art that a variety of electrode configurations can be implemented with the preferred embodiments.


Anchoring Mechanism


It is preferred that the sensor remains substantially stationary within the tissue of the host, such that migration or motion of the sensor with respect to the surrounding tissue is minimized. Migration or motion is believed to cause inflammation at the sensor implant site due to irritation, and can also cause noise on the sensor signal due to motion-related artifact, for example. Therefore, it can be advantageous to provide an anchoring mechanism that provides support for the sensor's in vivo portion to avoid the above-mentioned problems. Combining advantageous sensor geometry with an advantageous anchoring minimizes additional parts and allows for an optimally small or low profile design of the sensor. In one embodiment the sensor includes a surface topography, such as the helical surface topography provided by the reference electrode surrounding the working electrode. In alternative embodiments, a surface topography could be provided by a roughened surface, porous surface (e.g. porous parylene), ridged surface, or the like. Additionally (or alternatively), the anchoring can be provided by prongs, spines, barbs, wings, hooks, a bulbous portion (for example, at the distal end), an S-bend along the sensor, a rough surface topography, a gradually changing diameter, combinations thereof, or the like, which can be used alone or in combination with the helical surface topography to stabilize the sensor within the subcutaneous tissue.


Variable Stiffness


As described above, conventional transcutaneous devices are believed to suffer from motion artifact associated with host movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements on the sensor (for example, relative movement within and between the subcutaneous space, dermis, skin, and external portions of the sensor) create stresses on the device, which is known to produce artifacts on the sensor signal. Accordingly, there are different design considerations (for example, stress considerations) on various sections of the sensor. For example, the distal portion 42 of the sensor can benefit in general from greater flexibility as it encounters greater mechanical stresses caused by movement of the tissue within the patient and relative movement between the in vivo and ex vivo portions of the sensor. On the other hand, the proximal portion 40 of the sensor can benefit in general from a stiffer, more robust design to ensure structural integrity and/or reliable electrical connections. Additionally, in some embodiments wherein a needle is retracted over the proximal portion 40 of the device (see FIGS. 6 to 8), a stiffer design can minimize crimping of the sensor and/or ease in retraction of the needle from the sensor. Thus, by designing greater flexibility into the in vivo (distal) portion 42, the flexibility is believed to compensate for patient movement, and noise associated therewith. By designing greater stiffness into the ex vivo (proximal) portion 40, column strength (for retraction of the needle over the sensor), electrical connections, and integrity can be enhanced. In some alternative embodiments, a stiffer distal end and/or a more flexible proximal end can be advantageous as described in U.S. patent Ser. No. 11/077,759, filed on Mar. 10, 2005, now U.S. Pat. No. 7,783,333 and entitled “TRANSCUTANEOUS MEDICAL DEVICE WITH VARIABLE STIFFNESS.”


The preferred embodiments provide a distal portion 42 of the sensor 32 designed to be more flexible than a proximal portion 40 of the sensor. The variable stiffness of the preferred embodiments can be provided by variable pitch of any one or more helically wound wires of the device, variable cross-section of any one or more wires of the device, and/or variable hardening and/or softening of any one or more wires of the device, such as is described in more detail with reference to U.S. patent application Ser. No. 11/077,759, now U.S. Pat. No. 7,783,333 described above and entitled “TRANSCUTANEOUS MEDICAL DEVICE WITH VARIABLE STIFFNESS.”


Membrane System



FIG. 5C is a cross-sectional view through the sensor on line C-C of FIG. 5B showing the exposed electroactive surface of the working electrode surrounded by the membrane system in one embodiment. Preferably, a membrane system is deposited over at least a portion of the electroactive surfaces of the sensor 32 (working electrode and optionally reference electrode) and provides protection of the exposed electrode surface from the biological environment, diffusion resistance (limitation) of the analyte if needed, a catalyst for enabling an enzymatic reaction, limitation or blocking of interferants, and/or hydrophilicity at the electrochemically reactive surfaces of the sensor interface. Some examples of suitable membrane systems are described in co-pending U.S. patent application Ser. No. 10/838,912, filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR.”


In general, the membrane system includes a plurality of domains, for example, an electrode domain 47, an interference domain 48, an enzyme domain 49 (for example, including glucose oxidase), and a resistance domain 50, and can include a high oxygen solubility domain, and/or a bioprotective domain (not shown), such as is described in more detail in U.S. patent application Ser. No. 10/838,912, and such as is described in more detail below. The membrane system can be deposited on the exposed electroactive surfaces using known thin film techniques (for example, spraying, electro-depositing, dipping, or the like). In one embodiment, one or more domains are deposited by dipping the sensor into a solution and drawing out the sensor at a speed that provides the appropriate domain thickness. However, the membrane system can be disposed over (or deposited on) the electroactive surfaces using any known method as will be appreciated by one skilled in the art.


Electrode Domain


In some embodiments, the membrane system comprises an optional electrode domain 47. The electrode domain 47 is provided to ensure that an electrochemical reaction occurs between the electroactive surfaces of the working electrode and the reference electrode, and thus the electrode domain 47 is preferably situated more proximal to the electroactive surfaces than the enzyme domain. Preferably, the electrode domain 47 includes a semipermeable coating that maintains a layer of water at the electrochemically reactive surfaces of the sensor, for example, a humectant in a binder material can be employed as an electrode domain; this allows for the full transport of ions in the aqueous environment. The electrode domain can also assist in stabilizing the operation of the sensor by overcoming electrode start-up and drifting problems caused by inadequate electrolyte. The material that forms the electrode domain can also protect against pH-mediated damage that can result from the formation of a large pH gradient due to the electrochemical activity of the electrodes.


In one embodiment, the electrode domain 47 includes a flexible, water-swellable, hydrogel film having a “dry film” thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. “Dry film” thickness refers to the thickness of a cured film cast from a coating formulation by standard coating techniques.


In certain embodiments, the electrode domain 47 is formed of a curable mixture of a urethane polymer and a hydrophilic polymer. Particularly preferred coatings are formed of a polyurethane polymer having carboxylate functional groups and non-ionic hydrophilic polyether segments, wherein the polyurethane polymer is crosslinked with a water soluble carbodiimide (e.g., 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC))) in the presence of polyvinylpyrrolidone and cured at a moderate temperature of about 50° C.


Preferably, the electrode domain 47 is deposited by spray or dip-coating the electroactive surfaces of the sensor 32. More preferably, the electrode domain is formed by dip-coating the electroactive surfaces in an electrode solution and curing the domain for a time of from about 15 to about 30 minutes at a temperature of from about 40 to about 55° C. (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)). In embodiments wherein dip-coating is used to deposit the electrode domain, a preferred insertion rate of from about 1 to about 3 inches per minute, with a preferred dwell time of from about 0.5 to about 2 minutes, and a preferred withdrawal rate of from about 0.25 to about 2 inches per minute provide a functional coating. However, values outside of those set forth above can be acceptable or even desirable in certain embodiments, for example, dependent upon viscosity and surface tension as is appreciated by one skilled in the art. In one embodiment, the electroactive surfaces of the electrode system are dip-coated one time (one layer) and cured at 50° C. under vacuum for 20 minutes.


Although an independent electrode domain is described herein, in some embodiments, sufficient hydrophilicity can be provided in the interference domain and/or enzyme domain (the domain adjacent to the electroactive surfaces) so as to provide for the full transport of ions in the aqueous environment (e.g. without a distinct electrode domain).


Interference Domain


In some embodiments, an optional interference domain 48 is provided, which generally includes a polymer domain that restricts the flow of one or more interferants. In some embodiments, the interference domain 48 functions as a molecular sieve that allows analytes and other substances that are to be measured by the electrodes to pass through, while preventing passage of other substances, including interferants such as ascorbate and urea (see U.S. Pat. No. 6,001,067 to Shults). Some known interferants for a glucose-oxidase based electrochemical sensor include acetaminophen, ascorbic acid, bilirubin, cholesterol, creatinine, dopamine, ephedrine, ibuprofen, L-dopa, methyldopa, salicylate, tetracycline, tolazamide, tolbutamide, triglycerides, and uric acid.


Several polymer types that can be utilized as a base material for the interference domain 48 include polyurethanes, polymers having pendant ionic groups, and polymers having controlled pore size, for example. In one embodiment, the interference domain includes a thin, hydrophobic membrane that is non-swellable and restricts diffusion of low molecular weight species. The interference domain 48 is permeable to relatively low molecular weight substances, such as hydrogen peroxide, but restricts the passage of higher molecular weight substances, including glucose and ascorbic acid. Other systems and methods for reducing or eliminating interference species that can be applied to the membrane system of the preferred embodiments are described in co-pending U.S. patent application Ser. No. 10/896,312 filed Jul. 21, 2004 and entitled “ELECTRODE SYSTEMS FOR ELECTROCHEMICAL SENSORS,” Ser. No. 10/991,353, filed Nov. 16, 2004 and entitled, “AFFINITY DOMAIN FOR AN ANALYTE SENSOR,” Ser. No. 11/007,635, filed Dec. 7, 2004 and entitled “SYSTEMS AND METHODS FOR IMPROVING ELECTROCHEMICAL ANALYTE SENSORS” and Ser. No. 11/004,561, filed Dec. 3, 2004 and entitled, “CALIBRATION TECHNIQUES FOR A CONTINUOUS ANALYTE SENSOR.” In some alternative embodiments, a distinct interference domain is not included.


In preferred embodiments, the interference domain 48 is deposited onto the electrode domain (or directly onto the electroactive surfaces when a distinct electrode domain is not included) for a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. Thicker membranes can also be useful, but thinner membranes are generally preferred because they have a lower impact on the rate of diffusion of hydrogen peroxide from the enzyme membrane to the electrodes. Unfortunately, the thin thickness of the interference domains conventionally used can introduce variability in the membrane system processing. For example, if too much or too little interference domain is incorporated within a membrane system, the performance of the membrane can be adversely affected.


Enzyme Domain


In preferred embodiments, the membrane system further includes an enzyme domain 49 disposed more distally situated from the electroactive surfaces than the interference domain 48 (or electrode domain 47 when a distinct interference is not included). In some embodiments, the enzyme domain is directly deposited onto the electroactive surfaces (when neither an electrode or interference domain is included). In the preferred embodiments, the enzyme domain 49 provides an enzyme to catalyze the reaction of the analyte and its co-reactant, as described in more detail below. Preferably, the enzyme domain includes glucose oxidase, however other oxidases, for example, galactose oxidase or uricase oxidase, can also be used.


For an enzyme-based electrochemical glucose sensor to perform well, the sensor's response is preferably limited by neither enzyme activity nor co-reactant concentration. Because enzymes, including glucose oxidase, are subject to deactivation as a function of time even in ambient conditions, this behavior is compensated for in forming the enzyme domain. Preferably, the enzyme domain 49 is constructed of aqueous dispersions of colloidal polyurethane polymers including the enzyme. However, in alternative embodiments the enzyme domain is constructed from an oxygen enhancing material, for example, silicone or fluorocarbon, in order to provide a supply of excess oxygen during transient ischemia. Preferably, the enzyme is immobilized within the domain. See U.S. patent application Ser. No. 10/896,639 filed on Jul. 21, 2004 and entitled “Oxygen Enhancing Membrane Systems for Implantable Device.”


In preferred embodiments, the enzyme domain 49 is deposited onto the interference domain for a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. However in some embodiments, the enzyme domain is deposited onto the electrode domain or directly onto the electroactive surfaces. Preferably, the enzyme domain 49 is deposited by spray or dip coating. More preferably, the enzyme domain is formed by dip-coating the electrode domain into an enzyme domain solution and curing the domain for from about 15 to about 30 minutes at a temperature of from about 40 to about 55° C. (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)). In embodiments wherein dip-coating is used to deposit the enzyme domain at room temperature, a preferred insertion rate of from about 1 inch per minute to about 3 inches per minute, with a preferred dwell time of from about 0.5 minutes to about 2 minutes, and a preferred withdrawal rate of from about 0.25 inch per minute to about 2 inches per minute provide a functional coating. However, values outside of those set forth above can be acceptable or even desirable in certain embodiments, for example, dependent upon viscosity and surface tension as is appreciated by one skilled in the art. In one embodiment, the enzyme domain 49 is formed by dip coating two times (namely, forming two layers) in a coating solution and curing at 50° C. under vacuum for 20 minutes. However, in some embodiments, the enzyme domain can be formed by dip-coating and/or spray-coating one or more layers at a predetermined concentration of the coating solution, insertion rate, dwell time, withdrawal rate, and/or desired thickness.


Resistance Domain


In preferred embodiments, the membrane system includes a resistance domain 50 disposed more distal from the electroactive surfaces than the enzyme domain 49. Although the following description is directed to a resistance domain for a glucose sensor, the resistance domain can be modified for other analytes and co-reactants as well.


There exists a molar excess of glucose relative to the amount of oxygen in blood; that is, for every free oxygen molecule in extracellular fluid, there are typically more than 100 glucose molecules present (see Updike et al., Diabetes Care 5:207-21 (1982)). However, an immobilized enzyme-based glucose sensor employing oxygen as co-reactant is preferably supplied with oxygen in non-rate-limiting excess in order for the sensor to respond linearly to changes in glucose concentration, while not responding to changes in oxygen concentration. Specifically, when a glucose-monitoring reaction is oxygen limited, linearity is not achieved above minimal concentrations of glucose. Without a semipermeable membrane situated over the enzyme domain to control the flux of glucose and oxygen, a linear response to glucose levels can be obtained only for glucose concentrations of up to about 40 mg/dL. However, in a clinical setting, a linear response to glucose levels is desirable up to at least about 400 mg/dL.


The resistance domain 50 includes a semi permeable membrane that controls the flux of oxygen and glucose to the underlying enzyme domain 49, preferably rendering oxygen in a non-rate-limiting excess. As a result, the upper limit of linearity of glucose measurement is extended to a much higher value than that which is achieved without the resistance domain. In one embodiment, the resistance domain 50 exhibits an oxygen to glucose permeability ratio of from about 50:1 or less to about 400:1 or more, preferably about 200:1. As a result, one-dimensional reactant diffusion is adequate to provide excess oxygen at all reasonable glucose and oxygen concentrations found in the subcutaneous matrix (See Rhodes et al., Anal. Chem., 66:1520-1529 (1994)).


In alternative embodiments, a lower ratio of oxygen-to-glucose can be sufficient to provide excess oxygen by using a high oxygen solubility domain (for example, a silicone or fluorocarbon-based material or domain) to enhance the supply/transport of oxygen to the enzyme domain 49. If more oxygen is supplied to the enzyme, then more glucose can also be supplied to the enzyme without creating an oxygen rate-limiting excess. In alternative embodiments, the resistance domain is formed from a silicone composition, such as is described in co-pending U.S. application Ser. No. 10/695,636 filed Oct. 28, 2003 and entitled, “SILICONE COMPOSITION FOR BIOCOMPATIBLE MEMBRANE.”


In a preferred embodiment, the resistance domain 50 includes a polyurethane membrane with both hydrophilic and hydrophobic regions to control the diffusion of glucose and oxygen to an analyte sensor, the membrane being fabricated easily and reproducibly from commercially available materials. A suitable hydrophobic polymer component is a polyurethane, or polyetherurethaneurea. Polyurethane is a polymer produced by the condensation reaction of a diisocyanate and a difunctional hydroxyl-containing material. A polyurethaneurea is a polymer produced by the condensation reaction of a diisocyanate and a difunctional amine-containing material. Preferred diisocyanates include aliphatic diisocyanates containing from about 4 to about 8 methylene units. Diisocyanates containing cycloaliphatic moieties can also be useful in the preparation of the polymer and copolymer components of the membranes of preferred embodiments. The material that forms the basis of the hydrophobic matrix of the resistance domain can be any of those known in the art as appropriate for use as membranes in sensor devices and as having sufficient permeability to allow relevant compounds to pass through it, for example, to allow an oxygen molecule to pass through the membrane from the sample under examination in order to reach the active enzyme or electrochemical electrodes. Examples of materials which can be used to make non-polyurethane type membranes include vinyl polymers, polyethers, polyesters, polyamides, inorganic polymers such as polysiloxanes and polycarbosiloxanes, natural polymers such as cellulosic and protein based materials, and mixtures or combinations thereof.


In a preferred embodiment, the hydrophilic polymer component is polyethylene oxide. For example, one useful hydrophobic-hydrophilic copolymer component is a polyurethane polymer that includes about 20% hydrophilic polyethylene oxide. The polyethylene oxide portions of the copolymer are thermodynamically driven to separate from the hydrophobic portions of the copolymer and the hydrophobic polymer component. The 20% polyethylene oxide-based soft segment portion of the copolymer used to form the final blend affects the water pick-up and subsequent glucose permeability of the membrane.


In preferred embodiments, the resistance domain 50 is deposited onto the enzyme domain 49 to yield a domain thickness of from about 0.05 micron or less to about 20 microns or more, more preferably from about 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5, 2, 2.5, 3, or 3.5 to about 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 19.5 microns, and more preferably from about 2, 2.5 or 3 microns to about 3.5, 4, 4.5, or 5 microns. Preferably, the resistance domain is deposited onto the enzyme domain by spray coating or dip coating. In certain embodiments, spray coating is the preferred deposition technique. The spraying process atomizes and mists the solution, and therefore most or all of the solvent is evaporated prior to the coating material settling on the underlying domain, thereby minimizing contact of the solvent with the enzyme. One additional advantage of spray-coating the resistance domain as described in the preferred embodiments includes formation of a membrane system that substantially blocks or resists ascorbate (a known electrochemical interferant in hydrogen peroxide-measuring glucose sensors). While not wishing to be bound by theory, it is believed that during the process of depositing the resistance domain as described in the preferred embodiments, a structural morphology is formed, characterized in that ascorbate does not substantially permeate there through.


In preferred embodiments, the resistance domain 50 is deposited on the enzyme domain 49 by spray-coating a solution of from about 1 wt. % to about 5 wt. % polymer and from about 95 wt. % to about 99 wt. % solvent. In spraying a solution of resistance domain material, including a solvent, onto the enzyme domain, it is desirable to mitigate or substantially reduce any contact with enzyme of any solvent in the spray solution that can deactivate the underlying enzyme of the enzyme domain 49. Tetrahydrofuran (THF) is one solvent that minimally or negligibly affects the enzyme of the enzyme domain upon spraying. Other solvents can also be suitable for use, as is appreciated by one skilled in the art.


Although a variety of spraying or deposition techniques can be used, spraying the resistance domain material and rotating the sensor at least one time by 180° can provide adequate coverage by the resistance domain. Spraying the resistance domain material and rotating the sensor at least two times by 120 degrees provides even greater coverage (one layer of 360° coverage), thereby ensuring resistivity to glucose, such as is described in more detail above.


In preferred embodiments, the resistance domain 50 is spray-coated and subsequently cured for a time of from about 15 to about 90 minutes at a temperature of from about 40 to about 60° C. (and can be accomplished under vacuum (e.g., 20 to 30 mmHg)). A cure time of up to about 90 minutes or more can be advantageous to ensure complete drying of the resistance domain. While not wishing to be bound by theory, it is believed that complete drying of the resistance domain aids in stabilizing the sensitivity of the glucose sensor signal. It reduces drifting of the signal sensitivity over time, and complete drying is believed to stabilize performance of the glucose sensor signal in lower oxygen environments.


In one embodiment, the resistance domain 50 is formed by spray-coating at least six layers (namely, rotating the sensor seventeen times by 120° for at least six layers of 360° coverage) and curing at 50° C. under vacuum for 60 minutes. However, the resistance domain can be formed by dip-coating or spray-coating any layer or plurality of layers, depending upon the concentration of the solution, insertion rate, dwell time, withdrawal rate, and/or the desired thickness of the resulting film.


Advantageously, sensors with the membrane system of the preferred embodiments, including an electrode domain 47 and/or interference domain 48, an enzyme domain 49, and a resistance domain 50, provide stable signal response to increasing glucose levels of from about 40 to about 400 mg/dL, and sustained function (at least 90% signal strength) even at low oxygen levels (for example, at about 0.6 mg/L O2). While not wishing to be bound by theory, it is believed that the resistance domain provides sufficient resistivity, or the enzyme domain provides sufficient enzyme, such that oxygen limitations are seen at a much lower concentration of oxygen as compared to prior art sensors.


In preferred embodiments, a sensor signal with a current in the picoAmp range is preferred, which is described in more detail elsewhere herein. However, the ability to produce a signal with a current in the picoAmp range can be dependent upon a combination of factors, including the electronic circuitry design (e.g., A/D converter, bit resolution, and the like), the membrane system (e.g., permeability of the analyte through the resistance domain, enzyme concentration, and/or electrolyte availability to the electrochemical reaction at the electrodes), and the exposed surface area of the working electrode. For example, the resistance domain can be designed to be more or less restrictive to the analyte depending upon to the design of the electronic circuitry, membrane system, and/or exposed electroactive surface area of the working electrode.


Accordingly, in preferred embodiments, the membrane system is designed with a sensitivity of from about 1 pA/mg/dL to about 100 pA/mg/dL, preferably from about 5 pA/mg/dL to 25 pA/mg/dL, and more preferably from about 4 to about 7 pA/mg/dL. While not wishing to be bound by any particular theory, it is believed that membrane systems designed with a sensitivity in the preferred ranges permit measurement of the analyte signal in low analyte and/or low oxygen situations. Namely, conventional analyte sensors have shown reduced measurement accuracy in low analyte ranges due to lower availability of the analyte to the sensor and/or have shown increased signal noise in high analyte ranges due to insufficient oxygen necessary to react with the amount of analyte being measured. While not wishing to be bound by theory, it is believed that the membrane systems of the preferred embodiments, in combination with the electronic circuitry design and exposed electrochemical reactive surface area design, support measurement of the analyte in the picoAmp range, which enables an improved level of resolution and accuracy in both low and high analyte ranges not seen in the prior art.


Mutarotase Enzyme


In some embodiments, mutarotase, an enzyme that converts α D-glucose to β D-glucose, is incorporated into the membrane system. Mutarotase can be incorporated into the enzyme domain and/or can be incorporated into another domain of the membrane system. In general, glucose exists in two distinct isomers, α and β, which are in equilibrium with one another in solution and in the blood or interstitial fluid. At equilibrium, α is present at a relative concentration of about 35.5% and β is present in the relative concentration of about 64.5% (see Okuda et. al., Anal Biochem. 1971 September; 43(1):312-5). Glucose oxidase, which is a conventional enzyme used to react with glucose in glucose sensors, reacts with β D-glucose and not with α D-glucose. Since only the β D-glucose isomer reacts with the glucose oxidase, errant readings may occur in a glucose sensor responsive to a shift of the equilibrium between the α D-glucose and the β D-glucose. Many compounds, such as calcium, can affect equilibrium shifts of α D-glucose and β D-glucose. For example, as disclosed in U.S. Pat. No. 3,964,974 to Banaugh et al., compounds that exert a mutarotation accelerating effect on α D-glucose include histidine, aspartic acid, imidazole, glutamic acid, a hydroxyl pyridine, and phosphate.


Accordingly, a shift in α D-glucose and β D-glucose equilibrium can cause a glucose sensor based on glucose oxidase to err high or low. To overcome the risks associated with errantly high or low sensor readings due to equilibrium shifts, the sensor of the preferred embodiments can be configured to measure total glucose in the host, including α D-glucose and β D-glucose by the incorporation of the mutarotase enzyme, which converts α D-glucose to β D-glucose.


Although sensors of some embodiments described herein include an optional interference domain in order to block or reduce one or more interferants, sensors with the membrane system of the preferred embodiments, including an electrode domain 47, an enzyme domain 48, and a resistance domain 49, have been shown to inhibit ascorbate without an additional interference domain. Namely, the membrane system of the preferred embodiments, including an electrode domain 47, an enzyme domain 48, and a resistance domain 49, has been shown to be substantially non-responsive to ascorbate in physiologically acceptable ranges. While not wishing to be bound by theory, it is believed that the processing process of spraying the depositing the resistance domain by spray coating, as described herein, forms results in a structural morphology that is substantially resistance resistant to ascorbate.


Interference-free Membrane Systems


In general, it is believed that appropriate solvents and/or deposition methods can be chosen for one or more of the domains of the membrane system that form one or more transitional domains such that interferants do not substantially permeate there through. Thus, sensors can be built without distinct or deposited interference domains, which are non-responsive to interferants. While not wishing to be bound by theory, it is believed that a simplified multilayer membrane system, more robust multilayer manufacturing process, and reduced variability caused by the thickness and associated oxygen and glucose sensitivity of the deposited micron-thin interference domain can be provided. Additionally, the optional polymer-based interference domain, which usually inhibits hydrogen peroxide diffusion, is eliminated, thereby enhancing the amount of hydrogen peroxide that passes through the membrane system.


Oxygen Conduit


As described above, certain sensors depend upon an enzyme within the membrane system through which the host's bodily fluid passes and in which the analyte (for example, glucose) within the bodily fluid reacts in the presence of a co-reactant (for example, oxygen) to generate a product. The product is then measured using electrochemical methods, and thus the output of an electrode system functions as a measure of the analyte. For example, when the sensor is a glucose oxidase based glucose sensor, the species measured at the working electrode is H2O2. An enzyme, glucose oxidase, catalyzes the conversion of oxygen and glucose to hydrogen peroxide and gluconate according to the following reaction:

Glucose+O2→Gluconate+H2O2


Because for each glucose molecule reacted there is a proportional change in the product, H2O2, one can monitor the change in H2O2 to determine glucose concentration. Oxidation of H2O2 by the working electrode is balanced by reduction of ambient oxygen, enzyme generated H2O2 and other reducible species at a counter electrode, for example. See Fraser, D. M., “An Introduction to In Vivo Biosensing: Progress and Problems.” In “Biosensors and the Body,” D. M. Fraser, ed., 1997, pp. 1-56 John Wiley and Sons, New York))


In vivo, glucose concentration is generally about one hundred times or more that of the oxygen concentration. Consequently, oxygen is a limiting reactant in the electrochemical reaction, and when insufficient oxygen is provided to the sensor, the sensor is unable to accurately measure glucose concentration. Thus, depressed sensor function or inaccuracy is believed to be a result of problems in availability of oxygen to the enzyme and/or electroactive surface(s).


Accordingly, in an alternative embodiment, an oxygen conduit (for example, a high oxygen solubility domain formed from silicone or fluorochemicals) is provided that extends from the ex vivo portion of the sensor to the in vivo portion of the sensor to increase oxygen availability to the enzyme. The oxygen conduit can be formed as a part of the coating (insulating) material or can be a separate conduit associated with the assembly of wires that forms the sensor.


Porous Biointerface Materials


In alternative embodiments, the distal portion 42 includes a porous material disposed over some portion thereof, which modifies the host's tissue response to the sensor. In some embodiments, the porous material surrounding the sensor advantageously enhances and extends sensor performance and lifetime in the short term by slowing or reducing cellular migration to the sensor and associated degradation that would otherwise be caused by cellular invasion if the sensor were directly exposed to the in vivo environment. Alternatively, the porous material can provide stabilization of the sensor via tissue ingrowth into the porous material in the long term. Suitable porous materials include silicone, polytetrafluoroethylene, expanded polytetrafluoroethylene, polyethylene-co-tetrafluoroethylene, polyolefin, polyester, polycarbonate, biostable polytetrafluoroethylene, homopolymers, copolymers, terpolymers of polyurethanes, polypropylene (PP), polyvinylchloride (PVC), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polybutylene terephthalate (PBT), polymethylmethacrylate (PMMA), polyether ether ketone (PEEK), polyamides, polyurethanes, cellulosic polymers, polysulfones and block copolymers thereof including, for example, di-block, tri-block, alternating, random and graft copolymers, as well as metals, ceramics, cellulose, hydrogel polymers, poly (2-hydroxyethyl methacrylate, pHEMA), hydroxyethyl methacrylate, (HEMA), polyacrylonitrile-polyvinyl chloride (PAN-PVC), high density polyethylene, acrylic copolymers, nylon, polyvinyl difluoride, polyanhydrides, poly(1-lysine), poly (L-lactic acid), hydroxyethylmetharcrylate, hydroxyapeptite, alumina, zirconia, carbon fiber, aluminum, calcium phosphate, titanium, titanium alloy, nintinol, stainless steel, and CoCr alloy, or the like, such as are described in co-pending U.S. patent application Ser. No. 10/842,716, filed May 10, 2004 and entitled, “BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS” and U.S. patent application Ser. No. 10/647,065 filed Aug. 22, 2003 and entitled “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES.”


In some embodiments, the porous material surrounding the sensor provides unique advantages in the short term (e.g., one to 14 days) that can be used to enhance and extend sensor performance and lifetime. However, such materials can also provide advantages in the long term too (e.g., greater than 14 days). Particularly, the in vivo portion of the sensor (the portion of the sensor that is implanted into the host's tissue) is encased (partially or fully) in a porous material. The porous material can be wrapped around the sensor (for example, by wrapping the porous material around the sensor or by inserting the sensor into a section of porous material sized to receive the sensor). Alternately, the porous material can be deposited on the sensor (for example, by electrospinning of a polymer directly thereon). In yet other alternative embodiments, the sensor is inserted into a selected section of porous biomaterial. Other methods for surrounding the in vivo portion of the sensor with a porous material can also be used as is appreciated by one skilled in the art.


The porous material surrounding the sensor advantageously slows or reduces cellular migration to the sensor and associated degradation that would otherwise be caused by cellular invasion if the sensor were directly exposed to the in vivo environment. Namely, the porous material provides a barrier that makes the migration of cells towards the sensor more tortuous and therefore slower (providing short term advantages). It is believed that this reduces or slows the sensitivity loss normally observed in a short-term sensor over time.


In an embodiment wherein the porous material is a high oxygen solubility material, such as porous silicone, the high oxygen solubility porous material surrounds some of or the entire in vivo portion 42 of the sensor. High oxygen solubility materials are materials that dynamically retain a high availability of oxygen that can be used to compensate for the local oxygen deficit during times of transient ischemia (e.g., silicone and fluorocarbons). It is believed that some signal noise normally seen by a conventional sensor can be attributed to an oxygen deficit. In one exemplary embodiment, porous silicone surrounds the sensor and thereby effectively increases the concentration of oxygen local (proximal) to the sensor. Thus, an increase in oxygen availability proximal to the sensor as achieved by this embodiment ensures that an excess of oxygen over glucose is provided to the sensor; thereby reducing the likelihood of oxygen limited reactions therein. Accordingly, by providing a high oxygen solubility material (e.g., porous silicone) surrounding the in vivo portion of the sensor, it is believed that increased oxygen availability, reduced signal noise, longevity, and ultimately enhanced sensor performance can be achieved.


Bioactive Agents


In some alternative embodiments, a bioactive agent is incorporated into the above described porous material and/or membrane system, such as is described in co-pending U.S. patent application Ser. No. 10/842,716, which diffuses out into the environment adjacent to the sensing region. Additionally or alternately, a bioactive agent can be administered locally at the exit-site or implantation-site. Suitable bioactive agents are those that modify the host's tissue response to the sensor, for example anti-inflammatory agents, anti-infective agents, anesthetics, inflammatory agents, growth factors, immunosuppressive agents, antiplatelet agents, anti-coagulants, anti-proliferates, ACE inhibitors, cytotoxic agents, anti-barrier cell compounds, vascularization-inducing compounds, anti-sense molecules, or mixtures thereof, such as are described in more detail in co-pending U.S. patent application Ser. No. 10/842,716.


In embodiments wherein the porous material is designed to enhance short-term (e.g., between about 1 and 14 days) lifetime or performance of the sensor, a suitable bioactive agent can be chosen to ensure that tissue ingrowth does not substantially occur within the pores of the porous material. Namely, by providing a tissue modifying bioactive agent, such as an anti-inflammatory agent (for example, Dexamethasone), substantially tissue ingrowth can be inhibited, at least in the short term, in order to maintain sufficient glucose transport through the pores of the porous material to maintain a stable sensitivity.


In embodiments wherein the porous material is designed to enhance long-term (e.g., between about a day to a year or more) lifetime or performance of the sensor, a suitable bioactive agent, such as a vascularization-inducing compound or anti-barrier cell compound, can be chosen to encourage tissue ingrowth without barrier cell formation.


In some alternative embodiments, the in vivo portion of the sensor is designed with porosity there through, for example, a design wherein the sensor wires are configured in a mesh, loose helix configuration (namely, with spaces between the wires), or with micro-fabricated holes there through. Porosity within the sensor modifies the host's tissue response to the sensor, because tissue ingrowth into and/or through the in vivo portion of the sensor increases stability of the sensor and/or improves host acceptance of the sensor, thereby extending the lifetime of the sensor in vivo.


In some alternative embodiments, the sensor is manufactured partially or wholly using a continuous reel-to-reel process, wherein one or more manufacturing steps are automated. In such embodiments, a manufacturing process can be provided substantially without the need for manual mounting and fixturing steps and substantially without the need human interaction. A process can be utilized wherein a plurality of sensors of the preferred embodiments, including the electrodes, insulator, and membrane system, are continuously manufactured in a semi-automated or automated process.


In one embodiment, a plurality of twisted pairs are continuously formed into a coil, wherein a working electrode is coated with an insulator material around which a plurality of reference electrodes are wound. The plurality of twisted pairs are preferably indexed and subsequently moved from one station to the next whereby the membrane system is serially deposited according to the preferred embodiments. Preferably, the coil is continuous and remains as such during the entire sensor fabrication process, including winding of the electrodes, insulator application, and membrane coating processes. After drying of the membrane system, each individual sensor is cut from the continuous coil.


A continuous reel-to-reel process for manufacturing the sensor eliminates possible sensor damage due to handling by eliminating handling steps, and provides faster manufacturing due to faster trouble shooting by isolation when a product fails. Additionally, a process run can be facilitated because of elimination of steps that would otherwise be required (e.g., steps in a manual manufacturing process.) Finally, increased or improved product consistency due to consistent processes within a controlled environment can be achieved in a machine or robot driven operation.


In one alternative embodiment, a continuous manufacturing process is contemplated that utilizes physical vapor deposition in a vacuum to form the sensor. Physical vapor deposition can be used to coat one or more insulating layers onto the electrodes, and further can be used to deposit the membrane system thereon. While not wishing to be bound by theory, it is believed that by implementing physical vapor deposition to form some portions or the entire sensor of the preferred embodiments, simplified manufacturing, consistent deposition, and overall increased reproducibility can be achieved.


Applicator



FIG. 6 is an exploded side view of an applicator, showing the components that enable sensor and needle insertion. In this embodiment, the applicator 12 includes an applicator body 18 that aides in aligning and guiding the applicator components. Preferably, the applicator body 18 includes an applicator body base 60 that matingly engages the mounting unit 14 and an applicator body cap 62 that enables appropriate relationships (for example, stops) between the applicator components.


The guide tube subassembly 20 includes a guide tube carrier 64 and a guide tube 66. In some embodiments, the guide tube is a cannula. The guide tube carrier 64 slides along the applicator body 18 and maintains the appropriate relative position of the guide tube 66 during insertion and subsequent retraction. For example, prior to and during insertion of the sensor, the guide tube 66 extends through the contact subassembly 26 to maintain an opening that enables easy insertion of the needle there through (see FIGS. 7A to 7D). During retraction of the sensor, the guide tube subassembly 20 is pulled back, engaging with and causing the needle and associated moving components to retract back into the applicator 12 (See FIGS. 7C and 7D).


A needle subassembly 68 is provided that includes a needle carrier 70 and needle 72. The needle carrier 70 cooperates with the other applicator components and carries the needle 72 between its extended and retracted positions. The needle can be of any appropriate size that can encompass the sensor 32 and aid in its insertion into the host. Preferred sizes include from about 32 gauge or less to about 18 gauge or more, more preferably from about 28 gauge to about 25 gauge, to provide a comfortable insertion for the host. Referring to the inner diameter of the needle, approximately 0.006 inches to approximately 0.023 inches is preferable, and 0.013 inches is most preferable. The needle carrier 70 is configured to engage with the guide tube carrier 64, while the needle 72 is configured to slidably nest within the guide tube 66, which allows for easy guided insertion (and retraction) of the needle through the contact subassembly 26.


A push rod subassembly 74 is provided that includes a push rod carrier 76 and a push rod 78. The push rod carrier 76 cooperates with other applicator components to ensure that the sensor is properly inserted into the host's skin, namely the push rod carrier 76 carries the push rod 78 between its extended and retracted positions. In this embodiment, the push rod 78 is configured to slidably nest within the needle 72, which allows for the sensor 32 to be pushed (released) from the needle 72 upon retraction of the needle, which is described in more detail with reference to FIGS. 7A through 7D. In some embodiments, a slight bend or serpentine shape is designed into or allowed in the sensor in order to maintain the sensor within the needle by interference. While not wishing to be bound by theory, it is believed that a slight friction fit of the sensor within the needle minimizes motion of the sensor during withdrawal of the needle and maintains the sensor within the needle prior to withdrawal of the needle.


A plunger subassembly 22 is provided that includes a plunger 80 and plunger cap 82. The plunger subassembly 22 cooperates with other applicators components to ensure proper insertion and subsequent retraction of the applicator components. In this embodiment, the plunger 80 is configured to engage with the push rod to ensure the sensor remains extended (namely, in the host) during retraction, such as is described in more detail with reference to FIG. 7C.


Sensor Insertion



FIGS. 7A through 7D are schematic side cross-sectional views that illustrate the applicator components and their cooperating relationships at various stages of sensor insertion. FIG. 7A illustrates the needle and sensor loaded prior to sensor insertion. FIG. 7B illustrates the needle and sensor after sensor insertion. FIG. 7C illustrates the sensor and needle during needle retraction. FIG. 7D illustrates the sensor remaining within the contact subassembly after needle retraction. Although the embodiments described herein suggest manual insertion and/or retraction of the various components, automation of one or more of the stages can also be employed. For example, spring-loaded mechanisms that can be triggered to automatically insert and/or retract the sensor, needle, or other cooperative applicator components can be implemented.


Referring to FIG. 7A, the sensor 32 is shown disposed within the needle 72, which is disposed within the guide tube 66. In this embodiment, the guide tube 66 is provided to maintain an opening within the contact subassembly 26 and/or contacts 28 to provide minimal friction between the needle 72 and the contact subassembly 26 and/or contacts 28 during insertion and retraction of the needle 72. However, the guide tube is an optional component, which can be advantageous in some embodiments wherein the contact subassembly 26 and/or the contacts 28 are formed from an elastomer or other material with a relatively high friction coefficient, and which can be omitted in other embodiments wherein the contact subassembly 26 and or the contacts 28 are formed from a material with a relatively low friction coefficient (for example, hard plastic or metal). A guide tube, or the like, can be preferred in embodiments wherein the contact subassembly 26 and/or the contacts 28 are formed from a material designed to frictionally hold the sensor 32 (see FIG. 7D), for example, by the relaxing characteristics of an elastomer, or the like. In these embodiments, the guide tube is provided to ease insertion of the needle through the contacts, while allowing for a frictional hold of the contacts on the sensor 32 upon subsequent needle retraction. Stabilization of the sensor in or on the contacts 28 is described in more detail with reference to FIG. 7D and following. Although FIG. 7A illustrates the needle and sensor inserted into the contacts subassembly as the initial loaded configuration, alternative embodiments contemplate a step of loading the needle through the guide tube 66 and/or contacts 28 prior to sensor insertion.


Referring to FIG. 7B, the sensor 32 and needle 72 are shown in an extended position. In this stage, the pushrod 78 has been forced to a forward position, for example by pushing on the plunger shown in FIG. 6, or the like. The plunger 22 (FIG. 6) is designed to cooperate with other of the applicator components to ensure that sensor 32 and the needle 72 extend together to a forward position (as shown); namely, the push rod 78 is designed to cooperate with other of the applicator components to ensure that the sensor 32 maintains the forward position simultaneously within the needle 72.


Referring to FIG. 7C, the needle 72 is shown during the retraction process. In this stage, the push rod 78 is held in its extended (forward) position in order to maintain the sensor 32 in its extended (forward) position until the needle 72 has substantially fully retracted from the contacts 28. Simultaneously, the cooperating applicator components retract the needle 72 and guide tube 66 backward by a pulling motion (manual or automated) thereon. In preferred embodiments, the guide tube carrier 64 (FIG. 6) engages with cooperating applicator components such that a backward (retraction) motion applied to the guide tube carrier retracts the needle 72 and guide tube 66, without (initially) retracting the push rod 78. In an alternative embodiment, the push rod 78 can be omitted and the sensor 32 held it its forward position by a cam, elastomer, or the like, which is in contact with a portion of the sensor while the needle moves over another portion of the sensor. One or more slots can be cut in the needle to maintain contact with the sensor during needle retraction.


Referring to FIG. 7D, the needle 72, guide tube 66, and push rod 78 are all retracted from contact subassembly 26, leaving the sensor 32 disposed therein. The cooperating applicator components are designed such that when the needle 72 has substantially cleared from the contacts 28 and/or contact subassembly 26, the push rod 78 is retracted along with the needle 72 and guide tube 66. The applicator 12 can then be released (manually or automatically) from the contacts 28, such as is described in more detail elsewhere herein, for example with reference to FIGS. 8C and 9A.


The preferred embodiments are generally designed with elastomeric contacts to ensure a retention force that retains the sensor 32 within the mounting unit 14 and to ensure stable electrical connection of the sensor 32 and its associated contacts 28. Although the illustrated embodiments and associated text describe the sensor 32 extending through the contacts 28 to form a friction fit therein, a variety of alternatives are contemplated. In one alternative embodiment, the sensor is configured to be disposed adjacent to the contacts (rather than between the contacts). The contacts can be constructed in a variety of known configurations, for example, metallic contacts, cantilevered fingers, pogo pins, or the like, which are configured to press against the sensor after needle retraction.


The illustrated embodiments are designed with coaxial contacts 28; namely, the contacts 28 are configured to contact the working and reference electrodes 44, 46 axially along the proximal portion 40 of the sensor 32 (see FIG. 5A). As shown in FIG. 5A, the working electrode 44 extends farther than the reference electrode 46, which allows coaxial connection of the electrodes 44, 46 with the contacts 28 at locations spaced along the proximal portion of the sensor (see also FIGS. 9B and 10B). Although the illustrated embodiments employ a coaxial design, other designs are contemplated within the scope of the preferred embodiments. For example, the reference electrode can be positioned substantially adjacent to (but spaced apart from) the working electrode at the proximal portion of the sensor. In this way, the contacts 28 can be designed side-by-side rather than co-axially along the axis of the sensor.



FIGS. 8A to 8C are side views of an applicator and mounting, showing various stages of sensor insertion. FIG. 8A is a side view of the applicator matingly engaged to the mounting unit prior to sensor insertion. FIG. 8B is a side view of the mounting unit and applicator after the plunger subassembly has been pushed, extending the needle and sensor from the mounting unit (namely, through the host's skin). FIG. 8C is a side view of the mounting unit and applicator after the guide tube subassembly has been retracted, retracting the needle back into the applicator. Although the drawings and associated text illustrate and describe embodiments wherein the applicator is designed for manual insertion and/or retraction, automated insertion and/or retraction of the sensor/needle, for example, using spring-loaded components, can alternatively be employed.


The preferred embodiments advantageously provide a system and method for easy insertion of the sensor and subsequent retraction of the needle in a single push-pull motion. Because of the mechanical latching system of the applicator, the user provides a continuous force on the plunger cap 82 and guide tube carrier 64 that inserts and retracts the needle in a continuous motion. When a user grips the applicator, his or her fingers grasp the guide tube carrier 64 while his or her thumb (or another finger) is positioned on the plunger cap 82. The user squeezes his or her fingers and thumb together continuously, which causes the needle to insert (as the plunger slides forward) and subsequently retract (as the guide tube carrier slides backward) due to the system of latches located within the applicator (FIGS. 6 to 8) without any necessary change of grip or force, leaving the sensor implanted in the host. In some embodiments, a continuous torque, when the applicator components are configured to rotatingly engage one another, can replace the continuous force. Some prior art sensors, in contrast to the sensors of the preferred embodiments, suffer from complex, multi-step, or multi-component insertion and retraction steps to insert and remove the needle from the sensor system.



FIG. 8A shows the mounting unit and applicator in the ready position. The sensor system can be shipped in this configuration, or the user can be instructed to mate the applicator 12 with the mounting unit 14 prior to sensor insertion. The insertion angle α is preferably fixed by the mating engagement of the applicator 12. In the illustrated embodiment, the insertion angle α is fixed in the applicator 12 by the angle of the applicator body base 60 with the shaft of the applicator body 18. However, a variety of systems and methods of ensuring proper placement can be implemented. Proper placement ensures that at least a portion of the sensor 32 extends below the dermis of the host upon insertion. In alternative embodiments, the sensor system 10 is designed with a variety of adjustable insertion angles. A variety of insertion angles can be advantageous to accommodate a variety of insertion locations and/or individual dermis configurations (for example, thickness of the dermis). In preferred embodiments, the insertion angle α is from about 0 to about 90 degrees, more preferably from about 30 to about 60 degrees, and even more preferably about 45 degrees.


In practice, the mounting unit is placed at an appropriate location on the host's skin, for example, the skin of the arm, thigh, or abdomen. Thus, removing the backing layer 9 from the adhesive pad 8 and pressing the base portion of the mounting unit on the skin adheres the mounting unit to the host's skin.



FIG. 8B shows the mounting unit and applicator after the needle 72 has been extended from the mounting unit 14 (namely, inserted into the host) by pushing the push rod subassembly 22 into the applicator 12. In this position, the sensor 32 is disposed within the needle 72 (namely, in position within the host), and held by the cooperating applicator components. In alternative embodiments, the mounting unit and/or applicator can be configured with the needle/sensor initially extended. In this way, the mechanical design can be simplified and the plunger-assisted insertion step can be eliminated or modified. The needle can be simply inserted by a manual force to puncture the host's skin, and only one (pulling) step is required on the applicator, which removes the needle from the host's skin.



FIG. 8C shows the mounting unit and applicator after the needle 72 has been retracted into the applicator 12, exposing the sensor 32 to the host's tissue. During needle retraction, the push rod subassembly maintains the sensor in its extended position (namely, within the host). In preferred embodiments, retraction of the needle irreversibly locks the needle within the applicator so that it cannot be accidentally and/or intentionally released, reinserted, or reused. The applicator is preferably configured as a disposable device to reduce or eliminate a possibility of exposure of the needle after insertion into the host. However a reusable or reloadable applicator is also contemplated in some alternative embodiments. After needle retraction, the applicator 12 can be released from the mounting unit, for example, by pressing the release latch(es) 30, and the applicator disposed of appropriately. In alternative embodiments, other mating and release configurations can be implemented between the mounting unit and the applicator, or the applicator can automatically release from the mounting unit after sensor insertion and subsequent needle retraction. In one alternative embodiment, a retention hold (e.g., ball and detent configuration) holds and releases the electronics unit (or applicator).


In one alternative embodiment, the mounting unit is configured to releasably mate with the applicator and electronics unit, such that when the applicator is releasably mated to the mounting unit (e.g., after sensor insertion), the electronics unit is configured to slide into the mounting unit, thereby triggering release of the applicator and simultaneous mating of the electronics unit to the mounting unit. Cooperating mechanical components, for example, sliding ball and detent type configurations, can be used to accomplish the simultaneous mating of electronics unit and release of the applicator.


In some embodiments, the sensor 32 exits the base of the mounting unit 14 at a location distant from an edge of the base. In some embodiments, the sensor 32 exits the base of the mounting unit 14 at a location substantially closer to the center than the edges thereof. While not wishing to be bound by theory, it is believed that by providing an exit port for the sensor 32 located away from the edges, the sensor 32 can be protected from motion between the body and the mounting unit, snagging of the sensor by an external source, and/or environmental contaminants that can migrate under the edges of the mounting unit. In some embodiments, the sensor exits the mounting unit away from an outer edge of the device. In some alternative embodiments, however, the sensor exits the mounting unit 14 at an edge or near an edge of the device. In some embodiments, the mounting unit is configured such that the exit port (location) of the sensor is adjustable; thus, in embodiments wherein the depth of the sensor insertion is adjustable, six-degrees of freedom can thereby be provided.


Extensible Adhesive Pad


In certain embodiments, an adhesive pad is used with the sensor system. A variety of design parameters are desirable when choosing an adhesive pad for the mounting unit. For example: 1) the adhesive pad can be strong enough to maintain full contact at all times and during all movements (devices that release even slightly from the skin have a greater risk of contamination and infection), 2) the adhesive pad can be waterproof or water permeable such that the host can wear the device even while heavily perspiring, showering, or even swimming in some cases, 3) the adhesive pad can be flexible enough to withstand linear and rotational forces due to host movements, 4) the adhesive pad can be comfortable for the host, 5) the adhesive pad can be easily releasable to minimize host pain, 6) and/or the adhesive pad can be easily releasable so as to protect the sensor during release. Unfortunately, these design parameters are difficult to simultaneously satisfy using known adhesive pads, for example, strong medical adhesive pads are available but are usually non-precise (for example, requiring significant “ripping” force during release) and can be painful during release due to the strength of their adhesion.


Therefore, the preferred embodiments provide an adhesive pad 8′ for mounting the mounting unit onto the host, including a sufficiently strong medical adhesive pad that satisfies one or more strength and flexibility requirements described above, and further provides a for easy, precise and pain-free release from the host's skin. FIG. 9A is a side view of the sensor assembly, illustrating the sensor implanted into the host with mounting unit adhered to the host's skin via an adhesive pad in one embodiment. Namely, the adhesive pad 8′ is formed from an extensible material that can be removed easily from the host's skin by stretching it lengthwise in a direction substantially parallel to (or up to about 35 degrees from) the plane of the skin. It is believed that this easy, precise, and painless removal is a function of both the high extensibility and easy stretchability of the adhesive pad.


In one embodiment, the extensible adhesive pad includes a polymeric foam layer or is formed from adhesive pad foam. It is believed that the conformability and resiliency of foam aids in conformation to the skin and flexibility during movement of the skin. In another embodiment, a stretchable solid adhesive pad, such as a rubber-based or an acrylate-based solid adhesive pad can be used. In another embodiment, the adhesive pad comprises a film, which can aid in increasing load bearing strength and rupture strength of the adhesive pad



FIGS. 9B to 9C illustrate initial and continued release of the mounting unit from the host's skin by stretching the extensible adhesive pad in one embodiment. To release the device, the backing adhesive pad is pulled in a direction substantially parallel to (or up to about 35 degrees from) the plane of the device. Simultaneously, the extensible adhesive pad stretches and releases from the skin in a relatively easy and painless manner.


In one implementation, the mounting unit is bonded to the host's skin via a single layer of extensible adhesive pad 8′, which is illustrated in FIGS. 9A to 9C. The extensible adhesive pad includes a substantially non-extensible pull-tab 52, which can include a light adhesive pad layer that allows it to be held on the mounting unit 14 prior to release. Additionally, the adhesive pad can further include a substantially non-extensible holding tab 54, which remains attached to the mounting unit during release stretching to discourage complete and/or uncontrolled release of the mounting unit from the skin.


In one alternative implementation, the adhesive pad 8′ includes two-sides, including the extensible adhesive pad and a backing adhesive pad (not shown). In this embodiment, the backing adhesive pad is bonded to the mounting unit's back surface 25 while the extensible adhesive pad 8′ is bonded to the host's skin. Both adhesive pads provide sufficient strength, flexibility, and waterproof or water permeable characteristics appropriate for their respective surface adhesion. In some embodiments, the backing and extensible adhesive pads are particularly designed with an optimized bond for their respective bonding surfaces (namely, the mounting unit and the skin).


In another alternative implementation, the adhesive pad 8′ includes a double-sided extensible adhesive pad surrounding a middle layer or backing layer (not shown). The backing layer can comprise a conventional backing film or can be formed from foam to enhance comfort, conformability, and flexibility. Preferably, each side of the double-sided adhesive pad is respectively designed for appropriate bonding surface (namely, the mounting unit and skin). A variety of alternative stretch-release configurations are possible. Controlled release of one or both sides of the adhesive pad can be facilitated by the relative lengths of each adhesive pad side, by incorporation of a non-adhesive pad zone, or the like.



FIGS. 10A and 10B are perspective and side cross-sectional views, respectively, of the mounting unit immediately following sensor insertion and release of the applicator from the mounting unit. In one embodiment, such as illustrated in FIGS. 10A and 10B, the contact subassembly 26 is held in its insertion position, substantially at the insertion angle α of the sensor. Maintaining the contact subassembly 26 at the insertion angle α during insertion enables the sensor 32 to be easily inserted straight through the contact subassembly 26. The contact subassembly 26 further includes a hinge 38 that allows movement of the contact subassembly 26 from an angled to a flat position. The term “hinge,” as used herein, is a broad term and is used in its ordinary sense, including, without limitation, a mechanism that allows articulation of two or more parts or portions of a device. The term is broad enough to include a sliding hinge, for example, a ball and detent type hinging mechanism.


Although the illustrated embodiments describe a fixed insertion angle designed into the applicator, alternative embodiments can design the insertion angle into other components of the system. For example, the insertion angle can be designed into the attachment of the applicator with the mounting unit, or the like. In some alternative embodiments, a variety of adjustable insertion angles can be designed into the system to provide for a variety of host dermis configurations.



FIG. 10B illustrates the sensor 32 extending from the mounting unit 14 by a preselected distance, which defines the depth of insertion of the sensor into the host. The dermal and subcutaneous make-up of animals and humans is variable and a fixed depth of insertion may not be appropriate for all implantations. Accordingly, in an alternative embodiment, the distance that the sensor extends from the mounting unit is adjustable to accommodate a variety of host body-types. For example, the applicator 12 can be designed with a variety of adjustable settings, which control the distance that the needle 72 (and therefore the sensor 32) extends upon sensor insertion. One skilled in the art appreciates a variety of means and mechanisms can be employed to accommodate adjustable sensor insertion depths, which are considered within the scope of the preferred embodiments. The preferred insertion depth is from about 0.1 mm or less to about 2 cm or more, preferably from about 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, or 0.45 mm to about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 1.9 cm.



FIGS. 11A and 11B are perspective and side cross-sectional views, respectively, of the mounting unit after articulating the contact subassembly to its functional position (which is also referred to as an inserted, implanted, or sensing position). The hinge 38 enables the contact subassembly 26 to tilt from its insertion position (FIG. 10) to its functional position (FIG. 11) by pressing downward on the contact subassembly, for example. Certain embodiments provide this pivotal movement via two separate pieces (the contact subassembly 26 and the mounting unit 14 connected by a hinge, for example, a mechanical or adhesive pad joint or hinge. A variety of pivoting, articulating, and/or hinging mechanisms can be employed with the sensors of preferred embodiments. For example, the hinge can be formed as a part of the contact subassembly 26. The contact subassembly can be formed from a flexible piece of material (such as silicone, urethane rubber, or other flexible or elastomeric material), wherein the material is sufficiently flexible to enable bending or hinging of the contact subassembly from an angle appropriate for insertion (FIGS. 10A and 10B) to a lower functional configuration (FIGS. 11A and 11B).


The relative pivotal movement of the contact subassembly is advantageous, for example, for enabling the design of a low profile device while providing support for an appropriate needle insertion angle. In its insertion position, the sensor system is designed for easy sensor insertion while forming a stable electrical connection with the associated contacts 28. In its functional position, the sensor system maintains a low profile for convenience, comfort, and discreetness during use. Thus, the sensor systems of preferred embodiments are advantageously designed with a hinging configuration to provide an optimum guided insertion angle while maintaining a low profile device during sensor use.


In some embodiments, a shock-absorbing member or feature is incorporated into the design of the sensor and configured to absorb movement of the in vivo and/or ex vivo portion of the sensor. Conventional analyte sensors can suffer from motion-related artifact associated with host movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements on the sensor (for example, relative movement between the in vivo portion and the ex vivo portion and/or movement within the host) create stresses on the device and can produce noise in the sensor signal. Accordingly in some embodiments, a shock-absorbing member is located on the sensor/mounting unit in a location that absorbs stresses associated with the above-described movement.


In the preferred embodiments, the sensor 32 bends from a substantially straight to substantially bent configuration upon pivoting of the contact subassembly from the insertion to functional position. The substantially straight sensor configuration during insertion advantageously provides ease of sensor insertion, while the substantial bend in the sensor in its functional position advantageously provides stability on the proximal end of the sensor with flexibility/mobility on the distal end of the sensor. Additionally, motion within the mounting unit (e.g., caused by external forces to the mounting unit, movement of the skin, and the like) does not substantially translate to the in vivo portion of the sensor. Namely, the bend formed within the sensor 32 functions to break column strength, causing flexion that effectively absorbs movements on the sensor during use. Additionally, the sensor can be designed with a length such that when the contact subassembly 26 is pivoted to its functional position (FIG. 10B), the sensor pushes forward and flexes, allowing it to absorb motion between the in vivo and ex vivo portions of the sensor. It is believed that both of the above advantages minimize motion artifact on the sensor signal and/or minimize damage to the sensor caused by movement, both of which (motion artifact and damage) have been observed in conventional transcutaneous sensors.


In some alternative embodiments, the shock-absorbing member can be an expanding and contracting member, such as a spring, accordion, telescoping, or bellows-type device. In general, the shock absorbing member can be located such that relative movement between the sensor, the mounting unit, and the host is absorbed without (or minimally) affecting the connection of the sensor to the mounting unit and/or the sensor stability within the implantation site; for example, the shock-absorbing member can be formed as a part of or connected to the sensor 32.



FIGS. 12A to 12C are perspective and side views of a sensor system including the mounting unit 14 and electronics unit 16 attached thereto. After sensor insertion, the transcutaneous analyte sensor system 10 measures a concentration of an analyte or a substance indicative of the concentration or presence of the analyte as described above. Although the examples are directed to a glucose sensor, the analyte sensor can be a sensor capable of determining the level of any suitable analyte in the body, for example, oxygen, lactase, insulin, hormones, cholesterol, medicaments, viruses, or the like. Once the electronics unit 16 is connected to the mounting unit 14, the sensor 32 is able to measure levels of the analyte in the host.


Detachable connection between the mounting unit 14 and electronics unit 16 provides improved manufacturability, namely, the relatively inexpensive mounting unit 14 can be disposed of when replacing the sensor system after its usable life, while the relatively more expensive electronics unit 16 can be reusable with multiple sensor systems. In certain embodiments, the electronics unit 16 is configured with programming, for example, initialization, calibration reset, failure testing, or the like, each time it is initially inserted into the cavity and/or each time it initially communicates with the sensor 32. However, an integral (non-detachable) electronics unit can be configured as is appreciated by one skilled in the art.


Referring to the mechanical fit between the mounting unit 14 and the electronics unit 16 (and/or applicator 12), a variety of mechanical joints are contemplated, for example, snap fit, interference fit, or slide fit. In the illustrated embodiment of FIGS. 12A to 12C, tabs 120 are provided on the mounting unit 14 and/or electronics unit 16 that enable a secure connection there between. The tabs 120 of the illustrated embodiment can improve ease of mechanical connection by providing alignment of the mounting unit and electronics unit and additional rigid support for force and counter force by the user (e.g., fingers) during connection. However, other configurations with or without guiding tabs are contemplated, such as illustrated in FIGS. 10 and 11, for example.


In some circumstances, a drift of the sensor signal can cause inaccuracies in sensor performance and/or require re-calibration of the sensor. Accordingly, it can be advantageous to provide a sealant, whereby moisture (e.g., water and water vapor) cannot substantially penetrate to the sensor and its connection to the electrical contacts. The sealant described herein can be used alone or in combination with the sealing member 36 described in more detail above, to seal the sensor from moisture in the external environment.


Preferably, the sealant fills in holes, crevices, or other void spaces between the mounting unit 14 and electronics unit 16 and/or around the sensor 32 within the mounting unit 32. For example, the sealant can surround the sensor in the portion of the sensor 32 that extends through the contacts 28. Additionally, the sealant can be disposed within the additional void spaces, for example a hole 122 that extends through the sealing member 36.


Preferably, the sealant comprises a water impermeable material or compound, for example, oil, grease, or gel. In one exemplary embodiment, the sealant comprises petroleum jelly and is used to provide a moisture barrier surrounding the sensor 32. In one experiment, petroleum jelly was liquefied by heating, after which a sensor 32 was immersed into the liquefied petroleum jelly to coat the outer surfaces thereof. The sensor was then assembled into a housing and inserted into a host, during which deployment the sensor was inserted through the electrical contacts 28 and the petroleum jelly conforming there between. Sensors incorporating petroleum jelly, such as described above, when compared to sensors without the petroleum jelly moisture barrier exhibited less or no signal drift over time when studied in a humid or submersed environment. While not wishing to be bound by theory, it is believed that incorporation of a moisture barrier surrounding the sensor, especially between the sensor and its associated electrical contacts, reduces or eliminates the effects of humidity on the sensor signal. The viscosity of grease or oil-based moisture barriers allows penetration into and through even small cracks or crevices within the sensor and mounting unit, displacing moisture and thereby increasing the sealing properties thereof. U.S. Pat. Nos. 4,259,540 and 5,285,513 disclose materials suitable for use as a water impermeable material (sealant).


Referring to the electrical fit between the sensor 32 and the electronics unit 16, contacts 28 (through which the sensor extends) are configured to electrically connect with mutually engaging contacts on the electronics unit 16. A variety of configurations are contemplated; however, the mutually engaging contacts operatively connect upon detachable connection of the electronics unit 16 with the mounting unit 14, and are substantially sealed from external moisture by sealing member 36. Even with the sealing member, some circumstances may exist wherein moisture can penetrate into the area surrounding the sensor 32 and or contacts, for example, exposure to a humid or wet environment (e.g., caused by sweat, showering, or other environmental causes). It has been observed that exposure of the sensor to moisture can be a cause of baseline signal drift of the sensor over time. For example in a glucose sensor, the baseline is the component of a glucose sensor signal that is not related to glucose (the amount of signal if no glucose is present), which is ideally constant over time. However, some circumstances my exist wherein the baseline can fluctuate over time, also referred to as drift, which can be caused, for example, by changes in a host's metabolism, cellular migration surrounding the sensor, interfering species, humidity in the environment, and the like.


In some embodiments, the mounting unit is designed to provide ventilation (e.g., a vent hole 124) between the exit-site and the sensor. In certain embodiments, a filter (not shown) is provided in the vent hole 124 that allows the passage of air, while preventing contaminants from entering the vent hole 124 from the external environment. While not wishing to be bound by theory, it is believed that ventilation to the exit-site (or to the sensor 32) can reduce or eliminate trapped moisture or bacteria, which can otherwise increase the growth and/or lifetime of bacteria adjacent to the sensor.


In some alternative embodiments, a sealing material is provided, which seals the needle and/or sensor from contamination of the external environment during and after sensor insertion. For example, one problem encountered in conventional transcutaneous devices is infection of the exit-site of the wound. For example, bacteria or contaminants can migrate from ex vivo, for example, any ex vivo portion of the device or the ex vivo environment, through the exit-site of the needle/sensor, and into the subcutaneous tissue, causing contamination and infection. Bacteria and/or contaminants can originate from handling of the device, exposed skin areas, and/or leakage from the mounting unit (external to) on the host. In many conventional transcutaneous devices, there exists some path of migration for bacteria and contaminants to the exit-site, which can become contaminated during sensor insertion or subsequent handling or use of the device. Furthermore, in some embodiments of a transcutaneous analyte sensor, the insertion-aiding device (for example, needle) is an integral part of the mounting unit; namely, the device stores the insertion device after insertion of the sensor, which is isolated from the exit-site (namely, point-of-entry of the sensor) after insertion.


Accordingly, these alternative embodiments provide a sealing material on the mounting unit, interposed between the housing and the skin, wherein the needle and/or sensor are adapted to extend through, and be sealed by, the sealing material. The sealing material is preferably formed from a flexible material that substantially seals around the needle/sensor. Appropriate flexible materials include malleable materials, elastomers, gels, greases, or the like (e.g., see U.S. Pat. Nos. 4,259,540 and 5,285,513). However, not all embodiments include a sealing material, and in some embodiments a clearance hole or other space surrounding the needle and/or sensor is preferred.


In one embodiment, the base 24 of the mounting unit 14 is formed from a flexible material, for example silicone, which by its elastomeric properties seals the needle and/or sensor at the exit port 126, such as is illustrated in FIGS. 11A and 11B. Thus, sealing material can be formed as a unitary or integral piece with the back surface 25 of the mounting unit 14, or with an adhesive pad 8 on the back surface of the mounting unit, however alternatively can be a separate part secured to the device. In some embodiments, the sealing material can extend through the exit port 126 above or below the plane of the adhesive pad surface, or the exit port 126 can comprise a septum seal such as those used in the medical storage and disposal industries (for example, silica gel sandwiched between upper and lower seal layers, such as layers comprising chemically inert materials such as PTFE). A variety of known septum seals can be implemented into the exit port of the preferred embodiments described herein. Whether the sealing material is integral with or a separate part attached to the mounting unit 14, the exit port 126 is advantageously sealed so as to reduce or eliminate the migration of bacteria or other contaminants to or from the exit-site of the wound and/or within the mounting unit.


During use, a host or caretaker positions the mounting unit at the appropriate location on or near the host's skin and prepares for sensor insertion. During insertion, the needle aids in sensor insertion, after which the needle is retracted into the mounting unit leaving the sensor in the subcutaneous tissue. In this embodiment, the exit-port 126 includes a layer of sealing material, such as a silicone membrane, that encloses the exit-port in a configuration that protects the exit-site from contamination that can migrate from the mounting unit or spacing external to the exit-site. Thus, when the sensor 32 and/or needle 72 extend through, for example, an aperture or a puncture in the sealing material, to provide communication between the mounting unit and subcutaneous space, a seal is formed there between. Elastomeric sealing materials can be advantageous in some embodiments because the elasticity provides a conforming seal between the needle/sensor and the mounting unit and/or because the elasticity provides shock-absorbing qualities allowing relative movement between the device and the various layers of the host's tissue, for example.


In some alternative embodiments, the sealing material includes a bioactive agent incorporated therein. Suitable bioactive agents include those which are known to discourage or prevent bacteria and infection, for example, anti-inflammatory, antimicrobials, antibiotics, or the like. It is believed that diffusion or presence of a bioactive agent can aid in prevention or elimination of bacteria adjacent to the exit-site.


In practice, after the sensor 32 has been inserted into the host's tissue, and an electrical connection formed by mating the electronics unit 16 to the mounting unit 14, the sensor measures an analyte concentration continuously or continually, for example, at an interval of from about fractions of a second to about 10 minutes or more.


Sensor Electronics


The following description of sensor electronics associated with the electronics unit is applicable to a variety of continuous analyte sensors, such as non-invasive, minimally invasive, and/or invasive (e.g., transcutaneous and wholly implantable) sensors. For example, the sensor electronics and data processing as well as the receiver electronics and data processing described below can be incorporated into the wholly implantable glucose sensor disclosed in co-pending U.S. patent application Ser. No. 10/838,912, filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR” and U.S. patent application Ser. No. 10/885,476 filed Jul. 6, 2004 and entitled, “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM”.



FIG. 13 is a block diagram that illustrates the electronics 132 associated with the sensor system 10 in one embodiment. In this embodiment, a potentiostat 134 is shown, which is operably connected to an electrode system (such as described above) and provides a voltage to the electrodes, which biases the sensor to enable measurement of an current signal indicative of the analyte concentration in the host (also referred to as the analog portion). In some embodiments, the potentiostat includes a resistor (not shown) that translates the current into voltage. In some alternative embodiments, a current to frequency converter is provided that is configured to continuously integrate the measured current, for example, using a charge counting device.


An A/D converter 136 digitizes the analog signal into a digital signal, also referred to as “counts” for processing. Accordingly, the resulting raw data stream in counts, also referred to as raw sensor data, is directly related to the current measured by the potentiostat 84.


A processor module 138 includes the central control unit that controls the processing of the sensor electronics 132. In some embodiments, the processor module includes a microprocessor, however a computer system other than a microprocessor can be used to process data as described herein, for example an ASIC can be used for some or all of the sensor's central processing. The processor typically provides semi-permanent storage of data, for example, storing data such as sensor identifier (ID) and programming to process data streams (for example, programming for data smoothing and/or replacement of signal artifacts such as is described in co-pending U.S. patent application Ser. No. 10/648,849, filed Aug. 22, 2003, and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM”). The processor additionally can be used for the system's cache memory, for example for temporarily storing recent sensor data. In some embodiments, the processor module comprises memory storage components such as ROM, RAM, dynamic-RAM, static-RAM, non-static RAM, EEPROM, rewritable ROMs, flash memory, or the like.


In some embodiments, the processor module comprises a digital filter, for example, an IIR or FIR filter, configured to smooth the raw data stream from the A/D converter. Generally, digital filters are programmed to filter data sampled at a predetermined time interval (also referred to as a sample rate.) In some embodiments, wherein the potentiostat is configured to measure the analyte at discrete time intervals, these time intervals determine the sample rate of the digital filter. In some alternative embodiments, wherein the potentiostat is configured to continuously measure the analyte, for example, using a current-to-frequency converter as described above, the processor module can be programmed to request a digital value from the A/D converter at a predetermined time interval, also referred to as the acquisition time. In these alternative embodiments, the values obtained by the processor are advantageously averaged over the acquisition time due the continuity of the current measurement. Accordingly, the acquisition time determines the sample rate of the digital filter. In preferred embodiments, the processor module is configured with a programmable acquisition time, namely, the predetermined time interval for requesting the digital value from the A/D converter is programmable by a user within the digital circuitry of the processor module. An acquisition time of from about 2 seconds to about 512 seconds is preferred; however any acquisition time can be programmed into the processor module. A programmable acquisition time is advantageous in optimizing noise filtration, time lag, and processing/battery power.


Preferably, the processor module is configured to build the data packet for transmission to an outside source, for example, an RF transmission to a receiver as described in more detail below. Generally, the data packet comprises a plurality of bits that can include a sensor ID code, raw data, filtered data, and/or error detection or correction. The processor module can be configured to transmit any combination of raw and/or filtered data.


In some embodiments, the processor module further comprises a transmitter portion that determines the transmission interval of the sensor data to a receiver, or the like. In some embodiments, the transmitter portion, which determines the interval of transmission, is configured to be programmable. In one such embodiment, a coefficient can be chosen (e.g., a number of from about 1 to about 100, or more), wherein the coefficient is multiplied by the acquisition time (or sampling rate), such as described above, to define the transmission interval of the data packet. Thus, in some embodiments, the transmission interval is programmable between about 2 seconds and about 850 minutes, more preferably between about 30 second and 5 minutes; however, any transmission interval can be programmable or programmed into the processor module. However, a variety of alternative systems and methods for providing a programmable transmission interval can also be employed. By providing a programmable transmission interval, data transmission can be customized to meet a variety of design criteria (e.g., reduced battery consumption, timeliness of reporting sensor values, etc.)


Conventional glucose sensors measure current in the nanoAmp range. In contrast to conventional glucose sensors, the preferred embodiments are configured to measure the current flow in the picoAmp range, and in some embodiments, femtoAmps. Namely, for every unit (mg/dL) of glucose measured, at least one picoAmp of current is measured. Preferably, the analog portion of the A/D converter 136 is configured to continuously measure the current flowing at the working electrode and to convert the current measurement to digital values representative of the current. In one embodiment, the current flow is measured by a charge counting device (e.g., a capacitor). Thus, a signal is provided, whereby a high sensitivity maximizes the signal received by a minimal amount of measured hydrogen peroxide (e.g., minimal glucose requirements without sacrificing accuracy even in low glucose ranges), reducing the sensitivity to oxygen limitations in vivo (e.g., in oxygen-dependent glucose sensors).


A battery 144 is operably connected to the sensor electronics 132 and provides the power for the sensor. In one embodiment, the battery is a lithium manganese dioxide battery; however, any appropriately sized and powered battery can be used (for example, AAA, nickel-cadmium, zinc-carbon, alkaline, lithium, nickel-metal hydride, lithium-ion, zinc-air, zinc-mercury oxide, silver-zinc, and/or hermetically-sealed). In some embodiments, the battery is rechargeable, and/or a plurality of batteries can be used to power the system. The sensor can be transcutaneously powered via an inductive coupling, for example. In some embodiments, a quartz crystal 96 is operably connected to the processor 138 and maintains system time for the computer system as a whole, for example for the programmable acquisition time within the processor module.


Optional temperature probe 140 is shown, wherein the temperature probe is located on the electronics assembly or the glucose sensor itself. The temperature probe can be used to measure ambient temperature in the vicinity of the glucose sensor. This temperature measurement can be used to add temperature compensation to the calculated glucose value.


An RF module 148 is operably connected to the processor 138 and transmits the sensor data from the sensor to a receiver within a wireless transmission 150 via antenna 152. In some embodiments, a second quartz crystal 154 provides the time base for the RF carrier frequency used for data transmissions from the RF transceiver. In some alternative embodiments, however, other mechanisms, such as optical, infrared radiation (IR), ultrasonic, or the like, can be used to transmit and/or receive data.


In the RF telemetry module of the preferred embodiments, the hardware and software are designed for low power requirements to increase the longevity of the device (for example, to enable a life of from about 3 to about 24 months, or more) with maximum RF transmittance from the in vivo environment to the ex vivo environment for wholly implantable sensors (for example, a distance of from about one to ten meters or more). Preferably, a high frequency carrier signal of from about 402 MHz to about 433 MHz is employed in order to maintain lower power requirements. Additionally, in wholly implantable devices, the carrier frequency is adapted for physiological attenuation levels, which is accomplished by tuning the RF module in a simulated in vivo environment to ensure RF functionality after implantation; accordingly, the preferred glucose sensor can sustain sensor function for 3 months, 6 months, 12 months, or 24 months or more.


When a sensor is first implanted into host tissue, the sensor and receiver are initialized. This is referred to as start-up mode, and involves optionally resetting the sensor data and calibrating the sensor 32. In selected embodiments, mating the electronics unit 16 to the mounting unit triggers a start-up mode. In other embodiments, the start-up mode is triggered by the receiver, which is described in more detail with reference to FIG. 19, below.


Preferably, the electronics unit 16 indicates to the receiver (FIGS. 14 and 15) that calibration is to be initialized (or re-initialized). The electronics unit 16 transmits a series of bits within a transmitted data packet wherein a sensor code can be included in the periodic transmission of the device. The status code is used to communicate sensor status to the receiving device. The status code can be inserted into any location in the transmitted data packet, with or without other sensor information. In one embodiment, the status code is designed to be unique or near unique to an individual sensor, which can be accomplished using a value that increments, decrements, or changes in some way after the transmitter detects that a sensor has been removed and/or attached to the transmitter. In an alternative embodiment, the status code can be configured to follow a specific progression, such as a BCD interpretation of a Gray code.


In some embodiments, the sensor electronics 132 are configured to detect a current drop to zero in the working electrode 44 associated with removal of a sensor 32 from the host (or the electronics unit 16 from the mounting unit 14), which can be configured to trigger an increment of the status code. If the incremented value reaches a maximum, it can be designed to roll over to 0. In some embodiments, the sensor electronics are configured to detect a voltage change cycle associated with removal and/or re-insertion of the sensor, which can be sensed in the counter electrode (e.g., of a three-electrode sensor), which can be configured to trigger an increment of the status code.


In some embodiments, the sensor electronics 132 can be configured to send a special value (for example, 0) that indicates that the electronics unit is not attached when removal of the sensor (or electronics unit) is detected. This special value can be used to trigger a variety of events, for example, to halt display of analyte values. Incrementing or decrementing routines can be used to skip this special value.


In some embodiments, the electronics unit 16 is configured to include additional contacts, which are designed to sense a specific resistance, or passive value, in the sensor system while the electronics unit is attached to the mounting unit. Preferably, these additional contacts are configured to detect information about a sensor, for example, whether the sensor is operatively connected to the mounting unit, the sensor's ID, a calibration code, or the like. For example, subsequent to sensing the passive value, the sensor electronics can be configured to change the sensor ID code by either mapping the value to a specific code, or internally detecting that the code is different and adjusting the sensor ID code in a predictable manner. As another example, the passive value can include information on parameters specific to a sensor (such as in vitro sensitivity information as described elsewhere herein).


In some embodiments, the electronics unit 16 includes additional contacts configured to communicate with a chip disposed in the mounting unit 14. In this embodiment, the chip is designed with a unique or near-unique signature that can be detected by the electronics unit 16 and noted as different, and/or transmitted to the receiver 158 as the sensor ID code.


In some embodiments, the electronics unit 16 is inductively coupled to an RFID or similar chip in the mounting unit 14. In this embodiment, the RFID tag uniquely identifies the sensor 32 and allows the transmitter to adjust the sensor ID code accordingly and/or to transmit the unique identifier to the receiver 158.


In some situations, it can be desirable to wait an amount of time after insertion of the sensor to allow the sensor to equilibrate in vivo, also referred to as “break-in”. Accordingly, the sensor electronics can be configured to aid in decreasing the break-in time of the sensor by applying different voltage settings (for example, starting with a higher voltage setting and then reducing the voltage setting) to speed the equilibration process.


In some situations, the sensor may not properly deploy, connect to, or otherwise operate as intended. Accordingly, the sensor electronics can be configured such that if the current obtained from the working electrode, or the subsequent conversion of the current into digital counts, for example, is outside of an acceptable threshold, then the sensor is marked with an error flag, or the like. The error flag can be transmitted to the receiver to instruct the user to reinsert a new sensor, or to implement some other error correction.


The above-described detection and transmission methods can be advantageously employed to minimize or eliminate human interaction with the sensor, thereby minimizing human error and/or inconvenience. Additionally, the sensors of preferred embodiments do not require that the receiver be in proximity to the transmitter during sensor insertion. Any one or more of the above described methods of detecting and transmitting insertion of a sensor and/or electronics unit can be combined or modified, as is appreciated by one skilled in the art.


Receiver



FIG. 14 is a perspective view of a sensor system, including wireless communication between a sensor and a receiver. Preferably the electronics unit 16 is wirelessly connected to a receiver 158 via one- or two-way RF transmissions or the like. However, a wired connection is also contemplated. The receiver 158 provides much of the processing and display of the sensor data, and can be selectively worn and/or removed at the host's convenience. Thus, the sensor system 10 can be discreetly worn, and the receiver 158, which provides much of the processing and display of the sensor data, can be selectively worn and/or removed at the host's convenience. Particularly, the receiver 158 includes programming for retrospectively and/or prospectively initiating a calibration, converting sensor data, updating the calibration, evaluating received reference and sensor data, and evaluating the calibration for the analyte sensor, such as described in more detail with reference to co-pending U.S. patent application Ser. No. 10/633,367, filed Aug. 1, 2003 and entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA.”


Receiver Electronics



FIG. 15A is a block diagram that illustrates the configuration of the medical device in one embodiment, including a continuous analyte sensor, a receiver, and an external device. In general, the analyte sensor system is any sensor configuration that provides an output signal indicative of a concentration of an analyte (e.g., invasive, minimally-invasive, and/or non-invasive sensors as described above). The output signal is sent to a receiver 158 and received by an input module 174, which is described in more detail below. The output signal is typically a raw data stream that is used to provide a useful value of the measured analyte concentration to a patient or a doctor, for example. In some embodiments, the raw data stream can be continuously or periodically algorithmically smoothed or otherwise modified to diminish outlying points that do not accurately represent the analyte concentration, for example due to signal noise or other signal artifacts, such as described in co-pending U.S. patent application Ser. No. 10/632,537 entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM,” filed Aug. 22, 2003, which is incorporated herein by reference in its entirety.


Referring again to FIG. 15A, the receiver 158, which is operatively linked to the sensor system 10, receives a data stream from the sensor system 10 via the input module 174. In one embodiment, the input module includes a quartz crystal operably connected to an RF transceiver (not shown) that together function to receive and synchronize data streams from the sensor system 10. However, the input module 174 can be configured in any manner that is capable of receiving data from the sensor. Once received, the input module 174 sends the data stream to a processor 176 that processes the data stream, such as is described in more detail below.


The processor 176 is the central control unit that performs the processing, such as storing data, analyzing data streams, calibrating analyte sensor data, estimating analyte values, comparing estimated analyte values with time corresponding measured analyte values, analyzing a variation of estimated analyte values, downloading data, and controlling the user interface by providing analyte values, prompts, messages, warnings, alarms, or the like. The processor includes hardware and software that performs the processing described herein, for example flash memory provides permanent or semi-permanent storage of data, storing data such as sensor ID, receiver ID, and programming to process data streams (for example, programming for performing estimation and other algorithms described elsewhere herein) and random access memory (RAM) stores the system's cache memory and is helpful in data processing.


Preferably, the input module 174 or processor module 176 performs a Cyclic Redundancy Check (CRC) to verify data integrity, with or without a method of recovering the data if there is an error. In some embodiments, error correction techniques such as those that use Hamming codes or Reed-Solomon encoding/decoding methods are employed to correct for errors in the data stream. In one alternative embodiment, an iterative decoding technique is employed, wherein the decoding is processed iteratively (e.g., in a closed loop) to determine the most likely decoded signal. This type of decoding can allow for recovery of a signal that is as low as 0.5 dB above the noise floor, which is in contrast to conventional non-iterative decoding techniques (such as Reed-Solomon), which requires approximately 3 dB or about twice the signal power to recover the same signal (e.g., a turbo code).


An output module 178, which is integral with and/or operatively connected with the processor 176, includes programming for generating output based on the data stream received from the sensor system 10 and its processing incurred in the processor 176. In some embodiments, output is generated via a user interface 160.


The user interface 160 comprises a keyboard 162, speaker 164, vibrator 166, backlight 168, liquid crystal display (LCD) screen 170, and one or more buttons 172. The components that comprise the user interface 160 include controls to allow interaction of the user with the receiver. The keyboard 162 can allow, for example, input of user information about himself/herself, such as mealtime, exercise, insulin administration, customized therapy recommendations, and reference analyte values. The speaker 164 can produce, for example, audible signals or alerts for conditions such as present and/or estimated hyperglycemic or hypoglycemic conditions in a person with diabetes. The vibrator 166 can provide, for example, tactile signals or alerts for reasons such as described with reference to the speaker, above. The backlight 168 can be provided, for example, to aid the user in reading the LCD 170 in low light conditions. The LCD 170 can be provided, for example, to provide the user with visual data output, such as is described in co-pending U.S. patent application Ser. No. 11/007,920 filed Dec. 8, 2004 and entitled “SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSORS.” FIGS. 15B to 15D illustrate some additional visual displays that can be provided on the screen 170. In some embodiments, the LCD is a touch-activated screen, enabling each selection by a user, for example, from a menu on the screen. The buttons 172 can provide for toggle, menu selection, option selection, mode selection, and reset, for example. In some alternative embodiments, a microphone can be provided to allow for voice-activated control.


In some embodiments, prompts or messages can be displayed on the user interface to convey information to the user, such as reference outlier values, requests for reference analyte values, therapy recommendations, deviation of the measured analyte values from the estimated analyte values, or the like. Additionally, prompts can be displayed to guide the user through calibration or trouble-shooting of the calibration.


Additionally, data output from the output module 178 can provide wired or wireless, one- or two-way communication between the receiver 158 and an external device 180. The external device 180 can be any device that wherein interfaces or communicates with the receiver 158. In some embodiments, the external device 180 is a computer, and the receiver 158 is able to download historical data for retrospective analysis by the patient or physician, for example. In some embodiments, the external device 180 is a modem or other telecommunications station, and the receiver 158 is able to send alerts, warnings, emergency messages, or the like, via telecommunication lines to another party, such as a doctor or family member. In some embodiments, the external device 180 is an insulin pen, and the receiver 158 is able to communicate therapy recommendations, such as insulin amount and time to the insulin pen. In some embodiments, the external device 180 is an insulin pump, and the receiver 158 is able to communicate therapy recommendations, such as insulin amount and time to the insulin pump. The external device 180 can include other technology or medical devices, for example pacemakers, implanted analyte sensor patches, other infusion devices, telemetry devices, or the like.


The user interface 160, including keyboard 162, buttons 172, a microphone (not shown), and the external device 180, can be configured to allow input of data. Data input can be helpful in obtaining information about the patient (for example, meal time, exercise, or the like), receiving instructions from a physician (for example, customized therapy recommendations, targets, or the like), and downloading software updates, for example. Keyboard, buttons, touch-screen, and microphone are all examples of mechanisms by which a user can input data directly into the receiver. A server, personal computer, personal digital assistant, insulin pump, and insulin pen are examples of external devices that can provide useful information to the receiver. Other devices internal or external to the sensor that measure other aspects of a patient's body (for example, temperature sensor, accelerometer, heart rate monitor, oxygen monitor, or the like) can be used to provide input helpful in data processing. In one embodiment, the user interface can prompt the patient to select an activity most closely related to their present activity, which can be helpful in linking to an individual's physiological patterns, or other data processing. In another embodiment, a temperature sensor and/or heart rate monitor can provide information helpful in linking activity, metabolism, and glucose excursions of an individual. While a few examples of data input have been provided here, a variety of information can be input, which can be helpful in data processing.



FIG. 15B is an illustration of an LCD screen 170 showing continuous and single point glucose information in the form of a trend graph 184 and a single numerical value 186. The trend graph shows upper and lower boundaries 182 representing a target range between which the host should maintain his/her glucose values. Preferably, the receiver is configured such that these boundaries 182 can be configured or customized by a user, such as the host or a care provider. By providing visual boundaries 182, in combination with continuous analyte values over time (e.g., a trend graph 184), a user may better learn how to control his/her analyte concentration (e.g., a person with diabetes may better learn how to control his/her glucose concentration) as compared to single point (single numerical value 186) alone. Although FIG. 15B illustrates a 1-hour trend graph (e.g., depicted with a time range 188 of 1-hour), a variety of time ranges can be represented on the screen 170, for example, 3-hour, 9-hour, 1-day, and the like.



FIG. 15C is an illustration of an LCD screen 170 showing a low alert screen that can be displayed responsive to a host's analyte concentration falling below a lower boundary (see boundaries 182). In this exemplary screen, a host's glucose concentration has fallen to 55 mg/dL, which is below the lower boundary set in FIG. 15B, for example. The arrow 190 represents the direction of the analyte trend, for example, indicating that the glucose concentration is continuing to drop. The annotation 192 (“LOW”) is helpful in immediately and clearly alerting the host that his/her glucose concentration has dropped below a preset limit, and what may be considered to be a clinically safe value, for example. FIG. 15D is an illustration of an LCD screen 170 showing a high alert screen that can be displayed responsive to a host's analyte concentration rising above an upper boundary (see boundaries 182). In this exemplary screen, a host's glucose concentration has risen to 200 mg/dL, which is above a boundary set by the host, thereby triggering the high alert screen. The arrow 190 represents the direction of the analyte trend, for example, indicating that the glucose concentration is continuing to rise. The annotation 192 (“HIGH”) is helpful in immediately and clearly alerting the host that his/her glucose concentration has above a preset limit, and what may be considered to be a clinically safe value, for example.


Although a few exemplary screens are depicted herein, a variety of screens can be provided for illustrating any of the information described in the preferred embodiments, as well as additional information. A user can toggle between these screens (e.g., using buttons 172) and/or the screens can be automatically displayed responsive to programming within the receiver 158, and can be simultaneously accompanied by another type of alert (audible or tactile, for example).


Algorithms



FIG. 16A provides a flow chart 200 that illustrates the initial calibration and data output of the sensor data in one embodiment, wherein calibration is responsive to reference analyte data. Initial calibration, also referred to as start-up mode, occurs at the initialization of a sensor, for example, the first time an electronics unit is used with a particular sensor. In certain embodiments, start-up calibration is triggered when the system determines that it can no longer remain in normal or suspended mode, which is described in more detail with reference to FIG. 19.


Calibration of an analyte sensor comprises data processing that converts sensor data signal into an estimated analyte measurement that is meaningful to a user. Accordingly, a reference analyte value is used to calibrate the data signal from the analyte sensor.


At block 202, a sensor data receiving module, also referred to as the sensor data module, receives sensor data (e.g., a data stream), including one or more time-spaced sensor data points, from the sensor 32 via the receiver 158, which can be in wired or wireless communication with the sensor 32. The sensor data point(s) can be smoothed (filtered) in certain embodiments using a filter, for example, a finite impulse response (FIR) or infinite impulse response (IIR) filter. During the initialization of the sensor, prior to initial calibration, the receiver receives and stores the sensor data, however it can be configured to not display any data to the user until initial calibration and, optionally, stabilization of the sensor has been established. In some embodiments, the data stream can be evaluated to determine sensor break-in (equilibration of the sensor in vitro or in vivo).


At block 204, a reference data receiving module, also referred to as the reference input module, receives reference data from a reference analyte monitor, including one or more reference data points. In one embodiment, the reference analyte points can comprise results from a self-monitored blood analyte test (e.g., finger stick test). For example, the user can administer a self-monitored blood analyte test to obtain an analyte value (e.g., point) using any known analyte sensor, and then enter the numeric analyte value into the computer system. Alternatively, a self-monitored blood analyte test is transferred into the computer system through a wired or wireless connection to the receiver (e.g. computer system) so that the user simply initiates a connection between the two devices, and the reference analyte data is passed or downloaded between the self-monitored blood analyte test and the receiver. In yet another embodiment, the self-monitored analyte test (e.g., SMBG) is integral with the receiver so that the user simply provides a blood sample to the receiver, and the receiver runs the analyte test to determine a reference analyte value. Co-pending U.S. patent application Ser. No. 10/991,966, filed on Nov. 17, 2004 and entitled “INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR” describes some systems and methods for integrating a reference analyte monitor into a receiver for a continuous analyte sensor.


In some alternative embodiments, the reference data is based on sensor data from another substantially continuous analyte sensor, e.g., a transcutaneous analyte sensor described herein, or another type of suitable continuous analyte sensor. In an embodiment employing a series of two or more transcutaneous (or other continuous) sensors, the sensors can be employed so that they provide sensor data in discrete or overlapping periods. In such embodiments, the sensor data from one continuous sensor can be used to calibrate another continuous sensor, or be used to confirm the validity of a subsequently employed continuous sensor.


In some embodiments, reference data can be subjected to “outlier detection” wherein the accuracy of a received reference analyte data is evaluated as compared to time-corresponding sensor data. In one embodiment, the reference data is compared to the sensor data on a modified Clarke Error Grid (e.g., a test similar to the Clarke Error Grid except the boundaries between the different regions are modified slightly) to determine if the data falls within a predetermined threshold. If the data is not within the predetermined threshold, then the receiver can be configured to request additional reference analyte data. If the additional reference analyte data confirms (e.g., closely correlates to) the first reference analyte data, then the first and second reference values are assumed to be accurate and calibration of the sensor is adjusted or re-initialized. Alternatively, if the second reference analyte value falls within the predetermined threshold, then the first reference analyte value is assumed to be an outlier and the second reference analyte value is used by the algorithm(s) instead. In one alternative embodiments of outlier detection, projection is used to estimate an expected analyte value, which is compared with the actual value and a delta evaluated for substantial correspondence. However, other methods of outlier detection are possible.


Certain acceptability parameters can be set for reference values received from the user. For example, in one embodiment, the receiver can be configured to only accept reference analyte values of from about 40 mg/dL to about 400 mg/dL.


At block 206, a data matching module, also referred to as the processor module, matches reference data (e.g., one or more reference analyte data points) with substantially time corresponding sensor data (e.g., one or more sensor data points) to provide one or more matched data pairs. One reference data point can be matched to one time corresponding sensor data point to form a matched data pair. Alternatively, a plurality of reference data points can be averaged (e.g., equally or non-equally weighted average, mean-value, median, or the like) and matched to one time corresponding sensor data point to form a matched data pair, one reference data point can be matched to a plurality of time corresponding sensor data points averaged to form a matched data pair, or a plurality of reference data points can be averaged and matched to a plurality of time corresponding sensor data points averaged to form a matched data pair.


In one embodiment, time corresponding sensor data comprises one or more sensor data points that occur from about 0 minutes to about 20 minutes after the reference analyte data time stamp (e.g., the time that the reference analyte data is obtained). In one embodiment, a 5-minute time delay is chosen to compensate for a system time-lag (e.g., the time necessary for the analyte to diffusion through a membrane(s) of an analyte sensor). In alternative embodiments, the time corresponding sensor value can be greater than or less than that of the above-described embodiment, for example ±60 minutes. Variability in time correspondence of sensor and reference data can be attributed to, for example, a longer or shorter time delay introduced by the data smoothing filter, or if the configuration of the analyte sensor incurs a greater or lesser physiological time lag.


In some implementations of the sensor, the reference analyte data is obtained at a time that is different from the time that the data is input into the receiver. Accordingly, the “time stamp” of the reference analyte (e.g., the time at which the reference analyte value was obtained) is not the same as the time at which the receiver obtained the reference analyte data. Therefore, some embodiments include a time stamp requirement that ensures that the receiver stores the accurate time stamp for each reference analyte value, that is, the time at which the reference value was actually obtained from the user.


In certain embodiments, tests are used to evaluate the best-matched pair using a reference data point against individual sensor values over a predetermined time period (e.g., about 30 minutes). In one such embodiment, the reference data point is matched with sensor data points at 5-minute intervals and each matched pair is evaluated. The matched pair with the best correlation can be selected as the matched pair for data processing. In some alternative embodiments, matching a reference data point with an average of a plurality of sensor data points over a predetermined time period can be used to form a matched pair.


At block 208, a calibration set module, also referred to as the processor module, forms an initial calibration set from a set of one or more matched data pairs, which are used to determine the relationship between the reference analyte data and the sensor analyte data. The matched data pairs, which make up the initial calibration set, can be selected according to predetermined criteria. The criteria for the initial calibration set can be the same as, or different from, the criteria for the updated calibration sets. In certain embodiments, the number (n) of data pair(s) selected for the initial calibration set is one. In other embodiments, n data pairs are selected for the initial calibration set wherein n is a function of the frequency of the received reference data points. In various embodiments, two data pairs make up the initial calibration set or six data pairs make up the initial calibration set. In an embodiment wherein a substantially continuous analyte sensor provides reference data, numerous data points are used to provide reference data from more than 6 data pairs (e.g., dozens or even hundreds of data pairs). In one exemplary embodiment, a substantially continuous analyte sensor provides 288 reference data points per day (every five minutes for twenty-four hours), thereby providing an opportunity for a matched data pair 288 times per day, for example. While specific numbers of matched data pairs are referred to in the preferred embodiments, any suitable number of matched data pairs per a given time period can be employed.


In certain embodiments, the data pairs are selected only within a certain analyte value threshold, for example wherein the reference analyte value is from about 40 mg/dL to about 400 mg/dL. In certain embodiments, the data pairs that form the initial calibration set are selected according to their time stamp, for example, by waiting a predetermined “break-in” time period after implantation, the stability of the sensor data can be increased. In certain embodiments, the data pairs that form the initial calibration set are spread out over a predetermined time period, for example, a period of two hours or more. In certain embodiments, the data pairs that form the initial calibration set are spread out over a predetermined glucose range, for example, spread out over a range of at least 90 mg/dL or more.


At block 210, a conversion function module, also referred to as the processor module, uses the calibration set to create a conversion function. The conversion function substantially defines the relationship between the reference analyte data and the analyte sensor data.


A variety of known methods can be used with the preferred embodiments to create the conversion function from the calibration set. In one embodiment, wherein a plurality of matched data points form the calibration set, a linear least squares regression is used to calculate the conversion function; for example, this regression calculates a slope and an offset using the equation y=mx+b. A variety of regression or other conversion schemes can be implemented herein.


In some alternative embodiments, the sensor is calibrated with a single-point through the use of a dual-electrode system to simplify sensor calibration. In one such dual-electrode system, a first electrode functions as a hydrogen peroxide sensor including a membrane system containing glucose-oxidase disposed thereon, which operates as described herein. A second electrode is a hydrogen peroxide sensor that is configured similar to the first electrode, but with a modified membrane system (with the enzyme domain removed, for example). This second electrode provides a signal composed mostly of the baseline signal, b.


In some dual-electrode systems, the baseline signal is (electronically or digitally) subtracted from the glucose signal to obtain a glucose signal substantially without baseline. Accordingly, calibration of the resultant difference signal can be performed by solving the equation y=mx with a single paired measurement. Calibration of the implanted sensor in this alternative embodiment can be made less dependent on the values/range of the paired measurements, less sensitive to error in manual blood glucose measurements, and can facilitate the sensor's use as a primary source of glucose information for the user. Co-pending U.S. patent application Ser. No. 11/004,561 filed Dec. 3, 2004 and entitled, “CALIBRATION TECHNIQUES FOR A CONTINUOUS ANALYTE SENSOR” describes systems and methods for subtracting the baseline from a sensor signal.


In some alternative dual-electrode system embodiments, the analyte sensor is configured to transmit signals obtained from each electrode separately (e.g., without subtraction of the baseline signal). In this way, the receiver can process these signals to determine additional information about the sensor and/or analyte concentration. For example, by comparing the signals from the first and second electrodes, changes in baseline and/or sensitivity can be detected and/or measured and used to update calibration (e.g., without the use of a reference analyte value). In one such example, by monitoring the corresponding first and second signals over time, an amount of signal contributed by baseline can be measured. In another such example, by comparing fluctuations in the correlating signals over time, changes in sensitivity can be detected and/or measured.


In some alternative embodiments, a regression equation y=mx+b is used to calculate the conversion function; however, prior information can be provided for m and/or b, thereby enabling calibration to occur with fewer paired measurements. In one calibration technique, prior information (e.g., obtained from in vivo or in vitro tests) determines a sensitivity of the sensor and/or the baseline signal of the sensor by analyzing sensor data from measurements taken by the sensor (e.g., prior to inserting the sensor). For example, if there exists a predictive relationship between in vitro sensor parameters and in vivo parameters, then this information can be used by the calibration procedure. For example, if a predictive relationship exists between in vitro sensitivity and in vivo sensitivity, m≈f(min vitro), then the predicted m can be used, along with a single matched pair, to solve for b (b=y−mx). If, in addition, b can be assumed=0, for example with a dual-electrode configuration that enables subtraction of the baseline from the signal such as described above, then both m and b are known a priori, matched pairs are not needed for calibration, and the sensor can be completely calibrated e.g. without the need for reference analyte values (e.g. values obtained after implantation in vivo.)


In another alternative embodiment, prior information can be provided to guide or validate the baseline (b) and/or sensitivity (m) determined from the regression analysis. In this embodiment, boundaries can be set for the regression line that defines the conversion function such that working sensors are calibrated accurately and easily (with two points), and non-working sensors are prevented from being calibrated. If the boundaries are drawn too tightly, a working sensor may not enter into calibration. Likewise, if the boundaries are drawn too loosely, the scheme can result in inaccurate calibration or can permit non-working sensors to enter into calibration. For example, subsequent to performing regression, the resulting slope and/or baseline are tested to determine whether they fall within a predetermined acceptable threshold (boundaries). These predetermined acceptable boundaries can be obtained from in vivo or in vitro tests (e.g., by a retrospective analysis of sensor sensitivities and/or baselines collected from a set of sensors/patients, assuming that the set is representative of future data).


If the slope and/or baseline fall within the predetermined acceptable boundaries, then the regression is considered acceptable and processing continues to the next step (e.g., block 212). Alternatively, if the slope and/or baseline fall outside the predetermined acceptable boundaries, steps can be taken to either correct the regression or fail-safe such that a system will not process or display errant data. This can be useful in situations wherein regression results in errant slope or baseline values. For example, when points (matched pairs) used for regression are too close in value, the resulting regression statistically is less accurate than when the values are spread farther apart. As another example, a sensor that is not properly deployed or is damaged during deployment can yield a skewed or errant baseline signal.



FIG. 16B is a graph that illustrates one example of using prior information for slope and baseline. The x-axis represents reference glucose data (blood glucose) from a reference glucose source in mg/dL; the y-axis represents sensor data from a transcutaneous glucose sensor of the preferred embodiments in counts. An upper boundary line 215 is a regression line that represents an upper boundary of “acceptability” in this example; the lower boundary line 216 is a regression line that represents a lower boundary of “acceptability” in this example. The boundary lines 215, 216 were obtained from retrospective analysis of in vivo sensitivities and baselines of glucose sensors as described in the preferred embodiments.


A plurality of matched data pairs 217 represents data pairs in a calibration set obtained from a glucose sensor as described in the preferred embodiments. The matched data pairs are plotted according to their sensor data and time-corresponding reference glucose data. A regression line 218 represents the result of regressing the matched data pairs 217 using least squares regression. In this example, the regression line falls within the upper and lower boundaries 215, 216 indicating that the sensor calibration is acceptable.


However, if the slope and/or baseline had fallen outside the predetermined acceptable boundaries, which would be illustrated in this graph by a line that crosses the upper and/or lower boundaries 215, 216, then the system is configured to assume a baseline value and re-run the regression (or a modified version of the regression) with the assumed baseline, wherein the assumed baseline value is derived from in vivo or in vitro testing. Subsequently, the newly derived slope and baseline are again tested to determine whether they fall within the predetermined acceptable boundaries. Similarly, the processing continues in response to the results of the boundary test. In general, for a set of matched pairs (e.g., calibration set), regression lines with higher slope (sensitivity) have a lower baseline and regression lines with lower slope (sensitivity) have a higher baseline. Accordingly, the step of assuming a baseline and testing against boundaries can be repeated using a variety of different assumed baselines based on the baseline, sensitivity, in vitro testing, and/or in vivo testing. For example, if a boundary test fails due to high sensitivity, then a higher baseline is assumed and the regression re-run and boundary-tested. It is preferred that after about two iterations of assuming a baseline and/or sensitivity and running a modified regression, the system assumes an error has occurred (if the resulting regression lines fall outside the boundaries) and fail-safe. The term “fail-safe” includes modifying the system processing and/or display of data responsive to a detected error avoid reporting of inaccurate or clinically irrelevant analyte values.


In these various embodiments utilizing an additional electrode, prior information (e.g., in vitro or in vivo testing), signal processing, or other information for assisting in the calibration process can be used alone or in combination to reduce or eliminate the dependency of the calibration on reference analyte values obtained by the host.


At block 212, a sensor data transformation module uses the conversion function to transform sensor data into substantially real-time analyte value estimates, also referred to as calibrated data, or converted sensor data, as sensor data is continuously (or intermittently) received from the sensor. For example, the sensor data, which can be provided to the receiver in “counts”, is translated in to estimate analyte value(s) in mg/dL. In other words, the offset value at any given point in time can be subtracted from the raw value (e.g., in counts) and divided by the slope to obtain the estimate analyte value:







mg
/
dL

=


(

rawvalue
-
offset

)

slope





In some alternative embodiments, the sensor and/or reference analyte values are stored in a database for retrospective analysis.


At block 214, an output module provides output to the user via the user interface. The output is representative of the estimated analyte value, which is determined by converting the sensor data into a meaningful analyte value. User output can be in the form of a numeric estimated analyte value, an indication of directional trend of analyte concentration, and/or a graphical representation of the estimated analyte data over a period of time, for example. Other representations of the estimated analyte values are also possible, for example audio and tactile.


In some embodiments, annotations are provided on the graph; for example, bitmap images are displayed thereon, which represent events experienced by the host. For example, information about meals, insulin, exercise, sensor insertion, sleep, and the like, can be obtained by the receiver (by user input or receipt of a transmission from another device) and displayed on the graphical representation of the host's glucose over time. It is believed that illustrating a host's life events matched with a host's glucose concentration over time can be helpful in educating the host to his or her metabolic response to the various events.


In yet another alternative embodiment, the sensor utilizes one or more additional electrodes to measure an additional analyte. Such measurements can provide a baseline or sensitivity measurement for use in calibrating the sensor. Furthermore, baseline and/or sensitivity measurements can be used to trigger events such as digital filtering of data or suspending display of data, all of which are described in more detail in co-pending U.S. patent application Ser. No. 11/004,561, filed Dec. 3, 2004 and entitled, “CALIBRATION TECHNIQUES FOR A CONTINUOUS ANALYTE SENSOR.”



FIG. 17 provides a flow chart 220 that illustrates the evaluation of reference and/or sensor data for statistical, clinical, and/or physiological acceptability in one embodiment. Although some acceptability tests are disclosed herein, any known statistical, clinical, physiological standards and methodologies can be applied to evaluate the acceptability of reference and sensor analyte data.


One cause for discrepancies in reference and sensor data is a sensitivity drift that can occur over time, when a sensor is inserted into a host and cellular invasion of the sensor begins to block transport of the analyte to the sensor, for example. Therefore, it can be advantageous to validate the acceptability of converted sensor data against reference analyte data, to determine if a drift of sensitivity has occurred and whether the calibration should be updated.


In one embodiment, the reference analyte data is evaluated with respect to substantially time corresponding converted sensor data to determine the acceptability of the matched pair. For example, clinical acceptability considers a deviation between time corresponding analyte measurements (for example, data from a glucose sensor and data from a reference glucose monitor) and the risk (for example, to the decision making of a person with diabetes) associated with that deviation based on the glucose value indicated by the sensor and/or reference data. Evaluating the clinical acceptability of reference and sensor analyte data, and controlling the user interface dependent thereon, can minimize clinical risk. Preferably, the receiver evaluates clinical acceptability each time reference data is obtained.


After initial calibration, such as is described in more detail with reference to FIG. 16, the sensor data receiving module 222 receives substantially continuous sensor data (e.g., a data stream) via a receiver and converts that data into estimated analyte values. As used herein, the term “substantially continuous” is a broad term and is used in its ordinary sense, without limitation, to refer to a data stream of individual measurements taken at time intervals (e.g., time-spaced) ranging from fractions of a second up to, e.g., 1, 2, or 5 minutes or more. As sensor data is continuously converted, it can be occasionally recalibrated in response to changes in sensor sensitivity (drift), for example. Initial calibration and re-calibration of the sensor require a reference analyte value. Accordingly, the receiver can receive reference analyte data at any time for appropriate processing.


At block 222, the reference data receiving module, also referred to as the reference input module, receives reference analyte data from a reference analyte monitor. In one embodiment, the reference data comprises one analyte value obtained from a reference monitor. In some alternative embodiments however, the reference data includes a set of analyte values entered by a user into the interface and averaged by known methods, such as are described elsewhere herein. In some alternative embodiments, the reference data comprises a plurality of analyte values obtained from another continuous analyte sensor.


The reference data can be pre-screened according to environmental and physiological issues, such as time of day, oxygen concentration, postural effects, and patient-entered environmental data. In one exemplary embodiment, wherein the sensor comprises an implantable glucose sensor, an oxygen sensor within the glucose sensor is used to determine if sufficient oxygen is being provided to successfully complete the necessary enzyme and electrochemical reactions for accurate glucose sensing. In another exemplary embodiment, the patient is prompted to enter data into the user interface, such as meal times and/or amount of exercise, which can be used to determine likelihood of acceptable reference data. In yet another exemplary embodiment, the reference data is matched with time-corresponding sensor data, which is then evaluated on a modified clinical error grid to determine its clinical acceptability.


Some evaluation data, such as described in the paragraph above, can be used to evaluate an optimum time for reference analyte measurement. Correspondingly, the user interface can then prompt the user to provide a reference data point for calibration within a given time period. Consequently, because the receiver proactively prompts the user during optimum calibration times, the likelihood of error due to environmental and physiological limitations can decrease and consistency and acceptability of the calibration can increase.


At block 224, the evaluation module, also referred to as acceptability module, evaluates newly received reference data. In one embodiment, the evaluation module evaluates the clinical acceptability of newly received reference data and time corresponding converted sensor data (new matched data pair). In one embodiment, a clinical acceptability evaluation module 224 matches the reference data with a substantially time corresponding converted sensor value, and determines the Clarke Error Grid coordinates. In this embodiment, matched pairs that fall within the A and B regions of the Clarke Error Grid are considered clinically acceptable, while matched pairs that fall within the C, D, and E regions of the Clarke Error Grid are not considered clinically acceptable.


A variety of other known methods of evaluating clinical acceptability can be utilized. In one alternative embodiment, the Consensus Grid is used to evaluate the clinical acceptability of reference and sensor data. In another alternative embodiment, a mean absolute difference calculation can be used to evaluate the clinical acceptability of the reference data. In another alternative embodiment, the clinical acceptability can be evaluated using any relevant clinical acceptability test, such as a known grid (e.g., Clarke Error or Consensus), and additional parameters, such as time of day and/or the increase or decreasing trend of the analyte concentration. In another alternative embodiment, a rate of change calculation can be used to evaluate clinical acceptability. In yet another alternative embodiment, wherein the received reference data is in substantially real time, the conversion function could be used to predict an estimated glucose value at a time corresponding to the time stamp of the reference analyte value (this can be required due to a time lag of the sensor data such as described elsewhere herein). Accordingly, a threshold can be set for the predicted estimated glucose value and the reference analyte value disparity, if any. In some alternative embodiments, the reference data is evaluated for physiological and/or statistical acceptability as described in more detail elsewhere herein.


At decision block 226, results of the evaluation are assessed. If acceptability is determined, then processing continues to block 228 to re-calculate the conversion function using the new matched data pair in the calibration set.


At block 228, the conversion function module re-creates the conversion function using the new matched data pair associated with the newly received reference data. In one embodiment, the conversion function module adds the newly received reference data (e.g., including the matched sensor data) into the calibration set, and recalculates the conversion function accordingly. In alternative embodiments, the conversion function module displaces the oldest, and/or least concordant matched data pair from the calibration set, and recalculates the conversion function accordingly.


At block 230, the sensor data transformation module uses the new conversion function (from block 228) to continually (or intermittently) convert sensor data into estimated analyte values, also referred to as calibrated data, or converted sensor data, such as is described in more detail above.


At block 232, an output module provides output to the user via the user interface. The output is representative of the estimated analyte value, which is determined by converting the sensor data into a meaningful analyte value. User output can be in the form of a numeric estimated analyte value, an indication of directional trend of analyte concentration, and/or a graphical representation of the estimated analyte data over a period of time, for example. Other representations of the estimated analyte values are also possible, for example audio and tactile.


If, however, acceptability is determined at decision block 226 as negative (unacceptable), then the processing progresses to block 234 to adjust the calibration set. In one embodiment of a calibration set adjustment, the conversion function module removes one or more oldest matched data pair(s) and recalculates the conversion function accordingly. In an alternative embodiment, the conversion function module removes the least concordant matched data pair from the calibration set, and recalculates the conversion function accordingly.


At block 236, the conversion function module re-creates the conversion function using the adjusted calibration set. While not wishing to be bound by theory, it is believed that removing the least concordant and/or oldest matched data pair(s) from the calibration set can reduce or eliminate the effects of sensor sensitivity drift over time, adjusting the conversion function to better represent the current sensitivity of the sensor.


At block 224, the evaluation module re-evaluates the acceptability of newly received reference data with time corresponding converted sensor data that has been converted using the new conversion function (block 236). The flow continues to decision block 238 to assess the results of the evaluation, such as described with reference to decision block 226, above. If acceptability is determined, then processing continues to block 230 to convert sensor data using the new conversion function and continuously display calibrated sensor data on the user interface.


If, however, acceptability is determined at decision block 226 as negative, then the processing loops back to block 234 to adjust the calibration set once again. This process can continue until the calibration set is no longer sufficient for calibration, for example, when the calibration set includes only one or no matched data pairs with which to create a conversion function. In this situation, the system can return to the initial calibration or start-up mode, which is described in more detail with reference to FIGS. 16 and 19, for example. Alternatively, the process can continue until inappropriate matched data pairs have been sufficiently purged and acceptability is positively determined.


In alternative embodiments, the acceptability is determined by a quality evaluation, for example, calibration quality can be evaluated by determining the statistical association of data that forms the calibration set, which determines the confidence associated with the conversion function used in calibration and conversion of raw sensor data into estimated analyte values. See, e.g., co-pending U.S. patent application Ser. No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA.”


Alternatively, each matched data pair can be evaluated based on clinical or statistical acceptability such as described above; however, when a matched data pair does not pass the evaluation criteria, the system can be configured to ask for another matched data pair from the user. In this way, a secondary check can be used to determine whether the error is more likely due to the reference glucose value or to the sensor value. If the second reference glucose value substantially correlates to the first reference glucose value, it can be presumed that the reference glucose value is more accurate and the sensor values are errant. Some reasons for errancy of the sensor values include a shift in the baseline of the signal or noise on the signal due to low oxygen, for example. In such cases, the system can be configured to re-initiate calibration using the secondary reference glucose value. If, however, the reference glucose values do not substantially correlate, it can be presumed that the sensor glucose values are more accurate and the reference glucose values eliminated from the algorithm.



FIG. 18 provides is a flow chart 250 that illustrates the evaluation of calibrated sensor data for aberrant values in one embodiment. Although sensor data are typically accurate and reliable, it can be advantageous to perform a self-diagnostic check of the calibrated sensor data prior to displaying the analyte data on the user interface.


One reason for anomalies in calibrated sensor data includes transient events, such as local ischemia at the implant site, which can temporarily cause erroneous readings caused by insufficient oxygen to react with the analyte. Accordingly, the flow chart 190 illustrates one self-diagnostic check that can be used to catch erroneous data before displaying it to the user.


At block 252, a sensor data receiving module, also referred to as the sensor data module, receives new sensor data from the sensor.


At block 24, the sensor data transformation module continuously (or intermittently) converts new sensor data into estimated analyte values, also referred to as calibrated data.


At block 256, a self-diagnostic module compares the new calibrated sensor data with previous calibrated sensor data, for example, the most recent calibrated sensor data value. In comparing the new and previous sensor data, a variety of parameters can be evaluated. In one embodiment, the rate of change and/or acceleration (or deceleration) of change of various analytes, which have known physiological limits within the body, and sensor data can be evaluated accordingly. For example, a limit can be set to determine if the new sensor data is within a physiologically feasible range, indicated by a rate of change from the previous data that is within known physiological (and/or statistical) limits. Similarly, any algorithm that predicts a future value of an analyte can be used to predict and then compare an actual value to a time corresponding predicted value to determine if the actual value falls within a statistically and/or clinically acceptable range based on the predictive algorithm, for example. In certain embodiments, identifying a disparity between predicted and measured analyte data can be used to identify a shift in signal baseline responsive to an evaluated difference between the predicted data and time-corresponding measured data. In some alternative embodiments, a shift in signal baseline and/or sensitivity can be determined by monitoring a change in the conversion function; namely, when a conversion function is re-calculated using the equation y=mx+b, a change in the values of m (sensitivity) or b (baseline) above a pre-selected “normal” threshold, can be used to trigger a fail-safe or further diagnostic evaluation.


Although the above-described self-diagnostics are generally employed with calibrated sensor data, some alternative embodiments are contemplated that check for aberrancy of consecutive sensor values prior to sensor calibration, for example, on the raw data stream and/or after filtering of the raw data stream. In certain embodiments, an intermittent or continuous signal-to-noise measurement can be evaluated to determine aberrancy of sensor data responsive to a signal-to-noise ratio above a set threshold. In certain embodiments, signal residuals (e.g., by comparing raw and filtered data) can be intermittently or continuously analyzed for noise above a set threshold. In certain embodiments, pattern recognition can be used to identify noise associated with physiological conditions, such as low oxygen (see, e.g., co-pending U.S. application Ser. No. 10/648,849 filed Aug. 22, 2003 and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM”), or other known signal aberrancies. Accordingly, in these embodiments, the system can be configured, in response to aberrancies in the data stream, to trigger signal estimation, adaptively filter the data stream according to the aberrancy, or the like, as described in more detail in the above cited co-pending U.S. application Ser. No. 10/648,849.


In another embodiment, reference analyte values are processed to determine a level of confidence, wherein reference analyte values are compared to their time-corresponding calibrated sensor values and evaluated for clinical or statistical accuracy. In yet another alternative embodiment, new and previous reference analyte data are compared in place of or in addition to sensor data. In general, there exist known patterns and limitations of analyte values that can be used to diagnose certain anomalies in raw or calibrated sensor and/or reference analyte data.


Block 193 describes additional systems and methods that can by utilized by the self-diagnostics module of the preferred embodiments.


At decision block 258, the system determines whether the comparison returned aberrant values. In one embodiment, the slope (rate of change) between the new and previous sensor data is evaluated, wherein values greater than +/−10, 15, 20, 25, or 30% or more change and/or +/−2, 3, 4, 5, 6 or more mg/dL/min, more preferably +/−4 mg/dL/min, rate of change are considered aberrant. In certain embodiments, other known physiological parameters can be used to determine aberrant values. However, a variety of comparisons and limitations can be set.


At block 260, if the values are not found to be aberrant, the sensor data transformation module continuously (or intermittently) converts received new sensor data into estimated analyte values, also referred to as calibrated data.


At block 262, if the values are found to be aberrant, the system goes into a suspended mode, also referred to as fail-safe mode in some embodiments, which is described in more detail below with reference to FIG. 19. In general, suspended mode suspends display of calibrated sensor data and/or insertion of matched data pairs into the calibration set. Preferably, the system remains in suspended mode until received sensor data is not found to be aberrant. In certain embodiments, a time limit or threshold for suspension is set, after which system and/or user interaction can be required, for example, requesting additional reference analyte data, replacement of the electronics unit, and/or reset.


In some alternative embodiments, in response to a positive determination of aberrant value(s), the system can be configured to estimate one or more glucose values for the time period during which aberrant values exist. Signal estimation generally refers to filtering, data smoothing, augmenting, projecting, and/or other methods for estimating glucose values based on historical data, for example. In one implementation of signal estimation, physiologically feasible values are calculated based on the most recent glucose data, and the aberrant values are replaced with the closest physiologically feasible glucose values. See also co-pending U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA,” U.S. application Ser. No. 10/648,849 filed Aug. 22, 2003 and entitled, “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM,” and U.S. Provisional Patent Application No. 60/528,382 filed Dec. 9, 2003 entitled, “SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSORS.”



FIG. 19 provides a flow chart 280 that illustrates a self-diagnostic of sensor data in one embodiment. Although reference analyte values can useful for checking and calibrating sensor data, self-diagnostic capabilities of the sensor provide for a fail-safe for displaying sensor data with confidence and enable minimal user interaction (for example, requiring reference analyte values only as needed).


At block 282, a sensor data receiving module, also referred to as the sensor data module, receives new sensor data from the sensor.


At block 284, the sensor data transformation module continuously (or intermittently) converts received new sensor data into estimated analyte values, also referred to as calibrated data.


At block 286, a self-diagnostics module, also referred to as a fail-safe module, performs one or more calculations to determine the accuracy, reliability, and/or clinical acceptability of the sensor data. Some examples of the self-diagnostics module are described above, with reference block 256. The self-diagnostics module can be further configured to run periodically (e.g., intermittently or in response to a trigger), for example, on raw data, filtered data, calibrated data, predicted data, and the like.


In certain embodiments, the self-diagnostics module evaluates an amount of time since sensor insertion into the host, wherein a threshold is set for the sensor's usable life, after which time period the sensor is considered to be unreliable. In certain embodiments, the self-diagnostics module counts the number of times a failure or reset is required (for example, how many times the system is forced into suspended or start-up mode), wherein a count threshold is set for a predetermined time period, above which the system is considered to be unreliable. In certain embodiments, the self-diagnostics module compares newly received calibrated sensor data with previously calibrated sensor data for aberrant values, such as is described in more detail with reference to FIG. 5, above. In certain embodiments, the self-diagnostics module evaluates clinical acceptability, such as is described in more detail with reference to FIG. 18, above. In certain embodiments, diagnostics, such as are described in co-pending U.S. patent application Ser. No. 11/007,635 filed Dec. 7, 2004 and U.S. patent application Ser. No. 11/004,561 filed Dec. 3, 2004, can be incorporated into the systems of preferred embodiments for system diagnosis, for example, for identifying interfering species on the sensor signal and for identifying drifts in baseline and sensitivity of the sensor signal.


At block 288, a mode determination module, which can be a part of the sensor evaluation module 224, determines in which mode the sensor should be set (or remain). In some embodiments, the system is programmed with three modes: 1) start-up mode; 2) normal mode; and 3) suspended mode. Although three modes are described herein, the preferred embodiments are limited to the number or types of modes with which the system can be programmed. In some embodiments, the system is defined as “in-cal” (in calibration) in normal mode; otherwise, the system is defined as “out-of-cal” (out of calibration) in start-up and suspended mode. The terms as used herein are meant to describe the functionality and are not limiting in their definitions.


Preferably, a start-up mode is provided, wherein the start-up mode is set when the system determines that it can no longer remain in suspended or normal mode (for example, due to problems detected by the self-diagnostics module, such as described in more detail above) and/or wherein the system is notified that a new sensor has been inserted. Upon initialization of start-up mode, the system ensures that any old matched data pairs and/or calibration information is purged. In start-up mode, the system initializes the calibration set, such as described in more detail with reference to FIG. 13, above. Once the calibration set has been initialized, sensor data is ready for conversion and the system is set to normal mode.


Preferably, a normal mode is provided, wherein the normal mode is set when the system is accurately and reliably converting sensor data, for example, wherein clinical acceptability is positively determined, aberrant values are negatively determined, and/or the self-diagnostics modules confirms reliability of data. In normal mode, the system continuously (or intermittently) converts (calibrates) sensor data. Additionally, reference analyte values received by the system are matched with sensor data points and added to the calibration set.


In certain embodiments, the calibration set is limited to a predetermined number of matched data pairs, after which the systems purges old or less desirable matched data pairs when a new matched data pair is added to the calibration set. Less desirable matched data pairs can be determined by inclusion criteria, which include one or more criteria that define a set of matched data pairs that form a substantially optimal calibration set.


One inclusion criterion comprises ensuring the time stamp of the matched data pairs (that make up the calibration set) span at least a preselected time period (e.g., three hours). Another inclusion criterion comprises ensuring that the time stamps of the matched data pairs are not more than a preselected age (e.g., one week old). Another inclusion criterion ensures that the matched pairs of the calibration set have a substantially evenly distributed amount of high and low raw sensor data points, estimated sensor analyte values, and/or reference analyte values. Another criterion comprises ensuring all raw sensor data, estimated sensor analyte values, and/or reference analyte values are within a predetermined range (e.g., 40 mg/dL to 400 mg/dL for glucose values). Another criterion comprises evaluating the rate of change of the analyte concentration (e.g., from sensor data) during the time stamp of the matched pair(s). For example, sensor and reference data obtained during the time when the analyte concentration is undergoing a slow rate of change can be less susceptible to inaccuracies caused by time lag and other physiological and non-physiological effects. Another criterion comprises evaluating the congruence of respective sensor and reference data in each matched data pair; the matched pairs with the most congruence can be chosen. Another criterion comprises evaluating physiological changes (e.g., low oxygen due to a user's posture, position, or motion that can cause pressure on the sensor and effect the function of a subcutaneously implantable analyte sensor, or other effects such as described with reference to FIG. 6) to ascertain a likelihood of error in the sensor value. Evaluation of calibration set criteria can comprise evaluating one, some, or all of the above described inclusion criteria. It is contemplated that additional embodiments can comprise additional inclusion criteria not explicitly described herein.


Unfortunately, some circumstances can exist wherein a system in normal mode can be changed to start-up or suspended mode. In general, the system is programmed to change to suspended mode when a failure of clinical acceptability, aberrant value check and/or other self-diagnostic evaluation is determined, such as described in more detail above, and wherein the system requires further processing to determine whether a system re-start is required (e.g., start-up mode). In general, the system will change to start-up mode when the system is unable to resolve itself in suspended mode and/or when the system detects a new sensor has been inserted (e.g., via system trigger or user input).


Preferably, a suspended mode is provided wherein the suspended mode is set when a failure of clinical acceptability, aberrant value check, and/or other self-diagnostic evaluation determines unreliability of sensor data. In certain embodiments, the system enters suspended mode when a predetermined time period passes without receiving a reference analyte value. In suspended mode, the calibration set is not updated with new matched data pairs, and sensor data can optionally be converted, but not displayed on the user interface. The system can be changed to normal mode upon resolution of a problem (positive evaluation of sensor reliability from the self-diagnostics module, for example). The system can be changed to start-up mode when the system is unable to resolve itself in suspended mode and/or when the system detects a new sensor has been inserted (via system trigger or user input).


The systems of preferred embodiments, including a transcutaneous analyte sensor, mounting unit, electronics unit, applicator, and receiver for inserting the sensor, and measuring, processing, and displaying sensor data, provide improved convenience and accuracy because of their designed stability within the host's tissue with minimum invasive trauma, while providing a discreet and reliable data processing and display, thereby increasing overall host comfort, confidence, safety, and convenience. Namely, the geometric configuration, sizing, and material of the sensor of the preferred embodiments enable the manufacture and use of an atraumatic device for continuous measurement of analytes, in contrast to conventional continuous glucose sensors available to persons with diabetes, for example. Additionally, the sensor systems of preferred embodiments provide a comfortable and reliable system for inserting a sensor and measuring an analyte level for up to 7 days or more without surgery. The sensor systems of the preferred embodiments are designed for host comfort, with chemical and mechanical stability that provides measurement accuracy. Furthermore, the mounting unit is designed with a miniaturized and reusable electronics unit that maintains a low profile during use. The usable life of the sensor can be extended by incorporation of a bioactive agent into the sensor that provides local release of an anti-inflammatory, for example, in order to slow the subcutaneous foreign body response to the sensor.


After the usable life of the sensor (for example, due to a predetermined expiration, potential infection, or level of inflammation), the host can remove the sensor and mounting from the skin, and dispose of the sensor and mounting unit (preferably saving the electronics unit for reuse). Another sensor system can be inserted with the reusable electronics unit and thus provide continuous sensor output for long periods of time.


EXAMPLES


FIG. 20A is a graphical representation showing transcutaneous glucose sensor data and corresponding blood glucose values over time in a human. The x-axis represents time, the first y-axis represents current in picoAmps, and the second y-axis represents blood glucose in mg/dL. As depicted on the legend, the small diamond points represent the current measured from the working electrode of a transcutaneous glucose sensor of a preferred embodiment; while the larger points represent blood glucose values of blood withdrawn from a finger stick and analyzed using an in vitro self-monitoring blood glucose meter (SHBG).


A transcutaneous glucose sensor was built according to the preferred embodiments and implanted in a human host where it remained over a period of time. The graph illustrates approximately 3 days of data obtained by the electronics unit operably connected to the sensor implanted in the human host. Finger-prick blood samples were taken periodically and glucose concentration measured by a blood glucose meter (SHBG). The graph shows the subcutaneous sensor data obtained by the transcutaneous glucose sensor tracking glucose concentration as it rises and falls over time. The time-corresponding blood glucose values show the correlation of the sensor data to the blood glucose data, indicating appropriate tracking of glucose concentration over time.


The signal has a current measurement in the picoAmp range. Namely, for every unit (mg/dL) of glucose, approximately 3.5 to 7.5 pA of current is measured. Generally, the approximately 3.5 to 7.5 pA/mg/dL sensitivity exhibited by the device can be attributed to a variety of design factors, including resistance of the membrane system to glucose, amount of enzyme in the membrane system, surface area of the working electrode, and electronic circuitry design. Accordingly, a current in the picoAmp range enables an analyte sensor that: 1) requires (or utilizes) less enzyme (e.g., because the membrane system is highly resistive and allows less glucose through for reaction in the enzyme domain); 2) requires less oxygen (e.g., because less reaction of glucose in the enzyme domain requires less oxygen as a co-reactant) and therefore performs better during transient ischemia of the subcutaneous tissue; and 3) accurately measures glucose even in hypoglycemic ranges (e.g., because the electronic circuitry is able to measure very small amounts of glucose (hydrogen peroxide at the working electrode)). Advantageously, the analyte sensors of the preferred embodiments exhibit improved performance over convention analyte sensors at least in part because a current in the picoAmp range enables less enzyme, less oxygen, better resolution, lower power usage, and therefore better performance in the hypoglycemic range wherein lower mg/dL values conventionally have yielded lower accuracy.



FIG. 20B is a graphical representation showing transcutaneous glucose sensor data and corresponding blood glucose values over time in a human. The x-axis represents time; the y-axis represents glucose concentration in mg/dL. As depicted on the legend, the small diamond points represent the calibrated glucose data measured from a transcutaneous glucose sensor of a preferred embodiment; while the larger points represent blood glucose values of blood withdrawn from a finger stick and analyzed using an in vitro self-monitoring blood glucose meter (SHBG). The calibrated glucose data corresponds to the data of FIG. 20A shown in current, except it has been calibrated using algorithms of the preferred embodiments. Accordingly, accurate subcutaneous measurement of glucose concentration has been measured and processed using the systems and methods of the preferred embodiments.



FIG. 21 is a perspective view of the sensor assembly 310 in one embodiment. The mounting unit 312 is shown in its closed configuration (for sensing) and preferably includes an adhesive on its backside 314 for adhesion to a host's skin. A sensor 316 extends from the mounting unit 312 for measuring an analyte under the host's skin. It is noted that the sensor can be configured for insertion into a variety of in vivo locations, including subcutaneous, venous, or arterial, for example. A sensor electronics unit 318 is shown, which is adapted to be removably attached to the mounting unit 312. The sensor 316 is operably connected to the sensor electronics unit 318 so as to enable measurement of the level of the analyte in the host. FIGS. 27A-27D illustrate one implementation of a sensor assembly 310 of preferred embodiments. FIGS. 28A-28F and FIGS. 29A-29C illustrate another implementation of a sensor assembly 310, including an inserter for automated insertion of the sensor into the host's skin.



FIG. 22 is an exploded perspective view of the sensor assembly in one embodiment. The mounting unit includes a base portion 340, and upper portion 342, a detachable electronics unit 318, a needle 346, and a retractor 348 with a tab 349. In preferred embodiments, the base portion 340 is pivotally attached to the upper portion 342 via hinge 341, or the like, to enable pivotal movement relative to each other between open and closed positions, which will be described in more detail with reference to FIGS. 23 to 25. It is noted that the pivoting design may not be required in some embodiments, for example, a simpler design is contemplated wherein the base and upper portions form one piece that is guided to the appropriate insert angle via an mechanical aid, visual aid, or experienced user, and pressed against the skin after sensor insertion. In one such example, a simple ramp-type insertion aid can be provided with the sensor system, which rests against the host's skin and guides the sensor (via sliding motion of the mounting unit down the angled ramp) through the host's skin at the appropriate angle.


The base portion 240 is configured to lie adjacent to the host's skin during use of the sensor assembly 210. Accordingly, a first major side 214 of the base portion 240, also referred to as the backside, can include an adhesive disposed thereon for adhering to the host's skin during use.


A variety of adhesives appropriate for adhesion to the host's skin can be used, as is appreciated by one skilled in the art. In some embodiments, a double-sided adhesive is used to adhere the mounting unit to the host's skin. In some embodiments, the adhesive includes a foam layer, for example, wherein the foam is disposed between the adhesive sides and acts as a shock absorber. In some embodiments, the adhesive is sized with substantially the same surface area as the backside 314 of the base portion 340. In some embodiments, the adhesive is at least 1.5, 2, 2.5, or more times the surface area of the backside 314 of the base portion 340. In some embodiments, the adhesive is substantially the same shape as the backside 314 of the base portion 340, although other shapes can also be advantageous, for example butterfly-shaped. In some embodiments, the adhesive backing is designed for two-step release, for example a primary release, wherein only a portion of the adhesive is initially exposed to allow adjustable positioning of the device, and a secondary release, wherein the remaining adhesive is later exposed to firmly and securely adhere the device to the host's skin once appropriately positioned. In some embodiments, a stretch-release adhesive is provided on the backside of the base portion to enable easy release from the host's skin after the useable life of the sensor, which is described in more detail with reference to FIGS. 9A to 9C.


The second major side of the base portion 340, also referred to as the front side 343 includes a mating, nesting, or a complementary surface designed to receive the upper portion 342, which minimizes the profile (for example, height) of the mounting unit 312 among other advantages. In some embodiments, the upper and base portions snap-fit, press-fit, or otherwise securely fit together to discourage separation during use. In some embodiments, a mechanical joint is provided to ensure secure closure of the upper and base portions. In some alternative embodiments, an adhesive is provided to aid in securing the upper and base portions together in their closed position. In some alternative embodiments, the upper and base portions lock together after sensor insertion, which will be described in more detail with reference to FIGS. 27A to 27D.


The relative pivotal movement between the base and upper portions is advantageous, for example, by enabling the design of a low profile device while providing support for an appropriate needle insertion angle; however, not all implementations require the pivoting design. In some alternative embodiments, the mounting unit is formed from one unitary flexible piece of material (for example silicone or urethane rubber), wherein the material is sufficiently flexible to enable bending of the unit at a point from an angle appropriate for insertion to a flat functional (wearable) configuration. This unitary flexible unit can additionally provide a method of insertion of the electronics unit during flexion and maintenance of the electronics unit in mounting unit during wear (in its flat configuration). In some embodiments, a protective flap, or the like, can be provided to cover and protect the electronics unit from the environment. Other implementations of the pivotal design include two pieces connected via an adhesive hinge, or two substantially planar pieces that articulate relative to each other (see for example, FIGS. 28A-28F). One skilled in the art appreciates a variety of pivoting, articulating, and/or hinging mechanisms that can be implemented with the preferred embodiments.


In this embodiment, the upper portion 342 further includes a cavity 344 configured to receive and releasably hold the electronics unit 318 therein. Mutually engaging electrical contacts (not shown) within the cavity 344 and on the electronics unit 318 allow for operable connection of the sensor 316 to the electronics unit 318 when connected to the mounting unit 312, however other methods of electrically connecting the electronics unit 318 to the sensor 316 are also possible as is appreciated by one skilled in the art (for example, a cable or other connector). Detachable connection between the mounting unit 312 and electronics unit 318 provides improved manufacturability, namely, the relatively inexpensive mounting unit 312 can be disposable when replacing the sensor assembly after its usable life, while the relatively more expensive electronics unit 318 can be reusable with multiple sensor assemblies. In some embodiments, the electronics unit 318 is configured with programming, for example initialization, calibration reset, failure testing, or the like, each time it is initially inserted into the cavity 344 and/or initially communicates with the sensor 316.


The base and upper portions 340, 342 can be formed from the same or different materials, for example plastics or ceramics. In some embodiments, the base portion is formed from a flexible material, such as silicone, urethane rubber, or other flexible or elastomeric material. In some alternative embodiments, the base portion is formed from a plurality of articulating components, for example one or more sections hinged or otherwise moveably (for example, linearly) or rotatably (for example, angularly) attached to each other. In some embodiments, the upper portion 342 is formed from a material or design that is less flexible than the base portion 340. In this way, the greater rigidity of the upper portion 342 provides for a more stable electrical connection to the electronics unit 318 while the greater flexibility of the base portion 340 (adjacent to the host's skin) enables the device to substantially mimic or move with the flexibility and/or motion of the host's skin. It is noted however that in some embodiments it is preferred that the upper portion is at least semi-rigid to enable easy removal of the electronics unit by a flexing motion of the upper portion.


A flexible base portion 340 is believed to provide numerous advantages over conventional transcutaneous sensors, which unfortunately can suffer from motion-related artifacts associated with the host's movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements of the sensor (for example, relative movement between the in vivo portion and the ex vivo portion, movement of the skin, and/or movement within the host (dermis or subcutaneous)) create stresses on the device and can produce noise on the sensor signal. It is believed that even small movements of the skin will translate to discomfort and motion-related artifact, which can be reduced or obviated by a flexible or articulated design. For example, a conventional transcutaneous analyte sensor is formed from relatively rigid material and does not conform well to the skin, making it uncomfortable for the host, more likely to detach from the host during movement, and can induce motion-related artifact on the sensor (for example, noise on the signal). Thus, by providing flexibility and/or articulation of the device against the host's skin, better conformity of the sensor assembly 310 to the regular use and movements of the host is achieved, which is believed to increase adhesion of mounting unit 312 on the skin and decrease motion-related artifact that can otherwise translate from the host's movements to reduced sensor performance.


The electronics unit 318 includes hardware and software that enables measurement of levels of the analyte via the sensor 316. For example, the electronics unit 318 comprises a potentiostat, a power source for providing power to the sensor, other components useful for signal processing, and preferably an RF module for transmitting data from the electronics unit 318 to receiver (see FIG. 10). Electronics can be affixed to a printed circuit board (PCB), or the like, and can take a variety of forms. For example, the electronics can take the form of an integrated circuit (IC), such as, an ASIC, a microcontroller, or a microprocessor.


A needle 346 is slidably disposed within the mounting unit 312 for guided movement between inserted and retracted positions, which will be described in more detail with reference to FIGS. 23 to 25. The needle is attached to a retractor 348, which enables manual and/or automatic retraction of the needle 346 between its inserted and retracted positions. The needle 346 is configured to be guided within the mounting unit 312 such that it can extend from the mounting unit's exit port, which will be described in more detail with reference to FIGS. 26A and 26B. Additionally, the mounting unit is configured to safely hold and protect the needle therein after sensor insertion so that the needle can be disposed of with the sensor assembly after the usable life of the sensor, which is described in more detail with reference to FIGS. 24 and 25. It is noted that the needle is smaller than has been demonstrated by others in the art, for example between 28 and 18 gauge, more preferably between about 26 and 25 gauge, and therefore provides a more comfortable insertion and wearability for the host.


The sensor 316 preferably includes electrodes and a membrane system, such as described in more detail with reference to FIG. 5B, above. The sensor 316 is configured to extend out of the mounting unit into the host's skin, through the needle 346 and operably connect with the sensor electronics 318 to enable measurement of the analyte. Preferably, watertight (waterproof or water-resistant) seal is configured to surround the electrical connection at the electrode terminals within the mounting unit, for example using an O-ring, in order to protect the electrodes (and the respective operable connection with the sensor electronics) from damage due to moisture, humidity, dirt, and other external environmental factors. In some embodiments, an insert subassembly that holds the electrodes is provided, wherein the insert subassembly is designed to fit within the upper portion and ensure a stable connection of the electrode terminals to mutually engaging contacts (see connector of FIGS. 28A-28F); the stable connection can be provided using known methods, for example domed metallic contacts, cantilevered fingers, pogo pins, or the like, as is appreciated by one skilled in the art. In one implementation the insert is formed from a resilient material (for example, silicone) and includes pogo fingers associated with each electrical contact, thereby generating equal contact forces at each of the electrical contact points. The insert can be mechanically fit or otherwise adhered (for example, ultrasonically welded) to the upper portion at the time of assembly.


In some embodiments, a shock-absorbing member is included in the design of the sensor and configured to absorb movement of the in vivo and/or ex vivo portion of the sensor. It is noted that conventional analyte sensors can suffer from motion-related artifact associated with host movement when the host is using the device. For example, when a transcutaneous analyte sensor is inserted into the host, various movements on the sensor (for example, relative movement between the in vivo portion and the ex vivo portion and/or movement within the host) create stresses on the device and can produce noise in the sensor signal. Accordingly in some embodiments, a shock-absorbing member is located on the sensor/mounting unit in a location that absorbs stresses associated with the above-described movement.


In some embodiments, the shock absorbing member is formed into the sensor, for example an S-bend formed within the in vivo and/or ex vivo portion of the sensor 316 that functions to break column strength, effectively absorbing movements on the sensor during use. In some alternative embodiments, the shock-absorbing member can be any expanding and contracting member, such as a spring, accordion, telescoping, or bellows-type device. The expanding and contracting member can be located such that relative movement between the sensor, the mounting unit, and the host is absorbed without (or minimally) affecting the connection of the sensor to the mounting unit and/or the sensor stability within the implantation site; for example, the expanding and contracting member can be formed as a part of or connected to the sensor 316.


In some embodiments, the sensor is configured with a variable stiffness along at least a portion of its length. As described above, conventional analyte sensors suffer from motion artifact associated with host movement when the host is using the device. Thus, in the preferred embodiments, the portion of the sensor that is implanted in a host (in vivo portion) is designed to be more flexible than the portion of the sensor that extends into the mounting unit (ex vivo portion), in order to decrease the mechanical stress and signal noise associated with host movement. Additionally, because the ex vivo portion is stiffer, greater stability is achieved providing more reliable electronic connections and less noise in the mounting unit. Variable stiffness can be provided by variable pitch of the one or more electrodes of the sensor, variable cross-section one or more electrodes, annealing of at least some portions of the sensor, or the like.


The retractor 348 includes a tab 349, or the like, which enable manual and/or automatic insertion and/or retraction of the needle within the mounting unit. The retractor can be attached to the needle using a variety of attachments and configurations that allow for insertion of the sensor, which is described in more detail with reference to FIGS. 23 to 25. The sensor 316 is configured with electroactive surfaces that measure a level of analyte in the host's bodily fluid, which is described in more detail with reference to FIGS. 5B and 5C.



FIGS. 23 to 25 are perspective views of the sensor assembly 310 in various stages of sensor insertion, particularly showing the base and upper portions 340, 342 in open (insertion) and closed (functional) positions with insertion and retraction of the needle. The sensor assembly 310 can be inserted manually or can be aided with the automated insertion device described with reference to FIGS. 28A-28F, for example.



FIG. 23 is a perspective view of the sensor assembly pivoted into an open position for needle insertion. The open position of the mounting unit 312 is designed to open to an optimum insertion angle α to assist in proper placement of the sensor in the host. Proper placement ensures that at least a portion of the sensor extends below the dermis of the host. In some embodiments, the mounting unit is designed with a variety of adjustable insertion angles (open positions). In some embodiments, the needle is exposed initially through the exit port of the mounting unit, and a host or caretaker simple inserts the needle while substantially simultaneously pressing the mounting unit against the host's skin. In some alternative embodiments, the mounting unit is placed at an appropriate location on the host's skin, for example, arm, thigh, or abdomen, after which the needle inserted by extension through (pushing out of) the exit port of the mounting unit (FIGS. 26A and 26B illustrate the exit port in more detail). Thus, it is noted that in some embodiments, the retractor is configured for one-way movement (backward/retraction only); while in other embodiments the retractor is configured for two-way movement (forward/insertion and backward/retraction).


In one embodiment, the mounting unit is provided with an adhesive disposed on the mounting unit's backside 314 and including a releasable backing layer. Thus, removing the backing layer and pressing the base portion of the mounting unit on the skin accomplishes adhesion. Additionally or alternatively, an adhesive is placed over some or all of the sensor assembly after sensor insertion is complete (see FIG. 25) to ensure adhesion and optionally an air or watertight seal from the host's exit-site. It is noted that the sensor is guided into the skin via a needle, both of which are loaded within the mounting unit.



FIG. 24 is a perspective view of the sensor assembly after sensor insertion and subsequent retraction of the needle back into the mounting unit. In some embodiments, a manual pulling or pushing force on the retractor tab 349 retracts the needle. In some alternative embodiments, retraction can be automated as is appreciated by one skilled in the art. Preferably, the needle is retracted back into the mounting unit for storage in the biologically protected environment therein during sensor use. The mounting unit can be designed such that a twisting or rotation motion, for example about 90 degrees, stores and/or locks the needle into its storage position (see FIG. 25), however other storage or locking mechanisms can be configured. In some embodiments, the twisting or rotating motion is allowed only in the retracted position. The retractor, or a portion thereof, is then broken off, preferably at a perforated area of the retractor (not shown), such that the used needle cannot be tampered with thereafter. Once the sensor has been inserted, the needle retracted, and the retractor optionally broken off, the mounting unit can be pivoted to its closed position. This one-step retraction approach is advantageous for the patient and/or caretaker using the device, for example over a prior art two-step retraction approach with separable sensor and needle portions, due to its simplicity of use and protected needle storage.



FIG. 25 is a perspective view of the sensor assembly in its functional (closed) position with a cutaway of the upper portion 342 along a longitudinal centerline of the upper portion. Namely, FIG. 25 illustrates the closed (functional) position of the sensor assembly, similar to that of FIG. 21, however further illustrates the needle 346 maintained (preferably, locked) within the mounting unit 312 for sensor use. In its functional position, the sensor assembly maintains a low profile for convenience, comfort, and discreteness during use. As described above, the sensor assembly can be subsequently adhered or reinforced with additional adhesive over some or all of the sensor assembly for use. Thus, the sensor assembly of the preferred embodiments is advantageously designed with a pivoting configuration to provide an optimum guided insertion angle while maintaining a low profile device for sensor use.



FIGS. 26A and 26B are perspective exploded bottom views of a cut away portion of the mounting unit showing the exit port for the sensor/needle. FIG. 26A illustrates a seal between the needle and ex vivo environment during insertion. FIG. 26B illustrates a seal between the sensor and ex vivo environment after sensor insertion.



FIGS. 27A to 27D illustrate one implementation of a transcutaneous glucose sensor of the preferred embodiments.



FIGS. 27A and 27B shows perspective views of a sensor assembly in open (insertion) and closed (functional) positions. In its open position, the sensor 416 (not shown) and needle 446 initially extend from the mounting unit 412 in a forward position as shown on the insertion position drawing (FIG. 27A). The mounting unit 412 is configured to open to an angle that is appropriate for inserting the sensor into the body. It is understood that a variety of different angular settings (open positions) can be provided by the mounting unit as is appreciated by one skilled in the art.


After inserting the needle 446 into the host, the side tabs 460a, 460b are pulled back to a rearward position, which causes the needle 446 to retract back into the mounting unit 412 while leaving the sensor 416 in the host's tissue. The upper portion of the mounting unit 462 is then closed into its functional position, including the tabs 460a and 460b locking into the base portion (molded foot) of the mounting unit 464. It is noted that locking the tabs 460a and 460b into the base portion of the mounting 464 unit in its closed position prohibits an accidental re-insertion of the needle 446, effectively ensuring only one insertion of the needle. In its functional position against the host's skin, the sensor assembly 310 holds the sensor 416 in the host's subcutaneous tissue and the sensor 416 is operably connected to the sensor electronics 418, which will is described in more detail with reference to FIGS. 27C and 27D, thereby enabling the sensor assembly to measure the glucose concentration in the host's tissue.



FIGS. 27C and 27D are exploded views of the sensor assembly 310 from different perspectives, including the mounting unit 412 and sensor (probe) 416. The base portion of the mounting unit 464, which in this implementation is also referred to as the molded foot, is formed from silicone and adapted for placement adjacent to the host's skin. The molded foot 464 preferably includes an adhesive on the backside thereof; however alternatively or additionally the entire assembly can be adhered to the host's skin using an adhesive over the entire assembly. The molded foot 464 is molded using standard molding techniques and includes a cavity for receiving the upper portion of the mounting unit 462 and mating grooves 466a and 466b for receiving the side tabs 460a and 460b of the needle holder 466.


The upper portion of the mounting unit 462, which in this implementation includes the main PCB assembly 468, mini connector PCB 470, first upper base 472, needle holder 474, lower base 476, and sensor probe 416, are assembled together for pivotal movement relative to the base portion 464 (molded foot) about a pivot or hinge 478. The lower base 472 of the upper portion 476 is formed from an acetal resin and is configured to fit within the cavity of the base portion (molded foot) 464. The lower base portion 476 further includes a groove 480 configured to guide the needle holder 474 between the insertion (forward) position and retracted (backward) position. The lower base 476 is further configured to receive the sensor 416, which extends through a hole in the lower base 476, through the needle 446 held by the needle holder 474, and finally through an exit port on the base portion (molded foot) 464 into host tissue (not shown) as described in the preferred embodiments.


The sensor probe 416 includes electrodes and a membrane system as described with reference to the preferred embodiments, and can include a variable stiffness or other advantageous properties as described in more detail above. The sensor probe 416 is sized and arranged to extend from the lower base 476 and connect through a hole in the first upper base 472 to solder pads 480 on the mini connector PCB 470. In this implementation, the sensor probe 416 remains fixed in an extended position, namely extending through the exit port in the molded foot, however the assembly can be modified to allow relative movement of the sensor probe to include an initial retracted (or cocked) position in which the sensor probe does not extend from the molded foot prior to insertion.


The needle holder 474 is configured to slide within the groove 480 on the second upper section 476 between an insertion (forward) position (as illustrated in FIG. 27A) and a retracted (backward) position (as illustrated in FIG. 27B). The needle holder 474 holds the needle 446 through which the sensor 416 is fed and together which the needle 446 and sensor 416 extend through an exit port of the base portion 464 for insertion into the host's skin. After insertion, the needle holder 474 is retracted back along the groove 480 by a pushing or pulling force applied to the side tabs 460a, 460b that extend laterally from the upper portion 462 so as to retract the needle 446 into the second upper section 476 of the upper portion 462. It is noted that in this retracted position, the assembly 310 is configured such that the needle 446 is safely stored in a manner that physically and biologically protects a host or other user from the sharpness and contamination of the used needle. In this implementation, the needle 446 is configured to retract between the initial forward position and the final backward position, however the assembly 310 can be modified to provide for an initial retracted (or cocked) position in which the needle 446 does not extend from the base portion 464 prior to insertion.


The upper base 472 is formed from polyetherimide and includes a cavity 482 for receiving the PCB boards 468 and 470 and holes for receiving screws for attachment to the lower base 376. The upper base 472 further includes a hole (not shown) for receiving one end of the sensor probe 416. Mini connector PCB 470 is received within the cavity 482 and includes two solder pads on which the two electrodes (working and reference) of the sensor probe 416 are soldered for electrical connection thereto, which is described in more detail below. Another PCB, hereinafter referred as the main PCB 468, substantially includes the sensor electronics for processing sensor data, such as described in co-pending U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003 entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA,” which is incorporated herein by reference in its entirety. The main PCB 468 is received over and connected to the mini connector PCB 470. The main PCB 468 is operably connected to the mini connector PCT 470 in order to provide an operative link between the sensor 416 and the sensor electronics housed thereon, which is described in more detail below. Together, the components of the upper portion 362 are assembled and pivotally mounted to the molded foot 464 for relative pivotal motion therewith.


Referring to the electronics housed of the two PCBs 468 and 470, working and reference electrodes are soldered to solder pads and provide for electrical connection between the electrodes and the PCB. The solder pads are connected via a trace, or the like (not shown) to the three pin receptacles that connect the mini connector board 470 to the main PCB 468. The main PCB 468 includes three pins that are received by the three pin receptacles for operable connection between the two boards 468 and 470. The three pins are configured to provide separate connection for working, reference, and counter electrodes if desired. However, because this implementation is configured with a two electrode sensor, the reference and counter electrodes are linked as is appreciated by one skilled in the art (for example, via a resistor or the like). The three pins are then connected, via a trace or the like, to the sensor electronics (not shown), which include hardware and software configured to measure and process the glucose signal from the working electrode, for example. Accordingly, when the sensor 416 is inserted into the tissue of a host, the sensor assembly 310 measures a concentration of the glucose and can subsequently transmit that information to a communication station, such as described in more detail in the preferred embodiments.



FIGS. 28A to 28I illustrate another implementation of a transcutaneous sensor of the preferred embodiments, including an automated insertion mechanism for providing a convenient and controlled needle insertion into the tissue of a host.



FIGS. 28A and 28B are perspective views of sensor assembly 310 in its open position showing needle insertion (FIG. 28A) and needle retraction (FIG. 28B). In its open position, the sensor 516 and needle 546 initially extend from the mounting unit 512 in a forward position as shown as needle insertion in FIG. 28A. The mounting unit 512 is configured to open to an angle that is appropriate for inserting the sensor 516 into the body. It is understood that a variety of different angular settings (open positions) can be provided by the mounting unit 512 as is appreciated by one skilled in the art.


After inserting the needle 546 into the host, retraction tab 560 is pulled back to its retracted position, which causes the needle 546 to retract back into the mounting unit 512 while leaving the sensor 516 in the host's tissue. The mounting unit 512 is configured to lock or retain the needle 546 therein by rotating the retractor 90 degrees, however a variety of locking or retraining mechanisms are contemplated as is appreciated by one skilled in the art. Once the needle 546 is retracted, retractor 574 is broken of at a perforated portion, for example, to further prohibit accidental re-insertion of the needle, effectively ensuring only one insertion of the needle 546.



FIGS. 28C and 28D are top and bottom perspective views of the sensor assembly 310 after needle insertion and subsequent retraction to expose the sensor 516 to the tissue of the host. After the retractor tab 560 (FIGS. 28A and 28B) has been twisted and broken off, the mounting unit 512 can be pivoted to its closed (functional) position, as illustrated in FIGS. 28C and 28B. In its functional position, the mounting unit 512 holds the sensor 516 in the host's subcutaneous tissue and the sensor 516 is operably connected to the sensor electronics 518, which will be described in more detail with reference to FIGS. 28E and 28F, thereby enabling the sensor assembly 310 to measure the glucose concentration in the host's tissue. It is noted that the sensor electronics 518 is formed as a detachable element and therefore can be reused with multiple sensor assemblies.



FIGS. 28E and 28F are exploded views of the sensor assembly 310 from different (top and bottom) perspectives, including the mounting unit 512 and sensor (probe) 516. The base portion 564 is configured to rest against or contact the host's skin during insertion and use. The base portion 564 has an exit port 590 (FIG. 28D) on the backside through which the needle 546 and sensor 516 extend for insertion through the host's skin. The exit port 590 can be sealed such as described in the preferred embodiments, for example with a septum seal, to provide protection for the exit-site of the wound from the ex vivo environment. The base adhesive 550a is applied to the base portion 564 in order to maintain adhesion between the mounting unit 512 and the host's skin during insertion and use. In some embodiments, the base portion 564 is formed from a flexible material, such as described with reference to the preferred embodiments.


The upper portion 562 of the mounting unit 512 includes a variety of components, including the carrier 592, upper adhesive 550b, retractor 574 (with retractor tab 560 and needle 546), electrodes 544, connector 594, and sensor electronics 518. The upper portion 562 of the mounting unit is pivotally connected to the base portion 564 at a hinge 578 for relative motion of the base and upper portions 564 and 562, respectively, between an open position and a closed position. The upper adhesive 550b is disposed on the backside of the carrier 592 for adhesion to the host's skin in the closed (functional) position. The carrier 592 is formed from plastic, or the like, and is dimensioned and arranged to support or receive functional components described herein. The carrier 592 includes a groove, into which the retractor 560 is received and can slide between the insertion and retraction positions.


The retractor 574 includes the retractor tab 560 and a needle 546 attached thereto and is designed to slide within the groove of the carrier 592 to enable to needle to move between insertion and retraction positions as illustrated in FIGS. 28A and 28B. With reference to FIG. 28E, the retractor 574 slides within the groove by a pushing or pulling force on the retractor tab 560. The retractor 574 further includes perforation 596 so that the upper portion of the retractor can be broken off subsequent to needle retraction; in this way, the needle 546 is permanently and safely maintained within the carrier 592 of the mounting unit 512 for use and disposal of the sensor assembly 310. The needle 546 is designed to receive the sensor 516 therein in order to insert the sensor into the host's tissue during insertion of the needle.


The sensor 516 is formed from three electrodes 544 in this implementation, however a two, four, or other electrode system can be substituted. The electrodes 544 can be configured in a variety of manners and include a membrane system such as described with reference to the preferred embodiments. The sensor 516 is configured to remain in the insertion position during and after needle retraction such that the sensor is exposed to the host's tissue at its in vivo end after the needle 546 is retracted back into the mounting unit 512. The electrodes 544 that form the sensor 516 are exposed at their ex vivo end to a contact which can be held thereon by a connector 594, or the like, for operable connection with the sensor electronics 518. Namely, the working, reference, and counter electrodes are connected via the contact/connector 594 on the carrier 592 to a contact on the electronics unit 518.


The sensor electronics unit 518 is a detachable and reusable piece designed for multiple uses and includes hardware and software configured that enable the sensor 516 to measure glucose in the host's tissue. The sensor electronics 518 further include an RF transmitter that transmits glucose data to a communication station (not shown), such as described in the embodiments discussed herein. In general, the sensor electronics unit 518 is configured as described above, and can be modified in a variety of manners as is appreciated by one skilled in the art.



FIGS. 29A to 29C illustrate the automatic inserter 600 from different views. FIG. 29A shows a front view and FIGS. 29B and 29C shows back views illustrating insertion of the needle 546 using the automatic inserter 600. The inserter 600 is designed to be hand-held by a user, including the host, to easily, safely, and accurately insert the needle 546 of sensor assembly 310 through the host's tissue. The inserter 600 includes a skin-contacting surface 602 at an angle relative to an inner sensor assembly-guiding surface, as is appropriate for sensor insertion, namely at an angle that ensures the base portion 564 of the sensor assembly 310 rest substantially flush against the skin of the host at insertion of the needle.


The sensor assembly 310 can be manually loaded into the inserter 600 by a host or caretaker or can come loaded from the manufacturer. Manual loading can be advantageous, however, in order to enable reuse of the inserter 600 for more than one sensor assembly 310. The sharp needle 546 is protected within the inserter 600 prior to host activation to minimize accidental pricking or contamination. The sensor assembly 310 can be cocked using a variety of mechanisms, however one preferred mechanism includes a detent mechanism on the inner bore of the inserter 600 designed to hold and subsequently release the sensor assembly 310 upon activation. A button 604 is provided for activation of the sensor assembly 310, for example, for application of force (for example, spring-loaded force) to insert the sensor assembly 310 into the host's tissue and/or for releasing the detent mechanism that holds the sensor assembly in the cocked position.


The spring-loaded inserter 600 provides the appropriate force to insert the needle 546 under the skin upon activation by the button 604. It is noted that adhesive, or the like, can be disposed on the sensor assembly to secure the lower portion of the holder adjacent to the skin during needle retraction and during use.



FIG. 30 is a perspective view of a system 700 of preferred embodiments, including a transcutaneous analyte sensor 716, mounting unit 712, sensor electronics unit 718 and a receiver 720 for processing and displaying sensor data. The system of preferred embodiments 700 provides improved convenience and accuracy because of its designed stability within the host's tissue with minimum invasive trauma, while providing a discrete and reliable data processing and display, thereby increasing overall host comfort, confidence, safety, and convenience.


The transcutaneous analyte sensor assembly 310 measures a concentration of an analyte or a substance indicative of the concentration or presence of the analyte as described above. Although some of the examples, such as many of the embodiments discussed herein, are drawn to a glucose sensor, the analyte sensor 716 can be any sensor capable of determining the level of any analyte in the body, for example oxygen, lactase, insulin, hormones, cholesterol, medicaments, viruses, or the like. Once the electronics unit 718 is connected to the mounting unit 712, the sensor 716 is able to measure levels of the analyte in the host. Preferably the electronics unit 718 is wirelessly connected to a receiver 720 via one- or two-way RF transmissions 150 or the like, however a wired connection is also possible. The receiver 720 provides much of the processing and display of the sensor data, and can be selectively worn and/or removed at the host's convenience. Thus, the sensor assembly 310 can be discretely worn, and the receiver 720, which provides much of the processing and display of the sensor data, can be selectively worn and/or removed at the host's convenience. Particularly, the receiver 720 includes programming for retrospectively and/or prospectively initiating a calibration, converting sensor data, updating the calibration, evaluating received reference and sensor data, and evaluating the calibration for the analyte sensor, such as described in more detail with reference to co-pending U.S. patent application Ser. No. 10/633,367, filed Aug. 1, 2003 and entitled, “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA,” which is incorporated herein by reference in its entirety.



FIGS. 31A and 31B are perspective views of receiver 720 in one preferred embodiment, wherein the receiver 720, also referred to as a communication station, is provided with a docking station 722 for receiving and holding the electronics unit 718 (from the sensor assembly 310) when not in use. Preferably, the electronics unit 718 is detachable from and reusable with multiple sensor assemblies 310, such as described in more detail above. After a sensor's usable life, the host's removes and disposes of the sensor assembly 310, saving the reusable electronics unit 718 for use with another sensor assembly, which can be a few minutes to a few days later, or more, after disposing of the previous sensor assembly. In some alternative embodiments, the docketing station 722 is provided on an alternative communication station other than the receiver 720, for example a personal computer, server, personal digital assistant, or the like; wherein the functionality described below can be implemented in a similar manner.


Accordingly, this embodiment provides a docking station 722 on the receiver 720 that enables storage, electrical connection, and/or battery recharge, for example, for the electronics unit 718 while not in use on a sensor assembly 310. Complementary contacts or pins can be provided on the electronics unit 718 and the docking station 722 that enable operable connection therebetween.


In some embodiments, the receiver 720 includes programming that stops searching for a transmission from the sensor assembly 310 (particularly, from electronics unit 718) when the electronics unit 718 is docked on the receiver 720, which is believed to minimize unnecessary use of power. In some embodiments, the receiver 720 includes programming to switch the receiver into an alternate mode (for example, a sleep mode wherein the receiver does not attempt to calibrate, or the like) when the electronics unit 718 is docked on the receiver 720. In some embodiments, the receiver 720 includes programming that resets calibration when the electronics unit 718 is docked on the receiver 720.


In some embodiments, the receiver 720 is configured to recharge a battery in the electronics unit 718 when docked on the receiver, thereby increasing the useable life of the electronics unit. In some embodiments, the receiver 720 is configured to measure battery voltage in the electronics unit 718 and to disable the electronics unit if the voltage is below a certain threshold (for example, less than 3 days of usable life left). In some embodiments, the receiver 720 is configured to reset states in the battery, such as initializing a new (unused) electronics unit 718 to work with the receiver when the electronics unit 718 is docked on the receiver 720.


In some embodiments, the receiver 720 is configured to test operation of the electronics unit 718 by stepping the electrodes through different current draws and disabling usage of the electronics unit if a failure is detected (see FIG. 28E for one implementation of electrodes within the electronics unit). Failure testing can be particularly advantageous for allowing extended life of the electronics units without sacrificing unknown or potential failure modes during sensor use; it is believed that the electronics unit can be usable for about one year, or more. In some embodiments, RF communication between the receiver 720 and electronics unit 718 is paused during docking. It is noted that a variety of hardware and software configurations are possible that exploit the advantages of docketing the electronics unit 718 on the receiver 720 between sensor uses, a few of which are described above.


Thus, the preferred embodiments provide an analyte sensor assembly that enables a comfortable and reliable system for measuring an analyte level for up to 7 days or more without surgery. The sensor of the preferred embodiments is designed for host comfort, with chemical and mechanical stability that provides accuracy of measurements. Additionally, the mounting unit is designed with a miniaturized and reusable electronics unit 718 that maintains a low profile during use. It is noted that the usable life of the sensor can be extended by incorporated a bioactive agent into the sensor that provides local release of an anti-inflammatory, for example, in order to slow the subcutaneous foreign body response to the sensor catheter.


After the usable life of the sensor (for example, due to a predetermined expiration, potential infection, or level of inflammation), the host can remove the sensor and mounting from the skin, dispose of the sensor and mounting unit (preferably saving the electronics unit for reuse). Another sensor assembly can be inserted with the reusable electronics unit and thus provide continuous sensor output for long periods of time.


Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in U.S. Pat. No. 4,994,167 issued Feb. 19, 1991 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; U.S. Pat. No. 4,757,022 issued February Jul. 12, 1988 and entitled “BIOLOGICAL FLUID MEASURING DEVICE”; U.S. Pat. No. 6,001,067 issued February Dec. 14, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 6,741,877 issued February May 25, 2004 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. Pat. No. 6,702,857 issued February Mar. 9, 2004 and entitled “MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”; and U.S. Pat. No. 6,558,321 issued February May 6, 2003 and entitled “SYSTEMS AND METHODS FOR REMOTE MONITORING AND MODULATION OF MEDICAL DEVICES.” Methods and devices that are suitable for use in conjunction with aspects of the preferred embodiments are disclosed in co-pending U.S. application Ser. No. 10/991,353 filed Nov. 16, 2004 and entitled “AFFINITY DOMAIN FOR ANALYTE SENSOR”; U.S. application Ser. No. 11/055,779 filed Feb. 9, 2005 and entitled “BIOINTERFACE WITH MACRO-AND-MICRO-ARCHITECTURE”; U.S. application Ser. No. 11/004,561 filed Dec. 3, 2004 and entitled “CALIBRATION TECHNIQUES FOR A CONTINUOUS ANALYTE SENSOR”; U.S. application Ser. No. 11/034,343 filed Jan. 11, 2005 and entitled “COMPOSITE MATERIAL FOR IMPLANTABLE DEVICE”; U.S. application Ser. No. 09/447,227 filed Nov. 22, 1999 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 11/021,046 filed Dec. 22, 2004 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 09/916,858 filed Jul. 27, 2001 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 11/039,269 filed Jan. 19, 2005 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 10/897,377 filed Jul. 21, 2004 and entitled “ELECTROCHEMICAL SENSORS INCLUDING ELECTRODE SYSTEMS WITH INCREASED OXYGEN GENERATION”; U.S. application Ser. No. 10/897,312 filed Jul. 21, 2004 and entitled “ELECTRODE SYSTEMS FOR ELECTROCHEMICAL SENSORS”; U.S. application Ser. No. 10/838,912 filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR”; U.S. application Ser. No. 10/838,909 filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR”; U.S. application Ser. No. 10/838,658 filed May 3, 2004 and entitled “IMPLANTABLE ANALYTE SENSOR”; U.S. application Ser. No. 11/034,344 filed Jan. 11, 2005 and entitled “IMPLANTABLE DEVICE WITH IMPROVED RADIO FREQUENCY CAPABILITIES”; U.S. application Ser. No. 10/896,772 filed Jul. 21, 2004 and entitled “INCREASING BIAS FOR OXYGEN PRODUCTION IN AN ELECTRODE SYSTEM”; U.S. application Ser. No. 10/789,359 filed Feb. 26, 2004 and entitled “INTEGRATED DELIVERY DEVICE FOR CONTINUOUS GLUCOSE SENSOR”; U.S. application Ser. No. 10/991,966 filed Nov. 17, 2004 and entitled “INTEGRATED RECEIVER FOR CONTINUOUS ANALYTE SENSOR”; U.S. application Ser. No. 10/646,333 filed Aug. 22, 2003 and entitled “OPTIMIZED SENSOR GEOMETRY FOR AN IMPLANTABLE GLUCOSE SENSOR”; U.S. application Ser. No. 10/896,639 filed Jul. 21, 2004 and entitled “OXYGEN ENHANCING MEMBRANE SYSTEMS FOR IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/647,065 filed Aug. 22, 2003 and entitled “POROUS MEMBRANES FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/896,637 filed Jul. 21, 2004 and entitled “ROLLED ELECTRODE ARRAY AND ITS METHOD FOR MANUFACTURE”; U.S. application Ser. No. 09/916,711 filed Jul. 27, 2001 and entitled “SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICE”; U.S. application Ser. No. 11/021,162 filed Dec. 22, 2004 and entitled “SENSOR HEAD FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 11/007,920 filed Dec. 8, 2004 and entitled “SIGNAL PROCESSING FOR CONTINUOUS ANALYTE SENSOR”; U.S. application Ser. No. 10/695,636 filed Oct. 28, 2003 and entitled “SILICONE COMPOSITION FOR BIOCOMPATIBLE MEMBRANE”; U.S. application Ser. No. 11/038,340 filed Jan. 18, 2005 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. application Ser. No. 11/007,635 filed Dec. 7, 2004 and entitled “SYSTEMS AND METHODS FOR IMPROVING ELECTROCHEMICAL ANALYTE SENSORS”; U.S. application Ser. No. 10/885,476 filed Jul. 6, 2004 and entitled “SYSTEMS AND METHODS FOR MANUFACTURE OF AN ANALYTE-MEASURING DEVICE INCLUDING A MEMBRANE SYSTEM”; U.S. application Ser. No. 10/648,849 filed Aug. 22, 2003 and entitled “SYSTEMS AND METHODS FOR REPLACING SIGNAL ARTIFACTS IN A GLUCOSE SENSOR DATA STREAM”; U.S. application Ser. No. 10/153,356 filed May 22, 2002 and entitled “TECHNIQUES TO IMPROVE POLYURETHANE MEMBRANES FOR IMPLANTABLE GLUCOSE SENSORS”; U.S. application Ser. No. 10/846,150 filed May 14, 2004 and entitled “ANALYTE MEASURING DEVICE”; U.S. application Ser. No. 10/842,716 filed May 10, 2004 and entitled “BIOINTERFACE MEMBRANES INCORPORATING BIOACTIVE AGENTS”; U.S. application Ser. No. 10/657,843 filed Sep. 9, 2003 and entitled “DEVICE AND METHOD FOR DETERMINING ANALYTE LEVELS”; U.S. application Ser. No. 10/768,889 filed Jan. 29, 2004 and entitled “MEMBRANE FOR USE WITH IMPLANTABLE DEVICES”; U.S. application Ser. No. 10/633,367 filed Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. application Ser. No. 10/632,537 filed Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. application Ser. No. 10/633,404 filed Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; U.S. application Ser. No. 10/633,329 filed Aug. 1, 2003 and entitled “SYSTEM AND METHODS FOR PROCESSING ANALYTE SENSOR DATA”; and U.S. Application No. 60/660,743 filed on Mar. 10, 2005 and entitled “SYSTEMS AND METHODS FOR PROCESSING ANALYTE SENSOR DATA FOR SENSOR CALIBRATION.”


All references cited herein, including but not limited to published and unpublished applications, patents, and literature references, and also including but not limited to the references listed in the Appendix, are incorporated herein by reference in their entirety and are hereby made a part of this specification. To the extent publications and patents or patent applications incorporated by reference contradict the disclosure contained in the specification, the specification is intended to supersede and/or take precedence over any such contradictory material.


The term “comprising” as used herein is synonymous with “including,” “containing,” or “characterized by,” and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.


All numbers expressing quantities of ingredients, reaction conditions, and so forth used in the specification are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth herein are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of any claims in any application claiming priority to the present application, each numerical parameter should be construed in light of the number of significant digits and ordinary rounding approaches.


The above description discloses several methods and materials of the present invention. This invention is susceptible to modifications in the methods and materials, as well as alterations in the fabrication methods and equipment. Such modifications will become apparent to those skilled in the art from a consideration of this disclosure or practice of the invention disclosed herein. Consequently, it is not intended that this invention be limited to the specific embodiments disclosed herein, but that it cover all modifications and alternatives coming within the true scope and spirit of the invention.

Claims
  • 1. A system for maintaining an analyte measuring system on a host's skin, the system comprising: sensor electronics;a mounting unit having a base portion, a hinged portion, and an adhesive pad, wherein the base portion is in contact with the adhesive pad, wherein the adhesive pad comprises a non-woven fiber material,wherein the adhesive pad comprises first and second releasable backing layers,wherein the first and second releasable backing layers are configured to be removed from the adhesive pad prior to positioning the mounting unit on a host's skin to expose a first portion and a second portion of the adhesive pad, respectively,wherein the first and second releasable backing layers are disposed on a bottom surface of the adhesive pad, andwherein the first portion and the second portion of the adhesive pad are configured to be attached simultaneously to the host's skin during use of the analyte monitoring measuring system; anda sensor configured to extend through the mounting unit and through the host's skin, wherein the sensor electronics is configured to connect to the mounting unit after sensor insertion,wherein the sensor electronics is configured to bend the hinged portion of the mounting unit when connecting to the mounting unit.
  • 2. The system of claim 1, further comprising an adhesive covering sized to cover at least a portion of the analyte measuring system.
  • 3. The system of claim 1, further comprising a water-tight adhesive covering sized to cover the entire analyte measuring system.
  • 4. The system of claim 1, further comprising a bonding agent activated by or accelerated by at least one of ultraviolet cure, acoustic cure, radio frequency cure, or humidity cure, whereby the adhesive pad is adhered to the mounting unit.
  • 5. The system of claim 1, wherein the adhesive pad has a surface area on a side to be adhered to the host's skin that is 1.25 times greater than a surface area of a skin-facing surface of the mounting unit of the analyte measuring system.
  • 6. The system of claim 5, wherein the adhesive pad has a surface area on a side to be adhered to the host's skin that is 1.5 times greater than a surface area of a skin-facing surface of the mounting unit of the analyte measuring system.
  • 7. The system of claim 6, wherein the adhesive pad has a surface area on a side to be adhered to the host's skin that is 2 times greater than a surface area of a skin-facing surface of the mounting unit.
  • 8. The system of claim 1, wherein the adhesive pad comprises a non-adhesive portion.
  • 9. The system of claim 1, further comprising a sensor insertion device configured to be detached from the mounting unit.
INCORPORATION BY REFERENCE TO RELATED APPLICATIONS

Any and all priority claims identified in the Application Data Sheet, or any correction thereto, are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation of U.S. application Ser. No. 13/077,884 filed Mar. 31, 2011, which is a continuation of U.S. application Ser. No. 11/077,883 filed Mar. 10, 2005, now U.S. Pat. No. 7,946,984, which claims the benefit of U.S. Provisional Application No. 60/587,787 filed Jul. 13, 2004; U.S. Provisional Application No. 60/587,800 filed Jul. 13, 2004; U.S. Provisional Application No. 60/614,683 filed Sep. 30, 2004; and U.S. Provisional Application No. 60/614,764 filed Sep. 30, 2004; each of which is incorporated by reference herein in its entirety, and each of which is hereby made a part of this specification.

US Referenced Citations (2042)
Number Name Date Kind
1498738 Lahousse et al. Jun 1924 A
1564641 St. James Dec 1925 A
1726766 Rector et al. Sep 1929 A
2057029 Johnstone Oct 1936 A
2402306 Turkel Jun 1946 A
2497894 Clare et al. Feb 1950 A
2719797 Rosenblatt et al. Oct 1955 A
2882696 Herrmann et al. Apr 1959 A
2910256 Leidolf et al. Oct 1959 A
3022639 Brown et al. Feb 1962 A
3210578 Sherer Oct 1965 A
3218819 Crotser et al. Nov 1965 A
3219533 Mullins Nov 1965 A
3381371 Russell et al. May 1968 A
3506032 Eveleigh et al. Apr 1970 A
3539455 Clark, Jr. et al. Nov 1970 A
3556950 Dahms et al. Jan 1971 A
3562352 Nyilas Feb 1971 A
3607329 Manjikian Sep 1971 A
3610226 Albisser et al. Oct 1971 A
3652475 Wada et al. Mar 1972 A
3728678 Tong Apr 1973 A
3775182 Patton et al. Nov 1973 A
3780727 King Dec 1973 A
3791871 Rowley Feb 1974 A
3826244 Salcman et al. Jul 1974 A
3837339 Aisenberg et al. Sep 1974 A
3838033 Mindt et al. Sep 1974 A
3838682 Clark et al. Oct 1974 A
3872455 Fuller et al. Mar 1975 A
3874850 Sorensen et al. Apr 1975 A
3882011 Hines et al. May 1975 A
3898984 Mandel et al. Aug 1975 A
3910256 Clark et al. Oct 1975 A
3926760 Allen et al. Dec 1975 A
3929971 Roy et al. Dec 1975 A
3930462 Day et al. Jan 1976 A
3933593 Sternberg Jan 1976 A
3943918 Lewis Mar 1976 A
3957613 Macur May 1976 A
3957651 Kesting et al. May 1976 A
3964974 Banauch et al. Jun 1976 A
3966580 Janata et al. Jun 1976 A
3978684 Taylor et al. Sep 1976 A
3979274 Newman Sep 1976 A
3982530 Storch Sep 1976 A
4003621 Lamp Jan 1977 A
4008717 Kowarski et al. Feb 1977 A
4016866 Lawton et al. Apr 1977 A
4024312 Korpman et al. May 1977 A
4036749 Anderson Jul 1977 A
4037563 Pflueger et al. Jul 1977 A
4040908 Clark, Jr. Aug 1977 A
4052754 Homsy Oct 1977 A
4055175 Clemens et al. Oct 1977 A
4067322 Johnson Jan 1978 A
4068660 Beck Jan 1978 A
4073713 Newman Feb 1978 A
4076656 White et al. Feb 1978 A
4101395 Motani et al. Jul 1978 A
4109505 Clark et al. Aug 1978 A
4110997 Klotz et al. Sep 1978 A
4116920 Honma et al. Sep 1978 A
4119406 Clemens et al. Oct 1978 A
4151845 Clemens May 1979 A
4172770 Semersky et al. Oct 1979 A
4176659 Rolfe Dec 1979 A
4187390 Gore Feb 1980 A
4197840 Beck et al. Apr 1980 A
4197852 Schindler et al. Apr 1980 A
4206755 Klein Jun 1980 A
4215703 Willson Aug 1980 A
4225410 Pace et al. Sep 1980 A
4230118 Holman et al. Oct 1980 A
4240438 Shults et al. Dec 1980 A
4240889 Yoda et al. Dec 1980 A
4245634 Albisser et al. Jan 1981 A
4253469 Yoda et al. Mar 1981 A
4255500 Hooke Mar 1981 A
4259540 Sabia Mar 1981 A
4260725 Keogh et al. Apr 1981 A
4260726 Deubzer et al. Apr 1981 A
4265249 Schindler et al. May 1981 A
4286039 Landa et al. Aug 1981 A
4319578 Enger Mar 1982 A
4324256 Vesterager et al. Apr 1982 A
4324257 Albarda et al. Apr 1982 A
4327725 Cortese et al. May 1982 A
4353368 Slovak et al. Oct 1982 A
4353888 Sefton et al. Oct 1982 A
4366040 Marsoner et al. Dec 1982 A
4369785 Rehkopf et al. Jan 1983 A
4374013 Enfors Feb 1983 A
4378016 Loeb Mar 1983 A
4388166 Suzuki et al. Jun 1983 A
4402694 Ash et al. Sep 1983 A
4403847 Chrestensen Sep 1983 A
4403984 Ash et al. Sep 1983 A
4415666 D'Orazio et al. Nov 1983 A
4418148 Oberhardt Nov 1983 A
4419535 O'hara Dec 1983 A
4431004 Bessman et al. Feb 1984 A
4431507 Nankai et al. Feb 1984 A
4432366 Margules Feb 1984 A
4436094 Cerami Mar 1984 A
4442841 Uehara et al. Apr 1984 A
4453537 Spitzer Jun 1984 A
4454295 Wittmann et al. Jun 1984 A
4457339 Juan et al. Jul 1984 A
4469110 Slama Sep 1984 A
4477314 Richter et al. Oct 1984 A
4478222 Koning et al. Oct 1984 A
4484987 Gough Nov 1984 A
4486290 Cahalan et al. Dec 1984 A
4492575 Mabille Jan 1985 A
4493714 Ueda et al. Jan 1985 A
4494950 Fischell Jan 1985 A
4506680 Stokes Mar 1985 A
4519973 Cahalan et al. May 1985 A
RE31916 Oswin et al. Jun 1985 E
4526569 Bernardi Jul 1985 A
4527999 Lee Jul 1985 A
4534355 Potter Aug 1985 A
4534825 Koning et al. Aug 1985 A
4535786 Kater Aug 1985 A
4538616 Rogoff Sep 1985 A
4545382 Higgins et al. Oct 1985 A
4554927 Fussell Nov 1985 A
4561963 Owen et al. Dec 1985 A
4565665 Fogt Jan 1986 A
4565666 Cahalan et al. Jan 1986 A
4568444 Nakamura et al. Feb 1986 A
4571292 Liu et al. Feb 1986 A
4573968 Parker Mar 1986 A
4577642 Stokes Mar 1986 A
4578215 Bradley Mar 1986 A
4579120 MacGregor Apr 1986 A
4583976 Ferguson Apr 1986 A
4592824 Smith et al. Jun 1986 A
4600495 Fogt Jul 1986 A
4602922 Cabasso et al. Jul 1986 A
4603152 Laurin et al. Jul 1986 A
4614514 Carr et al. Sep 1986 A
4619793 Lee Oct 1986 A
4625730 Fountain et al. Dec 1986 A
4626104 Pointon et al. Dec 1986 A
RE32361 Duggan Feb 1987 E
4647643 Zdrahala et al. Mar 1987 A
4650547 Gough Mar 1987 A
4655880 Liu Apr 1987 A
4663824 Kenmochi May 1987 A
4671288 Gough Jun 1987 A
4672970 Uchida et al. Jun 1987 A
4675346 Lin et al. Jun 1987 A
4680268 Clark, Jr. Jul 1987 A
4684538 Klemarczyk Aug 1987 A
4684558 Keusch et al. Aug 1987 A
4685463 Williams Aug 1987 A
4685903 Cable et al. Aug 1987 A
4686137 Ward, Jr. et al. Aug 1987 A
4689149 Kanno et al. Aug 1987 A
4689309 Jones Aug 1987 A
4694861 Goodale et al. Sep 1987 A
4703756 Gough et al. Nov 1987 A
4703989 Price et al. Nov 1987 A
4705503 Dorman et al. Nov 1987 A
4711245 Higgins et al. Dec 1987 A
4711251 Stokes Dec 1987 A
4721677 Clark, Jr. Jan 1988 A
4781680 Redmond et al. Jan 1988 A
4726381 Jones Feb 1988 A
4731726 Allen, III Mar 1988 A
4734092 Millerd Mar 1988 A
4736748 Nakamura et al. Apr 1988 A
4739380 Lauks et al. Apr 1988 A
4747822 Peabody May 1988 A
4750496 Reinhart et al. Jun 1988 A
4752935 Beck Jun 1988 A
4753652 Langer et al. Jun 1988 A
4755168 Romanelli et al. Jul 1988 A
4757022 Shults et al. Jul 1988 A
4759828 Young et al. Jul 1988 A
4761748 Le Rat et al. Aug 1988 A
4763648 Wyatt Aug 1988 A
4763658 Jones Aug 1988 A
4776343 Hubbard et al. Oct 1988 A
4777953 Ash et al. Oct 1988 A
4781798 Gough Nov 1988 A
4784157 Halls et al. Nov 1988 A
4786394 Enzer et al. Nov 1988 A
4787398 Garcia et al. Nov 1988 A
4789467 Lindsay et al. Dec 1988 A
4791932 Margules Dec 1988 A
4793555 Lee et al. Dec 1988 A
4795435 Steer Jan 1989 A
4795542 Ross et al. Jan 1989 A
4803243 Fujimoto et al. Feb 1989 A
4805624 Yao et al. Feb 1989 A
4805625 Wyler Feb 1989 A
4807632 Liess et al. Feb 1989 A
4808089 Buchholtz et al. Feb 1989 A
4808292 Kessler et al. Feb 1989 A
4809704 Sogawa et al. Mar 1989 A
4810243 Howson Mar 1989 A
4810470 Burkhardt et al. Mar 1989 A
4813424 Wilkins Mar 1989 A
4815471 Stobie Mar 1989 A
4820281 Lawler, Jr. Apr 1989 A
4822336 Ditraglia Apr 1989 A
4826706 Hilker et al. May 1989 A
4828544 Lane et al. May 1989 A
4830013 Maxwell May 1989 A
4831070 McInally et al. May 1989 A
4832005 Takamiya et al. May 1989 A
4832034 Pizziconi et al. May 1989 A
4834101 Collison et al. May 1989 A
4838281 Rogers et al. Jun 1989 A
4841974 Gumbrecht et al. Jun 1989 A
4849458 Reed et al. Jul 1989 A
4852573 Kennedy Aug 1989 A
4852604 Wales et al. Aug 1989 A
4854322 Ash et al. Aug 1989 A
4858615 Meinema Aug 1989 A
4861454 Ushizawa et al. Aug 1989 A
4867741 Portnoy Sep 1989 A
4871440 Nagata et al. Oct 1989 A
4874363 Abell Oct 1989 A
4883057 Broderick Nov 1989 A
4883467 Franetzki et al. Nov 1989 A
4886070 Demarest Dec 1989 A
4886562 Pinson Dec 1989 A
4889528 Nadai et al. Dec 1989 A
4889744 Quaid Dec 1989 A
4890620 Gough Jan 1990 A
4890621 Hakky Jan 1990 A
4894339 Hanazato et al. Jan 1990 A
4900305 Smith et al. Feb 1990 A
4902294 Gosserez Feb 1990 A
4907857 Giuliani et al. Mar 1990 A
4909786 Gijselhart et al. Mar 1990 A
4909908 Ross et al. Mar 1990 A
4919114 Miyazaki Apr 1990 A
4919141 Zier et al. Apr 1990 A
4919649 Timothy et al. Apr 1990 A
4921477 Davis May 1990 A
4921480 Sealfon May 1990 A
4925444 Orkin et al. May 1990 A
4927407 Dorman May 1990 A
4927516 Yamaguchi et al. May 1990 A
4928694 Maxwell May 1990 A
4934369 Maxwell Jun 1990 A
4934375 Cole et al. Jun 1990 A
4935345 Guilbeau et al. Jun 1990 A
4940065 Tanagho et al. Jul 1990 A
4944299 Silvian Jul 1990 A
4946439 Eggers Aug 1990 A
4951657 Pfister et al. Aug 1990 A
4951669 Maxwell et al. Aug 1990 A
4952618 Olsen Aug 1990 A
4953552 DeMarzo Sep 1990 A
4955861 Enegren et al. Sep 1990 A
4957483 Gonser et al. Sep 1990 A
4958148 Olson Sep 1990 A
4960594 Honeycutt Oct 1990 A
4961434 Stypulkowski Oct 1990 A
4963595 Ward et al. Oct 1990 A
4966579 Polaschegg Oct 1990 A
4967940 Blette et al. Nov 1990 A
4970145 Bennetto et al. Nov 1990 A
4974592 Branco Dec 1990 A
4974929 Curry Dec 1990 A
4975175 Karube et al. Dec 1990 A
4975636 Desautels Dec 1990 A
4976687 Martin Dec 1990 A
4979509 Hakky Dec 1990 A
4984929 Rock et al. Jan 1991 A
4986271 Wilkins Jan 1991 A
4986671 Sun et al. Jan 1991 A
4988341 Columbus et al. Jan 1991 A
4988758 Fukuda Jan 1991 A
4989607 Keusch et al. Feb 1991 A
4990231 Stewart et al. Feb 1991 A
4992794 Brouwers Feb 1991 A
4994026 Fecondini Feb 1991 A
4994167 Shults et al. Feb 1991 A
4997627 Bergkuist et al. Mar 1991 A
5000194 Van Den Honert et al. Mar 1991 A
5002055 Merki et al. Mar 1991 A
5002572 Picha Mar 1991 A
5002590 Friesen et al. Mar 1991 A
5006050 Cooke et al. Apr 1991 A
5006111 Inokuchi et al. Apr 1991 A
5007929 Quaid Apr 1991 A
5009251 Pike et al. Apr 1991 A
5019096 Fox, Jr. et al. May 1991 A
5026348 Venegas Jun 1991 A
5030199 Barwick et al. Jul 1991 A
5030310 Wogoman Jul 1991 A
5030333 Clark, Jr. Jul 1991 A
5034112 Murase et al. Jul 1991 A
5035711 Aoki et al. Jul 1991 A
5037497 Stypulkowski Aug 1991 A
5041092 Barwick Aug 1991 A
5045057 Van Driessche et al. Sep 1991 A
5045601 Capelli et al. Sep 1991 A
5046496 Betts et al. Sep 1991 A
5048525 Maxwell Sep 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5055198 Shettigar Oct 1991 A
5059654 Hou et al. Oct 1991 A
5063081 Cozzette et al. Nov 1991 A
5067491 Taylor, II et al. Nov 1991 A
5068536 Rosenthal Nov 1991 A
5077476 Rosenthal Dec 1991 A
5082550 Rishpon et al. Jan 1992 A
5088981 Howson et al. Feb 1992 A
5089112 Skotheim et al. Feb 1992 A
5089421 Dieffenbach Feb 1992 A
5096669 Lauks et al. Mar 1992 A
5097834 Skrabal Mar 1992 A
5098377 Borsanyi et al. Mar 1992 A
5101814 Palti Apr 1992 A
5108819 Heller et al. Apr 1992 A
5109850 Blanco et al. May 1992 A
5112301 Fenton, Jr. et al. May 1992 A
5116313 McGregor May 1992 A
5120813 Ward, Jr. Jun 1992 A
5127405 Alcala, Jr. et al. Jul 1992 A
5130009 Marsoner et al. Jul 1992 A
5130231 Kennedy et al. Jul 1992 A
5135297 Valint, Jr. Aug 1992 A
5137028 Nishimura Aug 1992 A
5140985 Schroeder et al. Aug 1992 A
5145565 Kater et al. Sep 1992 A
5147725 Pinchuk Sep 1992 A
5152746 Atkinson et al. Oct 1992 A
5160418 Mullen Nov 1992 A
5161532 Joseph Nov 1992 A
5162407 Turner Nov 1992 A
5165406 Wong Nov 1992 A
5165407 Wilson et al. Nov 1992 A
5171689 Kawaguri et al. Dec 1992 A
5174123 Erickson Dec 1992 A
5174291 Schoonen et al. Dec 1992 A
5176632 Bernardi Jan 1993 A
5176658 Ranford Jan 1993 A
5176662 Bartholomew et al. Jan 1993 A
5178142 Harjunmaa et al. Jan 1993 A
5178957 Kolpe et al. Jan 1993 A
5182004 Kohno Jan 1993 A
5183549 Joseph et al. Feb 1993 A
5188591 Dorsey, III Feb 1993 A
5190038 Polson et al. Mar 1993 A
5190041 Palti Mar 1993 A
5195963 Yafuso et al. Mar 1993 A
5198771 Fidler et al. Mar 1993 A
5200051 Cozzette et al. Apr 1993 A
5202261 Musho et al. Apr 1993 A
5207218 Carpentier et al. May 1993 A
5208147 Kagenow et al. May 1993 A
5208313 Krishnan May 1993 A
5212050 Mier et al. May 1993 A
5220917 Cammilli et al. Jun 1993 A
5220920 Gharib Jun 1993 A
5222980 Gealow Jun 1993 A
5224929 Remiszewski Jul 1993 A
5225063 Gumbrecht et al. Jul 1993 A
5232434 Inagaki et al. Aug 1993 A
5235003 Ward et al. Aug 1993 A
5243696 Carr et al. Sep 1993 A
5243982 Mostl et al. Sep 1993 A
5243983 Tarr et al. Sep 1993 A
5249576 Goldberger et al. Oct 1993 A
5250439 Musho et al. Oct 1993 A
5254102 Ogawa Oct 1993 A
5261892 Bertaud et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5265594 Olsson et al. Nov 1993 A
5265999 Wenschhof et al. Nov 1993 A
5266179 Nankai et al. Nov 1993 A
5269891 Colin Dec 1993 A
5271736 Picha Dec 1993 A
5271815 Wong Dec 1993 A
5279294 Anderson et al. Jan 1994 A
5281319 Kaneko et al. Jan 1994 A
5282844 Stokes et al. Feb 1994 A
5282848 Schmitt Feb 1994 A
5284140 Allen et al. Feb 1994 A
5284570 Savage et al. Feb 1994 A
5285513 Kaurman et al. Feb 1994 A
5286364 Yacynych et al. Feb 1994 A
5287753 Routh et al. Feb 1994 A
5296144 Sternina et al. Mar 1994 A
5298022 Bernardi Mar 1994 A
5298144 Spokane Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5302093 Owens et al. Apr 1994 A
5302440 Davis Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5307263 Brown Apr 1994 A
5310469 Cunningham et al. May 1994 A
5311908 Barone et al. May 1994 A
5312361 Zadini et al. May 1994 A
5314471 Brauker et al. May 1994 A
5316008 Suga et al. May 1994 A
5316452 Bogen et al. May 1994 A
5318511 Riquier et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5324322 Grill, Jr. et al. Jun 1994 A
5326356 Della Valle et al. Jul 1994 A
5326449 Cunningham Jul 1994 A
5328451 Davis et al. Jul 1994 A
5330521 Cohen Jul 1994 A
5330634 Wong et al. Jul 1994 A
5331555 Hashimoto et al. Jul 1994 A
5335658 Bedingham Aug 1994 A
5336102 Cairns et al. Aug 1994 A
5337747 Neftel Aug 1994 A
5340352 Nakanishi et al. Aug 1994 A
5342409 Mullett Aug 1994 A
5342789 Chick et al. Aug 1994 A
5343869 Pross et al. Sep 1994 A
5344451 Dayton Sep 1994 A
5344454 Clarke et al. Sep 1994 A
5345932 Yafuso et al. Sep 1994 A
5348788 White Sep 1994 A
5352348 Young et al. Oct 1994 A
5352351 White et al. Oct 1994 A
5354272 Swendson et al. Oct 1994 A
5354449 Band et al. Oct 1994 A
5356375 Higley Oct 1994 A
5356378 Doan Oct 1994 A
5356786 Heller et al. Oct 1994 A
5358409 Obara Oct 1994 A
5362761 Uragami et al. Nov 1994 A
5368028 Palti Nov 1994 A
5368224 Richardson et al. Nov 1994 A
5368562 Blomquist et al. Nov 1994 A
5372133 Hogen Esch Dec 1994 A
5372135 Mendelson et al. Dec 1994 A
5372709 Hood Dec 1994 A
5372719 Afeyan et al. Dec 1994 A
5376070 Purvis et al. Dec 1994 A
5378229 Layer et al. Jan 1995 A
5380268 Wheeler Jan 1995 A
5380422 Negishi et al. Jan 1995 A
5380491 Carver, Jr. et al. Jan 1995 A
5380536 Hubbell et al. Jan 1995 A
5380665 Cusack et al. Jan 1995 A
5382514 Passaniti et al. Jan 1995 A
5384028 Ito Jan 1995 A
5387327 Khan Feb 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5393401 Knoll Feb 1995 A
5397848 Yang et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5404877 Nolan et al. Apr 1995 A
5405510 Betts et al. Apr 1995 A
5411052 Murray May 1995 A
5411647 Johnson et al. May 1995 A
5411866 Luong et al. May 1995 A
5417115 Burns May 1995 A
5417206 Kaneyoshi May 1995 A
5417395 Fowler et al. May 1995 A
5421328 Bedingham Jun 1995 A
5421923 Clarke et al. Jun 1995 A
5423738 Robinson et al. Jun 1995 A
5423749 Merte et al. Jun 1995 A
5425717 Mohiuddin Jun 1995 A
5426032 Phillips et al. Jun 1995 A
5428123 Ward et al. Jun 1995 A
5429129 Lovejoy et al. Jul 1995 A
5429485 Dodge Jul 1995 A
5429602 Hauser Jul 1995 A
5429735 Johnson et al. Jul 1995 A
5431160 Wilkins Jul 1995 A
5431174 Knute Jul 1995 A
5431921 Thombre Jul 1995 A
5434412 Sodickson et al. Jul 1995 A
5437635 Fields et al. Aug 1995 A
5437999 Diebold et al. Aug 1995 A
5438984 Schoendorfer Aug 1995 A
5445610 Evert Aug 1995 A
5448992 Kupershmidt Sep 1995 A
5451260 Versteeg et al. Sep 1995 A
5453199 Afeyan et al. Sep 1995 A
5453278 Chan et al. Sep 1995 A
5458631 Xavier Oct 1995 A
5462051 Oka et al. Oct 1995 A
5462064 D'Angelo et al. Oct 1995 A
5462645 Albery et al. Oct 1995 A
5466356 Schneider et al. Nov 1995 A
5466575 Cozzette et al. Nov 1995 A
5469846 Khan Nov 1995 A
5474552 Palti Dec 1995 A
5476094 Allen et al. Dec 1995 A
5476776 Wilkins Dec 1995 A
5480711 Ruefer Jan 1996 A
5482008 Stafford et al. Jan 1996 A
5482446 Williamson et al. Jan 1996 A
5482473 Lord et al. Jan 1996 A
5484404 Schulman et al. Jan 1996 A
5486776 Chiang Jan 1996 A
5490323 Thacker et al. Feb 1996 A
5491474 Suni et al. Feb 1996 A
5494562 Maley et al. Feb 1996 A
5496453 Uenoyama et al. Mar 1996 A
5497772 Schulman et al. Mar 1996 A
5502396 Desarzens et al. Mar 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5508203 Fuller et al. Apr 1996 A
5508509 Yafuso et al. Apr 1996 A
5509888 Miller Apr 1996 A
5512046 Pusinelli et al. Apr 1996 A
5512248 Van Apr 1996 A
5513636 Palti May 1996 A
5514253 Davis et al. May 1996 A
5515851 Goldstein May 1996 A
5516832 Kennan et al. May 1996 A
5518601 Foos et al. May 1996 A
5527288 Gross et al. Jun 1996 A
5529066 Palti Jun 1996 A
5529676 Maley et al. Jun 1996 A
5531679 Schulman et al. Jul 1996 A
5531878 Vadgama et al. Jul 1996 A
5540828 Yacynych Jul 1996 A
5545200 West et al. Aug 1996 A
5545220 Andrews et al. Aug 1996 A
5545223 Neuenfeldt et al. Aug 1996 A
5549547 Cohen et al. Aug 1996 A
5549548 Larsson Aug 1996 A
5549569 Lynn et al. Aug 1996 A
5549651 Lynn Aug 1996 A
5549675 Neuenfeldt et al. Aug 1996 A
5551850 Williamson et al. Sep 1996 A
5552112 Schiffmann et al. Sep 1996 A
5553616 Ham et al. Sep 1996 A
5554339 Cozzette et al. Sep 1996 A
5558957 Datta et al. Sep 1996 A
5562614 O'Donnell Oct 1996 A
5562615 Nassif Oct 1996 A
5564439 Picha Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5569188 MacKool Oct 1996 A
5569219 Hakki et al. Oct 1996 A
5569462 Martinson et al. Oct 1996 A
5571395 Park et al. Nov 1996 A
5575293 Miller et al. Nov 1996 A
5575930 Tietje-Girault et al. Nov 1996 A
5577499 Teves Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5582497 Noguchi Dec 1996 A
5582593 Hultman Dec 1996 A
5582697 Ikeda et al. Dec 1996 A
5584813 Livingston et al. Dec 1996 A
5584876 Bruchman et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5587273 Yan et al. Dec 1996 A
5588560 Benedict et al. Dec 1996 A
5589133 Suzuki Dec 1996 A
5589563 Ward et al. Dec 1996 A
5590651 Shaffer et al. Jan 1997 A
5593440 Brauker et al. Jan 1997 A
5593852 Heller et al. Jan 1997 A
5607565 Azarnia et al. Mar 1997 A
5609572 Lang Mar 1997 A
5611900 Vorden Mar 1997 A
5624409 Seale Apr 1997 A
5624537 Turner et al. Apr 1997 A
5626561 Butler et al. May 1997 A
5626563 Dodge et al. May 1997 A
5628619 Wilson May 1997 A
5628890 Carter et al. May 1997 A
5630978 Domb May 1997 A
5637083 Bertrand et al. Jun 1997 A
5637135 Ottenstein et al. Jun 1997 A
5640470 Iyer et al. Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5643195 Drevet et al. Jul 1997 A
5651767 Schulman et al. Jul 1997 A
5653756 Clarke et al. Aug 1997 A
5653863 Genshaw et al. Aug 1997 A
5658247 Henley Aug 1997 A
5658250 Blomquist et al. Aug 1997 A
5658330 Carlisle et al. Aug 1997 A
5658802 Hayes et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5660177 Faupel et al. Aug 1997 A
5662616 Bousguet Sep 1997 A
5665061 Antwiler Sep 1997 A
5665065 Colman et al. Sep 1997 A
5665215 Bussmann et al. Sep 1997 A
5667504 Baumann et al. Sep 1997 A
5673694 Rivers Oct 1997 A
5676651 Larson, Jr. et al. Oct 1997 A
5676820 Wang et al. Oct 1997 A
5681572 Seare, Jr. Oct 1997 A
5682884 Hill et al. Nov 1997 A
5683562 Schaffar et al. Nov 1997 A
5686829 Girault Nov 1997 A
5688239 Walker Nov 1997 A
5688244 Lang Nov 1997 A
5690119 Rytky et al. Nov 1997 A
5695623 Michel et al. Dec 1997 A
5696314 McCaffrey et al. Dec 1997 A
5697366 Kimball et al. Dec 1997 A
5697899 Hillman et al. Dec 1997 A
5697976 Chesterfield et al. Dec 1997 A
5703359 Wampler, III Dec 1997 A
5704354 Preidel et al. Jan 1998 A
5706807 Picha Jan 1998 A
5707502 McCaffrey et al. Jan 1998 A
5711302 Lampropoulos et al. Jan 1998 A
5711685 Wood Jan 1998 A
5711861 Ward et al. Jan 1998 A
5713842 Kay Feb 1998 A
5713888 Neuenfeldt et al. Feb 1998 A
5714123 Sohrab Feb 1998 A
5714391 Omura et al. Feb 1998 A
5720293 Quinn et al. Feb 1998 A
5730654 Brown Mar 1998 A
5733336 Neuenfeldt et al. Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5741319 Woloszko et al. Apr 1998 A
5741330 Brauker et al. Apr 1998 A
5741634 Nozoe et al. Apr 1998 A
5743262 Lepper, Jr. et al. Apr 1998 A
5746898 Preidel May 1998 A
5749832 Vadgama et al. May 1998 A
5749907 Mann May 1998 A
5755692 Manicom May 1998 A
5756632 Ward et al. May 1998 A
5758643 Wong et al. Jun 1998 A
5763760 Gumbrecht et al. Jun 1998 A
5763787 Gravel et al. Jun 1998 A
5766151 Valley et al. Jun 1998 A
5770028 Maley et al. Jun 1998 A
5771890 Tamada Jun 1998 A
5773270 D'Orazio et al. Jun 1998 A
5773286 Dionne et al. Jun 1998 A
5776324 Usala Jul 1998 A
5777060 Van Antwerp Jul 1998 A
5779665 Mastrototaro et al. Jul 1998 A
5781455 Hyodo Jul 1998 A
5782880 Lahtinen et al. Jul 1998 A
5782912 Brauker et al. Jul 1998 A
5783054 Raguse et al. Jul 1998 A
5786439 Van Antwerp et al. Jul 1998 A
5787900 Butler et al. Aug 1998 A
5791344 Schulman et al. Aug 1998 A
5791880 Wilson Aug 1998 A
5795453 Gilmartin Aug 1998 A
5795774 Matsumoto et al. Aug 1998 A
5798065 Picha Aug 1998 A
5798085 Seaton et al. Aug 1998 A
5800383 Chandler et al. Sep 1998 A
5800420 Gross et al. Sep 1998 A
5800529 Brauker et al. Sep 1998 A
5804048 Wong et al. Sep 1998 A
5806517 Gerhardt et al. Sep 1998 A
5807274 Henning et al. Sep 1998 A
5807312 Dzwonkiewicz Sep 1998 A
5807375 Gross et al. Sep 1998 A
5807406 Brauker et al. Sep 1998 A
5810736 Pail Sep 1998 A
5810770 Chin et al. Sep 1998 A
5811487 Schulz, Jr. et al. Sep 1998 A
5814599 Mitragotri et al. Sep 1998 A
5820570 Erickson et al. Oct 1998 A
5820589 Torgerson et al. Oct 1998 A
5820622 Gross et al. Oct 1998 A
5822715 Worthington et al. Oct 1998 A
5823802 Bartley Oct 1998 A
5824651 Nanci et al. Oct 1998 A
5827183 Kurnik et al. Oct 1998 A
5833603 Kovacs et al. Nov 1998 A
5836886 Itoigawa et al. Nov 1998 A
5836887 Oka et al. Nov 1998 A
5836989 Shelton Nov 1998 A
5837454 Cozzette et al. Nov 1998 A
5837728 Purcell Nov 1998 A
5840026 Uber, III et al. Nov 1998 A
5840148 Campbell et al. Nov 1998 A
5840240 Stenoien et al. Nov 1998 A
5843069 Butler et al. Dec 1998 A
5848991 Gross et al. Dec 1998 A
5851197 Marano et al. Dec 1998 A
5857983 Douglas et al. Jan 1999 A
5858296 Domb Jan 1999 A
5858365 Faller Jan 1999 A
5858747 Schinstine et al. Jan 1999 A
5861019 Sun et al. Jan 1999 A
5863400 Drummond et al. Jan 1999 A
5863460 Slovacek et al. Jan 1999 A
5871499 Hahn et al. Feb 1999 A
5871514 Wiklund et al. Feb 1999 A
5872198 Mosbach et al. Feb 1999 A
5872499 Poulsen Feb 1999 A
5873862 Lopez Feb 1999 A
5874500 Rhee et al. Feb 1999 A
5879373 Roper et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5879828 Debe et al. Mar 1999 A
5882354 Brauker et al. Mar 1999 A
5882494 Van Antwerp Mar 1999 A
5895235 Droz Apr 1999 A
5897525 Dey et al. Apr 1999 A
5897578 Wiklund et al. Apr 1999 A
5897955 Drumheller Apr 1999 A
5899855 Brown May 1999 A
5904666 Dedecker et al. May 1999 A
5904708 Goedeke May 1999 A
5910554 Kempe et al. Jun 1999 A
5911219 Aylsworth et al. Jun 1999 A
5913998 Butler et al. Jun 1999 A
5914026 Blubaugh, Jr. et al. Jun 1999 A
5914182 Drumheller Jun 1999 A
5916445 Hjerten et al. Jun 1999 A
5917346 Gord Jun 1999 A
5919215 Wiklund et al. Jul 1999 A
5921951 Morris Jul 1999 A
5928130 Schmidt Jul 1999 A
5928155 Eggers et al. Jul 1999 A
5928182 Kraus et al. Jul 1999 A
5928189 Phillips et al. Jul 1999 A
5928195 Malamud et al. Jul 1999 A
5931814 Alex et al. Aug 1999 A
5932175 Knute et al. Aug 1999 A
5933136 Brown Aug 1999 A
5935785 Reber et al. Aug 1999 A
5938636 Kramer et al. Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5944661 Swette et al. Aug 1999 A
5945498 Hoepken et al. Aug 1999 A
5947911 Wong et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954643 Van Antwerp et al. Sep 1999 A
5954685 Tierney Sep 1999 A
5954954 Houck et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5957903 Mirzaee et al. Sep 1999 A
5959050 Mosbach et al. Sep 1999 A
5961451 Reber et al. Oct 1999 A
5963132 Yoakum Oct 1999 A
5964261 Neuenfeldt et al. Oct 1999 A
5964745 Lyles et al. Oct 1999 A
5964804 Brauker et al. Oct 1999 A
5964993 Blubaugh et al. Oct 1999 A
5965125 Mineau-Hanschke Oct 1999 A
5965380 Heller et al. Oct 1999 A
5967986 Cimochowski et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5972199 Heller et al. Oct 1999 A
5976085 Kimball et al. Nov 1999 A
5977241 Koloski et al. Nov 1999 A
5985129 Gough et al. Nov 1999 A
5985693 Leedy Nov 1999 A
5987352 Klein et al. Nov 1999 A
5989409 Kurnik et al. Nov 1999 A
5995208 Sarge et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
5997501 Gross et al. Dec 1999 A
5998247 Wu Dec 1999 A
5999848 Gord et al. Dec 1999 A
5999849 Gord et al. Dec 1999 A
6001067 Shults et al. Dec 1999 A
6001471 Bries et al. Dec 1999 A
6007845 Domb et al. Dec 1999 A
6011984 Van Antwerp et al. Jan 2000 A
6013113 Mika Jan 2000 A
6014577 Henning et al. Jan 2000 A
6015392 Douglas et al. Jan 2000 A
6015572 Lin et al. Jan 2000 A
6016448 Busacker et al. Jan 2000 A
6017435 Hassard et al. Jan 2000 A
6018033 Chen et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6024720 Chandler et al. Feb 2000 A
6027445 Von Bahr Feb 2000 A
6027479 Alei et al. Feb 2000 A
6032059 Henning et al. Feb 2000 A
6032667 Heinonen Mar 2000 A
6036924 Simons et al. Mar 2000 A
6043328 Domschke et al. Mar 2000 A
6045671 Wu et al. Apr 2000 A
6048691 Maracas Apr 2000 A
6049727 Crothall Apr 2000 A
6051372 Bayerl et al. Apr 2000 A
6051389 Ahi et al. Apr 2000 A
6057377 Sasaki et al. May 2000 A
6059946 Yukawa et al. May 2000 A
6060640 Pauley et al. May 2000 A
6063637 Arnold et al. May 2000 A
6065154 Hulings et al. May 2000 A
6066083 Slater et al. May 2000 A
6066088 Davis May 2000 A
6066448 Wohlstadter et al. May 2000 A
6068668 Mastroianni May 2000 A
6071391 Gotoh et al. Jun 2000 A
6071406 Tsou Jun 2000 A
6074775 Gartstein et al. Jun 2000 A
6077299 Adelberg et al. Jun 2000 A
6080583 Von Bahr Jun 2000 A
6081735 Diab et al. Jun 2000 A
6081736 Colvin et al. Jun 2000 A
6083523 Dionne et al. Jul 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6090087 Tsukada et al. Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6099511 Devos et al. Aug 2000 A
6101404 Yoon et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6103533 Hassard et al. Aug 2000 A
6106486 Tenerz et al. Aug 2000 A
6107083 Collins et al. Aug 2000 A
6115622 Minoz Sep 2000 A
6115634 Donders et al. Sep 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6122536 Sun et al. Sep 2000 A
6123827 Wong et al. Sep 2000 A
6127154 Mosbach et al. Oct 2000 A
6128519 Say Oct 2000 A
6134461 Say et al. Oct 2000 A
6135978 Houben et al. Oct 2000 A
6139718 Kurnik et al. Oct 2000 A
6141573 Kurnik et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6144869 Berner et al. Nov 2000 A
6144871 Saito et al. Nov 2000 A
RE36991 Yamamoto et al. Dec 2000 E
6156051 Schraga Dec 2000 A
6157860 Hauser et al. Dec 2000 A
6159186 Wickham et al. Dec 2000 A
6159497 LaPrade Dec 2000 A
6162201 Cohen et al. Dec 2000 A
6162611 Heller et al. Dec 2000 A
6164921 Moubayed et al. Dec 2000 A
6165154 Gray et al. Dec 2000 A
6165156 Cesarczyk Dec 2000 A
6167614 Tuttle et al. Jan 2001 B1
6168568 Gavriely Jan 2001 B1
6169155 Alvarez et al. Jan 2001 B1
6171276 Lippe et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6175767 Doyle, Sr. Jan 2001 B1
6180221 Crotzer et al. Jan 2001 B1
6180416 Kurnik et al. Jan 2001 B1
6183437 Walker Feb 2001 B1
6187062 Oweis et al. Feb 2001 B1
6189536 Martinez et al. Feb 2001 B1
6191860 Klinger et al. Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6198969 Kuzma Mar 2001 B1
6200772 Vadgama et al. Mar 2001 B1
6201979 Kurnik et al. Mar 2001 B1
6201980 Darrow et al. Mar 2001 B1
6201993 Kruse et al. Mar 2001 B1
6206856 Mahurkar Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6212424 Robinson Apr 2001 B1
6213739 Phallen et al. Apr 2001 B1
6214185 Offenbacher et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6223080 Thompson Apr 2001 B1
6223083 Rosar Apr 2001 B1
6230059 Duffin May 2001 B1
6231879 Li et al. May 2001 B1
6232783 Merrill May 2001 B1
6233080 Brenner et al. May 2001 B1
6233471 Berner et al. May 2001 B1
6241663 Wu et al. Jun 2001 B1
6241863 Monbouquette Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6248077 Elson et al. Jun 2001 B1
6248093 Moberg Jun 2001 B1
6251280 Dai et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6255592 Pennington et al. Jul 2001 B1
6256522 Schultz Jul 2001 B1
6259937 Schulman et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6264825 Blackburn et al. Jul 2001 B1
6266551 Osadchy et al. Jul 2001 B1
6268161 Han et al. Jul 2001 B1
6270478 Mernoee Aug 2001 B1
6271332 Lohmann et al. Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6272382 Faltys et al. Aug 2001 B1
6272480 Tresp et al. Aug 2001 B1
6274285 Gries et al. Aug 2001 B1
6274686 Mosbach et al. Aug 2001 B1
6275717 Gross et al. Aug 2001 B1
6280408 Sipin Aug 2001 B1
6284126 Kurnik et al. Sep 2001 B1
6284478 Heller et al. Sep 2001 B1
6285897 Kilcoyne et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6294281 Heller Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6296615 Brockway et al. Oct 2001 B1
6298254 Tamada Oct 2001 B2
6298255 Cordero et al. Oct 2001 B1
6299578 Kurnik et al. Oct 2001 B1
6299583 Eggers et al. Oct 2001 B1
6300002 Webb et al. Oct 2001 B1
6300884 Wilson Oct 2001 B1
6302855 Lav et al. Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6306594 Cozzette et al. Oct 2001 B1
6308089 Von Der Ruhr et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
6309384 Harrington et al. Oct 2001 B1
6309526 Fujiwara et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6310110 Markowitz et al. Oct 2001 B1
6315738 Nishikawa et al. Nov 2001 B1
6319566 Polanyi et al. Nov 2001 B1
6325978 Labuda et al. Dec 2001 B1
6325979 Hahn et al. Dec 2001 B1
6326160 Dunn et al. Dec 2001 B1
6329161 Heller et al. Dec 2001 B1
6329488 Terry et al. Dec 2001 B1
6329929 Weijand et al. Dec 2001 B1
6330464 Colvin, Jr. et al. Dec 2001 B1
6336269 Eldridge et al. Jan 2002 B1
6341232 Conn et al. Jan 2002 B1
6343225 Clark, Jr. Jan 2002 B1
6344021 Juster Feb 2002 B1
6346114 Schraga Feb 2002 B1
6355000 Ogura Mar 2002 B1
6356776 Berner et al. Mar 2002 B1
6358225 Butterfield Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6365670 Ry Apr 2002 B1
6366794 Moussy et al. Apr 2002 B1
6368141 Van Antwerp et al. Apr 2002 B1
6368274 Van Antwerp et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6370410 Kurnik et al. Apr 2002 B2
6370941 Nakamura et al. Apr 2002 B2
6371963 Nishtala et al. Apr 2002 B1
6372244 Antanavich et al. Apr 2002 B1
6379201 Biggs et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6379317 Kintzig et al. Apr 2002 B1
6379883 Davis et al. Apr 2002 B2
6387709 Mason et al. May 2002 B1
6391019 Ito May 2002 B1
6393318 Conn et al. May 2002 B1
6398562 Butler et al. Jun 2002 B1
6400974 Lesho Jun 2002 B1
6402703 Kensey et al. Jun 2002 B1
6403944 MacKenzie et al. Jun 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6406066 Uegane Jun 2002 B1
6406426 Reuss et al. Jun 2002 B1
6407195 Sherman et al. Jun 2002 B2
6409674 Brockway et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6416651 Millar Jul 2002 B1
6418332 Mastrototaro et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6432050 Porat et al. Aug 2002 B1
6438414 Conn et al. Aug 2002 B1
6442413 Silver Aug 2002 B1
6447448 Ishikawa et al. Sep 2002 B1
6447542 Weadock Sep 2002 B1
6454710 Ballerstadt et al. Sep 2002 B1
6459917 Gowda et al. Oct 2002 B1
6461496 Feldman et al. Oct 2002 B1
6464849 Say et al. Oct 2002 B1
6465066 Rule et al. Oct 2002 B1
6466810 Ward et al. Oct 2002 B1
6467480 Meier et al. Oct 2002 B1
6468287 Baugh Oct 2002 B1
6471689 Joseph et al. Oct 2002 B1
6471993 Shastri et al. Oct 2002 B1
6474360 Ito Nov 2002 B1
6475372 Ohara et al. Nov 2002 B1
6475750 Han et al. Nov 2002 B1
6477392 Honigs et al. Nov 2002 B1
6481440 Gielen et al. Nov 2002 B2
6484045 Holker et al. Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6484132 Hively et al. Nov 2002 B1
6485449 Ito Nov 2002 B2
6487429 Hockersmith et al. Nov 2002 B2
6488652 Weijand et al. Dec 2002 B1
6494830 Wessel Dec 2002 B1
6494879 Lennox et al. Dec 2002 B2
6497729 Moussy et al. Dec 2002 B1
6498043 Schulman et al. Dec 2002 B1
6498941 Jackson Dec 2002 B1
6510239 Wieres et al. Jan 2003 B1
6510329 Heckel Jan 2003 B2
6512939 Colvin, Jr. et al. Jan 2003 B1
6514718 Heller et al. Feb 2003 B2
6517508 Utterberg et al. Feb 2003 B1
6520326 McIvor et al. Feb 2003 B2
6520477 Trimmer Feb 2003 B2
6520937 Hart et al. Feb 2003 B2
6520938 Funderburk et al. Feb 2003 B1
6520997 Pekkarinen et al. Feb 2003 B1
6522903 Berman et al. Feb 2003 B1
6524861 Anderson Feb 2003 B1
6526298 Khalil et al. Feb 2003 B1
6527729 Turcott Mar 2003 B1
6528584 Kennedy et al. Mar 2003 B2
6529755 Kurnik et al. Mar 2003 B2
6534711 Pollack Mar 2003 B1
6536433 Cewers Mar 2003 B1
6537318 Ita et al. Mar 2003 B1
6541107 Zhong et al. Apr 2003 B1
6541266 Modzelewski et al. Apr 2003 B2
6542765 Guy et al. Apr 2003 B1
6544212 Galley et al. Apr 2003 B2
6545085 Kilgour et al. Apr 2003 B2
6546268 Ishikawa et al. Apr 2003 B1
6546269 Kurnik Apr 2003 B1
6547839 Zhang et al. Apr 2003 B2
6551494 Heller et al. Apr 2003 B1
6551496 Moles et al. Apr 2003 B1
6553241 Mannheimer et al. Apr 2003 B2
6553244 Lesho et al. Apr 2003 B2
6554805 Hiejima Apr 2003 B2
6554822 Holschneider et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558347 Jhuboo et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6565509 Say et al. May 2003 B1
6565535 Zaias et al. May 2003 B2
6565807 Patterson et al. May 2003 B1
6569309 Otsuka et al. May 2003 B2
6569521 Sheridan et al. May 2003 B1
6572545 Knobbe et al. Jun 2003 B2
6572579 Raghavan et al. Jun 2003 B1
6572745 Rappin et al. Jun 2003 B2
6574490 Abbink et al. Jun 2003 B2
6579257 Elgas et al. Jun 2003 B1
6579498 Eglise Jun 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6584335 Haar et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6585675 O'Mahony et al. Jul 2003 B1
6585763 Keilman et al. Jul 2003 B1
6587704 Fine et al. Jul 2003 B1
6587705 Kim et al. Jul 2003 B1
6589229 Connelly et al. Jul 2003 B1
6591123 Fein et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6592745 Feldman et al. Jul 2003 B1
6594514 Berner et al. Jul 2003 B2
6595756 Gray et al. Jul 2003 B2
6602221 Saravia et al. Aug 2003 B1
6603995 Carter Aug 2003 B1
6605072 Struys et al. Aug 2003 B2
6607509 Bobroff et al. Aug 2003 B2
6607658 Heller et al. Aug 2003 B1
6609071 Shapiro et al. Aug 2003 B2
6612984 Kerr, II Sep 2003 B1
6613379 Ward et al. Sep 2003 B2
6615061 Khalil et al. Sep 2003 B1
6615078 Burson et al. Sep 2003 B1
6618603 Varalli et al. Sep 2003 B2
6618934 Feldman et al. Sep 2003 B1
6628975 Fein et al. Sep 2003 B1
6633772 Ford et al. Oct 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6642015 Vachon et al. Nov 2003 B2
6645181 Lavi et al. Nov 2003 B1
6645219 Roe Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6653091 Dunn et al. Nov 2003 B1
6654625 Say et al. Nov 2003 B1
6656157 Duchon et al. Dec 2003 B1
6663615 Madou et al. Dec 2003 B1
6666821 Keimel Dec 2003 B2
6673022 Bobo et al. Jan 2004 B1
6673596 Sayler et al. Jan 2004 B1
6679865 Shekalim Jan 2004 B2
6683535 Utke Jan 2004 B1
6684904 Ito Feb 2004 B2
6685668 Cho et al. Feb 2004 B1
6687522 Tamada Feb 2004 B2
6689089 Tiedtke et al. Feb 2004 B1
6689265 Heller et al. Feb 2004 B2
6692456 Eppstein et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6699188 Wessel Mar 2004 B2
6699218 Flaherty et al. Mar 2004 B2
6699383 Lemire et al. Mar 2004 B2
6702249 Ito Mar 2004 B2
6702972 Markle Mar 2004 B1
6711424 Fine et al. Mar 2004 B1
6712796 Fentis et al. Mar 2004 B2
6721586 Kiser et al. Apr 2004 B2
6721587 Gough Apr 2004 B2
6723077 Pickup et al. Apr 2004 B2
6723086 Bassuk et al. Apr 2004 B2
6730072 Shawgo et al. May 2004 B2
6730200 Stewart et al. May 2004 B1
6731976 Penn et al. May 2004 B2
6733655 Davies et al. May 2004 B1
6736777 Kim et al. May 2004 B2
6736783 Blake et al. May 2004 B2
6737158 Thompson May 2004 B1
6740059 Flaherty May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6742635 Hirshberg Jun 2004 B2
6743635 Neel et al. Jun 2004 B2
6749587 Flaherty Jun 2004 B2
6767632 Axelgaard Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6770067 Lorenzen et al. Aug 2004 B2
6773565 Kunimoto et al. Aug 2004 B2
6780297 Matsumoto et al. Aug 2004 B2
6782343 Hasper Aug 2004 B2
6784274 Van Antwerp et al. Aug 2004 B2
6789634 Denton Sep 2004 B1
6793632 Sohrab Sep 2004 B2
6793802 Lee et al. Sep 2004 B2
6801041 Karinka et al. Oct 2004 B2
6802957 Jung et al. Oct 2004 B2
6804002 Fine et al. Oct 2004 B2
6804544 Van Antwerp et al. Oct 2004 B2
6805693 Gray et al. Oct 2004 B2
6809507 Morgan et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6810736 Ikezawa et al. Nov 2004 B2
6811548 Jeffrey Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6814845 Wilson et al. Nov 2004 B2
6815186 Clark, Jr. Nov 2004 B2
6830551 Uchigaki et al. Dec 2004 B1
6835553 Han et al. Dec 2004 B2
6849052 Uchigaki et al. Feb 2005 B2
6850790 Berner et al. Feb 2005 B2
6858020 Rusnak Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6863800 Karinka et al. Mar 2005 B2
6867262 Angel et al. Mar 2005 B1
6869413 Langley et al. Mar 2005 B2
6875386 Ward et al. Apr 2005 B1
6882940 Potts et al. Apr 2005 B2
6885883 Parris et al. Apr 2005 B2
6887228 McKay May 2005 B2
6892085 McIvor et al. May 2005 B2
6893552 Wang et al. May 2005 B1
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6902544 Ludin et al. Jun 2005 B2
6908681 Terry et al. Jun 2005 B2
6919566 Cadell Jul 2005 B1
6923763 Kovatchev et al. Aug 2005 B1
6925393 Kalatz et al. Aug 2005 B1
6926691 Miethke Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932584 Gray et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6945965 Whiting Sep 2005 B2
6948492 Wermeling et al. Sep 2005 B2
6952604 Denuzzio et al. Oct 2005 B2
6954662 Freger et al. Oct 2005 B2
6960192 Flaherty et al. Nov 2005 B1
6965791 Hitchcock et al. Nov 2005 B1
6966325 Erickson Nov 2005 B2
6972080 Tomioka et al. Dec 2005 B1
6973706 Say et al. Dec 2005 B2
6975893 Say et al. Dec 2005 B2
6979315 Rogers et al. Dec 2005 B2
6989891 Braig et al. Jan 2006 B2
6990366 Say et al. Jan 2006 B2
6991643 Saadat Jan 2006 B2
6997921 Gray et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7008979 Schottman et al. Mar 2006 B2
7011630 Desai et al. Mar 2006 B2
7016713 Gardner et al. Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7022219 Mansouri et al. Apr 2006 B2
7025425 Kovatchev et al. Apr 2006 B2
7025727 Brockway et al. Apr 2006 B2
7025743 Mann et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7029444 Shin et al. Apr 2006 B2
7039446 Ruchti et al. May 2006 B2
7048687 Reuss et al. May 2006 B1
7048727 Moss May 2006 B1
7058437 Buse et al. Jun 2006 B2
7060059 Keith et al. Jun 2006 B2
7061593 Braig et al. Jun 2006 B2
7063086 Shahbazpour et al. Jun 2006 B2
7066884 Custer et al. Jun 2006 B2
7070577 Haller et al. Jul 2006 B1
7070580 Nielsen Jul 2006 B2
7074307 Simpson et al. Jul 2006 B2
7078582 Stebbings et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7097775 Greenberg et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7100628 Izenson et al. Sep 2006 B1
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7114502 Schulman et al. Oct 2006 B2
7115884 Walt et al. Oct 2006 B1
7120483 Russell et al. Oct 2006 B2
7131967 Gray et al. Nov 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7141034 Eppstein et al. Nov 2006 B2
7144496 Meserol et al. Dec 2006 B2
7146202 Ward et al. Dec 2006 B2
7150741 Erickson et al. Dec 2006 B2
7153265 Vachon Dec 2006 B2
7162290 Levin Jan 2007 B1
7163511 Conn et al. Jan 2007 B2
7166074 Reghabi et al. Jan 2007 B2
7168597 Jones et al. Jan 2007 B1
7169289 Schuelein et al. Jan 2007 B2
7172075 Ji Feb 2007 B1
7183102 Monfre et al. Feb 2007 B2
7184810 Caduff et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7207968 Harcinske Apr 2007 B1
7207974 Safabash et al. Apr 2007 B2
7211074 Sansoucy May 2007 B2
7221970 Parker May 2007 B2
7223253 Hogendijk May 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7228162 Ward et al. Jun 2007 B2
7229288 Stuart et al. Jun 2007 B2
7238165 Vincent et al. Jul 2007 B2
7241586 Gulati et al. Jul 2007 B2
7247138 Reghabi et al. Jul 2007 B2
7248906 Dirac et al. Jul 2007 B2
7254450 Christopherson et al. Aug 2007 B2
7255690 Gray et al. Aug 2007 B2
7258681 Houde Aug 2007 B2
7261690 Teller et al. Aug 2007 B2
7266400 Fine et al. Sep 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7288085 Olsen Oct 2007 B2
7295867 Berner et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7311690 Burnett Dec 2007 B2
7313425 Finarov et al. Dec 2007 B2
7314452 Madonia Jan 2008 B2
7315767 Caduff et al. Jan 2008 B2
7316662 Delnevo et al. Jan 2008 B2
7317939 Fine et al. Jan 2008 B2
7318814 Levine et al. Jan 2008 B2
7324012 Mann et al. Jan 2008 B2
7327273 Hung et al. Feb 2008 B2
7329234 Sansoucy Feb 2008 B2
7329239 Safabash et al. Feb 2008 B2
7334594 Ludin Feb 2008 B2
7335179 Burnett Feb 2008 B2
7335195 Mehier Feb 2008 B2
7335286 Abel et al. Feb 2008 B2
7338464 Blischak et al. Mar 2008 B2
7344499 Prausnitz et al. Mar 2008 B1
7354420 Steil et al. Apr 2008 B2
7359723 Jones Apr 2008 B2
7361155 Sage, Jr. et al. Apr 2008 B2
7364562 Braig et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7366566 Henry et al. Apr 2008 B2
7367942 Grage et al. May 2008 B2
7381184 Funderburk Jun 2008 B2
7392080 Eppstein et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7396353 Lorenzen et al. Jul 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404819 Darios et al. Jul 2008 B1
7405055 Dunn et al. Jul 2008 B2
7417164 Suri Aug 2008 B2
7424318 Brister et al. Sep 2008 B2
7426408 Denuzzio et al. Sep 2008 B2
7433727 Ward et al. Oct 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7519478 Bartkowiak et al. Apr 2009 B2
7523004 Bartkowiak et al. Apr 2009 B2
7525298 Morgan et al. Apr 2009 B2
7582059 Funderburk et al. Sep 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7587287 Connolly et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7604593 Parris et al. Oct 2009 B2
7615007 Shults et al. Nov 2009 B2
7618368 Brown Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7624028 Brown Nov 2009 B1
7632228 Brauker et al. Dec 2009 B2
7636602 Baru Fassio et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640032 Jones Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7647237 Dobbles et al. Dec 2009 C1
7647237 Malave et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7687586 Ward et al. Mar 2010 B2
7695434 Malecha Apr 2010 B2
7697967 Stafford Apr 2010 B2
7699775 Desai et al. Apr 2010 B2
7711493 Bartkowiak et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7731659 Malecha Jun 2010 B2
7761126 Gardner et al. Jul 2010 B2
7766830 Fox et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7792562 Shults et al. Sep 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7862622 Dunlap et al. Jan 2011 B2
7874985 Kovatchev et al. Jan 2011 B2
7879010 Hunn et al. Feb 2011 B2
7881763 Brauker et al. Feb 2011 B2
7885698 Feldman Feb 2011 B2
7890295 Shin et al. Feb 2011 B2
7917186 Kamath et al. Mar 2011 B2
7310544 Brister et al. Apr 2011 C1
7920906 Goode, Jr. et al. Apr 2011 B2
7925321 Goode, Jr. et al. Apr 2011 B2
7927274 Rasdal et al. Apr 2011 B2
7935499 Dunn et al. May 2011 B2
7946984 Brister et al. May 2011 B2
7946985 Mastrototaro et al. May 2011 B2
7949381 Brister et al. May 2011 B2
7986986 Goode et al. Jul 2011 B2
7998071 Goode, Jr. et al. Aug 2011 B2
8000901 Brauker et al. Aug 2011 B2
8005524 Brauker et al. Aug 2011 B2
8005525 Goode, Jr. et al. Aug 2011 B2
8019421 Darvish et al. Sep 2011 B2
7497827 Brister et al. Oct 2011 C1
7905833 Brister et al. Nov 2011 C1
8060173 Goode, Jr. et al. Nov 2011 B2
RE43039 Brister et al. Dec 2011 E
8073520 Kamath et al. Dec 2011 B2
8118877 Brauker et al. Feb 2012 B2
7774145 Brauker Mar 2012 C1
8152789 Starkweather et al. Apr 2012 B2
8160669 Brauker et al. Apr 2012 B2
8160671 Kamath et al. Apr 2012 B2
8167801 Goode, Jr. et al. May 2012 B2
7713574 Brister et al. Jun 2012 C1
8216139 Brauker et al. Jul 2012 B2
8229534 Brister et al. Jul 2012 B2
8233958 Brauker et al. Jul 2012 B2
8251906 Brauker et al. Aug 2012 B2
8257259 Brauker et al. Sep 2012 B2
8265725 Brauker et al. Sep 2012 B2
8275438 Simpson et al. Sep 2012 B2
8280475 Brister et al. Oct 2012 B2
8282549 Brauker et al. Oct 2012 B2
8290559 Shariati et al. Oct 2012 B2
8290560 Kamath et al. Oct 2012 B2
8290561 Brauker et al. Oct 2012 B2
8298142 Simpson et al. Oct 2012 B2
7310544 Brister et al. Nov 2012 C2
8311749 Brauker et al. Nov 2012 B2
8313434 Brister et al. Nov 2012 B2
8321149 Brauker et al. Nov 2012 B2
8353881 Jennewine Jan 2013 B2
8355753 Bochenko et al. Jan 2013 B2
8374667 Brauker et al. Feb 2013 B2
8463350 Kamath et al. Jun 2013 B2
8469886 Brauker et al. Jun 2013 B2
8506482 Feldman Aug 2013 B2
8515516 Kamath et al. Aug 2013 B2
8515519 Brister et al. Aug 2013 B2
8548551 Kamath et al. Oct 2013 B2
8560037 Goode, Jr. et al. Oct 2013 B2
8565848 Brister et al. Oct 2013 B2
8565849 Kamath et al. Oct 2013 B2
8571625 Kamath et al. Oct 2013 B2
8579816 Kamath et al. Nov 2013 B2
8611978 Kamath et al. Dec 2013 B2
7713574 Brister et al. Mar 2014 C2
8663109 Brister et al. Mar 2014 B2
8788007 Brauker et al. Jul 2014 B2
8792953 Brister et al. Jul 2014 B2
8792954 Brister et al. Jul 2014 B2
8825127 Kamath et al. Sep 2014 B2
8858434 Kamath et al. Oct 2014 B2
8915849 Brauker et al. Dec 2014 B2
8968198 Brauker et al. Mar 2015 B2
8986209 Brauker et al. Mar 2015 B2
8989833 Brauker et al. Mar 2015 B2
9055901 Brister et al. Jun 2015 B2
9060742 Brister et al. Jun 2015 B2
9078608 Kamath et al. Jul 2015 B2
9078626 Brister et al. Jul 2015 B2
9155496 Shults et al. Oct 2015 B2
9220449 Pryor et al. Dec 2015 B2
9247900 Brister et al. Feb 2016 B2
9314196 Pryor et al. Apr 2016 B2
9603557 Brister et al. Mar 2017 B2
9610031 Brister et al. Apr 2017 B2
9668677 Brister et al. Jun 2017 B2
9669156 Jennewine Jun 2017 B2
9724028 Brauker et al. Aug 2017 B2
9775543 Brister et al. Oct 2017 B2
9801572 Brister et al. Oct 2017 B2
9814414 Brister et al. Nov 2017 B2
9918668 Pryor et al. Mar 2018 B2
10314525 Simpson et al. Jun 2019 B2
20010008187 Hanssen et al. Jul 2001 A1
20010016682 Berner et al. Aug 2001 A1
20010020546 Eldridge et al. Sep 2001 A1
20010021817 Brugger et al. Sep 2001 A1
20010027327 Schraga Oct 2001 A1
20010039053 Liseo et al. Nov 2001 A1
20010039387 Rutynowski et al. Nov 2001 A1
20010044413 Pierce et al. Nov 2001 A1
20010044588 Mault Nov 2001 A1
20010051766 Gazdzinski Dec 2001 A1
20010051768 Schulman et al. Dec 2001 A1
20010053933 Phaneuf et al. Dec 2001 A1
20020009810 O'Connor et al. Jan 2002 A1
20020016535 Martin et al. Feb 2002 A1
20020019330 Murray et al. Feb 2002 A1
20020022883 Burg Feb 2002 A1
20020023852 McIvor et al. Feb 2002 A1
20020026111 Ackerman Feb 2002 A1
20020032531 Mansky et al. Mar 2002 A1
20020042561 Schulman et al. Apr 2002 A1
20020043471 Ikeda et al. Apr 2002 A1
20020043651 Darrow et al. Apr 2002 A1
20020055673 Van Antwerp et al. May 2002 A1
20020071776 Bandis et al. Jun 2002 A1
20020077599 Wojcik Jun 2002 A1
20020084196 Liamos et al. Jul 2002 A1
20020099282 Knobbe et al. Jul 2002 A1
20020099997 Pi ret Jul 2002 A1
20020100474 Kellner et al. Aug 2002 A1
20020100725 Lee et al. Aug 2002 A1
20020119711 Van Antwerp et al. Aug 2002 A1
20020123048 Gau, Jr. Sep 2002 A1
20020128546 Silver Sep 2002 A1
20020132279 Hockersmith Sep 2002 A1
20020133224 Bajgar et al. Sep 2002 A1
20020137991 Scarantino et al. Sep 2002 A1
20020151796 Koulik Oct 2002 A1
20020151816 Rich et al. Oct 2002 A1
20020155615 Novikov et al. Oct 2002 A1
20020160722 Terranova et al. Oct 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020169369 Ward et al. Nov 2002 A1
20020169405 Roberts Nov 2002 A1
20020177763 Burns et al. Nov 2002 A1
20020177764 Sohrab Nov 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020185384 Leong et al. Dec 2002 A1
20020186185 Ide et al. Dec 2002 A1
20020188185 Sohrab Dec 2002 A1
20020188216 Kayyali et al. Dec 2002 A1
20020188252 Bardy Dec 2002 A1
20020193885 Legeay et al. Dec 2002 A1
20030003524 Taniike et al. Jan 2003 A1
20030004432 Assenheimer Jan 2003 A1
20030004457 Andersson Jan 2003 A1
20030006669 Pei et al. Jan 2003 A1
20030021729 Moller et al. Jan 2003 A1
20030023171 Sato et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030024811 Davies et al. Feb 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030036773 Whitehurst et al. Feb 2003 A1
20030049166 Pendo et al. Mar 2003 A1
20030059631 Al-Lamee Mar 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030065254 Schulman et al. Apr 2003 A1
20030070548 Clausen Apr 2003 A1
20030072741 Berglund et al. Apr 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030088166 Say et al. May 2003 A1
20030091433 Tam et al. May 2003 A1
20030096424 Mao et al. May 2003 A1
20030097082 Purdy et al. May 2003 A1
20030099682 Moussy et al. May 2003 A1
20030100040 Bonnecaze et al. May 2003 A1
20030100821 Heller et al. May 2003 A1
20030114735 Silver et al. Jun 2003 A1
20030117296 Seely Jun 2003 A1
20030119208 Yoon et al. Jun 2003 A1
20030120152 Omiya Jun 2003 A1
20030125613 Enegren et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030132227 Geisler et al. Jul 2003 A1
20030134100 Mao et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030138674 Zeikus et al. Jul 2003 A1
20030143746 Sage, Jr. Jul 2003 A1
20030153821 Berner et al. Aug 2003 A1
20030157409 Huang Aug 2003 A1
20030176183 Drucker et al. Sep 2003 A1
20030181794 Rini et al. Sep 2003 A1
20030186457 Iwaki et al. Oct 2003 A1
20030187338 Say et al. Oct 2003 A1
20030190383 Kim Oct 2003 A1
20030199745 Burson et al. Oct 2003 A1
20030199878 Pohjonen Oct 2003 A1
20030200040 Trygg et al. Oct 2003 A1
20030203498 Neel et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030211625 Cohan Nov 2003 A1
20030212346 Yuzhakov et al. Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20030225324 Anderson et al. Dec 2003 A1
20030225361 Sabra Dec 2003 A1
20030225437 Ferguson Dec 2003 A1
20030228681 Ritts et al. Dec 2003 A1
20030231550 MacFarlane Dec 2003 A1
20030235817 Bartkowiak et al. Dec 2003 A1
20040002682 Kovelman et al. Jan 2004 A1
20040006263 Anderson et al. Jan 2004 A1
20040008761 Kelliher et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040015134 Lavi et al. Jan 2004 A1
20040023253 Kunwar et al. Feb 2004 A1
20040023317 Motamedi et al. Feb 2004 A1
20040024327 Brodnick Feb 2004 A1
20040030285 Lavi et al. Feb 2004 A1
20040030294 Mahurkar Feb 2004 A1
20040039298 Abreu Feb 2004 A1
20040039342 Eppstein et al. Feb 2004 A1
20040039406 Jessen Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040052689 Yao Mar 2004 A1
20040054352 Adams et al. Mar 2004 A1
20040064156 Shah et al. Apr 2004 A1
20040068230 Estes et al. Apr 2004 A1
20040074785 Holker Apr 2004 A1
20040078219 Kaylor Apr 2004 A1
20040087671 Tamada et al. May 2004 A1
20040088023 Imran et al. May 2004 A1
20040106741 Kriesel et al. Jun 2004 A1
20040106857 Gough Jun 2004 A1
20040106858 Say et al. Jun 2004 A1
20040106859 Say et al. Jun 2004 A1
20040113164 Corbet Jun 2004 A1
20040120848 Teodorczyk Jun 2004 A1
20040127818 Roe et al. Jul 2004 A1
20040133131 Kuhn et al. Jul 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040147872 Thompson Jul 2004 A1
20040152187 Haight et al. Aug 2004 A1
20040158138 Kilcoyne et al. Aug 2004 A1
20040158207 Hunn et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040173472 Jung et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040180391 Gratzl et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040204687 Mogensen Oct 2004 A1
20040204744 Penner et al. Oct 2004 A1
20040219664 Heller et al. Nov 2004 A1
20040225199 Evanyk et al. Nov 2004 A1
20040228902 Benz Nov 2004 A1
20040234575 Horres et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040242982 Sakata et al. Dec 2004 A1
20040244151 Sakata et al. Dec 2004 A1
20040249421 Harel et al. Dec 2004 A1
20040253365 Warren et al. Dec 2004 A1
20040254433 Bandis Dec 2004 A1
20040260234 Srinivasan et al. Dec 2004 A1
20040265940 Slater et al. Dec 2004 A1
20050000829 Morita et al. Jan 2005 A1
20050003399 Blackburn et al. Jan 2005 A1
20050006122 Burnette Jan 2005 A1
20050008671 Van Antwerp Jan 2005 A1
20050010265 Baru Fassio et al. Jan 2005 A1
20050013842 Qiu et al. Jan 2005 A1
20050016325 Enokido Jan 2005 A1
20050026689 Marks Feb 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050027463 Goode et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050033132 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050043598 Goode et al. Feb 2005 A1
20050049472 Manda et al. Mar 2005 A1
20050051427 Brauker et al. Mar 2005 A1
20050054909 Petisce et al. Mar 2005 A1
20050056551 White et al. Mar 2005 A1
20050056552 Simpson et al. Mar 2005 A1
20050059871 Gough et al. Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050077584 Uhland et al. Apr 2005 A1
20050079200 Rathenow et al. Apr 2005 A1
20050080345 Finburgh et al. Apr 2005 A1
20050085839 Allen et al. Apr 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096512 Fox et al. May 2005 A1
20050101847 Routt et al. May 2005 A1
20050103625 Rhodes et al. May 2005 A1
20050106713 Phan et al. May 2005 A1
20050115832 Simpson et al. Jun 2005 A1
20050118344 Pacetti Jun 2005 A1
20050119720 Gale et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131305 Danielson et al. Jun 2005 A1
20050133368 Davies et al. Jun 2005 A1
20050139489 Davies et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050143636 Zhang et al. Jun 2005 A1
20050143675 Neel et al. Jun 2005 A1
20050154264 Lecompte et al. Jul 2005 A1
20050154272 Dirac et al. Jul 2005 A1
20050173245 Feldman et al. Aug 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050176678 Horres et al. Aug 2005 A1
20050177036 Shults et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050181012 Saint et al. Aug 2005 A1
20050182451 Griffin et al. Aug 2005 A1
20050183954 Hitchcock et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050196747 Stiene Sep 2005 A1
20050197554 Polcha Sep 2005 A1
20050209665 Hunter et al. Sep 2005 A1
20050215871 Feldman et al. Sep 2005 A1
20050215872 Berner et al. Sep 2005 A1
20050215979 Kornerup et al. Sep 2005 A1
20050225361 Rhee Oct 2005 A1
20050228238 Monitzer Oct 2005 A1
20050233407 Pamidi et al. Oct 2005 A1
20050242479 Petisce et al. Nov 2005 A1
20050245795 Goode et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050258037 Hajizadeh et al. Nov 2005 A1
20050261563 Zhou et al. Nov 2005 A1
20050267325 Bouchier et al. Dec 2005 A1
20050267440 Herman et al. Dec 2005 A1
20050271546 Gerber et al. Dec 2005 A1
20050272989 Shah et al. Dec 2005 A1
20050282997 Ward et al. Dec 2005 A1
20050288596 Eigler et al. Dec 2005 A1
20060001550 Mann et al. Jan 2006 A1
20060003398 Heller et al. Jan 2006 A1
20060008370 Massaro et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060040402 Brauker et al. Feb 2006 A1
20060047215 Newman et al. Mar 2006 A1
20060052745 Van Antwerp et al. Mar 2006 A1
20060065527 Samproni Mar 2006 A1
20060068208 Tapsak et al. Mar 2006 A1
20060079740 Silver et al. Apr 2006 A1
20060079809 Goldberger et al. Apr 2006 A1
20060086624 Tapsak et al. Apr 2006 A1
20060094946 Kellogg et al. May 2006 A1
20060100588 Brunnberg et al. May 2006 A1
20060118415 Say et al. Jun 2006 A1
20060142651 Brister et al. Jun 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060159718 Rathenow et al. Jul 2006 A1
20060159981 Heller Jul 2006 A1
20060171980 Helmus et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183984 Dobbles et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189856 Petisce Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060195029 Shults et al. Aug 2006 A1
20060198864 Shults et al. Sep 2006 A1
20060200019 Petisce et al. Sep 2006 A1
20060200020 Brister et al. Sep 2006 A1
20060200022 Brauker et al. Sep 2006 A1
20060200970 Brister et al. Sep 2006 A1
20060204536 Shults et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224108 Brauker et al. Oct 2006 A1
20060224141 Rush et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060235285 Brister et al. Oct 2006 A1
20060253085 Geismar et al. Nov 2006 A1
20060257995 Simpson et al. Nov 2006 A1
20060257996 Simpson et al. Nov 2006 A1
20060258761 Boock et al. Nov 2006 A1
20060263673 Kim et al. Nov 2006 A1
20060263763 Simpson et al. Nov 2006 A1
20060263839 Ward et al. Nov 2006 A1
20060270922 Brauker et al. Nov 2006 A1
20060270923 Brauker et al. Nov 2006 A1
20060275859 Kjaer Dec 2006 A1
20060281985 Ward et al. Dec 2006 A1
20060289307 Yu et al. Dec 2006 A1
20060293576 Van Antwerp et al. Dec 2006 A1
20070003588 Chinn et al. Jan 2007 A1
20070007133 Mang et al. Jan 2007 A1
20070016381 Kamath et al. Jan 2007 A1
20070017805 Hodges et al. Jan 2007 A1
20070027370 Brauker et al. Feb 2007 A1
20070027381 Stafford Feb 2007 A1
20070027384 Brister et al. Feb 2007 A1
20070027385 Brister et al. Feb 2007 A1
20070032706 Kamath et al. Feb 2007 A1
20070032717 Brister et al. Feb 2007 A1
20070032718 Shults et al. Feb 2007 A1
20070038044 Dobbles et al. Feb 2007 A1
20070045902 Brauker et al. Mar 2007 A1
20070049865 Radmer Mar 2007 A1
20070049873 Hansen et al. Mar 2007 A1
20070059196 Brister et al. Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070085995 Pesach et al. Apr 2007 A1
20070093704 Brister et al. Apr 2007 A1
20070116600 Kochar et al. May 2007 A1
20070129524 Sunkara Jun 2007 A1
20070129619 Ward et al. Jun 2007 A1
20070129621 Kellogg et al. Jun 2007 A1
20070135698 Shah et al. Jun 2007 A1
20070135699 Ward et al. Jun 2007 A1
20070142584 Schorzman et al. Jun 2007 A1
20070151869 Heller et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173709 Petisce et al. Jul 2007 A1
20070173710 Petisce et al. Jul 2007 A1
20070173711 Shah et al. Jul 2007 A1
20070179436 Braig et al. Aug 2007 A1
20070197889 Brister et al. Aug 2007 A1
20070197890 Boock et al. Aug 2007 A1
20070200254 Curry Aug 2007 A1
20070200267 Tsai Aug 2007 A1
20070202562 Curry Aug 2007 A1
20070202672 Curry Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203410 Say et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070206193 Pesach Sep 2007 A1
20070208245 Brauker et al. Sep 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213610 Say et al. Sep 2007 A1
20070213611 Simpson et al. Sep 2007 A1
20070215491 Heller et al. Sep 2007 A1
20070218097 Heller et al. Sep 2007 A1
20070219441 Carlin et al. Sep 2007 A1
20070225579 Lucassen et al. Sep 2007 A1
20070225675 Robinson et al. Sep 2007 A1
20070227907 Shah et al. Oct 2007 A1
20070232876 Otto et al. Oct 2007 A1
20070232879 Brister et al. Oct 2007 A1
20070233013 Schoenberg Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070240497 Robinson et al. Oct 2007 A1
20070244381 Robinson et al. Oct 2007 A1
20070244382 Robinson et al. Oct 2007 A1
20070249916 Pesach et al. Oct 2007 A1
20070255114 Ackermann et al. Nov 2007 A1
20070255126 Moberg et al. Nov 2007 A1
20070259217 Logan Nov 2007 A1
20070275193 Desimone et al. Nov 2007 A1
20070276211 Mir et al. Nov 2007 A1
20070282180 Caduff et al. Dec 2007 A1
20070299385 Santini, Jr. et al. Dec 2007 A1
20070299409 Whitbourne et al. Dec 2007 A1
20080001318 Schorzman et al. Jan 2008 A1
20080021666 Goode et al. Jan 2008 A1
20080029390 Roche et al. Feb 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080033268 Stafford Feb 2008 A1
20080033269 Zhang Feb 2008 A1
20080034972 Gough et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064944 Van Antwerp et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080072663 Keenan et al. Mar 2008 A1
20080081969 Feldman et al. Apr 2008 A1
20080086040 Heller et al. Apr 2008 A1
20080086041 Heller et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086043 Heller et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080091094 Heller et al. Apr 2008 A1
20080091095 Heller et al. Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080119703 Brister et al. May 2008 A1
20080119704 Brister et al. May 2008 A1
20080119706 Brister et al. May 2008 A1
20080119707 Stafford May 2008 A1
20080125751 Fjield et al. May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080154101 Jain et al. Jun 2008 A1
20080161666 Feldman et al. Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080187655 Markle et al. Aug 2008 A1
20080188722 Markle et al. Aug 2008 A1
20080188725 Markle et al. Aug 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080193936 Squirrell Aug 2008 A1
20080194837 Kim et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080210557 Heller et al. Sep 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080275326 Kasielke et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080305009 Gamsey et al. Dec 2008 A1
20080305506 Suri Dec 2008 A1
20080306368 Goode, Jr. et al. Dec 2008 A1
20080306433 Cesaroni Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312397 Lai et al. Dec 2008 A1
20080312859 Skyggebjerg et al. Dec 2008 A1
20080313896 Shah et al. Dec 2008 A1
20090005666 Shin et al. Jan 2009 A1
20090012379 Goode, Jr. et al. Jan 2009 A1
20090018418 Markle et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018426 Markle et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090054812 Mace Feb 2009 A1
20090061528 Suri Mar 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062645 Fehre et al. Mar 2009 A1
20090076356 Simpson Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090081803 Gamsey et al. Mar 2009 A1
20090099434 Liu et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode, Jr. et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090177059 Say et al. Jul 2009 A1
20090177060 Say et al. Jul 2009 A1
20090177143 Markle et al. Jul 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090187090 Say et al. Jul 2009 A1
20090187091 Say et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204340 Feldman et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247857 Harper et al. Oct 2009 A1
20090264719 Markle et al. Oct 2009 A1
20090264856 Lebel et al. Oct 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010330 Rankers et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036224 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100069728 Funderburk et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087721 Stafford Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100113897 Brenneman et al. May 2010 A1
20100161269 Kamath et al. Jun 2010 A1
20100168543 Kamath et al. Jul 2010 A1
20100174157 Brister et al. Jul 2010 A1
20100174158 Kamath et al. Jul 2010 A1
20100174163 Brister et al. Jul 2010 A1
20100174167 Kamath et al. Jul 2010 A1
20100174168 Goode, Jr. et al. Jul 2010 A1
20100179399 Goode, Jr. et al. Jul 2010 A1
20100179401 Rasdal et al. Jul 2010 A1
20100179404 Kamath et al. Jul 2010 A1
20100179408 Kamath et al. Jul 2010 A1
20100179409 Kamath et al. Jul 2010 A1
20100185065 Goode, Jr. et al. Jul 2010 A1
20100185070 Brister et al. Jul 2010 A1
20100185071 Simpson et al. Jul 2010 A1
20100185072 Goode, Jr. et al. Jul 2010 A1
20100185073 Goode, Jr. et al. Jul 2010 A1
20100185074 Goode, Jr. et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100198035 Kamath et al. Aug 2010 A1
20100204555 Shults et al. Aug 2010 A1
20100212583 Brister et al. Aug 2010 A1
20100214104 Goode, Jr. et al. Aug 2010 A1
20100217106 Goode, Jr. et al. Aug 2010 A1
20100217555 Kamath et al. Aug 2010 A1
20100234707 Goode, Jr. et al. Sep 2010 A1
20100234796 Kamath et al. Sep 2010 A1
20100240975 Goode, Jr. et al. Sep 2010 A1
20100240976 Goode, Jr. et al. Sep 2010 A1
20100286496 Simpson et al. Nov 2010 A1
20100331648 Kamath et al. Dec 2010 A1
20100331656 Mensinger et al. Dec 2010 A1
20100331657 Mensinger et al. Dec 2010 A1
20110009727 Mensinger et al. Jan 2011 A1
20110027127 Simpson et al. Feb 2011 A1
20110028815 Simpson et al. Feb 2011 A1
20110028816 Simpson et al. Feb 2011 A1
20110046467 Simpson et al. Feb 2011 A1
20110087196 Hunn et al. Apr 2011 A1
20110118579 Goode, Jr. et al. May 2011 A1
20110124992 Brauker et al. May 2011 A1
20110124997 Goode, Jr. et al. May 2011 A1
20110128052 Fujibe et al. Jun 2011 A1
20110130970 Goode, Jr. et al. Jun 2011 A1
20110136249 Stiene Jun 2011 A1
20110137601 Goode, Jr. et al. Jun 2011 A1
20110178378 Brister et al. Jul 2011 A1
20110190614 Brister et al. Aug 2011 A1
20110201910 Rasdal et al. Aug 2011 A1
20110218414 Kamath et al. Sep 2011 A1
20110231140 Goode, Jr. et al. Sep 2011 A1
20110231141 Goode, Jr. et al. Sep 2011 A1
20110231142 Goode, Jr. et al. Sep 2011 A1
20110253533 Shults et al. Oct 2011 A1
20110263958 Brauker et al. Oct 2011 A1
20110270158 Brauker et al. Nov 2011 A1
20110290645 Brister et al. Dec 2011 A1
20110313543 Brauker et al. Dec 2011 A1
20110319739 Kamath et al. Dec 2011 A1
20120265042 Neinast et al. Oct 2012 A1
20120277562 Brister et al. Nov 2012 A1
20130131478 Simpson et al. May 2013 A1
20130267808 Brister et al. Oct 2013 A1
20130281931 Hunn et al. Oct 2013 A1
20140128704 Simpson et al. May 2014 A1
20140257065 Brister et al. Sep 2014 A1
20140288402 Brister et al. Sep 2014 A1
20160008029 Brister et al. Jan 2016 A1
20160051173 Brister et al. Feb 2016 A1
20160310051 Brister et al. Oct 2016 A1
20170196491 Brister et al. Jul 2017 A1
20170367627 Brister et al. Dec 2017 A1
20180014762 Brister et al. Jan 2018 A1
20180049682 Brister et al. Feb 2018 A1
20180055423 Pryor et al. Mar 2018 A1
20180140236 Brister et al. May 2018 A1
20180160949 Brister et al. Jun 2018 A1
20180242894 Brauker et al. Aug 2018 A1
20180303394 Brauker et al. Oct 2018 A1
20190015020 Brister et al. Jan 2019 A1
20190069817 Brister et al. Mar 2019 A1
20190076071 Brister et al. Mar 2019 A1
Foreign Referenced Citations (565)
Number Date Country
2127172 Jul 1998 CA
2658734 Jun 1978 DE
3144459 Oct 1982 DE
4105222 Aug 1992 DE
3933373 Sep 1992 DE
20110059 Aug 2002 DE
10117285 Nov 2002 DE
0 098 592 Jan 1984 EP
0107634 May 1984 EP
0 127 958 Dec 1984 EP
0 284 518 Sep 1988 EP
0282349 Sep 1988 EP
0286039 Oct 1988 EP
0288793 Nov 1988 EP
0143517 Apr 1989 EP
0314027 May 1989 EP
0 320 109 Jun 1989 EP
0351892 Jan 1990 EP
0352138 Jan 1990 EP
0352610 Jan 1990 EP
0352631 Jan 1990 EP
0352708 Jan 1990 EP
0 353 328 Feb 1990 EP
0 390 390 Oct 1990 EP
0396788 Nov 1990 EP
0406473 Jan 1991 EP
0420021 Apr 1991 EP
0440044 Aug 1991 EP
0441252 Aug 1991 EP
0441394 Aug 1991 EP
0457292 Nov 1991 EP
0467078 Jan 1992 EP
0471391 Feb 1992 EP
0 476 980 Mar 1992 EP
0473065 Mar 1992 EP
0275139 Apr 1992 EP
0477501 Apr 1992 EP
0494704 Sep 1992 EP
0494705 Sep 1992 EP
0508388 Oct 1992 EP
0512122 Nov 1992 EP
0520430 Dec 1992 EP
0520443 Dec 1992 EP
0262328 Jan 1993 EP
0319277 Mar 1993 EP
0535898 Apr 1993 EP
0539625 May 1993 EP
0264036 Jun 1993 EP
0351891 Sep 1993 EP
0 563 795 Oct 1993 EP
0567725 Nov 1993 EP
0323605 Jan 1994 EP
0279069 Jul 1994 EP
0595474 Jul 1994 EP
0561966 Oct 1994 EP
0286118 Jan 1995 EP
0478550 Jan 1995 EP
0647849 Apr 1995 EP
0424634 Jun 1995 EP
0677743 Oct 1995 EP
0191640 Nov 1995 EP
0424633 Jan 1996 EP
0690134 Jan 1996 EP
0534074 Mar 1996 EP
0709677 May 1996 EP
0532187 Oct 1996 EP
0470652 Dec 1996 EP
0476715 Dec 1996 EP
0747069 Dec 1996 EP
0776628 Jun 1997 EP
0387696 Aug 1997 EP
0593096 Dec 1997 EP
0838230 Apr 1998 EP
0880936 Dec 1998 EP
0885932 Dec 1998 EP
0587008 Feb 1999 EP
0967788 Dec 1999 EP
0 995 805 Apr 2000 EP
0678308 May 2000 EP
1077634 Feb 2001 EP
1078258 Feb 2001 EP
1028320 Mar 2001 EP
1111378 Jun 2001 EP
1112717 Jul 2001 EP
1112718 Jul 2001 EP
1120084 Aug 2001 EP
1120085 Aug 2001 EP
1120650 Aug 2001 EP
1130386 Sep 2001 EP
1153571 Nov 2001 EP
0817809 Jul 2002 EP
1251137 Oct 2002 EP
0958495 Nov 2002 EP
1258728 Nov 2002 EP
1266607 Dec 2002 EP
1281351 Feb 2003 EP
0824900 Apr 2003 EP
1340980 Sep 2003 EP
1340981 Sep 2003 EP
1 077 636 Jan 2004 EP
0674176 Feb 2004 EP
1391728 Feb 2004 EP
0846776 Mar 2004 EP
0777122 Apr 2004 EP
1413245 Apr 2004 EP
1498067 Jan 2005 EP
1498428 Jan 2005 EP
1614464 Jan 2006 EP
0922959 Oct 2006 EP
1717924 Nov 2006 EP
0877252 Jan 2007 EP
1234053 Apr 2007 EP
1798542 Jun 2007 EP
1286164 Jul 2007 EP
1804650 Jul 2007 EP
1612560 Oct 2007 EP
1905514 Apr 2008 EP
1582874 Jul 2008 EP
1977829 Oct 2008 EP
1982644 Oct 2008 EP
1457913 Dec 2008 EP
2223710 Sep 2010 EP
2226086 Sep 2010 EP
2228642 Sep 2010 EP
2236077 Oct 2010 EP
2327362 Jun 2011 EP
2329770 Sep 2014 EP
2407094 Oct 2014 EP
2335584 May 2015 EP
2656423 Jun 1991 FR
2760962 Sep 1998 FR
1442303 Jul 1976 GB
1556969 Dec 1979 GB
2149918 Jun 1985 GB
S5441190 Apr 1979 JP
S57156004 Sep 1982 JP
S58124912 Jul 1983 JP
S59211459 Nov 1984 JP
S61271418 Dec 1986 JP
62083849 Apr 1987 JP
S6283649 Apr 1987 JP
02002913 Jan 1990 JP
3-293556 Dec 1991 JP
H06288853 Oct 1994 JP
H06307898 Nov 1994 JP
H0783871 Mar 1995 JP
H11258381 Sep 1999 JP
2000060826 Feb 2000 JP
2000149072 May 2000 JP
2002513602 May 2002 JP
2002189015 Jul 2002 JP
2003108679 Apr 2003 JP
2003297163 Oct 2003 JP
WO 1981-003614 Dec 1981 WO
WO-8706342 Oct 1987 WO
WO-8706706 Nov 1987 WO
WO-8808137 Oct 1988 WO
WO 1989-02720 Apr 1989 WO
WO-8904302 May 1989 WO
WO-8907263 Aug 1989 WO
WO-9000738 Jan 1990 WO
WO-9002938 Mar 1990 WO
WO-9005296 May 1990 WO
WO-9005301 May 1990 WO
WO-9005302 May 1990 WO
WO-9005910 May 1990 WO
WO-9007525 Jul 1990 WO
WO-9007575 Jul 1990 WO
WO-9010716 Sep 1990 WO
WO-9010861 Sep 1990 WO
WO-9013021 Nov 1990 WO
WO 1991-09302 Jun 1991 WO
WO-9115993 Oct 1991 WO
WO-9116416 Oct 1991 WO
WO-9117259 Nov 1991 WO
WO-9201315 Jan 1992 WO
WO-9201928 Feb 1992 WO
WO-9207525 May 1992 WO
WO-9208985 May 1992 WO
WO-9210584 Jun 1992 WO
WO-9212255 Jul 1992 WO
WO 1992-13271 Aug 1992 WO
WO-9214138 Aug 1992 WO
WO-9214139 Aug 1992 WO
WO-9218887 Oct 1992 WO
WO-9221772 Dec 1992 WO
WO-9301308 Jan 1993 WO
WO-9302703 Feb 1993 WO
WO-9303362 Feb 1993 WO
WO-9305701 Apr 1993 WO
WO-9312256 Jun 1993 WO
WO-9313048 Jul 1993 WO
WO-9313408 Jul 1993 WO
WO-9314185 Jul 1993 WO
WO 1993-14693 Aug 1993 WO
WO-9319370 Sep 1993 WO
WO-9319701 Oct 1993 WO
WO-9320240 Oct 1993 WO
WO-9320440 Oct 1993 WO
WO-9320441 Oct 1993 WO
WO-9320443 Oct 1993 WO
WO-9320444 Oct 1993 WO
WO-9320450 Oct 1993 WO
WO 1993-23744 Nov 1993 WO
WO-9406011 Mar 1994 WO
WO-9406012 Mar 1994 WO
WO-9408236 Apr 1994 WO
WO-9409506 Apr 1994 WO
WO-9409507 Apr 1994 WO
WO-9419695 Sep 1994 WO
WO-9421642 Sep 1994 WO
WO-9421643 Sep 1994 WO
WO-9421644 Sep 1994 WO
WO-9422367 Oct 1994 WO
WO-9426414 Nov 1994 WO
WO 1995-02357 Jan 1995 WO
WO 1995-07109 Mar 1995 WO
WO-9508774 Mar 1995 WO
WO-9510044 Apr 1995 WO
WO-9511454 Apr 1995 WO
WO-9513838 May 1995 WO
WO-9517966 Jul 1995 WO
WO-9522597 Aug 1995 WO
WO 1997-019344 Nov 1995 WO
WO-9528878 Nov 1995 WO
WO-9534814 Dec 1995 WO
WO-9601611 Jan 1996 WO
WO-9603117 Feb 1996 WO
WO-9605501 Feb 1996 WO
WO-9606947 Mar 1996 WO
WO-9614026 May 1996 WO
WO 199625088 Aug 1996 WO
WO 1996-25089 Aug 1996 WO
WO-9622991 Aug 1996 WO
WO-9622992 Aug 1996 WO
WO-9624690 Aug 1996 WO
WO-9630431 Oct 1996 WO
WO-9632076 Oct 1996 WO
WO-9636296 Nov 1996 WO
WO-9636870 Nov 1996 WO
WO-9641179 Dec 1996 WO
WO 1997-01986 Jan 1997 WO
WO-9702811 Jan 1997 WO
WO 1997-06727 Feb 1997 WO
WO-9711080 Mar 1997 WO
WO-9713874 Apr 1997 WO
WO 1997-17884 May 1997 WO
WO-9719188 May 1997 WO
WO-9728737 Aug 1997 WO
WO-9730628 Aug 1997 WO
WO-9733176 Sep 1997 WO
WO-9738625 Oct 1997 WO
WO-9743633 Nov 1997 WO
WO-9801071 Jan 1998 WO
WO-9806423 Feb 1998 WO
WO 1998-19159 May 1998 WO
WO 1998-24358 Jun 1998 WO
WO-9824366 Jun 1998 WO
WO 199833549 Aug 1998 WO
WO-9834541 Aug 1998 WO
WO 1998-38906 Sep 1998 WO
WO-9838904 Sep 1998 WO
WO-9841854 Sep 1998 WO
WO 199842249 Oct 1998 WO
WO-9844347 Oct 1998 WO
WO-9844348 Oct 1998 WO
WO-9845331 Oct 1998 WO
WO-9845427 Oct 1998 WO
WO-9852043 Nov 1998 WO
WO 1998-56293 Dec 1998 WO
WO 1998-058250 Dec 1998 WO
WO-9856923 Dec 1998 WO
WO-9904043 Jan 1999 WO
WO 1999-012607 Mar 1999 WO
WO-9913101 Mar 1999 WO
WO-9913574 Mar 1999 WO
WO 1999-56613 Apr 1999 WO
WO 1999-029230 Jun 1999 WO
WO-9927848 Jun 1999 WO
WO-9927852 Jun 1999 WO
WO-9929429 Jun 1999 WO
WO-9929892 Jun 1999 WO
WO 199933504 Jul 1999 WO
WO-9940848 Aug 1999 WO
WO-9948419 Sep 1999 WO
WO-9949856 Oct 1999 WO
WO-9958051 Nov 1999 WO
WO-9958709 Nov 1999 WO
WO-9958973 Nov 1999 WO
WO-9959657 Nov 1999 WO
WO-9964620 Dec 1999 WO
WO-0007013 Feb 2000 WO
WO-0012720 Mar 2000 WO
WO-0013002 Mar 2000 WO
WO-0013003 Mar 2000 WO
WO 2000-019887 Apr 2000 WO
WO-0018449 Apr 2000 WO
WO-0020626 Apr 2000 WO
WO 2000-032098 Jun 2000 WO
WO 2000-033065 Jun 2000 WO
WO-0030530 Jun 2000 WO
WO-0035530 Jun 2000 WO
WO 2000-049940 Aug 2000 WO
WO 2000049941 Aug 2000 WO
WO 2000049942 Aug 2000 WO
WO-0045696 Aug 2000 WO
WO 2000-059373 Oct 2000 WO
WO 2000-074753 Dec 2000 WO
WO-0078210 Dec 2000 WO
WO-0078992 Dec 2000 WO
WO-0079258 Dec 2000 WO
WO-0100865 Jan 2001 WO
WO 2001-012158 Feb 2001 WO
WO-0109096 Feb 2001 WO
WO 2001-020019 Mar 2001 WO
WO-0116579 Mar 2001 WO
WO-0120334 Mar 2001 WO
WO-0121827 Mar 2001 WO
WO-0134243 May 2001 WO
WO-0136666 May 2001 WO
WO-0143660 Jun 2001 WO
WO 2001052935 Jul 2001 WO
WO-0152727 Jul 2001 WO
WO 2001-058348 Aug 2001 WO
WO-0154753 Aug 2001 WO
WO-0158347 Aug 2001 WO
WO-01594254 Aug 2001 WO
WO 2001064105 Sep 2001 WO
WO-0168901 Sep 2001 WO
WO-0169222 Sep 2001 WO
WO 2001-073109 Oct 2001 WO
WO-0188524 Nov 2001 WO
WO-0188534 Nov 2001 WO
WO-0191634 Dec 2001 WO
WO 2002-007617 Jan 2002 WO
WO-0202755 Jan 2002 WO
WO-0205702 Jan 2002 WO
WO-0207596 Jan 2002 WO
WO-0216535 Feb 2002 WO
WO-0217780 Mar 2002 WO
WO-0224065 Mar 2002 WO
WO-0233407 Apr 2002 WO
WO 2002-043585 Jun 2002 WO
WO-02056751 Jul 2002 WO
WO 2002-058537 Aug 2002 WO
WO-02062210 Aug 2002 WO
WO-02066509 Aug 2002 WO
WO-02066986 Aug 2002 WO
WO-02074161 Sep 2002 WO
WO-02082989 Oct 2002 WO
WO-02087681 Nov 2002 WO
WO-02089666 Nov 2002 WO
WO 2002-100457 Dec 2002 WO
WO-02097414 Dec 2002 WO
WO-02099097 Dec 2002 WO
WO-02099428 Dec 2002 WO
WO-02100266 Dec 2002 WO
WO-02100474 Dec 2002 WO
WO-03000127 Jan 2003 WO
WO-03008013 Jan 2003 WO
WO-03008014 Jan 2003 WO
WO-03009207 Jan 2003 WO
WO-03009208 Jan 2003 WO
WO-03011131 Feb 2003 WO
WO-03012422 Feb 2003 WO
WO-03022327 Mar 2003 WO
WO 2003-028797 Apr 2003 WO
WO-03032411 Apr 2003 WO
WO-03033726 Apr 2003 WO
WO-03035117 May 2003 WO
WO-03036310 May 2003 WO
WO-03044511 May 2003 WO
WO-03053498 Jul 2003 WO
WO-03057028 Jul 2003 WO
WO-03063700 Aug 2003 WO
WO 2003-072164 Sep 2003 WO
WO 2003-082091 Sep 2003 WO
WO-03072269 Sep 2003 WO
WO-03076937 Sep 2003 WO
WO-03088832 Oct 2003 WO
WO 2003094714 Nov 2003 WO
WO 2003097866 Nov 2003 WO
WO 2005-065542 Dec 2003 WO
WO-03101862 Dec 2003 WO
WO-03106031 Dec 2003 WO
WO-03106966 Dec 2003 WO
WO-2004004905 Jan 2004 WO
WO 2004-010844 Feb 2004 WO
WO-2004030726 Apr 2004 WO
WO-2004036183 Apr 2004 WO
WO-2004039265 May 2004 WO
WO 2004052190 Jun 2004 WO
WO 2004060455 Jul 2004 WO
WO-2004061420 Jul 2004 WO
WO-2004063718 Jul 2004 WO
WO-2004071291 Aug 2004 WO
WO-2004073138 Aug 2004 WO
WO-2004086970 Oct 2004 WO
WO 2004-098685 Nov 2004 WO
WO-2004105641 Dec 2004 WO
WO-2004110256 Dec 2004 WO
WO-2004113901 Dec 2004 WO
WO 2005-011489 Feb 2005 WO
WO 2005-012873 Feb 2005 WO
WO-2005013824 Feb 2005 WO
WO 2005026689 Mar 2005 WO
WO-2005018443 Mar 2005 WO
WO-2005026178 Mar 2005 WO
WO-2005026690 Mar 2005 WO
WO-2005032362 Apr 2005 WO
WO-2005032400 Apr 2005 WO
WO-2005041766 May 2005 WO
WO-2005048834 Jun 2005 WO
WO-2005051440 Jun 2005 WO
WO-2005057168 Jun 2005 WO
WO-2005057173 Jun 2005 WO
WO-2005057175 Jun 2005 WO
WO-2005063115 Jul 2005 WO
WO-2005067797 Jul 2005 WO
WO-2005070287 Aug 2005 WO
WO-2005074811 Aug 2005 WO
WO-2005078424 Aug 2005 WO
WO-2005084530 Sep 2005 WO
WO-2005084545 Sep 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005089103 Sep 2005 WO
WO-2005094714 Oct 2005 WO
WO-2005098431 Oct 2005 WO
WO-2005107594 Nov 2005 WO
WO-2005114218 Dec 2005 WO
WO-2005121355 Dec 2005 WO
WO-2005121785 Dec 2005 WO
WO-2005122296 Dec 2005 WO
WO-2006001929 Jan 2006 WO
WO-2006001973 Jan 2006 WO
WO-2006002960 Jan 2006 WO
WO-2006005503 Jan 2006 WO
WO 2006-017358 Feb 2006 WO
WO-2006010533 Feb 2006 WO
WO-2006018425 Feb 2006 WO
WO-2006019665 Feb 2006 WO
WO-2006021430 Mar 2006 WO
WO-2006024671 Mar 2006 WO
WO-2006029293 Mar 2006 WO
WO-2006050405 May 2006 WO
WO-2006050843 May 2006 WO
WO-2006060806 Jun 2006 WO
WO-2006071770 Jul 2006 WO
WO-2006072089 Jul 2006 WO
WO-2006076412 Jul 2006 WO
WO-2006088576 Aug 2006 WO
WO-2006098887 Sep 2006 WO
WO-2006099151 Sep 2006 WO
WO-2006102359 Sep 2006 WO
WO-2006102412 Sep 2006 WO
WO 2006-105146 Oct 2006 WO
WO-2006104843 Oct 2006 WO
WO-2006108811 Oct 2006 WO
WO-2006118713 Nov 2006 WO
WO-2006122048 Nov 2006 WO
WO-2006122553 Nov 2006 WO
WO-2006124759 Nov 2006 WO
WO 2008-088490 Dec 2006 WO
WO-2006130268 Dec 2006 WO
WO-2006131288 Dec 2006 WO
WO-2006132884 Dec 2006 WO
WO-2006133171 Dec 2006 WO
WO-2007002209 Jan 2007 WO
WO-2007002579 Jan 2007 WO
WO-2007005170 Jan 2007 WO
WO-2007006454 Jan 2007 WO
WO-2007009911 Jan 2007 WO
WO-2007011587 Jan 2007 WO
WO-2007016399 Feb 2007 WO
WO-2007021892 Feb 2007 WO
WO-2007021894 Feb 2007 WO
WO-2007025088 Mar 2007 WO
WO-2007028138 Mar 2007 WO
WO-2007028271 Mar 2007 WO
WO-2007033010 Mar 2007 WO
WO-2007037970 Apr 2007 WO
WO-2007037989 Apr 2007 WO
WO-2007040559 Apr 2007 WO
WO-2007041070 Apr 2007 WO
WO-2007041072 Apr 2007 WO
WO-2007041248 Apr 2007 WO
WO-2007053832 May 2007 WO
WO-2007056638 May 2007 WO
WO-2007058921 May 2007 WO
WO-2007059476 May 2007 WO
WO-2007059478 May 2007 WO
WO-2007061992 May 2007 WO
WO-2007065285 Jun 2007 WO
WO-2007070486 Jun 2007 WO
WO-2007076303 Jul 2007 WO
WO-2007079015 Jul 2007 WO
WO-2007079025 Jul 2007 WO
WO-2007081811 Jul 2007 WO
WO-2007090037 Aug 2007 WO
WO-2007097754 Aug 2007 WO
WO-2007101223 Sep 2007 WO
WO-2007101260 Sep 2007 WO
WO-2007109372 Sep 2007 WO
WO-2007111885 Oct 2007 WO
WO-2007112006 Oct 2007 WO
WO-2007114943 Oct 2007 WO
WO-2007115094 Oct 2007 WO
WO-2007120363 Oct 2007 WO
WO-2007127606 Nov 2007 WO
WO-2007127622 Nov 2007 WO
WO-2007127879 Nov 2007 WO
WO-2007127880 Nov 2007 WO
WO-2007130239 Nov 2007 WO
WO-2007137286 Nov 2007 WO
WO-2007143225 Dec 2007 WO
WO-2008001091 Jan 2008 WO
WO-2008003003 Jan 2008 WO
WO-2008005780 Jan 2008 WO
WO-2008013849 Jan 2008 WO
WO-2008016486 Feb 2008 WO
WO-2008021913 Feb 2008 WO
WO-2008022021 Feb 2008 WO
WO 2008028644 Mar 2008 WO
WO-2008031106 Mar 2008 WO
WO-2008031110 Mar 2008 WO
WO-2008037485 Apr 2008 WO
WO-2008039944 Apr 2008 WO
WO-2008039946 Apr 2008 WO
WO-2008039949 Apr 2008 WO
WO-2008042760 Apr 2008 WO
WO-2008048709 Apr 2008 WO
WO-2008051407 May 2008 WO
WO-2008051924 May 2008 WO
WO-2008052199 May 2008 WO
WO-2008055037 May 2008 WO
WO-2008055128 May 2008 WO
WO-2008055199 May 2008 WO
WO 2008069931 Jun 2008 WO
WO 2008101217 Jun 2008 WO
WO-2008067314 Jun 2008 WO
WO-2008069932 Jun 2008 WO
WO-2008073813 Jun 2008 WO
WO-2008076868 Jun 2008 WO
WO 2008079616 Jul 2008 WO
WO-2008080591 Jul 2008 WO
WO-2008083379 Jul 2008 WO
WO-2008094249 Aug 2008 WO
WO-2008101211 Aug 2008 WO
WO-2008103620 Aug 2008 WO
WO-2006023241 Oct 2008 WO
WO-2008116329 Oct 2008 WO
WO-2008118257 Oct 2008 WO
WO-2008119470 Oct 2008 WO
WO-2008124597 Oct 2008 WO
WO 2008138006 Nov 2008 WO
WO-2008134441 Nov 2008 WO
WO-2008135453 Nov 2008 WO
WO-2008137405 Nov 2008 WO
WO-2008150280 Dec 2008 WO
WO-2008150917 Dec 2008 WO
WO-2008150946 Dec 2008 WO
WO-2008150949 Dec 2008 WO
WO-2009006139 Jan 2009 WO
WO-2009105709 Aug 2009 WO
WO 2006-017358 Feb 2016 WO
Non-Patent Literature Citations (892)
Entry
US 7,530,950 B2, 05/2009, Brister et al. (withdrawn)
Bergveld et al., 1993. Fabrication and Mass Production. Advances in Biosensors, Supplement 1 (1993) Chapter 6; 165-186.
Kusano, H. 1989. Glucose enzyme electrode with percutaneous interface which operates independently of dissolved oxygen. Clin Phys Physiol Meas. 10(1):1-9.
Reach et at, 1993. Clinical Needs for In Vivo Monitoring. Advances in Biosensors, Supplement 1 Chapter 1; 7-28.
Shichin et al., 1988. In Vivo Characteristics of Needle-Type Glucose Sensor—Measurements of Subcutaneous Glucose Concentrations in Human Volunteers. Implantable Glucose Sensors—The State of the Art, Hormone and Metabolic Research Supplement Series vol. No. 20 (1988) 17-20.
EP App. No. 10195496.4, filed Dec. 16, 2010: European Office Action dated Dec. 15, 2011.
EP App. No. 10195496.4, filed Dec. 16, 2010: Response to Office Action filed Jun. 22, 2012.
EP App. No. 10195520.1, filed Dec. 16, 2010: European Extended Search Report dated Aug. 3, 2011
EP App. No. 10195520.1, filed Dec. 16, 2010: European Office Action dated Jul. 19, 2012 for Application No. EP 10195520.1, filed Jul. 13, 2005; 4 pages.
EP App. No. 10195520.1, filed Dec. 16, 2010: Response to Office Action filed Jan. 16, 2013.
EP App. No. 1986543. Granted Dec. 14, 2011: Notice of Opposition dated Jul. 25, 2012.
JP App. No. 2011-121598, filed May 31, 2011: Office Action dated May 22, 2012.
U.S. Control No. 90/012558, filed Sep. 13, 2012: Request for Ex Parte Reexamination of U.S. Pat. No. 7,310,544.
U.S. Control No. 95/002333, filed Sep. 14, 2012: Request for Inter Partes Reexamination of U.S. Pat. No. 7,713,574.
U.S. Appl. No. 12/359,207, filed Jan. 23, 2009: Office Action dated Jan. 20, 2012.
Aalders et al. 1991, Development of a wearable glucose sensor; studies in healthy volunteers and in diabetic patients. The International Journal of Artificial Organs 14(2): 102-108.
Abe et al. 1992. Characterization of glucose microsensors for intracellular measurements. Anal. Chem. 64(18):2160-2163.
Abel et al. 1984. Experience with an implantable glucose sensor as a prerequisite of an artificial beta cell, Biomedica Biochimica Acta 43(51:577-584.
Abel et al. 2002. Biosensors for in vivo glucose measurement: can we cross the experimental stage. Biosensors & Bioelectronics 17:1059-1070.
Alcock & Turner. 1994. Continuous Analyte Monitoring to Aid Clinical Practice. IEEE Engineering in Medicine & Biology 13:319-325.
American Heritage Dictionary, 4th Edition. 2000. Houghton Mifflin Company, p. 82.
Amin et al. 2003. Hypoglycemia prevalence in prepubertal children with type 1 diabetes on standard insulin regimen: Use of continuous glucose monitoring system. Diabetes Care 26(3):662-667.
Answers.com. “xenogenic.” The American Heritage Stedman's Medical Dictionary. Houghton Mifflin Company, 2002. Answers.com Nov. 7, 2006 http:--www. Answers.com-topic-xenogenic.
Armour et al. Dec. 1990. Application of Chronic lntravascular Blood Glucose Sensor in Dogs. Diabetes 39:1519-1526.
Atanasov et al. 1994. Biosensor for continuous glucose monitoring. Biotechnology & Bioengineering 43:262-266.
Atanasov et al. 1997. Implantation of a refillable glucose monitoring-telemetry device. Biosensors & Bioelectronics 12:669-680.
Aussedat et al. 1997. A user-friendly method for calibrating a subcutaneous glucose sensor-based hypoglycaemic alarm. Biosensors & Bioelectronics 12( 11): 1061-1071.
Bailey et al. 2007. Reduction in hemoglobin A1c with real-time continuous glucose monitoring: results from a 12-week observational study. Diabetes Technology & Therapeutics 9(3):203-210.
Beach et al. 1999. Subminiature implantable potentiostat and modified commercial telemetry device for remote glucose monitoring. IEEE Transactions on Instrumentation and Measurement 48(6):1239-1245.
Bellucci et al. Jan. 1986. Electrochemical behaviour of graphite-epoxy composite materials (GECM) in aqueous salt solutions, Journal of Applied Electrochemistry, 16( 1): 15-22.
Bessman et al., Progress toward a glucose sensor for the artificial pancreas, Proceedings of a Workshop on Ion-Selective Microelectrodes, Jun. 4-5, 1973; Boston, MA, 189-197.
Biermann et al. 2008. How would patients behave if they were continually informed of their blood glucose levels? A simulation study using a “virtual” patient. Diabetes Technology & Therapeutics 10:178-187.
Bindra et al. 1991. Design and In Vitro Studies of a Needle-Type Glucose Sensor for Subcutaneous Monitoring. Analytical Chemistry 63:1692-96.
Bisenberger et al. 1995, A triple-step potential waveform at enzyme multisensors with thick-film gold electrodes for detection of glucose and sucrose. Sensors & Actuators, B 28:181-189.
Bland et al. 1990. A note on the use of the intraclass correlation coefficient in the evaluation of agreement between two methods of measurement. Comput. Biol. Med. 20(5):337-340.
Bobbioni-Harsch et al. 1993. Lifespan of subcutaneous glucose sensors and their performances during dynamic glycaemia changes in rats. J. Biomedical Engineering 15:457-463.
Bode et al. 1999. Continuous glucose monitoring used to adjust diabetes therapy improves glycosylated hemoglobin: A pilot study. Diabetes Research and Clinical Practice 46:183-190.
Bode et al. 2000. Using the continuous glucose monitoring system to improve the management of type 1 diabetes. Diabetes Technology & Therapeutics, 2(Suppl 1):S43-48.
Bode, B. W. 2000. Clinical utility of the continuous glucose monitoring system. Diabetes Technology & Therapeutics 2(Suppl 1):S35-41.
Boedeker Plastics, Inc. 2009. Polyethylene Specifications Data Sheet, http:--www.boedeker.com-polve_p.htm [Aug. 19, 2009 3:36:33 PM].
Boland et al. 2001, Limitations of conventional methods of self-monitoring of blood glucose. Diabetes Care 24(11): 1858-1862.
Bowman et al. 1986. The packaging of implantable integrated sensors. IEEE Transactions on Biomedical Engineering BME33(2):248-255.
Brauker et al. Jun. 27, 1996. Local Inflammatory Response Around Diffusion Chambers Containing Xenografts. Transplantation 61(12):1671-1677.
Braunwald, 2008. Biomarkers in heart failure. N. Engl. J. Med., 358: 2148-2159.
Bremer et al. 2001. Benchmark data from the literature for evaluation of new glucose sensing technologies. Diabetes Technology & Therapeutics 3(3):409-418.
Brooks et al., 1987-88. Development of an on-line glucose sensor for fermentation monitoring. Biosensors 3:45-56 (1987-88).
Bruckel et al. 1989. In vivo measurement of subcutaneous glucose concentrations with an enzymatic glucose sensor and a wick method. Klin Wochenschr 67:491-495.
Cai et al. 2004. A wireless, remote query glucose biosensor based on a pH-sensitive polymer, Analytical Chemistry 76(4):4038-4043.
Campanella et al. 1993. Biosensor for direct determination of glucose and lactate in undiluted biological fluids. Biosensors & Bioelectronics 8:307-314.
Candas et al. 1994. An adaptive plasma glucose controller based on a nonlinear insulin-glucose model . IEEE Transactions on Biomedical Engineering, 41(2): 116-124.
Cass et al. 1984. “Ferrocene-mediated enzyme electrodes for amperometric determination of glucose,” Analytical Chemistry 36:667-71.
Cassidy et al., Apr. 1993. Novel electrochemical device for the detection of cholesterol or glucose. Analyst 118:415-418.
Chase et al. 2001. Continuous subcutaneous glucose monitoring in children with type 1 diabetes. Pediatrics 107:222-226.
Ciba® Irgacure® 2959 Photoinitiator, Product Description. Apr. 2, 1998, Ciba Specialty Chemicals Inc., Basel, Switzerland. 3 pages.
Claremont et al. 1986, Subcutaneous implantation of a ferrocene-mediated glucose sensor in pigs. Diabetologia 29:817-821.
Claremont et al. Jul. 1986. Potentially-implantable, ferrocene-mediated glucose sensor. J. Biomedical Engineering 8:272-274.
Clark et al. 1981. One-minute electrochemical enzymic assay for cholesterol in biological materials, Clinical Chemistry 27(12): 1978-1982.
Clark et al. 1987. Configurational cyclic voltammetry: increasing the specificity and reliability of implanted electrodes; IEEE-Ninth Annual Conference of the Engineering in Medicine and Biology Society, pp. 0782-0783.
Clark et al. 1988. Long-term stability of electroenzymatic glucose sensors implanted in mice. Trans Am Soc Artif Intern Organs 34:259-265.
CLSI. 2008. Performance metrics for continuous interstitial glucose monitoring; approved guideline, CLSI document POCT05-A. Wayne, PA: Clinical and Laboratory Standards Institute. 28(33), 72 pp.
Colangelo et al. 1967. Corrosion rate measurements in vivo. Journal of Biomedical Materials Research 1:405-414.
Colowick et al. 1976. Methods in Enzymology, vol. XLIV, Immobilized Enzymes. New York: Academic Press. 11 pages.
Cox et al. 1985. Accuracy of perceiving blood glucose in IDDM. Diabetes Care 8(6):529-536.
Csoregi et al., 1994. Design, characterization, and one-point in vivo calibration of a subcutaneously implanted glucose electrode. Analytical Chemistry 66(19):3131-3138.
Danielsson et al. 1988, Enzyme thermistors, Methods in Enzymology, 137:181-197.
Dessau et al. 2009. In silico evaluation platform for artificial pancreatic (3-cell development-a dynamic simulator for closed loop control with hardware-in-the-loop. Diabetes Technology & Therapeutics 11(3):1-8.
Davies, et al. 1992. Polymer membranes in clinical sensor applications. I. An overview of membrane function. Biomaterials 13(14):971-978.
Davis et al. 1983. Bioelectrochemical fuel cell and sensor based on a quinoprotein, alcohol dehydrogenase. Enzyme Microb. Technol. vol. 5, September, 383-388.
Direct 30-30® Blood Glucose Sensor, (Markwell Medical) Catalog, © 1990, ELCO Diagnostics Company. 1 page.
Dixon et al. 2002. Characterization in vitro and in vivo of the oxygen dependence of an enzyme-polymer biosensor for monitoring brain glucose. Journal of Neuroscience Methods 119:135-142.
DuPont Dimension AR®. 1998. The chemistry analyzer that makes the most of your time, money and effort. Catalog. Dade International, Chemistry Systems. Newark, DE. 18 pages.
Durliat et al. 1976. Spectrophotometric and electrochemical determinatians of L(+)-lactate in blood by use of lactate dehydrogenase from yeast. Clinical Chemistry 22(11):1802-1805.
Edwards Lifesciences. 2002. Accuracy for you and your patients. Marketing materials, 4 pages.
El Degheidy et al. 1986. Optimization of an implantable coated wire glucose sensor. J. Biomedical Engineering. 8: 21-129.
El-Khatib et al. 2007. Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine. Journal of Diabetes Science and Technology, 1(2):181-192.
El-Sa'ad et al. 1990. Moisture Absorption by Epoxy Resins: the Reverse Thermal Effect. Journal of Materials Science 25:3577-3582.
Ernst et al. 2002. Reliable glucose monitoring through the use of microsystem technology. Analytical and Bioanalytical Chemistry 373:758-761.
Fahy et al. Mar. 2008. An analysis: hyperglycemic intensive care patients need continuous glucose monitoring—easier said than done. Journal of Diabetes Science and Technology, 2(2):201-204.
Fare et al. 1998. Functional characterization of a conducting polymer-based immunoassay system. Biosensors& Bioelectronics 13(3-4):459-470.
Feldman et al. 2003. A continuous glucose sensor based on wired enzyme technology—results from a 3-day trial in patients with type 1 diabetes. Diabetes Technology & Therapeutics 5(5):769-779.
Fischer et al. 1987. Assessment of subcutaneous glucose concentration: validation of the wick technique as a reference for implanted electrochemical sensors in normal and diabetic dogs. Diabetologia 30:940-945.
Fischer et al. 1989. Oxygen Tension at the Subcutaneous Implantation Site of Glucose Sensors. Biomed. Biochem 11-12:965-972.
Fischer et al. 1995. Abstract: Hypoglycaemia-warning by means of subcutaneous electrochemical glucose sensors: an animal study. Norm. Metab. Res. 27:53.
Freedman et al. 1991. Statistics, Second Edition, W.W. Norton & Company; p. 74.
Frohnauer et al. 2001. Graphical human insulin time-activity profiles using standardized definitions. Diabetes Technology & Therapeutics 3(3):419-429.
Frost et al. 2002. Implantable chemical sensors for real-time clinical monitoring: Progress and challenges. Current Opinion in Chemical Biology 6:633-641.
Gabbay et al. 2008. Optical coherence tomography-based continuous noninvasive glucose monitoring in patients with diabetes. Diab. Technology & Therapeutics 10:188-193.
Ganesan et al., 2005. Gold layer-based dual crosslinking procedure of glucose oxidase with ferrocene monocarboxylic acid provides a stable biosensor. Analytical Biochemistry 343:188-191.
Ganesh et al. Mar. 2008. Evaluation of the VIA® blood chemistry monitor for glucose in healthy and diabetic volunteers. Journal of Diabetes Science and Technology, 2(2): 182-193.
Garg et al. 2004 . Improved Glucose Excursions Using an Implantable Real-Time continuous Glucose Sensor in Adults with Type I Diabetes. Diabetes Care 27:734-738.
Gerritsen et al. 1999. Performance of subcutaneously implanted glucose sensors for continuous monitoring. The Netherlands Journal of Medicine 54:167-179.
Gerritsen, M. 2000. Problems associated with subcutaneously implanted glucose sensors. Diabetes Care 23(2): 143-145.
Gilligan et al. 1994: Evaluation of a subcutaneous glucose sensor out to 3 months in a dog model. Diabetes Care 17(8):882-887.
Gilligan et al. 2004. Feasibility of continuous long-term glucose monitoring from a subcutaneous glucose sensor in humans. Diabetes Technology & Therapeutics 6:378-386.
Godsland et al, 2001. Maximizing the Success Rate of Minimal Model Insulin Sensitivity Measurement in Humans: The Importance of Basal Glucose Levels. Clinical Science 101:1-9.
Gouda et al., Jul. 4, 2003. Thermal inactivation of glucose oxidase. The Journal of Biological Chemistry, 278(27):24324-24333.
Gough et al. 2000. Immobilized glucose oxidase in implantable glucose sensor technology. Diabetes Technology & Therapeutics 2(3):377-380.
Gough et al. 2003. Frequency characterization of blood glucose dynamics. Annals of Biomedical Engineering 31:91-97.
Gross et al. 2000. Efficacy and reliability of the continuous glucose monitoring system. Diabetes Technology & Therapeutics, 2(Suppl 1):S19-26.
Gross et al, 2000. Performance evaluation of the MiniMed® continuous glucose monitoring system during patient home use, Diabetes Technology & Therapeutics 2(1):49-56.
Guerci et al., 2003. Clinical performance of CGMS in type 1 diabetic patients treated by continuous subcutaneous insulin infusion using insulin analogs. Diabetes Care, 26:582-589.
Hall et al. 1998: Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part I: An adsorption-controlled mechanism. Electrochimica Acta, 43(5-6):579-588.
Hall et al. 1998: Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part II: Effect of potential. Electrochimica Acta 43(14-15):2015-2024.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part III: Effect of temperature. Electrochimica Acta, 44:2455-2462.
Hall et al. 1999. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part IV: Phosphate buffer dependence. Electrochimica Acta, 44:4573-4582.
Hall et al. 2000. Electrochemical oxidation of hydrogen peroxide at platinum electrodes. Part V: Inhibition by chloride. Electrochimica Acta, 45:3573-3579.
Hamilton Syringe Selection Guide. 2006. Syringe Selection, www.hamiltoncompany.com.
Hashiguchi et al. (1994). Development of a miniaturized glucose monitoring system by combining a needle-type glucose sensor with microdialysis sampling method: Long-term subcutaneous tissue glucose monitoring in ambulatory diabetic patients. Diabetes Care 17(5)387-396.
Heller, A. 1992. Electrical Connection of Enzyme Redox Centers to Electrodes, J, Phys. Chem. 96:3579-3587.
Heller, A. 1999, Implanted electrochemical glucose sensors for the management of diabetes. Annu Rev Biomed Eng 1:153-175.
Heller, A. 2003. Plugging metal connectors into enzymes. Nature Biotechnology 21:631-2.
Hicks, 1985, In Situ Monitoring. Clinical Chemistry 31(12):1931-1935.
Hitchman, M. L.. 1978: Measurement of Dissolved Oxygen. In Elving et al, (Eds.). . New York: John Wiley & Sons. Chemical Analysis, vol. 49, Chap. 3, pp. 34-49, 59-123.
Hoel, Paul G. 1976. Elementary Statistics, Fourth Edition. John Wiley & Sons, Inc.. pp. 113-114.
Hrapovic et al. 2003. Picoamperometric detection of glucose at ultrasmall platinum-based biosensors: preparation and characterization. Analytical Chemistry 75:3308-3315.
http:--www.merriam-webster.com-dictionary, definition for “aberrant,” Aug. 19, 2008, p. 1.
Hu, et al. 1993. A needle-type enzyme-based lactate sensor for in vivo monitoring. Analytica Chimica Acta, 281:503-511.
Huang et al. Aug. 1975. Electrochemical Generation of Oxygen. 1: The Effects of Anions and Cations on Hydrogen Chemisorption and Anodic Oxide Film Formation on Platinum Electrode. 2: The Effects of Anions and Cations on Oxygen Generation on Platinum Electrode. U.S. Department of Commerce—NTIS, pp. 1-116.
Huang et al., Sep. 1997, A 0.5mW Passive Telemetry IC for Biomedical Applications, Proceedings of the 23rd European Solid-State Circuits Conference (ESSCIRC '97), pp. 172-175, Southampton, UK.
Hunter et al. Mar. 31, 2000. Minimally Invasive Glucose Sensor and Insulin Delivery System. MIT Home Automation and Healthcare Consortium. Progress Report No. 2-5, 17 pages.
Ishikawa et al. 1998. Initial evaluation of a 290-mm diameter subcutaneous glucose sensor: Glucose monitoring with a biocompatible, flexible-wire, enzyme-based amperometric microsensor in diabetic and nondiabetic humans. Journal of Diabetes and Its Complications, 12:295-301.
Jablecki et al. 2000. Simulations of the frequency response of implantable glucose sensors. Analytical Chemistry 72:1853-1859.
Jaffari et al. 1995. Recent advances in arnperometric glucose biosensors for in vivo monitoring. Physiol. Meas. 16: 1-15.
Jensen et al. 1997, Fast wave forms for pulsed electrochemical detection of glucose by incorporation of reductive desorption of oxidation products. Analytical Chemistry 69(9): 1776-1781.
Jeutter, D. C. 1982. A transcutaneous implanted battery recharging and biotelemeter power switching system. IEEE Transactions on Biomedical Engineering 29:314-321.
Jobst et al., 1996. Thin-Film Microbiosensors for Glucose-Lactate Monitoring. Analytical Chemistry 8(18): 3173-3179.
Johnson et al. 1992. In vivo evaluation of an electroenzymatic glucose sensor implanted in subcutaneous tissue. Biosensors & Bioelectronics, 7:709-714.
Johnson, 1991. Reproducible eiectrodeposition of biomolecules for the fabrication of miniature electroenzymatic biosensors. Sensors& Actuators B 5:85-89.
Jovanovic, L. 2000. The role of continuous glucose monitoring in gestational diabetes mellitus: Diabetes Technology & Therapeutics, 2(Suppl 1):S67-71.
Kacaniklic et al. May-Jun. 1994. Amperometric Biosensors for Detection of L- and D-Amino Acids Based on Coimmoblized Peroxidase and L- and D-Amino Acid Oxidases in Carbon Paste Electrodes. Electroanalysis, 6(5-6): 381-390.
Kamath et al. Nov. 13-15, 2008. Calibration of a continuous glucose monitor: effect of glucose rate of change, Eighth Annual Diabetes Technology Meeting, p. A88.
Kang et al. 2003. In vitro and short-term in vivo characteristics of a Kel-F thin film modified glucose sensor. Anal Science 19:1481-1486.
Kaufman et al. 2001, A pilot study of the continuous glucose monitoring system, Diabetes Care 24(12):2030-2034.
Kaufman. 2000. Role of the continuous glucose monitoring system in pediatric patients. Diabetes Technology & Therapeutics 2(1):S-49-S-52.
Kawagoe et al, 1991. Enzyme-modified organic conducting salt microelectrode. Analytical Chemistry 63:2961-2965.
Keedy et al. 1991. Determination of urate in undiluted whole blood by enzyme electrode. Biosensors & Bioelectronics 6: 491-499.
Kerner et al. 1988. A potentially implantable enzyme electrode for amperometric measurement of glucose, Horm Metab Res Suppl. 20:8-13.
Kerner et al. 1993. The function of a hydrogen peroxide-detecting electroenzymatic glucose electrode is markedly impaired in human sub-cutaneous tissue and plasma. Biosensors & Bioelectronics 8:473-482.
Klueh et al. 2003. Use of Vascular Endothelial Cell Growth Factor Gene Transfer to Enhance Implantable Sensor Function in Vivo. Biosensor Function and Vegf-Gene Transfer, pp. 1072-1086.
Ko, Wen H. 1985. Implantable Sensors for Closed-Loop Prosthetic Systems, Future Pub. Co., Inc., Mt. Kisco, NY, Chapter 15:197-210.
Kondo et al. 1982. A miniature glucose sensor, implantable in the blood stream. Diabetes Care. 5(3):218-221.
Koschinsky et al. 1988. New approach to technical and clinical evaluation of devices for self-monitoring of blood glucose. Diabetes Care 11(8): 619-619.
Koschinsky et al. 2001. Sensors for glucose monitoring: Technical and clinical aspects. Diabetes Metab. Res. Rev. 17:113-123.
Kost et al. 1985. Glucose-sensitive membranes containing glucose oxidase: activity, swelling, and permeability studies. Journal of Biomedical Materials Research 19:1117-1133.
Koudelka et al. 1989. In vivo response of microfabricated glucose sensors to glycemia changes in normal rats. Biomed Biochim Acta 48(11-12):953-956.
Koudelka et al. 1991. In-vivo behaviour of hypodermically implanted microfabricated glucose sensors. Biosensors & Bioelectronics 6:31-36.
Kovatchev et al. Aug. 2004 Evaluating the accuracy of continuous glucose-monitoring sensors, continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data, Diabetes Care 27(8): 1922-1928.
Kraver et al. 2001. A mixed-signal sensor interface microinstrument. Sensors & Actuators A 91:266-277.
Kruger et al. 2000, Psychological motivation and patient education: A role for continuous glucose monitoring. Diabetes Technology & Therapeutics 2(Suppl 1):S93-97.
Kulys et al., 1994, Carbon-paste biosensors array for long-term glucose measurement. Biosensors & Bioelectronics, 9:491-500.
Kunjan et al. Mar. 2008, Automated blood sampling and glucose sensing in critical care settings. Journal of Diabetes Science and Technology 2(3):194-200.
Kurtz et al. 2005. Recommendations for blood pressure measurement in humans and experimental animals, Part 2: Blood pressure measurement in experimental animals, A statement for professionals from the subcommittee of professional and public education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45:299-310.
Ladd et al., Structure Determination by X-ray Crystallography, 3rd ed. Plenum, 1996, Ch. 1, pp. xxi-xxiv and 1-58.
Lehmann et al. May 1994. Retrospective validation of a physiological model of glucose-insulin interaction in type 1 diabetes mellitus. Med. Eng, Phys. 16:193-202.
Lerner et al. 1984. An implantable electrochemical glucose sensor. Ann. N. Y. Acad. Sci, 428:263-278.
Lewandowski et al. 1988. Evaluation of a miniature blood glucose sensor. Trans Am Soc Artif Intern Organs 34:255-258.
Leypoldt et al. 1984. Model of a two-substrate enzyme electrode for glucose. Analytical Chemistry 56:2896-2904.
Linke et al. 1994. Amperometric biosensor for in vivo glucose sensing based an glucose oxidase immobilized in a redox hydrogel. Biosensors & Bioelectronics 9:151-158.
Lowe, 1984. Biosensors. Trends in Biotechnology 2(3):59-65.
Luong et al. 2004, Solubilization of Multiwall Carbon Nanotubes by 3-Aminopropyltriethoxysilane Towards the Fabrication of Electrochemical Biosensors with Promoted Electron Transfer. Electronanalysis 16(1-2): 132-139.
Lyandres et al. (2008). Progress toward an in vivo surface-enhanced raman spectroscopy glucose sensor. Diabetes Technology & Therapeutics, 10(4): 257-265.
Maiden et al. 1992. Elimination of Electrooxidizable Interferent-Produced Currents in Amperometric Biosensors Analytical Chemistry 64:2889-2896.
Makale et al. 2003. Tissue window chamber system for validation of implanted oxygen sensors. Am. J. Physiol. Heart Circ. Physiol. 284:H2288-2294.
Malin et al. 1999, Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy. Clinical Chemistry 45:9, 1651-1658.
Maran et al. 2002. Continuous subcutaneous glucose monitoring in diabetic patients: A multicenter analysis. Diabetes Care 25(2):347-352.
March, W. F. 2002. Dealing with the delay. Diabetes Technology & Therapeutics 4(1):49-50.
Marena et al. 1993. The artificial endocrine pancreas in clinical practice and research, Panminerva Medica 35(2): 67-74.
Mascini et al. 1989. Glucose electrochemical probe with extended linearity for whole blood. J Pharm Biomed Anal 7(12): 1507-1512.
Mastrototaro et al. 1991. An electroenzyrnatic glucose sensor fabricated on a flexible substrate. Sensors & Actuators B 5:139-44.
Mastrototaro et al. 2003. Reproducibility of the continuous glucose monitoring system matches previous reports and the intended use of the product. Diabetes Care 26:256; author reply p. 257.
Mastrototaro, J. J. 2000. The MiniMed continuous glucose monitoring system, Diabetes Technology & Therapeuticsr 2(Suppl 1 ):S13-8.
Matsumoto et al. 1998. A micro-planar amperometric glucose sensor unsusceptible to interference species. Sensors & Actuators B 49:68-72.
Matthews et al. 1988. An amperometric needle-type glucose sensor testing in rats and man. Diabetic Medicine 5:248-252.
Mazze et al. 2008. Characterizing glucose exposure for individuals with normal glucose tolerance using continuous glucose monitoring and ambulatory glucose profile analysis. Diabetes Technology & Therapeutics 10:149-159.
McCartney et al. 2001. Near-infrared fluorescence lifetime assay for serum glucose based on allophycocyanin-labeled concanavalin A. Analytical Biochemistry 292:216-221.
McGrath et al. 1995. The use of differential measurements with a glucose biosensor for interference compensation during glucose determinations by flow injection analysis, Biosenors & Bioelectronics 10:937-943.
McKean et al. Jul. 7, 1988. A Telemetry Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors. Transactions on Biomedical Engineering 35:526-532.
Memoli et al. 2002. A comparison between different immobilised glucoseoxidase-based electrodes. J Pharm Biomed Anal 29:1045-1052.
Merriam-Webster Online Dictionary. Jan. 11, 2010. Definition of “acceleration”. http:--www.merriam-webster.com-dictionary-Acceleration.
Merriam-Webster Online Dictionary. Jan. 11, 2010. Definition of “system”. http:--www.merriam-webster.com-dictionary-System.
Merriam-Webster Online Dictionary. Apr. 23, 2007. Definition of “nominal”. http:--www.merriam-webster.com-dictionary-nominal.
Meyerhoff et al. 1992. On line continuous monitoring of subcutaneous tissue glucose in men by combining portable glucosensor with microdialysis. Diabetologia 35:1087-1092.
Moatti-Sirat et al. 1992. Evaluating in vitro and in vivo the interference of ascorbate and acetaminophen on glucose detection by a needle-type glucose sensor. Biosensors & Bloelectronics 7:345-352.
Moatti-Sirat et al. 1992. Towards continuous glucose monitoring: in vivo evaluation of a miniaturized glucose sensor implanted for several days in rat subcutaneous tissue. Diabetologia 35:224-230.
Moatti-Sirat et al. Jun. 1994. Reduction of acetaminophen interference in glucose sensors by a composite Nafion membrane: demonstration in rats and man. Diabetologia 37(6):610-616.
Morff et al. 1990. Microfabrication of reproducible, economical, electroenzymatic glucose sensors, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2):0483-0484.
Mosbach et at 1975. Determination of heat changes in the proximity of immobilized enzymes with an enzyme thermistor and its use for the assay of metabolites, Biochimica Biophysica Acta. 403:256-265.
Motonaka et at 1993. Determination of cholesterol and cholesterol ester with novel enzyme microsensors. Analytical Chemistry 65:3258-3261.
Moussy et al. 1993. Performance of subcutaneously implanted needle-type glucose sensors employing a novel trilayer coating. Analytical Chemistry 85:2072-2077.
Moussy, Francis, Nov. 2002, Implantable Glucose Sensor: Progress and Problems, Sensors, 1:270-273.
Muslu. 1991. Trickling filter performance. Applied Biochem. Biotech. 37:211-224.
Nafion® 117 Solution Product Description, Product No. 70160, Sigma-Aldrich Corp., St. Louis, Mo. Downloaded from https:--www.signaaldrich.com-cgi- bin-hsrun-Suite7-Suite-HAHTpage-Suite.HsExternal Prod . . . on Apr. 7, 2005.
Ohara et al. 1994, “Wired” enzyme electrodes for amperometric determination of glucose or lactate in the presence of interfering substances. Analytical Chemistry 66:2451-2457.
Ohara, et al. Dec. 1993. Glucose electrodes based on cross-linked bis(2,2′-bipyridine)chloroosmium(+-2+) complexed poly(l-vinylimidazole) films. Analytical Chemistry, 65:3512-3517.
Okuda et al. 1971. Mutarotase effect on micro determinations of D-glucose and its anomers with (3-D-glucose oxidase. Analytical Biochemistry 43:312-315.
Oxford English Dictionary Online. Jan. 11, 2010. Definition of “impending”. http:--www.askoxford.com-results-?view=dev dict&field-12668446 impending&branch=.
Palmisano et al. 2000. Simultaneous monitoring of glucose and lactate by an interference and crosstalk free dual electrode amperometric biosensor based on electropolymerized thin films. Biosensors & Bioelectronics 15:531-539.
Patel et al. 2003 Amperometric glucose sensors based on ferrocene containing polymeric electron transfer systems—a preliminary report. Biosensors & Bioelectronics 18:1073-6.
Peacock et al. 2008. Cardiac troponin and outcome in acute heart failure. N. Engl. J. Med., 358: 2117-2126.
Pfeiffer et al. 1992. On line continuous monitoring of subcutaneous tissue glucose is feasible by combining portable glucosensor with microdialysis. Horm. Metab. Res. 25:121-124.
Pfeiffer, E.F. 1990. The glucose sensor: the missing link in diabetes therapy. Horm Metab Res Suppl. 24:154-164.
Pichert et al. 2000, Issues for the coming age of continuous glucose monitoring, Diabetes Educator 26(6):969-980.
Pickup et al. 1987-88, Implantable glucose sensors: choosing the appropriate sensing strategy, Biosensors, 3:335-346.
Pickup et al. 1989. In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer. Diabetologia, 32:213-217.
Pickup et al. 1989. Potentially-implantable, amperornetric glucose sensors with mediated electron transfer: improving the operating stability, Biosensors 4:109-119.
Pinner et al. Oct. 1959. Cross-linking of cellulose acetate by ionizing radiation. Nature 184: 1303-1304.
Pishko et al. 1991. Amperometric glucose microelectrodes prepared through immobilization of glucose oxidase in redox hydrogels. Analytical Chemistry 63:2268-72.
Pitzer et al. 2001, Detection of hypoglycemia with the GlucoWatch biographer. Diabetes Care 24(5):881-885.
Poitout et al. 1991. In Vitro and In Vivo Evaluation in Dogs of a Miniaturized Glucose Sensor, ASAIO Transactions 37:M298-M300.
Poitout et al. 1993. A glucose monitoring system for on line estimation in man of blood glucose concentration using a miniaturized glucose sensor implanted in the subcutaneous tissue and a wearable control unit. Diabetologia 36:658-663.
Poitout et al. 1994. Development of a glucose sensor for glucose monitoring in man: the disposable implant concept. Clinical Materials 15:241-246.
Postlethwaite et al. 1996. Interdigitated array electrode as an alternative to the rotated ring-disk electrode for determination of the reaction products of dioxygen reduction. Analytical Chemistry 68:2951-2958.
Prabhu et al. 1981. Electrochemical studies of hydrogen peroxide at a platinum disc electrode. Electrochimica Acta 26(6):725-729.
Quinn et al. 1995. Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors. The American Physiological Society E155-E161.
Quinn et al. 1997. Biocompatible, glucose-permeable hydrogel for in situ coating of implantable biosensors, Biomaterials 18:1665-1670.
Rabahetal., 1991. Electrochemical wear of graphite anodes during electrolysis of brine. Carbon 29(2):165-171.
Reach et al. 1986. A Method for Evaluating in vivo the Functional Characteristics of Glucose Sensors. Biosensors 2:211-220.
Reach et al. 1992. Can continuous glucose monitoring be used for the treatment of diabetes? Analytical Chemistry 64(5):381-386.
Reach, G. 2001. Which threshold to detect hypoglycemia? Value of receiver-operator curve analysis to find a compromise between sensitivity and specificity. Diabetes Care 24(5):803-804.
Reach, Gerard. 2001. Letters to the Editor Re: Diabetes Technology & Therapeutics, 2000;2:49-56. Diabetes Technology & Therapeutics 3(1): 129-130.
Rebrin et al. 1989. Automated feedback control of subcutaneous glucose concentration in diabetic dogs. Diabetologia 32:573-76 (1989).
Rebrin et al. 1992. Subcutaneous glucose monitoring by means of electrochemical sensors: fiction or reality? J. Biomedical Engineering 14:33-40.
Reusch. 2004, Chemical Reactivity. Organometallic Compounds. Virtual Textbook of Organic Chem, pp. 1-16, http:--www.cem.msu.edu-˜reusch-VirtualText-orgmetal.htm.
Rhodes et al. 1994. Prediction of pocket-portable and implantable glucose enzyme electrode performance from combined species permeability and digital simulation analysis. Analytical Chemistry 66(9): 1520-1529.
Rigla et al. 2008. Real-time continuous glucose monitoring together with telemedical assistance improves glycemic control and glucose stability in pump-treated patients. Diabetes Technology & Therapeutics, 10(3): 194-199.
Rivers et al. 2001. Central venous oxygen saturation monitoring in the critically ill patient. Current Opinion in Critical Care, 7:204-211.
Sakakida et al. 1992. Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations. Artif. Organs Today 2(2): 145-158.
Sakakida et al. 1993. Ferrocene-Mediated Needle Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane. Sensors & Actuators B 13-14:319-322.
Salardi et al. 2002. The glucose area under the profiles obtained with continuous glucose monitoring system relationships with HbA1c in pediatric type 1 diabetic patients. Diabetes Care 25(10): 1940-1844.
Samuels, M.P. 2004. The effects of flight and altitude. Arch Dis Child. 89: 448-455.
San Diego Plastics, Inc. 2009. Polyethylene Data Sheet, http:--www.sdplastics.com-polyeth.html.
Sansen et al. 1985. Glucose sensor with telemetry system., in Ko, W. H. (Ed.). Implantable Sensors for Closed Loop Prosthetic Systems. Chap. 12, pp. 167.175, Mount Kisco, NY: Futura Publishing Co.
Sansen et al. 1990. A smart sensor for the voltammetric measurement of oxygen or glucose concentrations. Sensors & Actuators B 1:298-302.
Schmidt et al. 1993, Glucose concentration in subcutaneous extracellular space. Diabetes Care 16(5):695-700.
Schmidtke et al. Jan. 1998. Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin. PNAS USA 95: 294-299.
Schmidtke et al. May 1998. Accuracy of the one-point in vivo calibration of “wired” glucose oxidase electrodes implanted in jugular veins of rats in periods of rapid rise and decline of the glucose concentration. Analytical Chemistry 70(10): 2149-2155.
Schoemaker et al. 2003. The SCGM1 system: Subcutaneous continuous glucose monitoring based on microdialysis technique. Diabetes Technology & Therapeutics 5(4):599-608.
Schoonen et al. 1990. Development of a potentially wearable glucose sensor for patients with diabetes mellitus: design and in-vitro evaluation. Biosensors & Bioelectronics 5:37-46.
Service et al. 1970. Mean amplitude of glycemic excursions, a measure of diabetic instability, Diabetes, 19: 644-655.
Service et al. 1987. Measurements of glucose control. Diabetes Care, 10: 225-237.
Service, R. F. 2002. Can sensors make a home in the body? Science 297:962-3.
Sharkawy et al. 1997. Engineering the tissue which encapsulates subcutaneous implants. I. Diffusion properties. J Biomed Mater Res. 37:401-412.
Shaw et al. 1991. In vitro testing of a simply constructed, highly state glucose sensor suitable for implantation in diabetic patients. Biosensors & Bioelectronics 6:401-406.
Shichiri et al. 1982. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet 2:1129-1131.
Shichiri et al., Needle Type Glucose Sensor for Wearable Artificial Endocrine Pancreas, in Implantable Sensors for Closed-Loop Prosthetic Systems by Ko (Ed), Chapter 15, pp. 197-210.
Shichiri, et al. 1983. Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas. Diabetologia 24:179-184.
Shults et al. 1994. A telemetry-instrumentation system for monitoring multiple subcutaneously implanted glucose sensors. IEEE Transactions on Biomedical Engineering 41(10):937-942.
Skyler, J. S. 2000. The economic burden of diabetes and the benefits of improved glycemic control: The potential role of a continuous glucose monitoring system. Diabetes Technology & Therapeutics 2 Suppl 1:S7-12.
Slater-Maclean et al. 2008. Accuracy of glycemic measurements in the critically ill. Diabetes Technology & Therapeutics 10:169-177.
Sokol et al. 1980. Immobilized-enzyme rate-determination method for glucose analysis. Clinical Chemistry. 26(1 ):89-92.
Sriyudthsak et al. 1996. Enzyme-epoxy membrane based glucose analyzing system and medical applications. Biosensors & Bioelectronics 11:735-742.
Steil et al. 2003. Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor. Diabetes Technology & Therapeutics 5(1 ):27-31.
Stern et al., 1957. Electrochemical polarization: 1. A theoretical analysis of the shape of polarization curves. Journal of the Electrochemical Society, 104(1 ):56-63.
Sumino T. et al. 1998. Preliminary study of continuous glucose monitoring with a microdialysis technique. Proceedings of the IEEE. 20(4):1775-1778.
Takegami et al. 1992. Pervaporation of ethanol water mixtures using novel hydrophobic membranes containing polydimethylsiloxane. Journal of Membrane Science, 75: 93-105.
Tanenberg et al. 2000. Continuous glucose monitoring system: A new approach to the diagnosis of diabetic gastroparesis. Diabetes Technology & Therapeutics, 2(Suppl 1):S73-80.
Tatsuma et al. 1991. Oxidase-peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid. Analytica Chimica Acta, 242:85-89.
Thome et al. 1995. Abstract: Can the decrease in subcutaneous glucose concentration precede the decrease in blood glucose level? Proposition for a push-pull kinetics hypothesis. Horm. Metab. Res. 27:53.
Thome-Duret et al. 1996. Modification of the sensitivity of glucose sensor implanted into subcutaneous tissue. Diabetes Metabolism, 22:174-178.
Thome-Duret et al. 1996. Use of a subcutaneous glucose sensor to detect decreases in glucose concentration prior to observation in blood. Analytical Chemistry 68:3822-3826.
Thome-Duret et al. 1998. Continuous glucose monitoring in the free-moving rat. Metabolism, 47:799-803.
Thompson et al. 1986. In Vivo Probes: Problems and Perspectives, Department of Chemistry, University of Toronto, Canada, pp. 255-261, 1986.
Tierney et al. 2000. Effect of acetaminophen on the accuracy of glucose measurements obtained with the GlucoWatch biographer. Diabetes Technology & Therapeutics 2(2): 199-207.
Tierney et al. 2000. The GlucoWatch® biographer: A frequent, automatic and noninvasive glucose monitor. Ann. Med. 32:632-641.
Torjman et al. Mar. 2008. Glucose monitoring in acute care: technologies on the horizon. Journal of Diabetes Science and Technology, 2(2): 178-181.
Trecroci, D. 2002. A Glimpse into the Future-Continuous Monitoring of Glucose with a Microfiber, Diabetes Interview 42-43.
Tse and Gough. 1987. Time-Dependent Inactivation of Immobilized Glucose Oxidase and Catalase. Biotechnology & Bioengineering. 29:705-713.
Turner and Pickup, 1985. Diabetes mellitus: biosensors for research and management. Biosensors 1:85-115 (1985).
Turner et al. 1984. Carbon Monoxide: Acceptor Oxidoreductase from Pseudomonas Thermocarboxydovorans Strain C2 and its use in a Carbon Monoxide Sensor, Analytica Chimica Acta, 163: 161-174.
Unger et al. 2004. Glucose control in the hospitalized patient. Emergency Medicine 36(9):12-18.
Updike et al. 1967. The enzyme electrode. Nature 214:986-988.
Updike et al. 1988. Laboratory Evaluation of New Reusable Blood Glucose Sensor. Diabetes Care 11:801-807.
Updike et al. 1994. Enzymatic glucose sensor: improved long-term performance in vitro and in vivo. ASAIO Journal, 40(2): 157-163.
Updike et al. 1997. Principles of long-term fully implanted sensors with emphasis on radiotelemetric monitoring of blood glucose form inside a subcutaneous foreign body capsule (FBC). Fraser, D.M. (Ed.), Biosensors in the Body. New York. John Wiley & Sons Ltd., pp. 117-137.
Updike et al. 2000. A subcutaneous glucose sensor with improved longevity, dynamic range, and stability of calibration, Diabetes Care 23(2):208-214.
Utah Medical Products Inc., Blood Pressure Transducers product specifications, 6 pp. 2003-2006, 2003.
Vadgama, P. Nov. 1981. Enzyme electrodes as practical biosenscrs. Journal of Medical Engineering & Technology 5(6):293-298.
Vadgama, 1988. Diffusion limited enzyme electrodes. NATO ASI Series: Series C, Math and Phys. Sci. 226:359-377.
Van den Berghe 2004. Tight blood glucose control with insulin in “real-life” intensive care. Mayo Clinic Proceedings 79(8):977-978.
Velho et al. 1989, In vitro and in vivo stability of electrode potentials in needle-type glucose sensors. Influence of needle material. Diabetes 38:164-171.
Velho et al. 1989. Strategies for calibrating a subcutaneous glucose sensor. Biomedica Biochimica Acta 48(11-12): 957-964.
Von Woedtke et al. 1989. In situ calibration of implanted electrochemical glucose sensors. Biomedica Biochimica Acta 48(11-12):943-952.
Wagner et al. 1998. Continuous amperometric monitoring of glucose in a brittle diabetic chimpanzee with a miniature subcutaneous electrode. PNAS USA 95:6379-6382.
Wang et al. 1994. Highly Selective Membrane-Free, Mediator-Free Glucose Biosensor, Analytical Chemistry 66:3600-3603.
Wang et al. 1997 . Improved ruggedness for membrane-based amperometric sensors using a pulsed amperometric method. Analytical Chemistry 69:4482-4489.
Ward et al. 2000. Rise in background current overtime in a subcutaneous glucose sensor in the rabbit: Relevance to calibration and accuracy. Biosensors & Bioelectronics, 15:53-61.
Ward et al. 2000. Understanding Spontaneous Output Fluctuations of an Amperornetric Glucose Sensor: Effect of Inhalation Anesthesia and use of a Nonenzyme Containing Electrode. ASAIO Journal 46:540-546.
Ward et al. 2002. A new amperometric glucose microsensor: In vitro and short-term in vivo evaluation. Biosensors & Bioelectronics, 17:181-189.
Ward et al. 2004. A wire-based dual-analyte sensor for Glucose and Lactate: In Vitro and In Vivo Evaluation, Diabetes Technology Therapeutics 6(3): 389-401.
Wientjes, K. J. C. 2000 Development of a glucose sensor for diabetic patients (Ph.D. Thesis).
Wikipedia 2006, “Intravenous therapy,” http:--en.wikipedia.org-wiki-Intravenous_therapy, Aug. 15, 2006, 6 pp.
Wiley Electrical and Electronics Engineering Dictionary. 2004, John Wiley & Sons, Inc. pp. 141, 142; 548; 549.
Wilkins et al. 1988. The coated wire electrode glucose sensor. Horm Metab Res Suppl., 20:50-55.
Wilkins et al. 1995. Integrated Implantable device for long-term glucose monitoring. Biosensors & Bioelectronics 10:485-494.
Wilkins et al. 1996. Glucose monitoring: state of the art and future possibilities. Med Eng Phys 18:273-288.
Wilson et al. 1992. Progress toward the development of an implantable sensor for glucose. Clinical Chemistry 38(9):1613-1617.
Wilson et al. 2000. Enzyme-based biosensors for in vivo measurements. Chemistry Review 100:2693-2704.
Wood, W. et al. Mar. 1990. Hermetic Sealing with Epoxy. Mechanical Engineering 1-3.
Woodward. 1982. How Fibroblasts and Giant Cells Encapsulate Implants: Considerations in Design of Glucose Sensor. Diabetes Care 5:278-281.
Worsley et al. Mar. 2008. Measurement of glucose in blood with a phenylboronic acid optical sensor, Journal of Diabetes Science and Technology, 2(2):213-220.
Wright et al. 1999. Bioelectrochemical dehalogenations via direct electrochemistry of poly(ethylene oxide)-modified myoglobin. Electrochemistry Communications 1: 603-611.
Wu et al. 1999. In situ electrochemical oxygen generation with an immunoisolation device. Annals New York Academy of Sciences, pp. 105-125.
Yamasaki et al. 1989. Direct measurement of whole blood glucose by a needle-type sensor. Clinica Chimica Acta. 93:93-98.
Yamasaki, Yoshimitsu. Sep. 1984. The development of a needle type glucose sensor for wearable artificial endocrine pancreas. Medical Journal of Osaka University 35(1-2):25-34.
Yang et al (1996). A glucose biosensor based on an oxygen electrode: In-vitro performances in a model buffer solution and in blood plasma. Biomedical Instrumentation & Technology 30:55-61.
Yang et al. 1998. Development of needle-type glucose sensor with high selectivity. Science & Actuators B 46:249-256.
Yang et al. 2004. A Comparison of Physical Properties and Fuel Cell Performance of Nafion and Zirconium Phosphate-Nafion Composite Membranes. Journal of Membrane Science 237:145-161.
Ye et al. 1993. High Current Density ‘Wired’ Quinoprotein Glucose Dehydrogenase Electrode. Analytical Chemistry 65:238-241.
Zamzow et al. 1990. Development and evaluation of a wearable blood glucose monitor. ASAIO Transactions; 36(3): pp. M588-M591.
Zethelius et al. 2008. Use of multiple biomarkers to improve the prediction of death from cardiovascular causes. N. Engl. J. Med., 358: 2107-2116.
Zhang et al (1993). Electrochemical oxidation of H202 on Pt and Pt + Ir electrodes in physiological buffer and its applicability to H202-based biosensors. J. Electroanalytical Chemistry 345:253-271.
Zhang et al. 1993. In vitro and in vivo evaluation of oxygen effects on a glucose oxidase based implantable glucose sensor, Analytics Chimica Acta, 281:513-520.
Zhang et al. 1994. Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry 66(7): 1183-1188.
Zhu et al. (1994). Fabrication and characterization of glucose sensors based on a microarray H202 electrode. Biosensors & Bioelectronics 9: 295-300.
Zhu et al. 2002. Planar amperometric glucose sensor based on glucose oxidase immobilized by chitosan film on Prussian blue layer. Sensors 2:127-136.
EP App. No. 05771643.3, filed Dec. 13, 2007: EPO Communication dated Aug. 19, 2009.
EP App. No. 05771646.6, filed Jul. 13, 2005: EPO Communication dated Aug. 19, 2009.
EP App. No. 05771646.6, filed Jul. 13, 2005: EPO Communication dated Jun. 2, 2010.
EP App. No. 05771646.6, filed Jul. 13, 2005: EPO Communication dated Aug. 17, 2011.
EP App. No. 06718980.3, filed Jan. 17, 2006: EPO Extended Search Report dated Mar. 9, 2010.
EP App. No. 06736006.5, filed Feb. 22, 2006: EPO Communication dated Jul. 30, 2010.
EP App. No. 06773682.7, filed Jun. 20, 2006 : EPO Search Report dated Nov. 16, 2009.
EP App. No. 06773682.7, filed Jun. 20, 2006: EPO Communication dated Apr. 5, 2011.
EP App. No. 10195447.7, filed Jul. 13, 2005EPO Search Report dated Apr. 24, 2011.
EP App. No, 10195483.2, filed Jul. 13, 2005: EPO Search Report dated Apr. 5, 2011.
EP App. No. 10195496.4, filed Jul. 13, 2005: EPO Search Report dated Apr. 1, 2011.
EP App. No. 10195504.5, filed Jul. 13, 2005: EPO Extended Search Report dated May 5, 2011.
EP App. No. 10195509.4, filed Jul. 13, 2005: EPO Extended Search Report dated Apr. 12, 2011.
EP App. No. 10195511.0, filed Jul. 13, 2005: EPO Communication dated May 12, 2011.
EP App. No. 10195514.4, filed Jul. 13, 2005: EPO Search Report dated Apr. 21, 2011.
EP App. No. 10195517.7, filed Jul. 13, 2005: EPO Search Report dated Apr. 7, 2011.
EP App. No. 10195518.5, filed Jul. 13, 2005: EPO Communication dated Apr. 28, 2011.
EP App. No. 10195518.5, filed Jul. 13, 2005: EPO Extended Search Report dated Aug. 2, 2011.
EP App. No. 10195518.5, filed Jul. 13, 2005: EPO Extended Search Report dated Aug. 10, 2011.
ZZZ JP App. No. 2007-521636, filed Jul. 13, 2005: JIPO Communication dated Mar. 1, 2011.
PCT/US02/023903 filed Jul. 26, 2002: International Preliminary Report on Patentability Apr. 18, 2005.
PCT/US02/023903 filed Jul. 26, 2002: International Search Report dated Feb. 27, 2003.
PCT/US02/023903, filed Jul. 26, 2002: Written Opinion dated Nov. 15, 2004.
PCT/US04/023455 filed Jul. 21, 2004: International Preliminary Report on Patentability dated Jan. 23, 2006.
PCT/US04/023455 filed Jul. 21, 2004: International Search Report and Written Opinion dated Dec. 23, 2004.
PCT/US04/040476, filed Dec. 3, 2004: International Preliminary Report on Patentability dated Dec. 21, 2006.
PCT/US04/040476, filed Dec. 3, 2004: International Search Report and Written Opinion dated Nov. 16, 2006.
PCT/US05/024994 filed Jul. 13, 2005: International Preliminary Report on Patentability dated Jan. 25, 2007.
PCT/US05/024994 filed Jul. 13, 2005: International Search Report and Written Opinion dated Nov. 13, 2005.
PCT/US06/001998 filed Jan. 17, 2006; International Search Report and Written Opinion dated Jul. 25, 2006.
PCT/US06/006574 filed Feb. 22, 2006: International Preliminary Report on Patentability and Written Opinion dated Aug. 26, 2008.
PCT/US06/006574 filed Feb. 22, 2006: International Search Report dated Aug. 4, 2006.
PCT/US06/024132 filed Jun. 20, 2006: International Search Report and Written Opinion dated Jul. 20, 2007.
PCT/US06/024132, filed Jun. 20, 2006: International Preliminary Report on Patentability dated Dec. 24, 2007.
PCT/US06/031496, filed Aug. 10, 2006: International Preliminary Report on Patentability dated Nov. 27, 2008.
PCT/US06/031496, filed Aug. 10, 2006: International Search Report and Written Opinion dated Sep. 20, 2007.
PCT/US06/038820 filed Oct. 4, 2006: International Search Report and Written Opinion dated Jun. 20, 2007.
PCT/US07/005422, filed Mar. 1, 2007: International Preliminary Report on Patentability dated Sep. 1, 2009.
PCT/US07/005422, filed Mar. 1, 2007: International Search Report and Written Opinion dated Mar. 1, 2007.
PCT/US08/058158, filed Mar. 25, 2008: International Preliminary Report on Patentability dated Sep. 29, 2009.
PCT/US08/058158, filed Mar. 25, 2008: International Search Report and Written Opinion dated Aug. 8, 2008.
PCT/US2005/024993, filed Jul. 13, 2005: International Preliminary Report on Patentability dated Jan. 16, 2007.
PCT/US2005/024993, filed Jul. 13, 2005: International Search Report and Written Opinion dated Nov. 4, 2005.
ZZZ U.S. Reexamination Control No. 90/011086, filed Jul. 8, 2010, re Ex Parte Reexamination of U.S. Pat. No. 7,310,544: Substantive Electronic File History; including PTO Office Actions and Applicant and Third Party Submissions dated dated Jul. 8, 2010, Jul. 28, 2010, Aug. 9, 2010, Nov. 8, 2010, Jan. 4, 2011, and Apr. 5, 2011.
ZZZ U.S. Reexamination Control No. 90/011351, filed Nov. 22, 2010, re Ex Parte Reexamination of U.S. Pat. No. 7,497,827: Electronic File containing Office Action dated Dec. 17, 2010 and May 11, 2011, and Applicant Responses filed Feb. 17, 2011, Jul. 11, 2011 and Aug. 10, 2011.
U.S. Appl. No. 10/896,637, filed Jul. 21, 2004: Office Action dated Mar. 5, 2009.
U.S. Appl. No. 10/896,637, filed Jul. 21, 2004: Office Action dated Oct. 8, 2008.
U.S. Appl. No. 10/896,637, filed Jul. 21, 2004: Office Action dated Jul. 20, 2009.
U.S. Appl. No. 11/077,759, filed Mar. 10, 2005: Office Action dated May 17, 2007.
U.S. Appl. No. 11/021,046, filed Dec. 22, 2004: Office Action dated Aug. 19, 2009.
U.S. Appl. No. 11/021,046, filed Dec. 22, 2004: Office Action dated Jun. 23, 2008.
U.S. Appl. No. 11/021,046, filed Dec. 22, 2004: Office Action dated Dec. 25, 2007.
U.S. Appl. No. 11/021,162, filed Dec. 22, 2004: Office Action dated Jun. 19, 2008.
U.S. Appl. No. 11/034,343, filed Jan. 11, 2005: Office Action dated Nov. 1, 2007.
U.S. Appl. No. 11/034,343, filed Jan. 11, 2005: Office Action dated Jul. 10, 2008.
U.S. Appl. No. 11/034,343, filed Jan. 11, 2005: Office Action dated Dec. 30, 2008.
U.S. Appl. No. 11/077,643, filed Mar. 10, 2005 (now U.S. Pat. No. 7,654,956 on Feb. 2, 2010): Electronic File History including Office Actions dated Apr. 21, 2008, Oct. 1, 2008, Mar. 11, 2009 and Oct. 16, 2009, and Applicant Responses filed Oct. 21, 2005, Oct. 25, 2007, Jul. 15, 2008, Dec. 17, 2008, and May 27, 2009.
U.S. Appl. No. 11/077,693 (now U.S. Pat. No. 7,713,574 on May 11, 2010): Electronic File History, including Office Actions dated Jun. 27, 2008, Dec. 26, 2008, Jun. 10, 2009, Sep. 4, 2009 and Jan. 26, 2010, and Applicant Responses filed Oct. 20, 2005, Sep. 18, 2008, Mar. 25, 2009, Jun. 23, 2009, Nov. 4, 2009, Nov. 10, 2009, Feb. 12, 2010 and Mar. 9, 2010.
U.S. Appl. No. 11/077,713, filed Mar. 10, 2005: Electronic File History through Aug. 1, 2011, including Office Actions dated Mar. 10, 2008, May 5, 2008, Feb. 10, 2009, Sep. 2, 2009, Jan. 28, 2011 and Jul. 8, 2011, and Applicant Responses filed Oct. 20, 2005, Oct. 10, 2007, Mar. 13, 2008, Sep. 5, 2008,Nov. 4, 2008, May 11, 2009, Nov. 3, 2009, Jan. 20, 2010, Mar. 17, 2010, Jun. 24, 2010, Sep. 24, 2010 and Apr. 25, 2011.
U.S. Appl. No. 11/077,714, filed Mar. 10, 2005: Electronic File History, including Office Actions dated Oct. 11, 2006, Apr. 10, 2007, Jul. 27, 2007,Jan. 10, 2008, Sep. 16, 2008, Apr. 16, 2009, Dec. 31, 2009, Jan. 27, 2010, and Sep. 7, 2010, and Applicant Responses filed Jan. 8, 2007, May 7, 2007, Oct. 5, 2007, Jan. 22, 2008, Apr. 30, 2008, May 28, 2008, Dec. 15, 2008, Jan. 22, 2009, Jul. 3, 2009, Oct. 5, 2009, Jan. 13, 2010, and Jun. 2, 2010.
U.S. Appl. No. 11/077,715, filed Mar. 10, 2005 (now U.S. Pat. No. 7,497,827 on Mar. 3, 2009): Electronic File History, including Office Actions dated Oct. 31, 2006, Apr. 10, 2007, Jul. 26, 2007, Jan. 28, 2008, May 12, 2008 and Nov. 12, 2008, and Applicant Responses filed Oct. 21, 2005, Jan. 8, 2007, May 3, 2007, Aug. 16, 2007, Nov. 6, 2007, Feb. 13, 2008, Aug. 11, 2008, Nov. 24, 2008 and Dec. 16, 2008.
U.S. Appl. No. 11/077,739, filed Mar. 10, 2005: Electronic File History through Oct. 11, 2011, including Office Actions dated Feb. 4, 2009, Jul. 29, 2009, Dec. 19, 2009 and Mar. 1, 2010, and Applicant Responses filed Oct. 20, 2005, Oct. 11, 2007, Dec. 4, 2007, Apr. 15, 2009, Oct. 7, 2009, Jan. 14, 2010 and May 14, 2010.
U.S. Appl. No. 11/077,740, filed Mar. 10, 2005: Electronic File History through Oct. 11, 2011, including Office Actions dated Jun. 1, 2007, Nov. 1, 2007, Jan. 4, 2008, Feb. 7, 2008, Jul. 25, 2008, Apr. 28, 2009, Nov. 23, 2010, Feb. 15, 2011, Jun. 15, 2011 and Mar. 1, 2010, and Applicant Responses filed Oct. 24, 2005, Aug. 21, 2007, Feb. 7, 2008, Mar. 6, 2008, Sep. 16, 2006, Jul. 28, 2009, Jan. 14, 2010, Jan. 24, 2011, Mar. 23, 2011 and Aug. 19, 2011.
U.S. Appl. No. 11/077,759, filed Mar. 10, 2005: Office Action dated Jul. 10, 2008.
U.S. Appl. No. 11/077,759, filed Mar. 10, 2005: Office Action dated May 26, 2009.
U.S. Appl. No. 11/077,759, filed Mar. 10, 2005: Office Action dated Mar. 31, 2008.
U.S. Appl. No. 11/077,63, filed Mar. 10, 2005 (now U.S. Pat. No. 7,310,544 on Dec. 18, 2007): Electronic File History including Office Actions dated Jan. 30, 2006, Jan. 30, 2007 and Sep. 4, 2007, and Applicant Response filed Apr. 17, 2007.
U.S. Appl. No. 11/077,765, filed Mar. 10, 2005: Electronic File History through Oct. 11, 2011, including Office Actions dated Oct. 24, 2007, Dec. 31, 2007, May 16, 2008, Sep. 19, 2008, Jan. 23, 2009, Jul. 9, 2009 and Feb. 3, 2010, and Applicant Responses filed Oct. 20, 2005, Oct. 5, 2007, Nov. 14, 2007, Feb. 12, 2008, Jun. 11, 2008, Nov. 18, 2008, Mar. 5, 2009, Oct. 5, 2009 and Feb. 10, 2010.
U.S. Appl. No. 11/078,072, filed Mar. 10, 2005: Electronic File History through Mar. 22, 2011, including Office Actions dated Jan. 22, 2009, Sep. 2, 2009, Jun. 10, 2010, Sep. 3, 2010 and Feb. 3, 2011, and Applicant Responses filed Oct. 20, 2005, Oct. 25, 2007, Apr. 29, 2008, Jun. 22, 2009, Dec. 2, 2009, May 21, 2010, Jun. 23, 2010, Nov. 16, 2010, and Mar. 22, 2011.
U.S. Appl. No. 11/078,232, filed Mar. 10, 2005: Electronic File History through May 3, 2011, including Office Actions dated Mar. 10, 2008, Nov. 12, 2008, Mar. 5, 2009, Jul. 21, 2009, Jan. 5, 2010 and Apr. 27, 2010, and Applicant Responses filed Oct. 5, 2007, Mar. 17, 2008, Apr. 8, 2008, Feb. 11, 2009, Apr. 16, 2009, Oct. 20, 2009, Jan. 26, 2010 and Jun. 3, 2010.
U.S. Appl. No. 11/157,365, filed Jun. 21, 2005: Office Action dated Jan. 7, 2009.
U.S. Appl. No. 11/157,365, filed Jun. 21, 2005: Office Action dated Jul. 21, 2009.
U.S. Appl. No. 11/157,365, filed Jun. 21, 2005: Office Action dated Jun. 26, 2008.
U.S. Appl. No. 11/157,365, filed Jun. 21, 2005_: Office Action dated Jan. 21, 2010.
U.S. Appl. No. 11/157,746, filed Jun. 21, 2005: Office Action dated May 1, 2008.
U.S. Appl. No. 11/157,746, filed Jun. 21, 2005: Office Action dated Jan. 3, 2008.
U.S. Appl. No. 11/333,837, filed Jan. 17, 2006: Office Action dated Apr. 2, 2010.
U.S. Appl. No. 11/333,837, filed Jan. 17, 2006: Office Action dated Jul. 2, 2010.
U.S. Appl. No. 11/333,837, filed Jan. 17, 2006: Office Action dated Nov. 28, 2008.
U.S. Appl. No. 11/333,837, filed Jan. 17, 2006: Office Action dated Jun. 29, 2009.
U.S. Appl. No. 11/360,250, filed Feb. 22, 2006: Office Action dated Mar. 5, 2010.
U.S. Appl. No. 11/360,250, filed Feb. 22, 2006: Office Action dated Jun. 15, 2009.
U.S. Appl. No. 11/360,250, filed Feb. 22, 2006: Office Action dated Nov. 28, 2008.
U.S. Appl. No. 11/360,250, filed Feb. 22, 2006: Office Action dated Sep. 28, 2010.
U.S. Appl. No. 11/360,252, filed Feb. 22, 2006: Office Action dated Jul. 23, 2009.
U.S. Appl. No. 11/360,252, filed Feb. 22, 2006: Office Action dated Jun. 30, 2008.
U.S. Appl. No. 11/360,262, filed Feb. 22, 2006: Electronic File History through Nov. 16, 2010, including Office Actions dated Jun. 22, 2009 and Apr. 14, 2010, and Applicant Responses filed Oct. 22, 209 and May 19, 2010.
U.S. Appl. No. 11/360,299, filed Feb. 22, 2006: Electronic File History through Nov. 17, 2010, including Office Actions dated Aug. 21, 2009, Jan. 22, 2010 and May 12, 2010, and Applicant Responses filed Nov. 9, 2009, Jan. 29, 2010, Jul. 12, 2010 and Jul. 28, 2010.
U.S. Appl. No. 11/360,819, filed Feb. 22, 2006: Office Action dated Apr. 7, 2010.
U.S. Appl. No. 11/360,819, filed Feb. 11, 2006: Office Action dated Sep. 2, 2010.
U.S. Appl. No. 11/360819, filed Feb. 22, 2006: Office Action dated Aug. 11, 2008.
U.S. Appl. No. 11/360,819, filed Feb. 22, 2006: Office Action dated Dec. 25, 2008.
U.S. Appl. No. 11/360,819, filed Feb. 22, 2006: Office Action dated Oct. 29, 2009.
U.S. Appl. No. 11/439,630, filed May 23, 2006: Electronic File History through Nov. 17, 2010, including Office Actions dated Jul. 28, 2008, Sep. 18, 2008, Feb. 23, 2009. Sep. 2, 2009 and Jan. 22, 2010, and Applicant Responses filed Dec. 3, 2007, Aug. 12, 2008, Nov. 14, 2008, Jun. 23, 2009, Nov. 9, 2009 and Jun. 4, 2010.
U.S. Appl. No. 11/543,539, filed Oct. 4, 2006: Office Action dated Dec. 12, 2007.
U.S. Appl. No. 11/543,539, filed Oct. 4, 2006: Office Action dated May 23, 2007.
U.S. Appl. No. 11/543,683, filed Oct. 4, 2006: Office Action dated Dec. 12, 2007.
U.S. Appl. No. 11/543,683, filed Oct. 4, 2006: Office Action dated May 18, 2007.
U.S. Appl. No. 11/543,707, filed Oct. 4, 2006: Office Action dated Dec. 12, 2007.
U.S. Appl. No. 11/543,707, filed Oct. 4, 2006: Office Action dated May 18, 2007.
U.S. Appl. No. 11/543,734, filed Oct. 4, 2006: Office Action dated Jun. 5, 2007.
U.S. Appl. No. 11/543,734, filed Oct. 4, 2006: Office Action dated Dec. 17, 2007.
U.S. Appl. No. 11/692,154, filed Mar. 27, 2007: Office Action dated Jul. 8, 2009.
U.S. Appl. No. 11/692,154, filed Mar. 27, 2007: Office Action dated Jan. 22, 2009.
U.S. Appl. No. 11/925,603, filed Oct. 26, 2007: Electronic File History through Oct. 13, 2011, including Office Action dated Sep. 28, 2011 and Applicant Response filed Oct. 4, 2011.
U.S. Appl. No. 11/021,046, filed Dec. 22, 2004: Office Action dated Feb. 4, 2009.
U.S. Appl. No. 12/055,098, filed Mar. 25, 2008: Office Action dated Oct. 5, 2010.
U.S. Appl. No. 12/101,790, filed Apr. 11, 2008 (now U.S. Pat. No. 7,949,381 on May 24, 2011: Electronic File History, including Office Actions dated Sep. 24, 2010, Mar. 18, 2011 and Apr. 12, 2011, and Applicant Responses filed Dec. 22, 2010 and Mar. 25, 2011.
U.S. Appl. No. 12/111,062, filed Apr. 28, 2008: Office Action dated Mar. 3, 2010.
U.S. Appl. No. 12/113,508, filed May 1, 2008: Office Action dated Feb. 23, 2010.
U.S. Appl. No. 12/113,724, filed May 1, 2008: Office Action dated Jun. 24, 2010.
U.S. Appl. No. 12/137,396, filed Jun. 11, 2008: Office Action dated Jun. 21, 2010.
U.S. Appl. No. 12/139,305, filed Jun. 13, 2008; Office Action dated Jan. 13, 2010.
U.S. Appl. No. 12/264,160, filed Nov. 3, 2008: Office Action dated Jun. 3, 2010.
U.S. Appl. No. 12/729,058, filed Mar. 22, 2010: Electronic File History through Jun. 16, 2011, including Office Actions dated Oct. 1, 2010, Mar. 17, 2011 and Apr. 29, 2011, and Applicant Responses filed Dec. 22, 2010 and Apr. 12, 2011.
U.S. Appl. No. 11/360,250, filed Feb. 22, 2006: Office Action dated Nov. 20, 2009.
File History of U.S. Appl. No. 15/201,313, filed Jul. 1, 2016, 800 pages.
“Raya Systems Pioneers Healthy Video Games,” PlayRight, Nov. 1993, pp. 14-15.
Adilman, et al., “Videogames: Knowing the Score, Creative Computing,” Dec. 1983, Dialog: File 148; IAC Trade & Industry Database, vol. 9, p. 224(5) (9 pages).
Alberts B., et al., “Molecular Biology of the Cell,” 3rd edition, 1994, p. G19 (3 pages).
Amato, et al., “Experience with the Polytetrafluoroethylene Surgical Membrane for Pericardial Closure in Operations for Congenital Cardiac Defects,” Journal of Thoracic and Cardiovascular Surgery, 1989, vol. 97, pp. 929-934.
Amer M.M.B., “An Accurate Amperometric Glucose Sensor Based Glucometer with Eliminated Cross-Sensitivity,” Journal of Medical Engineering & Technology, vol. 26 (5), Sep./Oct. 2002, pp. 208-213.
Asberg P., et al., “Hydrogels of a Conducting Conjugated Polymer as 3-D Enzyme Electrode,” Biosensors Bioelectronics, 2003, vol. 19, pp. 199-207.
Asker.Co.JP, “What is durometer?,” /Product/, Kobunshi Keiki Co., Ltd. retrieved from http://www.asker.co.jp/en/products/durometer/analog/about/index.html on May 9, 2018, 2 pages.
Assolant-Vinet C.H., et al., “New Immoblized Enzyme Membranes for Tailor-Made Biosensors”, Analytical Letters, 1986, vol. 19(7&8), pp. 875-885.
ASTM International, Inc., “ASTM, Designation: D2240-05, Standard Test Method for Rubber Property-Durometer Hardness,” 2005, 13 pages.
Baker D.A., et al., “Dynamic Concentration Challenges for Biosensor Characterization,” Biosensors & Bioelectronics, vol. 8, 1993, pp. 433-441.
Baker D.A., et al., “Dynamic Delay and Maximal Dynamic Error in Continuous Biosensors,” Analytical Chemistry, vol. 68 (8), Apr. 15, 1996, pp. 1292-1297.
Bard A.J., et al., “Electrochemical Methods,” Fundamentals and Applications, John Wiley & Sons, New York, 1980, pp. 173-175.
Bardeletti G., et al., “A Reliable L-Lactate Electrode with a New Membrane for Enzyme Immobilization for Amperometric Assay of Lactate,” Analytica Chemica Acta, vol. 187, 1986, pp. 47-54.
Bertrand C., et al., “Multipurpose Electrode with Different Enzyme Systems Bound to Collagen Films,” Analytica Chemica Acta, 1981, vol. 126, pp. 23-34.
Bindra D.S., et al., “Pulsed Amperometric Detection of Glucose in Biological Fluids at a Surface-Modified Gold Electrode,” Analytical Chemistry, vol. 61 (22), Nov. 15, 1989, pp. 2566-2570.
Bland J.M., et al., “Statistical Methods for Assessing Agreement Between Two Methods of Clinical Measurement,” The Lancet, Feb. 8, 1986, pp. 307-310.
Bolinder J., et al., “Microdialysis Measurement of the Absolute Glucose Concentration in Subcutaneous Adipose Tissue Allowing Glucose Monitoring in Diabetic Patients,” Rapid Communication, Diabetologia, vol. 35, 1992, pp. 1177-1180.
Bolinder J., et al., “Self-Monitoring of Blood Glucose in Type I Diabetic Patients: Comparison with Continuous Microdialysis Measurements of Glucose in Subcutaneous Adipose Tissue during Ordinary Life Conditions,” Diabetes Care, vol. 20 (1), Jan. 1997, pp. 64-70.
Bott A.W., “A Comparison of Cyclic Voltammetry and Cyclic Staircase Voltammetry,” Current Separations, vol. 16 (1), 1997, pp. 23-26.
Bott A.W., “Electrochemical Methods for the Determination of Glucose,” Current Separations, vol. 17 (1), 1998, pp. 25-31.
Brauker J H., et al., “Neovascularization of Synthetic Membranes Directed by Membrane Microarchitecture,” Journal of Biomedical Material Research, 1995, vol. 29, pp. 1517-1524.
Brauker J., “Unraveling Mysteries at the Biointerface: Molecular Mediator of Inhibition of Blood Vessel Formation in the Foreign Body Capsule Revealed,” SurFACTS in Biomaterials, vol. 6 (3), 2001, 2 pages.
Brauker, et al., “Sustained Expression of High Levels of Human Factor IX from Human Cells Implanted within an Immunoisolation Device into Athymic Rodents,” Human Gene Therapy, Apr. 10, 1998, vol. 9, pp. 879-888.
Bremer T., et al., “Is Blood Glucose Predictable from Previous Values? A Solicitation for Data,” Perspectives in Diabetes, vol. 48, Mar. 1999, pp. 445-451.
Brunner G.A., et al., “Validation of Home Blood Glucose Meters with Respect to Clinical and Analytical Approaches,” Diabetes Care, vol. 21(4), Apr. 1998, pp. 585-590.
Brunstein E., et al., “Preparation and Validation of Implantable Electrodes for the Measurement of Oxygen and Glucose,” Biomed Biochim. Acta, vol. 48 (11/12), 1989, pp. 911-917.
Cameron T., et al., “Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs,” IEEE Transactions on Biomedical Engineering, vol. 44 (9), Sep. 1997, pp. 781-790.
Chatterjee G., et al., “Poly(ether urethane) and Poly(ether urethane urea) Membranes with High H2S/CH4 Selectivity,” Journal of Membrane Science, vol. 135, 1997, pp. 99-106.
Chen C., et al., “A Noninterference Polypyrrole Glucose Biosensor,” Biosensors and Bioelectronics, vol. 22, 2006, pp. 639-643.
Chen T., et al., “Defining the Period of Recovery of the Glucose Concentration after its Local Perturbation by the Implantation of a Miniature Sensor,” Clinical Chemistry and Laboratory Medicine, vol. 40 (8), 2002, pp. 786-789.
Chia C.W., et al., “Glucose Sensors: Toward Closed Loop Insulin Delivery,” Endocrinology and Metabolism Clinics of North America, vol. 33, 2004, pp. 175-195.
Choleau C., et al., “Calibration of a Subcutaneous Amperometric Glucose Sensor Implanted for 7 Days in Diabetic Patients Part 2. Superiority of the One-point Calibration Method,” Biosensors and Bioelectronics, vol. 17 (8), 2002, pp. 647-654.
Choleau C., et al., “Calibration of a Subcutaneous Amperometric Glucose Sensor Part 1. Effect of Measurement Uncertainties on the Determination of Sensor Sensitivity and Background Current,” Biosensors and Bioelectronics, vol. 17, 2002, pp. 641-646.
Clarke W.L., et al., “Evaluating Clinical Accuracy of Systems for Self Monitoring of Blood Glucose,” Technical Articles, Diabetes Care, vol. 10 (5), Sep.-Oct. 1987, pp. 622-628.
Clarke W.L., et al., “Evaluating the Clinical Accuracy of Two Continuous Glucose Sensors Using Continuous Glucose-Error Grid Analysis,” Emerging Treatment and Technologies, Diabetes Care, vol. 28(10), Oct. 2005, pp. 2412-2417.
Copeland J.G., et al., “Synthetic Membrane Neo-Pericardium Facilitates Total Artificial Heart Explanation,” The Journal of Heart Lung Transplantation, vol. 20(6), Jun. 2001, pp. 654-656.
Coulet P.R., “Polymeric Membranes and Coupled Enzymes in the Design of Biosensors,” Journal of Membrane Science, 1992, vol. 68, pp. 217-228.
Coulet P.R., et al., “Enzymes Immobilized on Collagen Membranes: A Tool for Fundamental Research and Enzyme Engineering,” Journal of Chromatography, vol. 215, 1981, pp. 65-72.
Csoregi E., et al., “Amperometric Microbiosensors for Detection of Hydrogen Peroxide and Glucose Based on Peroxidase-Modified Carbon Fibers,” Electroanalysis, vol. 6, 1994, pp. 925-933.
Currie J.F., et al., “Novel Non-Intrusive Trans-Dermal Remote Wireless Micro-Fluidic Monitoring System Applied to Continuous Glucose and Lactate Assays for Casualty Care and Combat Readiness Assessment,” RTO HFM Symposium, RTO-MP-HFM-109, Aug. 16-18, 2004, pp. 24-1-24-18.
Dai W.S., et al., “Hydrogel Membranes with Mesh Size Asymmetry based on the Gradient Crosslinking of Poly(Vinyl Alcohol),” Journal of Membrane Science, 1999, vol. 156, pp. 67-79.
D'Arrigo, et al., “Porous-Si Based Bio Reactors for Glucose Monitoring and Drugs Production,” Proceedings of SPIE, 2003, vol. 4982, pp. 178-184.
Dassau E., et al., “Real-Time Hypoglycemia Prediction Suite Using Continuous Glucose Monitoring,” Emerging Treatment and Technologies, Diabetes Care, vol. 33 (6), Jun. 2010, pp. 1249-1254.
Declaration presented during Opposition proceedings EP2407094, Pace L., Nov. 13, 2015. 6 pages.
Declaration presented during Opposition proceedings EP2407094, Schoonmaker R., Dec. 14, 2015, 10 pages.
Definition of plunger: https://www.merriam-webster.com/dictionary/plunger,dated Nov. 7, 2016, 2 pages.
Deutsch T., et al., “Time Series Analysis and Control of Blood Glucose Levels in Diabetic Patients,” Computer Methods and Programs in Biomedicine, Elsevier Scientific Publishers, vol. 41, 1994, pp. 167-182.
Dobson, et al.,“1-Butyrul-Glycerol: A Novel Angiogenesis Factor Secreted by Differentiating Adipocytes,” Cell, Apr. 20, 1990, vol. 61 (2), pp. 223-230.
English D., et al., “Platelet-Released Phospholipids Link Haemostasis and Angiogenesis,” Cardiovascular Research, 2001, vol. 49, pp. 588-599.
European Electronic File History for EP Application No. 10195447.7, filed Jul. 13, 2005—withdrawn, 200 pages.
European Electronic File History for EP Application No. 10195504.5, filed Jul. 13, 2005—withdrawn, 186 pages.
European Electronic File History for EP Application No. 11182615.2, filed Feb. 22, 2006, 344 pages.
European Electronic File History for EP Application No. 11182630.1, filed Sep. 23, 2011, 336 pages.
European Electronic File History for EP Application No. 14184330.0, filed Sep. 10, 2014, 377 pages.
European Electronic File History for EP Application No. 17198022.0, filed Oct. 24, 2017, 339 pages.
European Electronic File History for EP Patent Application No. 06773682.7 filed Jun. 20, 2006, 1697 pages.
European Electronic File History for EP Patent No. 1804650 (05771643.3) granted Mar. 14, 2012, 3733 pages.
European Electronic File History for EP Patent No. 1855588 (06748336.2), granted Nov. 21, 2007, 862 pages.
European Electronic File History for EP Patent No. 1986543 (06736006.5) granted Dec. 13, 2011, 1895 pages.
European Electronic File History for EP Patent No. 2322094 (10195496.4) granted Mar. 5, 2014, 1778 pages.
European Electronic File History for EP Patent No. 2327362 (10195517.7) granted Nov. 13, 2013, 423 pages.
European Electronic File History for EP Patent No. 2327984 (10195521.9) granted Feb. 25, 2015, 394 pages.
European Electronic File History for EP Patent No. 2329770 (10195509.4) granted Sep. 10, 2014, 1274 pages.
European Electronic File History for EP Patent No. 2332466 (10195483.2) granted Apr. 9, 2014, 484 pages.
European Electronic File History for EP Patent No. 2335582 (10195511.0) granted Sep. 10, 2014, 608 pages.
European Electronic File History for EP Patent No. 2335583 (10195520.1) granted Mar. 18, 2015, 677 pages.
European Electronic File History for EP Patent No. 2335584 (10195519.3) granted Jun. 17, 2015, 796 pages.
European Electronic File History for EP Patent No. 2335585 (10195508.6) granted Sep. 7, 2016, 722 pages.
European Electronic File History for EP Patent No. 2335586 (10195514.4) granted Feb. 19, 2014, 526 pages.
European Electronic File History for EP Patent No. 2335587 (10195518.5) granted Feb. 19, 2014, 1314 pages.
European Electronic File History for EP Patent No. 2407094 (11182622.8) granted Oct. 22, 2014, 2417 pages.
European Electronic File History for EP Patent No. 2499969 (12151826.0) granted Jun. 4, 2014, 814 pages.
European Electronic File History for EP Patent No. 2517623 (12151823.7) granted Mar. 2, 2016, 864 pages.
European Electronic File History for EP Patent No. 2532302 (12151819.5) granted Nov. 18, 2015, 845 pages.
European Electronic File History for EP Patent No. 2532305 (12171365.5) granted Aug. 13, 2014, 504 pages.
European Electronic File History for EP Patent No. 2561807 (12193934.2) granted Oct. 5, 2016, revoked Jan. 31, 2019, 2496 pages.
European Electronic File History for EP Patent No. 2596747 (13156245.6) granted Oct. 25, 2017, 1091 pages.
European Electronic File History for EP Publication No. 3001952 (15195173.8), published Apr. 16, 2016, 237 pages.
European Electronic File History for EP Publication No. 3111832 (16179208.0), published Jan. 4, 2017—pending, 191 pages.
Extended European Search Report for Application No. 98908875.2 dated Apr. 29, 2004, 5 pages.
Fabietti P.G., et al., “Clinical Validation of a New Control-Oriented Model of Insulin and Glucose Dynamics in Subjects with Type 1 Diabetes,” Diabetes Technology & Therapeutics, vol. 9 (4), 2007, pp. 327-338.
Farlex, Inc, Definition of term “elastomeric”, Free Dictionary, Copyright 2008, retrieved from http://www.thefreedictionary.com/elastomeric, 3 pages.
Farlex, Inc., “Statistical Distribution—Definition of Statistical Distribution by the Free Dictionary-Thesaurus,” 2003-2016, 2 pages.
File History of U.S. Appl. No. 09/334,996, filed Jun. 17, 1999, 36 pages.
File History of U.S. Appl. No. 09/447,227, filed Nov. 22, 1999, 1184 pages.
File History of U.S. Appl. No. 09/489,588, filed Jan. 21, 2000, 412 pages.
File History of U.S. Appl. No. 09/636,369, filed Aug. 11, 2000, 91 pages.
File History of U.S. Appl. No. 09/916,711, filed Jul. 27, 2001, 400 pages.
File History of U.S. Appl. No. 09/916,858, filed Jul. 27, 2001, 243 pages.
File History of U.S. Appl. No. 10/153,356, filed May 22, 2002, 326 pages.
File History of U.S. Appl. No. 10/632,537, filed Aug. 1, 2003, 211 pages.
File History of U.S. Appl. No. 10/633,329, filed Aug. 1, 2003, 711 pages.
File History of U.S. Appl. No. 10/633,367, filed Aug. 1, 2003, 432 pages.
File History of U.S. Appl. No. 10/633,404, filed Aug. 1, 2003, 270 pages.
File History of U.S. Appl. No. 10/646,333, filed Aug. 22, 2003, 303 pages.
File History of U.S. Appl. No. 10/647,065, filed Aug. 22, 2003, 203 pages.
File History of U.S. Appl. No. 10/648,849, filed Aug. 22, 2003, 803 pages.
File History of U.S. Appl. No. 10/695,636, filed Oct. 28, 2003, 194 pages.
File History of U.S. Appl. No. 10/789,359, filed Feb. 26, 2004, 361 pages.
File History of U.S. Appl. No. 10/838,658, filed May 3, 2004, 748 pages.
File History of U.S. Appl. No. 10/838,909, filed May 3, 2004, 356 pages.
File History of U.S. Appl. No. 10/838,912, filed May 3, 2004, 1288 pages.
File History of U.S. Appl. No. 10/842,716, filed May 10, 2004, 670 pages.
File History of U.S. Appl. No. 10/846,150, filed May 14, 2004, 382 pages.
File History of U.S. Appl. No. 10/885,476, filed Jul. 6, 2004, 226 pages.
File History of U.S. Appl. No. 10/896,637, filed Jul. 21, 2004, 295 pages.
File History of U.S. Appl. No. 10/896,639, filed Jul. 21, 2004, 337 pages.
File History of U.S. Appl. No. 10/896,772, filed Jul. 21, 2004, 210 pages.
File History of U.S. Appl. No. 10/897,312, filed Jul. 21, 2004, 238 pages.
File History of U.S. Appl. No. 10/897,377, filed Jul. 21, 2004, 178 pages.
File History of U.S. Appl. No. 11/039,269, filed Jan. 19, 2005, 209 pages.
File History of U.S. Appl. No. 11/077,883, filed Mar. 10, 2005, 1159 pages.
File History of U.S. Appl. No. 11/078,230, filed Mar. 10, 2005, 535 pages.
File History of U.S. Appl. No. 11/157,365, filed Jun. 21, 2005, 977 pages.
File History of U.S. Appl. No. 11/157,746, filed Jun. 21, 2005, 603 pages.
File History of U.S. Appl. No. 11/158,227, filed Jul. 21, 2004, 474 pages.
File History of U.S. Appl. No. 11/201,445, filed Jul. 21, 2004, 120 pages.
File History of U.S. Appl. No. 11/280,102, filed Nov. 16, 2005, 109 pages.
File History of U.S. Appl. No. 11/280,672, filed Nov. 16, 2005, 572 pages.
File History of U.S. Appl. No. 11/333,837, filed Jan. 17, 2006, 672 pages.
File History of U.S. Appl. No. 11/334,107, filed Jan. 17, 2006.
File History of U.S. Appl. No. 11/335,879, filed Jan. 18, 2006, 499 pages.
File History of U.S. Appl. No. 11/360,819, filed Feb. 22, 2006, 778 pages.
File History of U.S. Appl. No. 11/373,628, filed Mar. 9, 2006, 532 pages.
File History of U.S. Appl. No. 11/411,656, filed Apr. 26, 2006, 285 pages.
File History of U.S. Appl. No. 11/415,593, filed May 2, 2006, 160 pages.
File History of U.S. Appl. No. 11/415,999, filed May 2, 2006, 154 pages.
File History of U.S. Appl. No. 11/416,375, filed May 2, 2006, 153 pages.
File History of U.S. Appl. No. 11/439,559, filed May 23, 2006, 155 pages.
File History of U.S. Appl. No. 11/439,800, filed May 23, 2006, 157 pages.
File History of U.S. Appl. No. 11/445,792, filed Jun. 1, 2006, 811 pages.
File History of U.S. Appl. No. 11/503,367, filed Aug. 10, 2006, 1169 pages.
File History of U.S. Appl. No. 11/618,706, filed Dec. 29, 2006, 288 pages.
File History of U.S. Appl. No. 11/681,145, filed Mar. 1, 2007, 684 pages.
File History of U.S. Appl. No. 11/690,752, filed Mar. 23, 2007, 528 pages.
File History of U.S. Appl. No. 11/695,607, filed Mar. 4, 2007, 615 pages.
File History of U.S. Appl. No. 11/734,178, filed Apr. 11, 2007, 512 pages.
File History of U.S. Appl. No. 11/734,184, filed Apr. 11, 2007, 531 pages.
File History of U.S. Appl. No. 11/734,203, filed Apr. 11, 2007, 606 pages.
File History of U.S. Appl. No. 11/742,546, filed Apr. 30, 2007, 348 pages.
File History of U.S. Appl. No. 11/766,747, filed Jun. 21, 2007, 789 pages.
File History of U.S. Appl. No. 11/797,520, filed May 3, 2007, 406 pages.
File History of U.S. Appl. No. 11/797,521, filed May 3, 2007, 374 pages.
File History of U.S. Appl. No. 11/842,139, filed Aug. 21, 2007.
File History of U.S. Appl. No. 11/842,142, filed Aug. 21, 2007.
File History of U.S. Appl. No. 11/842,143, filed Aug. 21, 2007, 235 pages.
File History of U.S. Appl. No. 11/842,146, filed Aug. 20, 2007.
File History of U.S. Appl. No. 11/842,148, filed Aug. 21, 2007.
File History of U.S. Appl. No. 11/842,149, filed Aug. 21, 2007, 256 pages.
File History of U.S. Appl. No. 11/842,151, filed Aug. 21, 2007, 252 pages.
File History of U.S. Appl. No. 11/842,154, filed Aug. 21, 2007.
File History of U.S. Appl. No. 11/842,157, filed Aug. 21, 2007, 167 pages.
File History of U.S. Appl. No. 11/928,968, filed Oct. 30, 2007, 741 pages.
File History of U.S. Appl. No. 12/101,806, filed Apr. 11, 2008, 611 pages.
File History of U.S. Appl. No. 12/101,810, filed Apr. 11, 2008, 569 pages.
File History of U.S. Appl. No. 12/137,396, filed Jun. 11, 2008, 278 pages.
File History of U.S. Appl. No. 12/175,391, filed Jul. 17, 2008, 564 pages.
File History of U.S. Appl. No. 12/245,618, filed Oct. 3, 2008, 214 pages.
File History of U.S. Appl. No. 12/250,918, filed Oct. 14, 2008, 333 pages.
File History of U.S. Appl. No. 12/273,359, filed Nov. 18, 2008, 312 pages.
File History of U.S. Appl. No. 12/329,496, filed Dec. 5, 2008, 438 pages.
File History of U.S. Appl. No. 12/353,870, filed Jan. 14, 2009, 425 pages.
File History of U.S. Appl. No. 12/359,207, filed Jan. 23, 2009, 546 pages.
File History of U.S. Appl. No. 12/364,786, filed Feb. 3, 2009, 1230 pages.
File History of U.S. Appl. No. 12/391,148, filed Feb. 23, 2009, 484 pages.
File History of U.S. Appl. No. 12/393,887, filed Feb. 26, 2009, 502 pages.
File History of U.S. Appl. No. 12/405,883, filed Mar. 17, 2009, 215 pages.
File History of U.S. Appl. No. 12/437,436, filed May 7, 2009, 524 pages.
File History of U.S. Appl. No. 12/537,245, filed Aug. 6, 2009, 107 pages.
File History of U.S. Appl. No. 12/610,866, filed Nov. 2, 2009, 682 pages.
File History of U.S. Appl. No. 12/683,724, filed Jan. 7, 2010, 497 pages.
File History of U.S. Appl. No. 12/683,755, filed Jan. 7, 2010, 694 pages.
File History of U.S. Appl. No. 12/728,032, filed Mar. 19, 2010, 819 pages.
File History of U.S. Appl. No. 12/728,060, filed Mar. 19, 2010, 323 pages.
File History of U.S. Appl. No. 12/728,061, filed Mar. 19, 2010, 437 pages.
File History of U.S. Appl. No. 12/728,082, filed Mar. 19, 2010, 802 pages.
File History of U.S. Appl. No. 12/729,035, filed Mar. 22, 2010, 466 pages.
File History of U.S. Appl. No. 12/729,048, filed Mar. 22, 2010, 488 pages.
File History of U.S. Appl. No. 12/730,072, filed Mar. 23, 2010, 278 pages.
File History of U.S. Appl. No. 12/748,154, filed Mar. 26, 2010, 419 pages.
File History of U.S. Appl. No. 12/749,139, filed Mar. 29, 2010, 489 pages.
File History of U.S. Appl. No. 12/749,981, filed Mar. 30, 2010, 662 pages.
File History of U.S. Appl. No. 12/775,315, filed May 6, 2010, 447 pages.
File History of U.S. Appl. No. 12/780,606, filed May 14, 2010, 372 pages.
File History of U.S. Appl. No. 12/780,723, filed May 14, 2010, 519pages.
File History of U.S. Appl. No. 12/780,725, filed May 14, 2010, 415 pages.
File History of U.S. Appl. No. 12/780,739, filed May 14, 2010, 346 pages.
File History of U.S. Appl. No. 12/780,759, filed May 14, 2010, 348 pages.
File History of U.S. Appl. No. 12/853,235, filed Aug. 9, 2010, 374 pages.
File History of U.S. Appl. No. 13/077,884, filed Mar. 31, 2011, 635 pages.
File History of U.S. Appl. No. 13/086,160, filed Apr. 13, 2011, 967 pages.
File History of U.S. Appl. No. 13/116,871, filed May 26, 2011, 475 pages.
File History of U.S. Appl. No. 13/157,031, filed Jun. 9, 2011, 514 pages.
File History of U.S. Appl. No. 13/172,640, filed Jun. 29, 2011, 436 pages.
File History of U.S. Appl. No. 13/361,820, filed Jan. 30, 2012, 383 pages.
File History of U.S. Appl. No. 13/415,721, filed Mar. 8, 2012, 473 pages.
File History of U.S. Appl. No. 13/547,952, filed Jul. 12, 2012, 539 pages.
File History of U.S. Appl. No. 13/548,627, filed Jul. 13, 2012, 361 pages.
File History of U.S. Appl. No. 13/549,313, filed Jul. 13, 2012, 354 pages.
File History of U.S. Appl. No. 13/607,162, filed Sep. 7, 2012, 420 pages.
File History of U.S. Appl. No. 13/620,574, filed Sep. 14, 2012, 318 pages.
File History of U.S. Appl. No. 13/893,237, filed May 13, 2013, 569 pages.
File History of U.S. Appl. No. 13/903,609, filed May 28, 2013, 401 pages.
File History of U.S. Appl. No. 13/909,962, filed Jun. 4, 2013, 723 pages.
File History of U.S. Appl. No. 13/938,103, filed Jul. 9, 2013, 393 pages.
File History of U.S. Appl. No. 14/144,523, filed Dec. 30, 2013, 405 pages.
File History of U.S. Appl. No. 14/283,153, filed May 20, 2014, 568 pages.
File History of U.S. Appl. No. 14/293,298, filed Jun. 2, 2014, 565 pages.
File History of U.S. Appl. No. 14/296,735, filed Jun. 5, 2014, 637 pages.
File History of U.S. Appl. No. 14/552,398, filed Nov. 24, 2014, 422 pages.
File History of U.S. Appl. No. 14/590,483, filed Jan. 6, 2015, 556 pages.
File History of U.S. Appl. No. 14/743,777, filed Jun. 18, 2015, 392 pages.
File History of U.S. Appl. No. 14/860,602, filed Sep. 21, 2015, 429 pages.
File History of U.S. Appl. No. 14/923,350, filed Oct. 26, 2015, 476 pages.
File History of U.S. Appl. No. 14/924,030, filed ct. 27, 2015, 403 pages.
File History of U.S. Appl. No. 15/065,623, filed Mar. 9, 2016, 401 pages.
File History of U.S. Appl. No. 15/470,766, filed Mar. 27, 2017, 336 pages.
File History of U.S. Appl. No. 15/686,650, filed Aug. 25, 2017, 296 pages.
File History of U.S. Appl. No. 15/719,298, filed Sep. 28, 2017, 258 pages.
File History of U.S. Appl. No. 15/787,595, filed Oct. 18, 2017, 230 pages.
File History of U.S. Appl. No. 15/797,986, filed Oct. 30, 2017, 342 pages.
File History of U.S. Appl. No. 15/798,097, filed Oct. 30, 2017, 323 pages.
File History of U.S. Appl. No. 15/877,311, filed Jan. 22, 2018, 208 pages.
File History of U.S. Appl. No. 15/891,201, filed Feb. 7, 2018, 364 pages.
File History of U.S. Appl. No. 15/967,338, filed Apr. 30, 2018, 191 pages.
File History of U.S. Appl. No. 16/017,668, filed Jun. 25, 2018, 308 pages.
File History of U.S. Appl. No. 16/133,469, filed Sep. 17, 2018, 178 pages.
File History of U.S. Appl. No. 16/137,411, filed Sep. 20, 2018, 174 pages.
File History of U.S. Appl. No. 16/179,662, filed Nov. 2, 2018, 272 pages.
File History of U.S. Appl. No. 16/181,678, filed Nov. 6, 2018, 155 pages.
File History of U.S. Appl. No. 60/362,899, filed Mar. 8, 2002, 67 pages.
File History of U.S. Appl. No. 60/527,892, filed Dec. 8, 2003, 25 pages.
File History of U.S. Appl. No. 60/528,382, filed Dec. 9, 2003, 182 pages.
File History of U.S. Appl. No. 60/587,787, filed Jul. 13, 2004, 70 pages.
File History of U.S. Appl. No. 60/587,800, filed Jul. 13, 2004, 29 pages.
File History of U.S. Appl. No. 60/614,683, filed Sep. 30, 2004, 465 pages.
File History of U.S. Appl. No. 60/614,764, filed Sep. 30, 2004, 657 pages.
File History of U.S. Appl. No. 60/660,743, filed Mar. 10, 2005, 104 pages.
File History of U.S. Appl. No. 90/011,663, filed Apr. 29, 2011, 306 pages.
File History of U.S. Appl. No. 90/011,887, filed Oct. 7, 2011, 769 pages.
File History of U.S. Appl. No. 90/012,558, filed Sep. 13, 2012, 294 pages.
File History of U.S. Appl. No. 95/001,038, filed Apr. 17, 2008, 1332 pages.
File History of U.S. Appl. No. 95/001,039, filed Apr. 17, 2008, 1409 pages.
File History of U.S. Appl. No. 95/002,333, filed Sep. 14, 2012, 556 pages.
File History of U.S. Appl. No. 11/334,876, filed Jan. 18, 2006, 751 pages.
File History of U.S. Appl. No. 11/360,250, filed Feb. 22, 2006, 950 pages.
File History of U.S. Appl. No. 11/360,252, filed Feb. 22, 2006, 594 pages.
File History of U.S. Appl. No. 90/011,333, filed Nov. 15, 2010, 315 pages.
File History of U.S. Appl. No. 90/011,720, filed Nov. 15, 2010, 361 pages.
Freiberger P., “Video Game Takes on Diabetes Superhero ‘Captain Novolin’ Offers Treatment Tips,” Fourth Edition, Jun. 26, 1992, Business Section, 2 pages.
Gao S., et al., “Determination of Interfacial Parameters of Cellulose Acetate Membrane Materials by HPLC,” Journal of Liquid Chromatography, 1989, vol. 12(11), pp. 2083-2092.
Garg S.K., et al., “Correlation of Fingerstick Blood Glucose Measurements With GlucoWatch Biographer Glucose Results in Young Subjects With Type 1 Diabetes,” Emerging Treatments and Technologies, Diabetes Care, vol. 22 (10), Oct. 1999, pp. 1708-1714.
Geller R.I., et al., “Use of an Immunoisolation Device for Cell Transplantation and Tumor Immunotherapy,” Annals of the New York Academy of Science, 1997, vol. 831, pp. 438-451.
Gerritsen M., et al., “Influence of Inflammatory Cells and Serum on the Performance of Implantable Glucose Sensors,” Journal of Biomedical Material Research, 2001, vol. 54, pp. 69-75.
Gore Preclude®, Pericardial Membrane Brochure, Jun. 2009. W.L. Gore & Associates Inc., Flagstaff, AZ 86004.
Gore Preclude®, Pericardial Membrane Brochure, Nov. 2001, W.L. Gore & Associates Inc., Flagstaff, AZ-86004, 4 pages.
Gough D.A., “The implantable Glucose Sensor: An Example of Bioengineering Design,” Introduction to Bioengineering, 2001, Chapter 3, pp. 57-66.
Gregg B A., et al., “Cross-Linked Redox Gels Containing Glucose Oxidase for Amperometric Biosensor Applications,” Anal Chem, 1990, vol. 62, pp. 258-263.
Guerra S., et al., “Enhancing the Accuracy of Subcutaneous Glucose Sensors: A Real-Time Deconvolution-Based Approach,” IEEE Transactions on Biomedical Engineering, vol. 59(6), Jun. 2012, pp. 1658-1669.
Guo M., et al., “Modification of Cellulose Acetate Ultrafiltration Membrane by Gamma Ray Radiation,” Shuichuli Jishi Bianji Weiyuanhui, 1998, vol. 23(6), pp. 315-318. (Abstract only).
Halvorsen C., et al., “Vasodilation of Rat Retinal Microvessels Induced by Monobutyrin,” Journal of Clinical Investigation, Dec. 1993, vol. 92, pp. 2872-2876.
Harada, et al., “Long-Term Results of the Clinical Use of an Expanded Polytetrafluoroethylene Surgical Membrane as a Pericardial Substitute,” Journal of Thoracic and Cardiovascular Surgery, 1988, vol. 96(5), pp. 811-815.
Harrison, et al., “Characterization of Perfluorosulfonic Acid Polymer Coated Enzyme Electrodes and a Miniaturized Integrated Potentiostat for Glucose Analysis in Whole Blood,” Analytical Chemistry, 1988, vol. 60, pp. 2002-2007.
Heise T., et al., “Hypoglycemia warning signal and glucose sensors: Requirements and concepts,” Diabetes Technology & Therapeutics, vol. 5, No. 4, 2003, pp. 563-571.
Heller A., “Electrical Wiring of Redox Enzymes,” Ace. Chem. Res., vol. 23, 1990, pp. 128-134.
Heller, et al., “In vivo Glucose Monitoring with Miniature “Wired” Glucose Oxidase Electrodes,” Analytical Sciences, 2001, vol. 17 Supplement, pp. i297-i300.
Heydron W H., et al., “A New Look at Pericardial Substitutes”, Journal of Thoracic and Cardiovascular Surgery, 1987, vol. 94(2), pp. 291-296.
International Preliminary Report on Patentability for Application No. PCT/US2005/014696 dated Nov. 7, 2006, 6 pages.
International Preliminary Report on Patentability for Application No. PCT/US2006/008616 dated Mar. 3, 2009, 7 pages.
International Search Report and Written Opinion for Application No. PCT/US2005/014696 dated Jun. 29, 2006, 8 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/008616 dated Mar. 13, 2008, 9 pages.
International Search Report and Written Opinion for Application No. PCT/US2006/019889 dated Feb. 20, 2007, 6 pages.
International Search Report for Application No. PCT/US2001/023850 dated Jan. 16, 2002, 3 pages.
International Search Report for Application No. PCT/US2003/015816 dated Sep. 22, 2003, 4 pages.
Jaremko J., et al., “Advances Toward the Implantable Artificial Pancreas for Treatment of Diabetes,” Diabetes Care, vol. 21 (3), Mar. 1998, pp. 444-450.
Jeong R.A., et al., “In Vivo Calibration of the Subcutaneous Amperometric Glucose Sensors Using a Non-Enzyme Electrode,” Biosensors and Bioelectronics, Elsevier, vol. 19, 2003, pp. 313-319.
Jeutter D.C., et al., “Design of a Radio-Linked Implantable Cochlear Prosthesis Using Surface Acoustic Wave Devices,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 40 (5), Sep. 1993, pp. 469-477.
Johnson R C., et al., “Abstract: Neovascularization of Cell Transplantation Devices: Role of Membrane Architecture and Encapsulated Tissue,” Abstracts of Papers, American Chemical Society, Sep. 7-11, 1997, 214th ACS National Meeting, Part 2, 305-PMSE, 2 pages.
Joung G.B., et al., “An Energy Transmission System for an Artificial Heart Using Leakage Inductance Compensation of Transcutaneous Transformer,” IEEE Transactions on Power Electronics, vol. 13 (6), Nov. 1998, pp. 1013-1022.
Kamath, et al., “Analysis of Time Lags and Other Sources of Error of the DexCom Seven Continuous Glucose Monitor,” Diabetics Technology and Therapeutic, Nov. 2009, vol. 11, No. 11, pp. 689-695.
Kargol M., et al., “Studies on the Structural Properties of Porous Membranes: Measurement of Linear Dimensions of Solutes,” Biophysical Chemistry, 2001, vol. 91, pp. 263-271.
Karube I., et al., “Microbiosensors for Acetylcholine and Glucose,” Biosensors & Bioelectronics, 1993, vol. 8, pp. 219-228.
Kerner W., “Implantable Glucose Sensors: Present Status and Future Developments,” Experimental and Clinical Endocrinol Diabetes, vol. 109 (2), 2001, pp. S341-S346.
Kidd K R., et al., “Angiogenesis and Neovascularization Associated with Extracellular Matrix Modified Porous Implants,” Journal of Biomedical Materials Research, 2001, vol. 59(2), pp. 366-377.
Kiechle F.L., “The Impact of Continuous Glucose Monitoring on Hospital Point-of-Care Testing Programs,” Diabetes Technology and Therapeutics, vol. 3 (4), 2001, pp. 647-650.
Klueh U., et al., “Inflammation and Glucose Sensors: Use of Dexamethasone to Extend Glucose Sensor Function and Life Span in Vivo,” Journal of Diabetes Science and Technology, vol. 1 (4), Jul. 2007, pp. 496-504.
Krouwer J.S., “Setting Performance Goals and Evaluating Total Analytical Error for Diagnostic Assays,” Clinical Chemistry, vol. 48 (6), 2002, pp. 919-927.
Kugler J D., et al., “A New Steroid-Eluting Epicardial Lead: Experience with Atrial and Ventricular Implantation in the Immature Swine,” PACE, Aug. 1990, vol. 13, pp. 976-981.
Kunzler J F., et al., “Contact Lens Materials,” Chemistry & Industry, Aug. 21, 1995, pp. 651-655.
Kunzler J., et al.,“Hydrogels based on Hydrophilic Side Chain Siloxanes,” Poly Mat Sci and Eng, 1993, vol. 69, pp. 226-227.
Kurnik R.T., et al., “Application of the Mixtures of Experts Algorithm for Signal Processing in a Noninvasive Glucose Monitoring System,” Sensors and Actuators B, vol. 60, 1999, pp. 19-26.
Lacourse W.R., et al., “Optimization of Waveforms for Pulsed Amperometric Detection of Carbohydrates Based on Pulsed Voltammetry,” Analytical Chemistry, vol. 65, 1993, pp. 50-52.
Lee E., et al., “Effects of Pore Size, Void Volume, and Pore Connectivity on Tissue Responses to Porous Silicone Implants,” Society for Biomaterials, 25th Annual Meeting, 1999, p. 171.
Leprince P., et al., “Expanded Polytetrafluoroethylene Membranes to Wrap Surfaces of Circulatory Support Devices in Patients Undergoing Bridge to Heart Transplantation,” European Journal of Cardiothoracic Surgery, 2001, vol. 19, pp. 302-306.
Loebe M., et al., “Use of Polytetrafluoroethylene Surgical Membranes as a Pericardial Substitute,” PTFE Membrane in Correction of Congenital Heart Defects, Texas Heart Institute Journal, 1993, vol. 20, No. 3, pp. 213-217.
Loffler P., et al., “Separation and Determination of Traces of Ammonia in Air by Means of Chromatomembrane Cells,” Fresenius Journal of Analytical Chemistry, 1995, vol. 352, pp. 613-614.
Lohn A., et al., “A Knowledge-Based System for Real-Time Validation of Calibrations and Measurements,” Chemometrics and Intelligent Laboratory Systems, vol. 46, 1999, pp. 57-66.
Lyman D J., “Polyurethanes. I. The Solution Polymerization of Diisocyanates with Ethylene Glycol,” Journal of Polymer Science, 1960, vol. XLV, pp. 45-49.
Lynch S.M., et al., “Estimation-Based Model Predictive Control of Blood Glucose in Type I Diabetics: A Simulation Study,” Proceedings of the IEEE 27th Annual Northeast Bioengineering Conference, 2001, pp. 79-80.
Lynn P.A., “Recursive Digital Filters for Biological Signals,” Med. & Biol. Engineering, vol. 9, 1971, pp. 37-43.
Madaras M B., et al., “Microfabricated Amperometric Creatine and Creatinine Biosensors,” Analytica Chimica Acta, 1996, vol. 319, pp. 335-345.
Mancy K.H., et al., “A Galvanic Cell Oxygen Analyzer,” Journal of Electroanalytical Chemistry, vol. 4, 1962, pp. 65-92.
Martin R.F., “General Deming Regression for Estimating Systematic Bias and its Confidence Interval in Method-Comparison Studies,” Clinical Chemistry, vol. 46 (1), 2000, pp. 100-104.
Mathivanar R., et al., “In Vivo Elution Rate of Drug Eluting Ceramic Leads with a Reduced Dose of Dexamethasone Sodium Phosphate,” PACE, vol. 13, Part II, Dec. 1990, pp. 1883-1886.
Matsuki H., “Energy Transfer System Utilizing Amorphous Wires for Implantable Medical Devices,” IEEE Transactions on Magnetics, vol. 31 (2), 1994, pp. 1276-1282.
Mazzola F., et al., “Video Diabetes: A Teaching Tool for Children with Insulin-Dependent Diabetes,” IEEE, Proceedings 7th Annual Symposium on Computer Applications in Medical Care, Oct. 1983, 1 page Abstract.
Metzger M., et al., “Reproducibility of Glucose Measurements using the Glucose Sensor,” Diabetes Care, vol. 25 (6), Jul. 2002, pp. 1185-1191.
Mid-West Innovators, Inc., “Durometer Product Description,” 2014, 1 page.
Miller J.A., et al., “Development of an Autotuned Transcutaneous Energy Transfer System,” ASAIO Journal, vol. 39, 1993, pp. M706-M710.
Miller K.M., et al., “Generation of IL-1 like Activity in Response to Biomedical Polymer Implants: a Comparison of in Vitro and in Vivo Models,” Journal of Biomedical Materials Research, vol. 23(9), 1989, pp. 1007-1026.
Miller K.M., et al., “Human monocyte/macrophage activation and interleukin 1 generation by biomedical polymers,” Journal of Biomedical Materials Research, vol. 22 (8), 1988, pp. 713-731.
Miller K.M., et al., “In Vitro Stimulation of Fibroblast Activity by Factors Generated from Human Monocytes Activated by Biomedical Polymers,” Journal of Biomedical Materials Research, vol. 23(8), 1989, pp. 911-930.
Minale C., et al., “Clinical Experience with Expanded Polytetrafluoroethylene Gore-Tex Surgical Membrane for Pericardial Closer: A Study of 110 Cases,” Journal of Cardiac Surgery, vol. 3, Sep. 1988, pp. 193-201.
Mond H.G., et al., “The Electrode-Tissue Interface: The Revolutionary Role of Steroid Elution,” PACE, vol. 15, Jan. 1992, pp. 95-107.
Monsod T.P., et al., “Do Sensor Glucose Levels Accurately Predict Plasma Glucose Concentrations During Hypoglycemia and Hyperinsulinemia? ,”Diabetes Care, vol. 25 (5), 2002, pp. 889-893.
Moussy F., et al., “A Miniaturized Nafion-Based Glucose Sensor: In Vitro and In Vivo Evaluation in Dogs,” International Journals of Artificial Organs, vol. 17 (2), 1994, pp. 88-94.
Moussy F., et al., “Biomaterials community examines biosensor biocompatibility,” Diabetes Technology & Therapeutics, vol. 2(3), 2000, pp. 473-477.
Mowery K.A., et al., “Preparation and Characterization by Hydrophobic Polymeric Films that are Thromboresistant via Nitric Oxide Release,” Biomaterials, 2000, pp. 9-21.
Murphy S.M., et al., “Polymer Membranes in Clinical Sensor Applications, II. The Design and Fabrication of Permselective Hydrogels for Electrochemical Devices,” Biomaterials, 1992, vol. 13 (14), pp. 979-990.
Myler S., et al., “Ultra-Thin-Polysiloxane-Film-Composite Membranes for the Optimisation of Amperometric Oxidase Enzyme Electrodes,” Biosensors & Bioelectronics, vol. 17, 2002, pp. 35-43.
Nakayama Y., et al., “Surface Fixation of Hydrogels: Heparin and Glucose Oxidase Hydrogelated Surfaces” ASAIO Journal, 1992, pp. M421-M424.
Nam Y.S., et al., “A Novel Fabrication Method of Macroporous Biodegradable Polymer Scaffolds Using Gas Foaming Salt as a Porogen Additive,” J Biomed Mater Res, 2000, vol. 53, pp. 1-7.
Neuburger G.G., et al., “Pulsed Amperometric Detection of Carbohydrates at Gold Electrodes with a Two-Step Potential Waveform,” Anal. Chem., vol. 59, 1987, pp. 150-154.
Nintendo Healthcare, Wired, Dec. 1993, 1 page.
Novo Nordisk Pharmaceuticals Inc., “Diabetes Educational Video Game Recognized by Software Publishers Association,” Press Release, Mar. 14, 1994, 4 pages.
Office Action for European Application No. 10193214.3 dated May 2, 2013 and Applicant Response filed Aug. 28, 2013, 12 pages.
Office Action for U.S. Appl. No. 08/811,473, dated Dec. 7, 1998, 5 pages.
Office Action for U.S. Appl. No. 09/916,386, dated Apr. 9, 2003, 8 pages.
Office Action for U.S. Appl. No. 10/657,843, dated Sep. 21, 2004, 8 pages.
Office Action for U.S. Appl. No. 10/768,889, dated Feb. 4, 2009, 9 pages.
Office Action for U.S. Appl. No. 10/991,966, dated Jul. 22, 2008, 12 pages.
Office Action for U.S. Appl. No. 10/991,966, dated Nov. 28, 2007, 13 pages.
Office Action for U.S. Appl. No. 11/007,635, dated Jan. 27, 2006, 9 pages.
Office Action for U.S. Appl. No. 11/007,920, dated Jun. 24, 2008, 10 pages.
Office Action for U.S. Appl. No. 11/034,344, dated Jan. 15, 2008, 5 pages.
Office Action for U.S. Appl. No. 11/038,340, dated Feb. 2, 2010, 18 pages.
Office Action for U.S. Appl. No. 11/038,340, dated Jan. 5, 2009, 13 pages.
Office Action for U.S. Appl. No. 11/038,340, dated Jun. 7, 2010, 18 pages.
Office Action for U.S. Appl. No. 11/038,340, dated Jun. 17, 2008, 11 pages.
Office Action for U.S. Appl. No. 11/038,340, dated May 19, 2009, 14 pages.
Office Action for U.S. Appl. No. 11/038,340, dated Nov. 9, 2009, 16 pages.
Office Action for U.S. Appl. No. 11/055,779, dated May 23, 2007, 13 pages.
Office Action for U.S. Appl. No. 11/055,779, dated Oct. 24, 2007, 15 pages.
Office Action for U.S. Appl. No. 11/415,631, dated Mar. 4, 2010, 6 pages.
Office Action for U.S. Appl. No. 11/416,058, dated Mar. 5, 2010, 6 pages.
Office Action for U.S. Appl. No. 11/416,346, dated Mar. 4, 2010, 7 pages.
Office Action for U.S. Appl. No. 11/416,734, dated May 17, 2010, 10 pages.
Office Action for U.S. Appl. No. 11/416,734, dated Oct. 14, 2009, 11 pages.
Office Action for U.S. Appl. No. 11/416,825, dated Oct. 22, 2009, 11 pages.
Office Action for U.S. Appl. No. 11/546,157, dated Feb. 26, 2010, 6 pages.
Office Action for U.S. Appl. No. 11/691,424, dated Dec. 8, 2009, 10 pages.
Office Action for U.S. Appl. No. 11/691,424, dated Jun. 11, 2009, 21 pages.
Office Action for U.S. Appl. No. 11/691,424, dated Nov. 12, 2009, 18 pages.
Office Action for U.S. Appl. No. 11/691,424, dated Sep. 25, 2008, 15 pages.
Office Action for U.S. Appl. No. 11/691,432, dated Feb. 18, 2010, 11 pages.
Office Action for U.S. Appl. No. 11/691,432, dated Jun. 10, 2009, 17 pages.
Office Action for U.S. Appl. No. 11/691,432, dated Nov. 30, 2009, 15 pages.
Office Action for U.S. Appl. No. 11/691,432, dated Sep. 19, 2008, 11 pages.
Office Action for U.S. Appl. No. 11/691,466, dated Oct. 3, 2008, 15 pages.
Office Action for U.S. Appl. No. 12/037,812, dated Apr. 1, 2009, 5 pages.
Office Action for U.S. Appl. No. 12/037,812, dated Jul. 24, 2009, 6 pages.
Office Action for U.S. Appl. No. 12/037,812, dated Sep. 29, 2008, 7 pages.
Office Action for U.S. Appl. No. 12/037,830, dated Aug. 7, 2009, 7 pages.
Office Action for U.S. Appl. No. 12/037,830, dated Feb. 23, 2010, 7 pages.
Office Action for U.S. Appl. No. 12/037,830, dated Feb. 26, 2009, 7 pages.
Office Action for U.S. Appl. No. 12/037,830, dated Sep. 29, 2008, 6 pages.
Office Action for U.S. Appl. No. 12/052,489, dated Aug. 25, 2010, 12 pages.
Office Action for U.S. Appl. No. 12/098,359, dated Jul. 7, 2010, 18 pages.
Office Action for U.S. Appl. No. 12/102,654, dated Jul. 30, 2009, 9 pages.
Office Action for U.S. Appl. No. 12/102,654, dated Mar. 10, 2010, 6 pages.
Office Action for U.S. Appl. No. 12/102,729, dated Jul. 7, 2009, 7 pages.
Office Action for U.S. Appl. No. 12/102,745, dated Dec. 23, 2008, 4 pages.
Office Action for U.S. Appl. No. 12/133,738, dated Sep. 10, 2010, 11 pages.
Office Action for U.S. Appl. No. 12/133,761, dated Sep. 7, 2010, 11 pages.
Office Action for U.S. Appl. No. 12/182,073, dated Jun. 28, 2010, 20 pages.
Office Action for U.S. Appl. No. 12/182,083, dated Jun. 24, 2010, 8 pages.
Office Action for U.S. Appl. No. 12/536,852, dated Jun. 25, 2010, 8 pages.
Office Action for U.S. Appl. No. 12/536,852, dated Oct. 18, 2010, 10 pages.
Office Action for U.S. Appl. No. 12/619,502, dated Sep. 7, 2010, 6 pages.
Office Action for U.S. Appl. No. 12/829,337, dateded Oct. 5, 2012, 10 pages.
Office Action from European Patent Application No. 05856669.6, dated Aug. 4, 2011, 7 pages.
Office Action from European Patent Application No. 05856669.6, dated Jun. 7, 2010, 5 pages.
Office Action from European Patent Application No. 05856669.6, dated Nov. 8, 2010, 6 pages.
Office Action from Japanese Patent Application No. 2011-121598 dated Oct. 18, 2011, 9 pages.
Office Action from Japanese Patent Application No. 2012-006893 dated May 22, 2012, 4 pages.
Office Action from Japanese Patent Application No. 2012-169323 dated Oct. 16, 2012, 4 pages.
Office Action from Japanese Patent Application No. 2013-000959 dated Jan. 31, 2014, 6 pages.
Panetti T.S., “Differential Effects of Sphingosine 1-Phosphate and Lysophosphatidic Acid on Endothelial Cells,” Biochimica et Biophysica Acta, vol. 1582, 2002, pp. 190-196.
Panteleon A.E., et al., “The Role of the Independent Variable to Glucose Sensor Calibration,” Diabetes Technology & Therapeutics, vol. 5 (3), 2003, pp. 401-410.
Paramount Pds., “Durometer Made Easy (R) / Durometer Hardness Scales—General Reference Guide,” Paramount Industries Inc., 2008, 1 page.
Park I.B., et al., “Gas Separation Properties of Polysiloxane/Polyether Mixed Soft Segment Urethane Urea Membranes,” Journal of Membrane science, vol. 204, 2002, pp. 257-269.
Parker R.S., et al., “A Model-Based Algorithm for Blood Glucose Control in Type I Diabetic Patients,” IEEE Trans Biomed Engg (BME), vol. 46(2), 1999, pp. 148-157.
Pegoraro M., et al., “Gas Transport Properties of Siloxane Polyurethanes,” Journal of Applied Polymer Science, vol. 57, 1995, pp. 421-429.
Peguin S., et al., “Pyruvate Oxidase and Oxaloacetate Decarbozylase Enzyme Electrodes—Simultaneous Determination of Transaminases with a Two-electrode-based Analyzer,” Analytica Chimica Acta, vol. 222, 1989, pp. 83-93.
Phillips R.E., et al., “Biomedical Applications of Polyurethanes: Implications of Failure Mechanisms,” Journal of Biomedical application, vol. 3, Oct. 1988, pp. 206-227.
Phillips R.P., “A High Capacity Transcutaneous Energy Transmission System,” ASIAO Journal, vol. 41, 1995, pp. M259-M262.
Pickup J.C., et al., “Developing Glucose Sensors for In Vivo Use,” Elsevier Science Publishers Ltd (UK), TIBTECH, vol. 11, 1993, pp. 285-291.
Pickup J.C., et al., “Progress Towards in Vivo Glucose Sensing with a Ferrocene-Mediated Amperometric Enzyme Electrode,” Horm Metab Res Suppl, vol. 20, 1988, pp. 34-36.
Pickup J.C., et al., “Responses and Calibration of Amperometric Glucose Sensors Implanted in the Subcutaneous Tissue of Man,” Acta Diabetol, vol. 30, 1993, pp. 143-148.
Pineda L.M., et al., “Bone Regeneration with Resorbable Polymeric Membranes. III. Effect of Poly(L-lactide) Membrane Pore Size on the Bone Healing Process in Large Defects,” Journal of Biomedical Materials Research, vol. 31, 1996, pp. 385-394.
Poirier J.Y., et al., “Clinical and Statistical Evaluation of Self-Monitoring Blood Glucose Meters,” Diabetes Care, vol. 21 (11), Nov. 1998, pp. 1919-1924.
Preliminary Amendment for U.S Appl. No. 12/052,489, filed Mar. 20, 2008, 8 pages.
Radovsky A.N., et al., “Effects of Dexamethasone Elution on Tissue Reaction Around Stimulating Electrodes of Endocardial Pacing Leads in Dogs,” American Heart Journal, vol. 117 (6), Jun. 1989, pp. 1288-1298.
Rafael E., “Cell Transplantation and Immunoisolation: Studies on a Macroencapsulation Device,” Departments of Transplantation Surgery and Pathology, Karolinska Institutet, Huddinge Hospital, Stockholm, Sweden, 1999, pp. 1-82.
Ratner B.D., “Reducing Capsular Thickness and Enhancing Angiogenesis around Implant Drug Release Systems,” Journal of Controlled Release, vol. 78, 2002, pp. 211-218.
Rawlings R.A., et al., “Translating Glucose Variability Metrics into the Clinic via Continuous Glucose Monitoring: A Graphical User Interface for Diabetes Evaluation (CGM-Guide),” Diabetes Technology & Therapeutics, vol. 13 (12), 2011, pp. 1241-1248.
Rebrin K., et al., “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” The American Physiological Society, vol. 277, 1999, pp. E561-E571.
Revuelta J.M., et al., “Expanded Polytetrafluoroethylene Surgical Membrane for Pericardial Closure,” The Journal of Thoracic and cardiovascular Surgery, vol. 89 (3), Mar. 1985, pp. 451-455.
Rinken T., et al., “Calibration of Glucose Biosensors by Using Pre-Steady State Kinetic Data,” Biosensors & Bioelectronics, vol. 13, 1998, pp. 801-807.
Sachlos E., et al., “Making Tissue Engineering Scaffolds Work Review on the Application of Sold Freeform Fabrication Technology to the Production of Tissue Engineering Scaffolds,” European Cells and Materials, vol. 5, 2003, pp. 29-40.
Sanders E., et al., “Fibrous Encapsulation of Single Polymer Microfibers Depends on their Vertical Dimension in Subcutaneous Tissue Polymer Microfibers,” Journal of Biomedical Material Research, vol. 67A, 2003, pp. 1181-1187.
Schaffar B.P.H., “Thick Film Biosensors for Metabolites in Undiluted Whole Blood and Plasma Samples,” Analytical Bioanalytical Chemistry, Dec. 2001, vol. 372, pp. 254-260.
Schmidt F.J., et al., “Calibration of a Wearable Glucose Sensor,” The International Journal of Artificial Organs, vol. 15 (1), 1992, pp. 55-61.
Schuler, et al., “Modified Gas-Permeable Silicone Rubber Membranes for Covalent Immobilisation of Enzymes and their Use in Biosensor Development,” Analyst, 1999, vol. 124, pp. 1181-1184.
Selam J.L., “Management of Diabetes with Glucose Sensors and Implantable Insulin Pumps,” From the Dream of the 60s to the Realities of the 90s, ASAIO Journal 1997, vol. 43, pp. 137-141.
Shichiri M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor,” Diabetes Nutrition & Metabolism, vol. 2 (4), 1989, pp. 309-313.
Shichiri M., et al., “Telemetry Glucose Monitoring Device with Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals,” Diabetes Care, vol. 9 (3), May-Jun. 1986, pp. 298-301.
Sieminski, et al., “Biomaterial-Microvasculature Interactions,” Biomaterials, 2000, vol. 21, pp. 2233-2241.
Sigma-Aldrich Corp., “Cellulose Acetate,” Product Description, Product No. 419028, St. Louis, MO, 2005, 1 page.
Smith B., et al., “An Externally Powered, Multichannel, Implantable Stimulator-Telemeter for Control of Paralyzed Muscle,” IEEE Transactions on Biomedical Engineering, vol. 45 (4), Apr. 1998, pp. 463-475.
Smith, “The Scientist and Engineer's Guide to Digital Signal Processing,” California Technical Publishing, 1997-2007, retrieved from http://www.dspguide.com/ch19.htm on Jan. 1, 2009, 2 Pages.
Smith, et al.,“A Comparison of Islet Transplantation and Subcutaneous Insulin Injections for the Treatment of Diabetes Mellitus,” Computers in Biology and Medicine, 1991, vol. 21 (6), pp. 417-427.
Smooth-On, “Durometer Shore Hardness Scale,” downloaded from https://www.smooth-on.com/page/durometer-shore-hardness-scale/ on May 19, 2016, 1 page.
Sokolov S., et al., “Metrological Opportunities of the Dynamic Mode of Operating an Enzyme Amperometric Biosensor,” Medical Engineering & Physics, vol. 17 (6), 1995, pp. 471-476.
Sparacino G., et al., “Continuous Glucose Monitoring Time Series and Hypo-Hyperglycemia Prevention: Requirements, Methods, Open Problems,” Current Diabetes Reviews, vol. 4 (3), 2008, pp. 181-192.
Sproule B.A., et al., “Fuzzy Pharmacology: Theory and Applications,” Trends in Pharmacological Sciences, vol. 23 (9), Sep. 2002, pp. 412-417.
Sternberg F., et al., “Does Fall in Tissue Glucose Precede Fall in Blood Glucose?,” Diabetologia, vol. 39, 1996, pp. 609-612.
Sternberg R., et al., “Study and Development of Multilayer Needle-type Enzyme Based Glucose Microsensors,” Biosensors, vol. 4, 1988, pp. 27-40.
Sternberg, et al., “Covalent Enzyme Coupling on Cellulose Acetate Membranes for Glucose Sensor Development,” Anal Chem, Dec. 1988, vol. 60(24), pp. 2781-2786.
Stokes, “Polyether Polyurethanes: Biostable or Not,” Journal of Biomaterials Applications, Oct. 1988, vol. 3, pp. 228-259.
Street J.O., et al., “A Note on Computing Robust Regression Estimates Via Iteratively Reweighted Least Squares,” The American Statistician, vol. 42 (2), May 1988, pp. 152-154.
Street, et al., “Islet Graft Assessment in the Edmonton Protocol: Implications for Predicting Long-Term Clinical Outcome,” Diabetes, 2004, vol. 53, pp. 3107-3114.
Suh, et al., “Behavior of Fibroblasts on a Porous Hyaluronic Acid Incorporated Collagen Matrix,” Yonsei Medical Journal, 2002, vol. 43 (2), pp. 193-202.
Takatsu, et al., “Solid State Biosensors Using Thin-Film Electrodes,” Sensors and Actuators, 1997, vol. 11, pp. 309-317.
Tamura T., et al., “Preliminary Study of Continuous Glucose Monitoring with a Microdialysis Technique and a Null Method—A Numerical Analysis,” Frontiers of Medical & Biological Engineering, vol. 10 (2), 2000, pp. 147-156.
Tang, et al., “Fibrin(ogen) Mediates Acute Inflammatory Responses to Biomaterials,” J.Exp.Med, 1993, vol. 178, pp. 2147-2156.
Tang, et al., “Inflammatory Responses to Biomaterials,” Am J Clin Pathol, 1995, vol. 103, pp. 466-471.
Tang, et al., “Mast Cells Mediate Acute Inflammatory Responses to Implanted Biomaterials,” Proceedings of the National Academy of Sciences of the USA, 1998, vol. 95, pp. 8841-8846.
Tang, et al., “Molecular Determinants of Acute Inflammatory Responses to Biomaterials,” J Clin Invest, 1996, vol. 97, pp. 1329-1334.
Taub M.B., et al., “Numerical Simulation of the Effect of Rate of Change of Glucose on Measurement Error of Continuous Glucose Monitors,” Journal of Diabetes Science and Technology, vol. 1 (5), Sep. 2007, pp. 685-694.
Thijssen P.C.,“A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 2,Optimal Designs, Analytica chimica Acta, vol. 162, 1984, pp. 253-262.
Thijssen, et al., “A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 1,Theory and Simulations, Analytica chimica Acta, 1984, vol. 156, pp. 87-101.
Thijssen, et al., “A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 3,Variance Reduction ,Analytica chimica Acta, 1985, vol. 173, pp. 265-272.
Thijssen, et al., “A Kalman Filter for Calibration, Evaluation of Unknown Samples and Quality Control in Drifting Systems,” Part 4,Flow Injection Analysis, Analytica chimica Acta, 1985, vol. 174, pp. 27-40.
Tibell, et al., “Survival of Macroencapsulated Allogeneic Parathyroid Tissue One Year after Transplantation in Nonimmunosuppressed Humans,” Cell Transplantation, 2001, vol. 10, pp. 591-599.
Tilbury J.B., et al., “Receiver Operating Characteristic Analysis for Intelligent Medical Systems—A New Approach for Finding Confidence Intervals,” IEEE Transactions on Biomedical Engineering, vol. 47 (7), Jul. 2000, pp. 952-963.
Trajanoski Z., et al., “Neural Predictive Controller for Insulin Delivery Using the Subcutaneous Route,” IEEE Transactions on Biomedical Engineering, vol. 45(9), 1998, pp. 1122-1134.
Turner A.P.F., “Amperometric Biosensor based on Mediator-Modified Electrodes,” Methods in Enzymology, 1988, vol. 137, pp. 90-103.
Updike S.J., et al., “Continuous Glucose Monitor Based on an Immobilized Enzyme Electrode Detector,” Journal of Laboratory and Clinical Medicine, vol. 93(4), 1979, pp. 518-527.
Updike S.J., et al., “Implanting the Glucose Enzyme Electrode: Problems, Progress, and Alternative Solutions,” Diabetes Care, vol. 5 (3), May-Jun. 1982, pp. 207-212.
Valdes T.I., et al., “In Vitro and In Vivo Degradation of Glucose Oxidase Enzyme used for an Implantable Glucose Biosensor,” Diabetes Technology & Therapeutics, vol. 2 (3), 2000, pp. 367-376.
Vig, et al., “A Review of Sensor Sensitivity and Stability,” IEEE/EIA International Frequency Control Symposium and Exhibition, 2000, pp. 30-33.
Wade L.G., “Reactions of Aromatic Compounds,” Organic Chemistry, Chapter 17, 5th edition, 2003, pp. 762-763.
Wang J., “Electrochemical Glucose Biosensors,” American Chemical Society, Chemical Reviews, Published on Web Dec. 23, 2007, pp. 1-12.
Ward W.K., et al., “Assessment of Chronically Subcutaneous Glucose Sensors in Dogs: The Effect of Surrounding Fluid Masses,” ASAIO Journal, 1999, vol. 45 (6), pp. 555-561.
Wolpert H., “Establishing a Continuous Glucose Monitoring Program,” Journal of Diabetes Science and Technology, Mar. 2008, vol. 2 (2), pp. 307-310.
Yang S., et al., “Glucose Biosensors with Enzyme Entrapped in Polymer Coating,” Biomedical Instrument and Technology, Mar./Apr. 1995, vol. 29 (2), pp. 125-133.
Yang X., et al., “Polyelectrolyte and Molecular Host Ion Self-Assembly to Multilayer Thin Films: An Approach to Thin Film Chemical Sensors,” Sensors and Actuators B, vol. 45, 1997, pp. 87-92.
Zavalkoff S.R., et al., “Evaluation of Conventional Blood Glucose Monitoring as an Indicator of Integrated Glucose Values Using a Continuous Subcutaneous Sensor,” Diabetes Care, vol. 25(9), 2002, pp. 1603-1606.
Ziaie, et al., “A Single-Channel Implantable Microstimulator for Functional Neuromuscular Stimulation,” IEEE Transactions on Biomedical Engineering, 1997, vol. 44(10), pp. 909-920.
Related Publications (1)
Number Date Country
20140142405 A1 May 2014 US
Provisional Applications (4)
Number Date Country
60614764 Sep 2004 US
60614683 Sep 2004 US
60587800 Jul 2004 US
60587787 Jul 2004 US
Continuations (2)
Number Date Country
Parent 13077884 Mar 2011 US
Child 14163346 US
Parent 11077883 Mar 2005 US
Child 13077884 US