Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry

Information

  • Patent Grant
  • 10806927
  • Patent Number
    10,806,927
  • Date Filed
    Tuesday, July 12, 2016
    8 years ago
  • Date Issued
    Tuesday, October 20, 2020
    4 years ago
Abstract
This disclosure provides non-invasive methods to induce motor control in a mammal subject to spinal cord or other neurological injuries. In certain embodiments the method involves administering transcutaneous electrical spinal cord stimulation (tSCS) to the mammal at a frequency and intensity that induces the desired locomotor activity.
Description
BACKGROUND

Field of the Disclosure


The present disclosure relates to the field of neurological treatment and rehabilitation for injury and disease including traumatic spinal cord injury, non-traumatic spinal cord injury, stroke, movement disorders, brain injury, ALS, Neurodegenerative Disorder, Dementia, Parkinson's disease, and other diseases or injuries that result in paralysis and/or nervous system disorder. Devices, pharmacological agents, and methods are provided to facilitate recovery of posture, locomotion, and voluntary movements of the arms, trunk, and legs, and recovery of autonomic, sexual, vasomotor, speech, swallowing, and respiration, in a human subject having spinal cord injury, brain injury, or any other neurological disorder.


Description of the Related Art


Serious spinal cord injuries (SCI) affect approximately 1.3 million people in the United States, and roughly 12-15,000 new injuries occur each year. Of these injuries, approximately 50% are complete spinal cord injuries in which there is essentially total loss of sensory motor function below the level of the spinal lesion.


Neuronal networks formed by the interneurons of the spinal cord that are located in the cervical and lumbar enlargements, such as the spinal networks (SNs), play an important role in the control of posture, locomotion and movements of the upper limbs, breathing and speech. Most researchers believe that all mammals, including humans, have SNs in the lumbosacral cord. See Dimitrijevic, M. R, Gerasimenko, Yu., and Pinter, M. M., Evidence for a Spinal Central Pattern Generator in Humans, Ann. N. Y. Acad. Sci., 1998, vol. 860, p. 360; Gurfinkel', V. S., Levik, Yu. S., Kazennikov, O. V., and Selionov, V. A., Does the Prime Mover of Stepping Movements Exist in Humans?, Human Physiology, 1998, vol. 24, no. 3, p. 42; Gerasimenko, Yu. P., Roy, R. R., and Edgerton, V R., Epidural Stimulation: Comparison of the Spinal Circuits That Generate and Control Locomotion in Rats, Cats and Humans, Exp. Neurol., 2008, vol. 209, p. 417. Normally, the activity of SNs is regulated supraspinally and by peripheral sensory input. In the case of disorders of the connections between the brain and spinal cord, e.g., as a result of traumatic spinal cord lesions, motor tasks can be enabled by epidural electrical stimulation of the lumbosacral and cervical segments as well as the brainstem. It has been shown that epidural electrical spinal cord stimulation (eESCS) with sufficient intensity can induce electromyographic (EMG) patterns in the leg muscles of patients with clinically complete spinal cord injury. See Dimitrijevic, Gerasimenko, Yu., and Pinter, supra; Minassian, K., Persy, I., Rattay, F, Pinter, M. M., Kern, H., and Dimitrijevic, M. R., Human Lumbar Cord Circuitries Can Be Activated by Extrinsic Tonic Input to Generate Locomotor-Like Activity, Human 1Hovement Sci., 2007, vol. 26, p. 275; Harkema, S., Gerasimenko, Y, Hodes, J., Burdick, J., Angeli, e., Chen, Y, Ferreira, e., Willhite, A., Rejc, E., Grossman, R. G., and Edgerton, V R., Epidural Stimulation of the Lumbosacral Spinal Cord Enables Voluntary Movement, Standing, and Assisted Stepping in a Paraplegic Human, Lancet, 2011, vol. 377, p. 1938. eESCS is an invasive method and requires surgical implantation of electrodes on the dorsal surface of the spinal cord, which limits this method of activating SNs to clinics.


Recently, noninvasive methods for activating the SNs by means of leg muscle vibration and spinal cord electromagnetic stimulation was suggested. It was found that the vibration of the tendons of the hip muscles initiates involuntary walking movements in subjects lying on their side with an external support for the legs. See Gurfinkel', VS., Levik, Yu. S., Kazennikov, O. V, and Selionov, V A., Locomotor-Like Movements Evoked by Leg Muscle Vibration in Humans, Eur. J lVeurosci., 1998, vol. 10, p. 1608; Selionov, V A., Ivanenko, Yu. P., Solopova, lA., and Gurfinkel', VS., Tonic Central and Sensory Stimuli Facilitate Involuntary Air-Stepping in Humans, J Neurophysiol., 2009, vol. 101, p. 2847. In addition, electromagnetic stimulation of the rostral segments of the lumbar spinal cord caused involuntary walking movements in healthy subjects in a similar position with a support for the legs. See Gerasimenko, Yu., Gorodnichev, R., Machueva, E., Pivovarova, E., Semenov, D., Savochin, A., Roy, R. R., and Edgerton, V R., Novel and Direct Access to the Human Locomotor Spinal Circuitry, J New'osci., 2010, vol. 30, p. 3700; Gorodnichev, R. M., Machueva, E. M., Pivovarova, E. A., Semenov, D. V, Ivanov, S. M., Savokhin, A. A., Edgerton, V R., and Gerasimenko, Yu. P., A New Method for the Activation of the Locomotor Circuitry in Humans, Hum. Physiol., 2010, vol. 36, no. 6, p. 700. Step-like movements elicited by vibration and electromagnetic stimulation, have apparently a different origin. In the former case, the SN is activated by afferent input mainly due to the activation of muscle receptors, whereas in the latter case, the neuronal locomotor network is affected directly. Each of these methods has its specificity. For example, the vibratory muscle stimulation elicits involuntary locomotor movements only in the hip and knee joints, without the involvement of the ankle. In addition, these characteristic movements could be evoked only in 50% of the subjects. See Selionov, Ivanenko, Solopova, and Gurfinkel', supra. The percentage of subjects in whom the spinal cord electromagnetic stimulation evoked involuntary step like movements was even smaller (10%), although in this case, the kinematic structure of the resultant movements was consistent with the natural random step-like movements to a greater extent than in the case of vibration. See Gerasimenko, Gorodnichev, Machueva, Pivovarova, Semenov, Savochin, Roy, and Edgerton, supra; Gorodnichev, Machueva, Pivovarova, Semenov, Ivanov, Savokhin, Edgerton, and Gerasimenko, supra. In addition, spinal cord electromagnetic stimulation is limited by the technical capabilities of the stimulator. The modem magnetic stimulator used in clinics (e.g., Magstim Rapid) can provide only short-exposure stimulating effects. The electromagnetic stimulator, with the parameters required to elicit step-like movements (5 Hz and 1.5 T), could be sustained for only 15 s.


SUMMARY

Embodiments of the disclosure are for use with a mammal including a human who has a spinal cord with at least one selected dysfunctional spinal circuit or other neurologically derived source of control of movement in a portion of the subject's body. It has been shown that transcutaneous electrical spinal cord stimulation (tESCS) applied in the region of the T11-T12 vertebrae with a frequency of 5-40 Hz elicited involuntary step-like movements in healthy subjects with their legs suspended in a gravity-neutral position. The amplitude of evoked step-like movements increased with increasing tESCS frequency. The frequency of evoked step-like movements did not depend on the frequency of tESCS. It was shown that the hip, knee, and ankle joints were involved in the evoked movements. In conclusion, transcutaneous electrical spinal cord stimulation (tESCS) can be used as a noninvasive method in rehabilitation of spinal pathology. By way of non-limiting examples, application of transcutaneous electrical spinal cord stimulation (tESCS) activates spinal locomotor networks (SNs), in part via the dorsal roots and the gray matter of the spinal cord. When activated, the SNs may (a) enable voluntary movement of muscles involved in at least one of standing, stepping, reaching, grasping, voluntarily changing positions of one or both legs, breathing, speech control, voiding the patient's bladder, voiding the patient's bowel, postural activity, and locomotor activity; (b) enable or improve autonomic control of at least one of cardiovascular function, body temperature, and metabolic processes; and/or (c) help facilitate recovery of at least one of an autonomic function, sexual function, or vasomotor function. According to some embodiments, the present disclosure provides that the spinal circuitry is neuromodulated to a physiological state that facilitates or enables the recovery or improved control of movement following some neuromotor dysfunction.


The paralysis may be a motor complete paralysis or a motor incomplete paralysis. The paralysis may have been caused by a spinal cord injury classified as motor complete or motor incomplete. The paralysis may have been caused by an ischemic or traumatic brain injury. The paralysis may have been caused by an ischemic brain injury that resulted from a stroke or acute trauma. By way of another example, the paralysis may have been caused by a neurodegenerative condition affecting the brain and/or spinal cord. The neurodegenerative brain injury may be associated with at least one of Parkinson's disease, Huntington's disease, Alzheimer's, Frontotemporal Dementia, dystonia, ischemic, stroke, amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS), and other conditions such as cerebral palsy and Multiple Sclerosis.


By way of non-limiting example, a method includes applying electrical stimulation to a portion of a spinal cord or brainstem of the subject. The electrical stimulation may be applied by a surface electrode(s) that is applied to the skin surface of the subject. Such an electrode may be positioned at, at least one of a thoracic region, a cervical region, a lumbosacral region of the spinal cord and/or the brainstem. The electrical stimulation is delivered at 5-40 Hz at 20-100 mA. While not a requirement, the electrical stimulation may not directly activate muscle cells in the portion of the patient's body having the paralysis. The electrical stimulation may include at least one of tonic stimulation and intermittent stimulation. The electrical stimulation may include simultaneous or sequential stimulation of different regions of the spinal cord.


If the paralysis was caused by a spinal cord injury at a first location along the spinal cord, the electrical stimulation may be applied by an electrode that is on the spinal cord of the patient at a second location below the first location along the spinal cord relative to the patient's brain.


Optionally, the method may include administering one or more neuropharmaceutical agents to the patient. The neuropharmaceutical agents may include at least one of a serotonergic drug, a dopaminergic drug, a noradrenergic drug, a GABAergic drug, and glycinergic drugs. By way of non-limiting examples, the neuropharmaceutical agents may include at least one of 8-OHDPAT, Way 100.635, Quipazine, Ketanserin, SR. 57227A, Ondanesetron, SB 269970, Buspirone, Methoxamine, Prazosin, Clonidine, Yohimbine, SKF-81297, SCH-23390, Quinpirole, and Eticlopride.


The electrical stimulation is defined by a set of parameter values, and activation of the selected spinal circuit may generate a quantifiable result. Optionally, the method may be repeated using electrical stimulation having different sets of parameter values to obtain quantifiable results generated by each repetition of the method. Then, a machine learning method may be executed by at least one computing device. The machine learning method builds a model of a relationship between the electrical stimulation applied to the spinal cord and the quantifiable results generated by activation of the at least one spinal circuit. A new set of parameters may be selected based on the model. By way of a non-limiting example, the machine learning method may implement a Gaussian Process Optimization.


Another exemplary embodiment is a method of enabling one or more functions selected from a group consisting of postural and/or locomotor activity, voluntary movement of leg position when not bearing weight, improved breathing and ventilation, speech control, swallowing, voluntary voiding of the bladder and/or bowel, return of sexual function, autonomic control of cardiovascular function, body temperature control, and normalized metabolic processes, in a human subject having a neurologically derived paralysis. The method includes stimulating the spinal cord of the subject using a surface electrode while subjecting the subject to physical training that exposes the subject to relevant postural proprioceptive signals, locomotor proprioceptive signals, and supraspinal signals. At least one of the stimulation and physical training modulates in real time provoke or incite the electrophysiological properties of spinal circuits in the subject so the spinal circuits are activated by at least one of supraspinal information and proprioceptive information derived from the region of the subject where the selected one or more functions are facilitated.


The region where the selected one or more functions are facilitated may include one or more regions of the spinal cord that control (a) lower limbs; (b) upper limbs and brainstem for controlling speech; (c) the subject's bladder; (d) the subject's bowel and/or other end organ. The physical training may include standing, stepping, sitting down, laying down, reaching, grasping, stabilizing sitting posture, and/or stabilizing standing posture.


The surface electrode may include an array of one or more electrodes stimulated in a monopolar biphasic configuration. Such a surface electrode may be placed over at least one of a lumbosacral portion of the spinal cord, a thoracic portion of the spinal cord, a cervical portion of the spinal cord and/or the brainstem.


The stimulation may include tonic stimulation and/or intermittent stimulation. The stimulation may include simultaneous or sequential stimulation, or combinations thereof, of different spinal cord regions. Optionally, the stimulation pattern may be under control of the subject.


The physical training may include inducing a load bearing positional change in the region of the subject where locomotor activity is to be facilitated. The load bearing positional change in the subject may include standing, stepping, reaching, and/or grasping. The physical training may include robotically guided training.


The method may also include administering one or more neuropharmaceuticals. The neuropharmaceuticals may include at least one of a serotonergic drug, a dopaminergic drug, a noradrenergic drug, a GABAergic drug, and a glycinergic drug.


Another exemplary embodiment is a method that includes placing an electrode on the patient's spinal cord, positioning the patient in a training device configured to assist with physical training that is configured to induce neurological signals in the portion of the patient's body having the paralysis, and applying electrical stimulation to a portion of a spinal cord of the patient, such as a biphasic signal of 30-40 Hz at 85-100 mA.


Another exemplary embodiment is a system that includes a training device configured to assist with physically training of the patient, a surface electrode array configured to be applied on the patient's spinal cord, and a stimulation generator connected to the electrode. When undertaken, the physical training induces neurological signals in the portion of the patient's body having the paralysis. The stimulation generator is configured to apply electrical stimulation to the electrode. Electrophysiological properties of at least one spinal circuit in the patient's spinal cord is modulated by the electrical stimulation and at least one of (1) a first portion of the induced neurological signals and (2) supraspinal signals such that the at least one spinal circuit is at least partially activatable by at least one of (a) the supraspinal signals and (b) a second portion of the induced neurological signals.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1, panels a and b, show motor responses in the muscles of the right leg to the tESCS with a frequency of 1 Hz and an amplitude of 75-100 mA (showed at the left of the recordings). The responses in the m. rectus femoris and m. biceps femoris (RF and BF, respectively), as well as in the m. tibialis anterior and m. gastrocnemius (TA and MG, respectively) are shown. At the right bottom of the lower recording, there are marks of time in ms, the same for all the muscles, and marks of the amplitude in mV.



FIGS. 2A and 2B show electrical activity of the leg muscles and movements in the leg joints evoked by tESCS with frequencies of 5 and 30 Hz. FIG. 2A: Subject R: the cinematogramms of the joint movements of the right leg and the EMGs of the hip muscles of the right and left legs are shown. Under the EMG, there is a mark of the stimulus. At the right of the cinematogram and EMGs, there are vertical marks of the amplitude in angle degrees and mV, respectively. The duration of records is 40 s. FIG. 2B: Subject S: the EMGs of the hip and ankle muscles of the right leg and the goniograms of the knee joints of the right and left legs; the arrows at the top show the beginning and end of stimulation; the horizontal and vertical labels next to EMG, 10 s and 0.5 mV, respectively; the vertical mark to the right of the goniograms, 200 m V. H, hip; Kn, knee; Ank, ankle; RF, m. rectus femoris; BF, m. biceps femoris; T A, m. tibialis anterior; M G, m. gastrocnemius; (r), on the right; (1), on the left.



FIG. 3 EMGs (left) and trajectories of reflective markers attached to the right leg; kinematograms (right) recorded during voluntary stepping movements (vol) and movements caused by tESCS with frequencies of 5 and 30 Hz. The duration of records is 10 s. Black and gray lines show movements in the hip and knee joints, respectively. The remaining designations are the same as in FIG. 2A/2B.



FIG. 4, panels A-E, show interarticular coordination during voluntary stepping movements (vol) and movements caused by tESCS with frequencies of 5 and 30 Hz. Reconstruction of the movements of the right leg during one stepping cycle obtained by processing the cinematograms of the (Panel A) forward and (Panel B) backward movements of legs, respectively; the coordination of movements in the (Panel C) hip and knee joints, (Panel D) knee and ankle joints; and (Panel E) the trajectory of a big toe.



FIG. 5, panels A-F, show the average amplitude of movements in the hip (H), knee (Kn), and ankle (Ank) joints caused by tESCS with a frequency of 5-40 Hz recorded during the first 15 s after the start of stimulation. The ordinate shows angular degrees. (Panels A, B) Subject S, different strategies (Panels A and B); subject R (Panel C); subject K (Panel D); subject B (Panel E); subject G (Panel F). Error bars, standard deviation. Asterisks, significant differences in amplitude recorded during tESCS with a frequency of 5 Hz, p≤0.05.





DETAILED DESCRIPTION

Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs.


The term “motor complete” when used with respect to a spinal cord injury indicates that there is no motor function below the lesion, (e.g., no movement can be voluntarily induced in muscles innervated by spinal segments below the spinal lesion.


The term “monopolar stimulation” refers to stimulation between a local electrode and a common distant return electrode.


The term “autonomic function” refers to functions controlled by the peripheral nervous system that are controlled largely below the level of consciousness, and typically involve visceral functions. Illustrative autonomic functions include, but are not limited to control of bowel, bladder, and body temperature.


The term “sexual function” refers to the ability to sustain a penile erection, have an orgasm (male or female), generate viable sperm, and/or undergo an observable physiological change associated with sexual arousal.


It was discovered that transcutaneous electrical stimulation (TCS) of the spinal cord can induce activation locomotor circuitry in a mammal (e.g., in a human or a non-human mammal). It was demonstrated, for example, that continuous tSCS at 5-40 Hz applied paraspinally over T11-T12 vertebrae at 40-70 mA induced involuntary locomotor like stepping movements in subjects with their legs in a gravity-independent position. The increase of frequency of tSCS from 5 to 30 Hz resulted in augmentation of the amplitude of evoked stepping movements. In chronic spinal cats (3 weeks after spinal cord transection at Th8) tSCS at L5 (a frequency of 5 Hz and intensity ranged from 3 to 10 mA) evoked EMG stepping pattern in hindlimb muscles in all (N=4) of tested animals, while locomotor-like movements produced by tSCS were not weight-bearing.


By non-limiting example, transcutaneous electrical stimulation can be applied to facilitate restoration of locomotion and other neurologic function in subjects suffering with spinal cord injury, as well as other neurological injury and illness. Successful application can provide a device for widespread use in rehabilitation of neurologic injury and disease.


In various embodiments, methods, devices, and optional pharmacological agents are provided to facilitate movement in a mammalian subject (e.g., a human) having a spinal cord injury, brain injury, or other neurological disease or injury. In certain embodiments, the methods involve stimulating the spinal cord of the subject using a surface electrode where the stimulation modulates the electrophysiological properties of selected spinal circuits in the subject so they can be activated by proprioceptive derived information and/or input from supraspinal. In various embodiments, the stimulation is typically accompanied by physical training (e.g., movement) of the region where the sensory-motor circuits of the spinal cord are located.


In particular illustrative embodiments, the devices, optional pharmacological agents, and methods described herein stimulate the spinal cord with, e.g., electrodes that modulate the proprioceptive and supraspinal information which controls the lower limbs during standing and/or stepping and/or the upper limbs during reaching and/or grasping conditions. It is the proprioceptive and cutaneous sensory information that guides the activation of the muscles in a coordinated manner and in a manner that accommodates the external conditions, e.g., the amount of loading, speed, and direction of stepping or whether the load is equally dispersed on the two lower limbs, indicating a standing event, alternating loading indicating stepping, or sensing postural adjustments signifying the intent to reach and grasp.


Unlike approaches that involve specific stimulation of motor neurons to directly induce a movement, the methods described herein enable the spinal circuitry to control the movements. More specifically, the devices, optional pharmacological agents, and methods described herein exploit the spinal circuitry and its ability to interpret proprioceptive information and to respond to that proprioceptive information in a functional way. In various embodiments, this is in contrast to other approaches where the actual movement is induced/controlled by direct stimulation (e.g., of particular motor neurons).


In one illustrative embodiment, the subject is fitted with one or more surface electrodes that afford selective stimulation and control capability to select sites, mode(s), and intensity of stimulation via electrodes placed superficially over, for example, the lumbosacral spinal cord and/or cervical spinal cord to facilitate movement of the arms and/or legs of individuals with a severely debilitating neuromotor disorder.


The subject is provided the generator control unit and is fitted with an electrode(s) and then tested to identify the most effective subject specific stimulation paradigms for facilitation of movement (e.g., stepping and standing and/or arm and/or hand movement). Using these stimulation paradigms, the subject practices standing, stepping, reaching, grabbing, breathing, and/or speech therapy in an interactive rehabilitation program while being subject to spinal stimulation.


Depending on the site/type of injury and the locomotor activity it is desired to facilitate, particular spinal stimulation protocols include, but are not limited to, specific stimulation sites along the lumbosacral, thoracic, and/or cervical spinal cord; specific combinations of stimulation sites along the lumbosacral, thoracic, and/or cervical spinal cord; specific stimulation amplitudes; specific stimulation polarities (e.g., monopolar and bipolar stimulation modalities); specific stimulation frequencies; and/or specific stimulation pulse widths.


In various embodiments, the system is designed so that the patient can use and control it in the home environment.


In various embodiments, the approach is not to electrically induce a walking pattern or standing pattern of activation, but to enable/facilitate it so that when the subject manipulates their body position, the spinal cord can receive proprioceptive information from the legs (or arms) that can be readily recognized by the spinal circuitry. Then, the spinal cord knows whether to step or to stand or to do nothing. In other words, this enables the subject to begin stepping or to stand or to reach and grasp when they choose after the stimulation pattern has been initiated.


Moreover, the methods and devices described herein are effective in a spinal cord injured subject that is clinically classified as motor complete; that is, there is no motor function below the lesion. In various embodiments, the specific combination of electrode(s) activated/stimulated and/or the desired stimulation of any one or more electrodes and/or the stimulation amplitude (strength) can be varied in real time, e.g., by the subject. Closed loop control can be embedded in the process by engaging the spinal circuitry as a source of feedback and feedforward processing of proprioceptive input and by voluntarily imposing fine tuning modulation in stimulation parameters based on visual, and/or kinetic, and/or kinematic input from selected body segments.


In various embodiments, the devices, optional pharmacological agents, and methods are designed so that a subject with no voluntary movement capacity can execute effective standing and/or stepping and/or reaching and/or grasping. In addition, the approach described herein can play an important role in facilitating recovery of individuals with severe although not complete injuries.


The approach described herein can provide some basic postural, locomotor and reaching and grasping patterns on their own. However, they are also likely to be a building block for future recovery strategies. Based on certain successes in animals and some preliminary human studies (see below), it appears that a strategy combining effective transcutaneous stimulation of the appropriate spinal circuits with physical rehabilitation and pharmacological intervention can provide practical therapies for complete SCI human patients. There is sufficient evidence from our work that such an approach should be enough to enable weight bearing standing, stepping and/or reaching or grasping. Such capability can give SCI patients with complete paralysis or other neuromotor dysfunctions the ability to participate in exercise, which is known to be highly beneficial for their physical and mental health. We also expect our method should enable movement with the aid of assistive walkers. While far from complete recovery of all movements, even simple standing and short duration walking would increase these patients autonomy and quality of life. The stimulating array technology described herein (e.g., transcutaneous electrical stimulation) paves the way for a direct brain-to-spinal cord interface that could enable more lengthy and finer control of movements.


While the methods and devices described herein are discussed with reference to complete spinal injury, it will be recognized that they can apply to subjects with partial spinal injury, subjects with brain injuries (e.g., ischemia, traumatic brain injury, stroke, and the like), and/or subjects with neurodegenerative diseases (e.g., Parkinson's disease, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis (ALS), primary lateral sclerosis (PLS), cerebral palsy, and the like).


In various embodiments, the methods combine the use of transcutaneous stimulating electrode(s) with physical training (e.g., rigorously monitored (robotic) physical training), optionally in combination with pharmacological techniques. The methods enable the spinal cord circuitry to utilize sensory input as well as newly established functional connections from the brain to circuits below the spinal lesion as a source of control signals. The approach is thus designed to enable and facilitate the natural sensory input as well as supraspinal connections to the spinal cord in order to control movements, rather than induce the spinal cord to directly induce the movement. That is, we facilitate and enhance the intrinsic neural control mechanisms of the spinal cord that exist post-SCI, rather than replace or ignore them.


Processing of Sensory Input by the Lumbosacral Spinal Cord: Using Afferents as a Source of Control

In various embodiments the methods and devices described herein exploit spinal control of locomotor activity. For example, the human spinal cord can receive sensory input associated with a movement such as stepping, and this sensory information can be used to modulate the motor output to accommodate the appropriate speed of stepping and level of load that is imposed on lower limbs. Moreover, we have demonstrated that the human lumbosacral spinal cord has central-pattern-generation-like properties. Thus, oscillations of the lower limbs can be induced simply by vibrating the vastus lateralis muscle of the lower limb, by transcutaneous stimulation, and by stretching the hip. The methods described herein exploit the fact that the human spinal cord, in complete or incomplete SCI subjects, can receive and interpret proprioceptive and somatosensory information that can be used to control the patterns of neuromuscular activity among the motor pools necessary to generate particular movements, e.g., standing, stepping, reaching, grasping, and the like. The methods described herein facilitate and adapt the operation of the existing spinal circuitry that generates, for example, cyclic step-like movements via a combined approach of transcutaneous stimulation, physical training, and, optionally, pharmacology.


Facilitating Stepping and Standing in Humans Following a Clinically Complete Lesion


Locomotion in mammals is attributed to intrinsic oscillating spinal neural networks capable of central pattern generation interacting with sensory information (Edgerton et al., J. American Paraplegia Soc, 14(4) (1991), 150-157; Forssberg, J. Neurophysiol, 42(4): 936-953 (1979); Grillner and Wallen, Annu. Rev. Neurosci., 8: 233-261 (1985); Grillner and Zangger, Exp Brain Res, 34(2): 241-261 (1979)). These networks play critical roles in generating the timing of the complex postural and rhythmic motor patterns executed by motor neurons.


As indicated above, the methods described herein can involve stimulation of one or more regions of the spinal cord in combination with locomotory activities. It was our discovery that spinal stimulation in combination with locomotor activity results in the modulation of the electrophysiological properties of spinal circuits in the subject so they are activated by Proprioceptive information derived from the region of the subject where locomotor activity is to be facilitated. Further, we also determined that spinal stimulation in combination with pharmacological agents and locomotor activity results in the modulation of the electrophysiological properties of spinal circuits in the subject so they are activated by proprioceptive information derived from the region of the subject where locomotor activity is to be facilitated.


Locomotor activity of the region of interest can be accomplished by any of a number of methods known, for example, to physical therapists. By way of illustration, individuals after severe SCI can generate standing and stepping patterns when provided with body weight support on a treadmill and manual assistance. During both stand and step training of human subjects with SCI, the subjects can be placed on a treadmill in an upright position and suspended in a harness at the maximum load at which knee buckling and trunk collapse can be avoided. Trainers positioned, for example, behind the subject and at each leg assist as needed in maintaining proper limb kinematics and kinetics appropriate for each specific task. During bilateral standing, both legs can be loaded simultaneously and extension can be the predominant muscular activation pattern, although co-activation of flexors can also occur. Additionally, or alternatively, during stepping the legs are loaded in an alternating pattern and extensor and flexor activation patterns within each limb also alternated as the legs moved from stance through swing. Afferent input related to loading and stepping rate can influence these patterns, and training has been shown to improve these patterns and function in clinically complete SCI subjects.


Transcutaneous Stimulation of the Lumbosacral Spinal Cord

As indicated above, without being bound by a particular theory, it is believed that transcutaneous stimulation, e.g., over the throacic spinal cord in combination with physical training can facilitate recovery of stepping and standing in human subjects following a complete SCI.


Spinal cord electrical stimulation has been successfully used in humans for suppression of pain and spasticity (see, e.g., Johnson and Burchiel, Neurosurgery, 55(1): 135-141 (2004); discussion 141-142; Shealy et al., AnesthAnalg, 46(4): 489-491 (1967); Campos et al., Appl. Neurophysiol. 50(1-6): 453-454 (1987); Dimitrijevic and Sherwood, Neurology, 30 (7 Pt 2): 19-27 (1980); Barolat Arch. Med. Res., 31(3): 258-262 (2000); Barolat, J. Am. Paraplegia Soc., 11(1): 9-13 (1988); Richardson et al., Neurosurgery, 5(3): 344-348). Recent efforts to optimize stimulation parameters have led to a number of research studies focusing on the benefits of transcutaneous spinal cord stimulation. We have demonstrated that the location of the electrode and its stimulation parameters are important in defining the motor response. Use of surface electrode(s), as described herein, facilitates selection or alteration of particular stimulation sites as well as the application of a wide variety of stimulation parameters.


The following non-limiting examples are offered for illustrative purposes.


Example 1
Transcutaneous Electrical Stimulation of the Spinal Cord: A Noninvasive Tool for the Activation of Stepping Pattern Generators in Humans

A noninvasive method for activating the SN by means of transcutaneous electrical spinal cord stimulation (tESCS) is demonstrated in this Example. The method is based on our research that showed that a single dermal electric stimulus applied in the region of the T11-T 12 vertebrae caused monosynaptic reflexes in the proximal and distal leg muscles in healthy subjects (see Courtine, G., Harkema S. J, Dy, C. J., Gerasimenko, Yu. P., and Dyhre-Poulsen, P., Modulation of Multisegmental Monosynaptic Responses in a Variety of Leg Muscles during Walking and Running in Humans, J Physiology, 2007, vol. 585, p. 1125) and in patients with clinically complete (ASIA A) spinal cord injury. See Dy, C. J., Gerasimenko, YP., Edgerton, V R., DyhrePoulsen P., Courtine G., Harkema S., Phase-Dependent Modulation of Percutaneously Elicited Multisegmental Muscle Responses after Spinal Cord Injury, J Neurophysiol., 2010, vol. 103, p. 2808. Taking into consideration that eESCS affects the SN through mono and polysynaptic reflexes (see Minassian, Persy, Rattay, Pinter, Kern, and Dimitrijevic, supra), we suggest that noninvasive tESCS can be an effective way to neuromodulate the SN.


Experiment


We examined six adult male subjects (students and staff of the Velikie Luki State Academy of Physical Education and Sports). They had given their informed written consent to participate in the experiment. The experiment was approved by the Ethics Committee of the academy and met the requirements of the Helsinki Declaration.


The subjects lay on a couch on their left side, with their feet placed on separate boards that were attached to a hook in the ceiling of the experimental room with ropes, like swings. The right (upper) leg was supported directly in the region of the shank. The left (lower) leg was placed in a rotating frame attached to a horizontal board. Under these conditions, the subjects could move their legs through maximum amplitude: According to the instructions, the subjects lay quietly and neither counteracted nor facilitated the movements caused by electrical stimulation of the spinal cord.


The tESCS was performed using a KULON stimulator (St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia). The stimulation was administered using a 2.5 cm round electrode (Lead-Lok, Sandpoint, United States) placed midline on the skin between the spinous processes of T11 and T12 as a cathode and two 5.0×10.2 cm rectangular plates made of conductive plastic (Ambu, Ballerup, Germany) placed symmetrically on the skin over the iliac crests as anodes. The step-like movements were evoked by a bipolar rectangular stimulus with a duration of 0.5 ms, filled with a carrier frequency of 10 kHz; the intensity of stimulation ranged from 30 to 100 mA. The stimulation frequencies were 1, 5, 10, 20, 30, and 40 Hz; the duration of exposure ranged from 10 to 30 s. During the high-frequency stimulation within each stimulus, tESCS did not cause pain even when the amplitude was increased to 100 mA or more; allowing us to study in detail the dependence of the elicited movements on the amplitude and frequency of the stimulus.


The EMGs of the muscles of both legs (m. rectus femoris, m. biceps femoris, m. tibialis anterior, and m. gastrocnemius) were recorded by means of bipolar surface electrodes. EMG signals were recorded using an ME 6000 16-channel telemetric electroneuromyograph (Mega Win, Finland). Flexion-extension movements in the knee joints were recorded using a goniometer.


The Qualisy video system (Sweden) was used to record the kinematic parameters of leg movements. Light-reflecting markers were attached to the pivot points of the body, which coincided with the rotational axis in the shoulder, hip, knee, and ankle joints. The angular movements in the hip joint were calculated from the location of markers on the lateral epicondyle of the humerus, trochanter, and lateral epicondyle of the femur. The markers that were attached to the trochanter, lateral epicondyle of the femur, and lateral ankle were used to describe the movements in the knee joint. The movements in the ankle joint were estimated by means of the markers located on the lateral epicondyle of the femur, lateral ankle, and the big toe. The reconstruction of movements in one whole step cycle was performed by means of special software. In order to record the movements of the foot tip, the marker was fixed on the big toe of the right foot.


The recording of EMG was synchronized with the recording of stepping kinematical parameters. The average cycle duration and the amplitudes of angular movements were calculated from 10-12 cycles. The duration of a step cycle was calculated on the basis of the interval between two maximum values of angular movements in the hip, knee, and ankle joints. The phase shift between the hip and knee joints was calculated from the interval between the maximum values of angular movements in these joints.


The statistical treatment of the data was performed using a standard software package.


Results


Transcutaneous electrical spinal cord stimulation with a frequency of 5-40 Hz elicited involuntary leg movements in five out of six subjects. The threshold intensity of the stimulus that induced involuntary movements was 50-60 mA and was dependent on the frequency of stimulation. The tESCS at a frequency of 1 Hz caused reflex responses in the leg muscles with a threshold of 70-80 mA (FIG. 1(a)).


Original records of EMG responses in the muscles of the right leg to the tESCS at a frequency of 1 Hz and intensity of 75-100 mA are shown in FIG. 1. Increasing stimulus intensity resulted in an increase in the amplitude of responses. First, the hip muscles (m. rectus femoris and m. biceps femoris) were involved in the motor response; then, the shank muscles (m. tibialis anterior and m. gastrocnemius) were involved (FIG. 1(b)). The response to each stimulus is composed of the early monosynaptic responses (the same is shown in Courtine, Harkema, Dy, Gerasimenko, and Dyhre-Poulsen, supra) with a latency period of about 12-15 ms. Increasing stimulus intensity evoked responses in the biceps femoris muscle (flexor) with a latent period of a few tens of milliseconds, which were, apparently, polysynaptic. Thus, tESCS with a low frequency (1 Hz) elicited reflex responses in the leg muscles that contained mono and polysynaptic components.


Transcutaneous electrical spinal cord stimulation at frequencies in the entire range from 5 to 40 Hz caused step-like movements in five subjects (FIG. 5). There was some variability in the ability of tESCS to evoke step-like movements at different frequencies of stimulation. In two subjects (R. and S.), step-like movements were evoked by tESCS at all the test frequencies in the range 5-40 Hz; in subjects K and G., they were recorded at frequencies of 5, 10, 20, and 30 Hz; and in subject B, they were recorded at frequencies of 5 and 30 Hz. The latent period of the starting of movements did not depend on the frequency of stimulation and was in the range of 0.2-2.5 s. The amplitude of movements in subjects S, G, and R at the beginning of stimulation gradually increased to the maximum, and after its termination it gradually decreased. In subjects K and S, the movements terminated against the background of ongoing tESCS, the duration of the stepping pattern was approximately 10-20 s. In subjects R and S, the movements continued during the whole period of stimulation and ended 2-4 s after its termination.


Pair wise comparison of the mean amplitudes of the movements of the hip, knee, and ankle joints calculated during the first and the last 15 s of stimulation at each of the frequencies used allowed us to determine the probability of the differences in the amplitudes of the induced movements at the beginning and at the end of the stimulation (see Table 1, below). Two rows of probabilities for subject C, calculated on the bases of two experiments show the different direction of the changes in the amplitudes at the beginning and end of stimulation. In the table, the cases when the amplitude of movements at the end of the stimulation was significantly greater than in the beginning are boldfaced; the cases when the amplitude of movements at the end of the stimulation was significantly lower than in the beginning are italicized. According to the data, the subjects were divided into two groups. In the first group (subjects R and S), step-like movements were evoked by the stimulation at the entire range of the frequencies studied (5-40 Hz), and the amplitude of movements, while growing at the beginning of stimulation, decayed after its termination. In the second group (subjects K and S), the movements were evoked with difficulty and with a limited set of frequencies. These differences could be related both to the individual characteristics of the electrical conductivity of the skin and to characteristics of the spinal connections.


The involuntary movements of the legs caused by tESCS fully complied with the characteristics of stepping movements (FIG. 3). Like voluntary stepping movements, the involuntary movements caused by tESCS surely contain the alternating contractions of the similar muscles of the left and right legs and the alternation of antagonist muscle activity in the hip and shin (rectus femoris and biceps femoris, gastrocnemius and tibial muscle of the shin). As clearly seen in the curves reflecting the motion of the hip and knee joints, the movements in these joints, both voluntary and evoked by tESCS, occurred with a phase shift (the motion in the knee ahead of the motion in the hip).


The table below shows the probability of similarity of the mean amplitudes of movements, measured in the first and the last 15 s during tESCS. For subject S., two different cases of stimulation are shown.









TABLE 1







The Frequency of Stimulation













Subject
Joint
5 Hz
10 Hz
20 Hz
30 Hz
40 Hz
















S. (1)

H

0.08
0.16
0.20

0.005

0.1



Kn

0.003

0.26
0.41

0.03


0.0003




Ank
0.08
0.07
0.18
0.20
0.07


S. (2)

H


0.01


0.0001


0.004

0.82
0.92



Kn

0.04


0.0001


0.002


0.0004

0.12



Ank

0.002


0.0006


0.002


0.001

0.08


R.

H

0.07

0.05

0.14
0.27

0.007




Kn

0.0001


0.001


0.03


0.01

0.15



Ank

0.02


0.008


0.003

0.47
0.68


K.

H

0.99



0.002




Kn

0.03




0.008




Ank
0.21



0.001



B.

H


0.03

0.16
0.27
0.68



Kn
0.12
0.06

0.04


0.02




Ank

0.05

0.99
0.15

0.001



G.

H


0.004

0.16
0.21
0.16



Kn

0.05

0.08
0.24
0.26



Ank

0.005


0.05

0.29

0.009






Notes:


H, hip joint; Kn, knee joint; Ank, ankle joint. The cases where p ≤ 0.05 are boldfaced and italicized. Other explanations are in the text.






Stepping cycles in three joints of the right leg during voluntary stepping movements (FIG. 4) and movements elicited by tESCS reconstructed on the basis of the kinematic analyses. The swing (A) and stance (B) phase and the hip-knee (C) and knee-ankle (D) angles and the X,Y trajectory of the toe (E) during a step are shown for voluntary movement and during tESCS at 5 and 30 Hz. In step-like movements elicited by tESCS, as in voluntary stepping movements, the phase of carrying the leg forward and the phase of support during the backward leg movements were distinct (FIG. 4). During voluntary movements, the patterns of the knee and ankle joints are more complex than during the elicited movements. The coordination between the joints during the evoked movements is very different from that observed during voluntary movements (FIG. 4). The same is true for the movements of the distal region of the leg, resulting from the interaction of movements in all three joints, and recorded using a marker attached to the big toe. The trajectory of the terminal point in voluntary movements looked like an ellipse. The trajectory of the terminal point in the movements elicited by tESCS may be considered a confluent ellipse, with the leg moving forward and backward without significant vertical movements.


The frequency of step-like movements did not depend on the frequency of stimulation. The average periods of step-like movements in subjects R, S, K, B, and G were 2.72±0.14, 2.39±0.55, 2.42±0.15, 3.22±0.85, and 1.9±0.09 s, respectively.


As mentioned above, the pair wise comparison of the mean amplitudes of the movements in the hip, knee, and ankle joints calculated in the first and the last 15 s of stimulation in different subjects, showed that, regardless of the stimulation frequency, the amplitude of movements may either increase or decrease significantly. At the beginning of stimulation, there was a tendency for the amplitude of movements to increase with increasing frequency of stimulation in all subjects for all joints (FIG. 5). However, at the end of stimulation, the amplitude of movements was independent of the stimulation frequency. In all joints, minimum movements were observed at a stimulation frequency of 5 Hz (FIGS. 5 (b) and (d)). As an exception, only in one case, when subject S. was stimulated, the amplitude of movements in the hip joint increased with increasing stimulation frequency and the amplitude of movements in the knee and ankle joints decreased with increasing frequency [FIG. 5; table 1, subject S. (1)]. The trajectory of movement of the big toe of this subject, reflecting the amplitude of the whole leg's movement, is shown in FIG. 5(a). In this case, the amplitude of movement of the tip of the foot at stimulation frequencies of 10, 20, 30, and 40 Hz was, respectively, 15.0, 19.9, 15.3, and 16.4 times greater than at 5 Hz. In the case shown in FIG. 5(b), it was, respectively, 3.5, 9.4, 11.3, and 80.7 times greater than at 5 Hz. Thus, in this subject, with increasing frequency of stimulation, the amplitude of leg movements did not decrease in any of the cases; it was minimal at a frequency of 5 Hz.


Note that, in the cases shown in FIGS. 5 (b) and (d), an increase in frequency resulted in a significant increase in the amplitude of movements in the ankle joint. The possibility to control the movements in the ankle joint via the frequency of stimulation was an advantage of tECS, unlike the ankle joint which was not modulated in vibration-induced step-like movements. See Gorodnichev, Machueva, Pivovarova, Semenov, Ivanov, Savokhin, Edgerton, and Gerasimenko, supra.


DISCUSSION

Recently, it was shown that transcutaneous electrical stimulation of the lumbar enlargement may facilitate passive walking movements on a moving treadmill and strengthen the patterns of EMG activity in leg muscles in patients with complete or partial spinal cord lesions. See Minassian, Persy, Rattay, Pinter, Kern, and Dimitrijevic, supra. However, involuntary step-like movements were never successfully evoked by means of transcutaneous stimulation in this category of patients before. The transcutaneous electrical stimulation applied to the rostral segments of the lumbar enlargement (in the region of the T11-T12 vertebrae) elicited involuntary step-like movements in healthy subjects with their legs suspended in a gravity-neutral position. This phenomenon was observed in five out of the six subjects studied. tESCS did not cause discomfort and was easily tolerated by subjects when biphasic stimuli filled with a carrier frequency of 10 kHz which suppressed the sensitivity of pain receptors were used.


The Proof of the Reflex Nature of the Responses Evoked by tESCS

It was found that a single transcutaneous electrical stimulation in the region of the T11-T12 vertebrae causes responses in leg muscles with a latency period corresponding to monosynaptic reflexes. See Courtine, Harkema, Dy, Gerasimenko, and Dyhre-Poulsen, supra. It is assumed that these responses are due to the activation of large-diameter dorsal root afferents. See Minassian, Persy, Rattay, Pinter, Kern, and Dimitrijevic, supra; Dy, C. J., Gerasimenko, Y P., Edgerton, V R., DyhrePoulsen P., Courtine G., Harkema S., Phase-Dependent Modulation of Percutaneously Elicited Multisegmental Muscle Responses after Spinal Cord Injury, J Neurophysiol., 2010, vol. 103, p. 2808; de Noordhout, A., Rothwell, J. e., Thompson, P. D., Day, B. L., and Marsden, e. D., Percutaneous Electrical Stimulation of Lumbosacral Roots in Man, J Neurol. Neurosurg. Psychiatry, 1988, vol. 51, p. 174; Troni, W., Bianco, e., Moja, M. C., and Dotta, M., Improved Methodology for Lumbosacral Nerve Root Stimulation, Afuscle Nerve, 1996, vol. 19, no. Iss. 5, p. 595; Dyhre-Poulsen, P., Dy, Courtine, G., Harkema, S., and Gerasimenko, Y U. P., Modulation of Multi segmental Monosynaptic Reflexes Recorded from Leg Muscles During Walking and Running in Human Subjects, Gait Posture, 2005, vol. 21, p. 66. The monosynaptic nature of these responses is confirmed by the fact that vibration of muscle tendons or paired stimulation suppresses the responses. We have previously shown that the responses to the second stimulus were suppressed in rats during epidural stimulation (see Gerasimenko, Lavrov, Courtine, Ronaldo, Ichiyama, Dy, Zhong, Roy, and Edgerton, supra) and in healthy humans (see Courtine, Harkema, Dy, Gerasimenko, and Dyhre-Poulsen, supra; Dy, Gerasimenko, Edgerton, Dyhre-Poulsen, Courtine, Harkema, supra) during paired tESCS with a delay between the stimuli of 50 ms. This refractory period excludes the possibility of direct activation of the motor neurons in the ventral horn or ventral root activation. See Struijk, 1.1., Holsheimer, 1., and Boom, H. B. K., Excitation of Dorsal Root Fibers in Spinal Cord Stimulation: A Theoretical Study, IEEE Trans. Biorned. Eng., 1993, vol. 40, no. 7, p. 632. The monosynaptic nature of the responses was also shown during vibration tests. It is well known that vibration suppresses monosynaptic reflex pathways in homologous muscles. See Mao, e.e., Ashby, P., Wang, M., and McCrea, D., Synaptic Connections from Large Muscle Afferents to the Motoneurons of Various Leg Muscles in Man, Exp. Brain Res., 1984, vol. 56, p. 341. The suppression of responses caused by tESCS in shin muscles during the vibration of the Achilles tendon directly shows the monosynaptic nature of these responses. The similarity of modulations of the classical monosynaptic H-reflex and reflex responses caused by tESCS during walking in healthy subjects (see Courtine, Harkema, Dy, Gerasimenko, and Dyhre-Poulsen, supra) and in patients with spinal cord injuries (see Dy, Gerasimenko, Edgerton, Dyhre-Poulsen, Courtine, Harkema, supra) also supports the monosynaptic nature of the responses to transcutaneous stimulation. In both cases, the amplitude of modulation of the reflexes was proportional and phase-dependent on the activation level of each muscle. All of the above data indicate the identity of the H-reflex and reflex responses induced by tESCS.


In the flexor muscles affected by tESCS, polysynaptic reflexes were sometimes recorded in addition to the monosynaptic component (FIG. 1). Earlier, we recorded polysynaptic reflexes in the flexor the intact and spinal animals during the single epidural stimulation. See Gerasimenko, Lavrov, Courtine, Ronaldo, Ichiyama, Dy, Zhong, Roy, and Edgerton, supra; Lavrov, 1., Gerasimenko, Y U. P., Ichiyama, R., Courtine G., Zhong H., Roy R., and Edgerton R. V, Plasticity of Spinal Cord Reflexes after a Complete Transection in Adult Rats: Relationship to Stepping Ability, J Neurophysiol., 2006, vol. 96, no. 4, p. 1699. All the above data suggest that tESCS can activate mono and polysynaptic neuronal networks.


The Characteristics of Transcutaneous Stimulation Eliciting Step-Like Movements

The previous experiments showed that the rostral segments of the lumbar spinal cord may play the role of triggers in initiating locomotor movements. See Deliagina, T. G., Orlovsky, G. N., and Pavlova, G. A., The Capacity for Generation of Rhythmic Oscillations Is Distributed in the Lumbosacral Spinal Cord of the Cat, Exp. Brain Res., 1983, vol. 53, p. 81. In spinal patients (see Dimitrijevic, M. R, Gerasimenko, Yu., and Pinter, M. M., Evidence for a Spinal Central Pattern Generator in Humans, Ann. N. Y. Acad. Sci., 1998, vol. 860, p. 360) and in spinal rats (Ichiyama, R. M., Gerasimenko, Y U. P., Zhong, H., Roy, R. R., and Edgerton VR., Hindlimb Stepping Movements in Complete Spinal Rats Induced by Epidural Spinal Cord Stimulation, New⋅osci. Lett., 2005, vol. 383, p. 339), step-like patterns of EMG activity were evoked by epidural stimulation of the L2 segment. In our experiments, we used transcutaneous electrical stimulation in the region of T11-T12 vertebrae, which corresponds to the cutaneous projection of the L2-L3 segments of the spinal cord. It was previously shown that the electromagnetic stimulation of this region in healthy subjects with their legs supported externally can initiate walking movements. See Gerasimenko, Gorodnichev, Machueva, Pivovarova, Semenov, Savochin, Roy, and Edgerton, supra; Gorodnichev, Machueva, Pivovarova, Semenov, Ivanov, Savokhin, Edgerton, and Gerasimenko, supra. These data are consistent with the current concept on the structural and functional organization of the SN with distributed pacemaking and pattern-generating systems (see McCrea, D. A. and Rybak, L A., Organization of Mammalian Locomotor Rhythm and Pattern Generation, Brain Res. Rev., 2008, vol. 57, no. 1, p. 134), in which the rostral lumbar segments of the spinal cord play the role of a trigger of the locomotor function.


The frequency of stimulation is an important characteristic of the motor output. It was shown that step-like movements are evoked by stimulation frequencies in the range of 5-40 Hz. The amplitude of step-like movements induced by high-frequency stimulation (30-40 Hz) was usually higher than that of the movements induced by low frequency stimulation (5 Hz), although the duration of the stepping cycle varied slightly. The fact that a wide range of frequencies can effectively induce step-like movements is probably due to the functional state of the intact spinal cord and its pathways. For example, in spinal patients, the effective frequency range for the initiation of step-like movements using epidural stimulation was 30-40 Hz (according to Dimitrijevic, Gerasimenko, and Pinter, supra); in decerebrated cats, the frequency of 5 Hz was the most effective to elicit locomotion (according to our data) (see Gerasimenko, Roy, and Edgerton, supra).


The intensity of transcutaneous electrical stimulation (50-80 mA) that causes step-like movements is approximately 10 times higher than the intensity of the epidural stimulation initiating walking movements in spinal patients. See Dimitrijevic, Gerasimenko, and Pinter, supra. If we assume that the dorsal roots are the main target for both types of stimulation, we should agree that the current should be strong to activate them by transcutaneous electrical stimulation. Thus, we conclude that the location, frequency, and intensity of stimulation are the factors that determine the activation of the SN by tESCS.


The Origin of the Stepping Rhythm Evoked by tESCS

In most subjects, the involuntary step-like movements in the hip and knee joints were initiated by tESCS with a delay of 2-3 s after the start of stimulation. Typically, the amplitude of movements in the hip and knee joints increased smoothly and gradually with the subsequent involvement of the ankle joint (FIG. 2B). A similar character of the initiation of involuntary step-like movements with gradual involvement of different motor pools of the leg muscles was also observed during the vibration of muscles (see Gurfinkel', Levik, Kazennikov, and Selionov, supra; Selionov, Ivanenko, Solopova, and Gurfinkel', supra; Gorodnichev, Machueva, Pivovarova, Semenov, Ivanov, Savokhin, Edgerton, and Gerasimenko, supra) and the epidural spinal cord stimulation. See Dimitrijevic, Gerasimenko, and Pinter, supra; Minassian, Persy, Rattay, Pinter, Kern, and Dimitrijevic, supra. This suggests that transcutaneous electrical stimulation, as well as the epidural stimulation, affects the SN through the activation of the dorsal root afferents entering the spinal cord. In addition to the dorsal roots and dorsal columns, the direct stimulation of the spinal cord may also activate the pyramidal and reticulospinal tracts, ventral roots, motor neurons, dorsal horn, and sympathetic tracts. See Barolat, G., Current Status of Epidural Spinal Cord Stimulation, Neurosurg. Quart., 1995, vol. 5, no. 2, p. 98; Barolat, G., Epidural Spinal Cord Stimulation: Anatomical and Electrical Properties of the Intraspinal Structures Relevant To Spinal Cord Stimulation and Clinical Correlations, Neuromodul. Techn. Neur. Intelf-, 1998, vol. 1, no. 2, p. 63. During the tESCS, the electric current spreads perpendicular to the spinal column with a high density under the paravertebral electrode. See Troni, Bianco, Moja, and Dotta, supra. This stimulation apparently activates the dorsal roots immersed in the cerebrospinal fluid, but not the spinal cord neurons, which have a much lower conductivity. See Holsheimer, J., Computer Modeling of Spinal Cord Stimulation and Its Contribution to Therapeutic Efficacy, Spinal Cord, 1998, vol. 36, no. 8, p. 531. We assume that tESCS consequently involves in activity the afferents of groups Ia and Ib with the largest diameter and, thus, the lowest threshold, then the afferents of the group II, and the spinal interneurons mediating polysynaptic reflexes. The presence of polysynaptic components in the evoked potentials in the flexor muscles (FIG. 1) confirms that they participate in the SPG. Thus, we can say that tESCS activates different spinal neuronal systems; however, the dorsal roots with their mono and polysynaptic projections to the motor nuclei are the main ones among them. The contribution of mono and polysynaptic components in the formation of the stepping rhythm caused by tESCS is not known.


In our studies, single pulse stimulation resulted in monosynaptic reflexes in the majority of the leg muscles investigated. However, the electromyographic trains evoked by continuous tESCS that induced involuntary step-like movements were not formed by the amplitude modulation of monosynaptic reflexes, as it was in spinal rats and during the spinal epidural stimulation of patients. See Gerasimenko, Roy, and Edgerton, supra. Our data showed that the activity within electromyographic trains was not stimulus-dependent; i.e., EMG trains did not consist of separate reflex responses. Similar stimulus-independent EMG trains were observed during involuntary movements caused by spinal cord electromagnetic stimulation. See Gerasimenko, Gorodnichev, Machueva, Pivovarova, Semenov, Savochin, Roy, and Edgerton, supra; Gorodnichev, Machueva, Pivovarova, Semenov, Ivanov, Savokhin, Edgerton, and Gerasimenko, supra. In contrast, the step-like movements evoked by the epidural spinal stimulation in rats and spinal patients were stimulus-dependent. See Gerasimenko, Roy, and Edgerton, supra. In the extensor muscles, the EMG trains consisted mainly of monosynaptic reflexes; in the flexor muscles, polysynaptic reflexes dominated in the EMG trains. See Gerasimenko, Y. P., Ichiyama, R. M., Lavrov, L A., Courtine, G. Cai, L., Zhong, H., Roy, R. R., and Edgerton, V. R., Epidural Spinal Cord Stimulation Plus Quipazine Administration Enable Stepping in Complete Spinal Adult Rats, J Neurophysiol., 2007, vol. 98, p. 2525; Minassian, K., Jilge, B., Rattay, F., Pinter, M. M., Binder, H., Gerstenbrand, F., and Dimitrijevic, M. R., Stepping-Like Movements in Humans with Complete Spinal Cord Injury Induced by Epidural Stimulation of the Lumbar Cord: Electromyographic Study of Compound Muscle Action Potentials, Spinal Cord 2004, vol. 42, p. 401. It is not clear why single cutaneous and, respectively, single epidural spinal cord stimulation causes the same monosynaptic reflexes in healthy subjects and spinal patients; however, continuous stimulation elicits their step-like movements through different mechanisms. We assume that, in healthy subjects, tESCS increases the excitability of the neuronal locomotor network, being a trigger for its activation, in the same way as in the case of vibration-induced step-like movements. See Selionov, Ivanenko, Solopova, and Gurfinkel', supra. However, we need additional studies to understand in detail how the tESCS elicits involuntary step-like movements.


CONCLUSIONS

In this study, a new noninvasive access to locomotor spinal neural networks in humans by means of tESCS has been described. A special design of the stimulator, which generated bipolar pulses filled with high-frequency carrier, allowed us to stimulate the spinal cord relatively painlessly and elicit involuntary step-like movements. The fundamental importance of our study consists in the new data in favor of the existence of SPGs in humans and the evidence of the possibility to control the SPGs using noninvasive effects on the structures of the spinal cord. This opens up good prospects for widespread use of transcutaneous techniques in electrical spinal cord stimulation to study the mechanisms underlying the regulation of the locomotor behavior in healthy subjects and for the rehabilitation and motor recovery of patients after spinal cord injuries.


It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and scope of the appended claims. All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims
  • 1. A method of enabling, in a mammal that has a brain or spinal cord injury, voluntary control over one or more functions selected from a group consisting of postural and/or locomotor activity, voluntary movement of leg position, and/or voluntary voiding of the bladder, said method comprising administering non-invasive transcutaneous electrical stimulation (tESCS) over the brainstem or spinal cord of said mammal at a frequency and intensity that stimulates the spinal cord circuitry and enables said one or more functions, where said transcutaneous electrical stimulation does not electrically induce said function, but enables the spinal circuitry to receive proprioceptive information and to induce stepping, standing, grasping, and/or reaching, or voiding of the bladder.
  • 2. The method of claim 1, wherein said mammal is a human.
  • 3. The method of claim 2, wherein said transcutaneous electrical spinal cord stimulation is applied over at least one of a lumbosacral portion of the spinal cord, a thoracic portion of the spinal cord, a cervical portion of the spinal cord and/or the brainstem.
  • 4. The method of claim 1, wherein: said transcutaneous stimulation is applied at an intensity ranging from about 10 mA to about 150 ma; and/orsaid transcutaneous stimulation is applied at a frequency ranging from about 3 Hz to about 100 Hz.
  • 5. The method of claim 1, wherein said mammal has a spinal cord injury that is clinically classified as motor complete.
  • 6. The method of claim 1, wherein said mammal has a spinal cord injury that is clinically classified as motor incomplete.
  • 7. The method of claim 1, wherein said mammal has an ischemic brain injury or a neurodegenerative brain injury.
  • 8. The method of claim 1, wherein said locomotor activity comprises: a walking motor pattern; and/orstanding, stepping, speech, swallowing or breathing; and/orsitting down or laying down.
  • 9. The method of claim 1, wherein the stimulation is under control of the subject.
  • 10. The method of claim 1, wherein said method further comprises physical training of said mammal.
  • 11. The method of claim 10, wherein said physical training comprises inducing a load bearing positional change in said mammal.
  • 12. The method of claim 11, wherein the load bearing positional change in said subject comprises standing, and/or stepping.
  • 13. The method of claim 10, wherein said physical training comprises robotically guided training.
  • 14. The method of claim 1, wherein said method further comprises administration of one or more neuropharmaceuticals.
  • 15. The method of claim 1, wherein said stimulation enables the spinal circuitry to receive proprioceptive information from the arms and/or legs and to induce stepping, standing, grasping, or reaching.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/355,812 filed May 1, 2014, which is a U.S. 371 National Phase of PCT/US2012/064878, filed on Nov. 13, 2012, which claims the benefit of U.S. Provisional Application No. 61/558,892 filed Nov. 11, 2011, and U.S. Provisional Application No. 61/673,661 filed Jul. 19, 2012, both of which are incorporated by reference in their entirety. Additionally, U.S. patent application Ser. Nos. 13/342,903, 13/356,499, and 13/430,557 are incorporated by reference in their entirety.

STATEMENT OF GOVERNMENTAL SUPPORT

This invention was made with Government support under NS062009, awarded by the National Institutes of Health. The Government has certain rights in the invention.

US Referenced Citations (379)
Number Name Date Kind
3543761 Bradley Dec 1970 A
3662758 Glover May 1972 A
3724467 Avery et al. Apr 1973 A
4044774 Corbin et al. Aug 1977 A
4102344 Conway et al. Jul 1978 A
4141365 Fischell et al. Feb 1979 A
4285347 Hess Aug 1981 A
4340063 Maurer Jul 1982 A
4379462 Borkan et al. Apr 1983 A
4414986 Dickhudt et al. Nov 1983 A
4538624 Tarjan Sep 1985 A
4549556 Tajan et al. Oct 1985 A
4559948 Liss et al. Dec 1985 A
4800898 Hess et al. Jan 1989 A
4934368 Lynch Jun 1990 A
4969452 Petrofsky et al. Nov 1990 A
5002053 Garcia-Rill et al. Mar 1991 A
5031618 Mullett Jul 1991 A
5066272 Eaton et al. Nov 1991 A
5081989 Graupe et al. Jan 1992 A
5121754 Mullett Jun 1992 A
5344439 Often Sep 1994 A
5354320 Schaldach et al. Oct 1994 A
5374285 Vaiani et al. Dec 1994 A
5417719 Hull et al. May 1995 A
5476441 Durfee et al. Dec 1995 A
5562718 Palermo Oct 1996 A
5643330 Holsheimer et al. Jul 1997 A
5733322 Starkebaum Mar 1998 A
5983141 Sluijter et al. Nov 1999 A
6066163 John May 2000 A
6104957 Alo et al. Aug 2000 A
6122548 Starkebaum et al. Sep 2000 A
6308103 Gielen Oct 2001 B1
6319241 King et al. Nov 2001 B1
6470213 Alley Oct 2002 B1
6500110 Davey et al. Dec 2002 B1
6503231 Prausnitz et al. Jan 2003 B1
6505074 Boveja et al. Jan 2003 B2
6551849 Kenney Apr 2003 B1
6587724 Mann Jul 2003 B2
6662053 Borkan Dec 2003 B2
6666831 Edgerton et al. Dec 2003 B1
6685729 Gonzalez Feb 2004 B2
6819956 DiLorenzo Nov 2004 B2
6839594 Cohen et al. Jan 2005 B2
6871099 Whitehurst et al. Mar 2005 B1
6892098 Ayal et al. May 2005 B2
6895280 Meadows et al. May 2005 B2
6895283 Erickson et al. May 2005 B2
6937891 Leinders et al. Aug 2005 B2
6950706 Rodriguez et al. Sep 2005 B2
6975907 Zanakis et al. Dec 2005 B2
6988006 King et al. Jan 2006 B2
6999820 Jordan Feb 2006 B2
7020521 Brewer et al. Mar 2006 B1
7024247 Gliner et al. Apr 2006 B2
7035690 Goetz Apr 2006 B2
7047084 Erickson et al. May 2006 B2
7065408 Herman et al. Jun 2006 B2
7096070 Jenkins et al. Aug 2006 B1
7110820 Tcheng et al. Sep 2006 B2
7127287 Duncan et al. Oct 2006 B2
7127296 Bradley Oct 2006 B2
7127297 Law et al. Oct 2006 B2
7153242 Goffer Dec 2006 B2
7184837 Goetz Feb 2007 B2
7200443 Faul Apr 2007 B2
7209787 DiLorenzo Apr 2007 B2
7228179 Campen et al. Jun 2007 B2
7239920 Thacker et al. Jul 2007 B1
7251529 Greenwood-Van Meerveld Jul 2007 B2
7252090 Goetz Aug 2007 B2
7313440 Miesel et al. Dec 2007 B2
7324853 Ayal et al. Jan 2008 B2
7330760 Heruth et al. Feb 2008 B2
7337005 Kim et al. Feb 2008 B2
7337006 Kim et al. Feb 2008 B2
7381192 Brodard et al. Jun 2008 B2
7415309 Mcintyre Aug 2008 B2
7463928 Lee et al. Dec 2008 B2
7467016 Colborn Dec 2008 B2
7493170 Segel et al. Feb 2009 B1
7496404 Meadows et al. Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7536226 Williams et al. May 2009 B2
7544185 Bengtsson Jun 2009 B2
7584000 Erickson Sep 2009 B2
7590454 Garabedian et al. Sep 2009 B2
7603178 North et al. Oct 2009 B2
7628750 Cohen et al. Dec 2009 B2
7660636 Castel et al. Feb 2010 B2
7697995 Cross et al. Apr 2010 B2
7729781 Swoyer et al. Jun 2010 B2
7734340 De Ridder Jun 2010 B2
7734351 Testerman et al. Jun 2010 B2
7769463 Katsnelson Aug 2010 B2
7797057 Harris Sep 2010 B2
7801601 Maschino et al. Sep 2010 B2
7813803 Heruth et al. Oct 2010 B2
7813809 Strother et al. Oct 2010 B2
7856264 Firlik Dec 2010 B2
7877146 Rezai et al. Jan 2011 B2
7890182 Parramon Feb 2011 B2
7949395 Kuzma May 2011 B2
7949403 Palermo et al. May 2011 B2
7987000 Moffitt et al. Jul 2011 B2
7991465 Bartic et al. Aug 2011 B2
8019427 Moffitt Sep 2011 B2
8050773 Zhu Nov 2011 B2
8108052 Boling Jan 2012 B2
8131358 Moffitt et al. Mar 2012 B2
8155750 Jaax et al. Apr 2012 B2
8170660 Dacey, Jr. et al. May 2012 B2
8190262 Gerber et al. May 2012 B2
8195304 Strother et al. Jun 2012 B2
8214048 Whitehurst et al. Jul 2012 B1
8229565 Kim et al. Jul 2012 B2
8239038 Wolf, II Aug 2012 B2
8260436 Gerber et al. Sep 2012 B2
8271099 Swanson Sep 2012 B1
8295936 Wahlstrand et al. Oct 2012 B2
8311644 Moffitt et al. Nov 2012 B2
8332029 Glukhovsky et al. Dec 2012 B2
8346366 Arle et al. Jan 2013 B2
8352036 DiMarco et al. Jan 2013 B2
8355791 Moffitt Jan 2013 B2
8355797 Caparso et al. Jan 2013 B2
8364273 De Ridder Jan 2013 B2
8369961 Christman et al. Feb 2013 B2
8412345 Moffitt Apr 2013 B2
8428728 Sachs Apr 2013 B2
8442655 Moffitt et al. May 2013 B2
8452406 Arcot-Krishnamurthy et al. May 2013 B2
8588884 Hegde et al. Nov 2013 B2
8700145 Kilgard et al. Apr 2014 B2
8712546 Kim et al. Apr 2014 B2
8750957 Tang et al. Jun 2014 B2
8805542 Tai et al. Aug 2014 B2
9072891 Rao Jul 2015 B1
9101769 Edgerton et al. Aug 2015 B2
9205259 Kim et al. Dec 2015 B2
9205260 Kim et al. Dec 2015 B2
9205261 Kim et al. Dec 2015 B2
9272143 Libbus et al. Mar 2016 B2
9283391 Ahmed Mar 2016 B2
9393409 Edgerton et al. Jul 2016 B2
9415218 Edgerton et al. Aug 2016 B2
9610442 Yoo et al. Apr 2017 B2
9993642 Gerasimenko Jun 2018 B2
10137299 Lu et al. Nov 2018 B2
20020055779 Andrews May 2002 A1
20020111661 Cross et al. Aug 2002 A1
20020115945 Herman et al. Aug 2002 A1
20020193843 Hill et al. Dec 2002 A1
20030032992 Thacker et al. Feb 2003 A1
20030078633 Firlik et al. Apr 2003 A1
20030100933 Ayal et al. May 2003 A1
20030158583 Burnett et al. Aug 2003 A1
20030220679 Han Nov 2003 A1
20030233137 Paul, Jr. Dec 2003 A1
20040039425 Greenwood-Van Meerveld Feb 2004 A1
20040044380 Bruninga et al. Mar 2004 A1
20040111118 Hill et al. Jun 2004 A1
20040111126 Tanagho et al. Jun 2004 A1
20040122483 Nathan et al. Jun 2004 A1
20040127954 McDonald et al. Jul 2004 A1
20040133248 Frei et al. Jul 2004 A1
20040138518 Rise et al. Jul 2004 A1
20050004622 Cullen et al. Jan 2005 A1
20050070982 Heruth et al. Mar 2005 A1
20050075669 King Apr 2005 A1
20050075678 Faul Apr 2005 A1
20050102007 Ayal et al. May 2005 A1
20050113882 Cameron et al. May 2005 A1
20050119713 Whitehurst et al. Jun 2005 A1
20050125045 Brighton et al. Jun 2005 A1
20050209655 Bradley et al. Sep 2005 A1
20050246004 Cameron et al. Nov 2005 A1
20050278000 Strother et al. Dec 2005 A1
20060003090 Rodger et al. Jan 2006 A1
20060041295 Osypka Feb 2006 A1
20060089696 Olsen et al. Apr 2006 A1
20060100671 Ridder May 2006 A1
20060111754 Rezai et al. May 2006 A1
20060122678 Olsen et al. Jun 2006 A1
20060142816 Fruitman et al. Jun 2006 A1
20060142822 Tulgar Jun 2006 A1
20060149333 Tanagho et al. Jul 2006 A1
20060149337 John Jul 2006 A1
20060239482 Hatoum Oct 2006 A1
20070016097 Farquhar et al. Jan 2007 A1
20070016266 Paul, Jr. Jan 2007 A1
20070049814 Muccio Mar 2007 A1
20070055337 Tanrisever Mar 2007 A1
20070060954 Cameron et al. Mar 2007 A1
20070060980 Strother et al. Mar 2007 A1
20070073357 Rooney et al. Mar 2007 A1
20070083240 Peterson et al. Apr 2007 A1
20070156179 S.E. Jul 2007 A1
20070168008 Olsen Jul 2007 A1
20070179534 Firlik et al. Aug 2007 A1
20070191709 Swanson Aug 2007 A1
20070208381 Hill et al. Sep 2007 A1
20070233204 Lima et al. Oct 2007 A1
20070255372 Metzler et al. Nov 2007 A1
20070265679 Bradley et al. Nov 2007 A1
20070265691 Swanson Nov 2007 A1
20070276449 Gunter et al. Nov 2007 A1
20070276450 Meadows et al. Nov 2007 A1
20080021513 Thacker et al. Jan 2008 A1
20080046049 Skubitz et al. Feb 2008 A1
20080051851 Lin Feb 2008 A1
20080071325 Bradley Mar 2008 A1
20080103579 Gerber May 2008 A1
20080140152 Imran et al. Jun 2008 A1
20080140169 Imran Jun 2008 A1
20080147143 Popovic et al. Jun 2008 A1
20080154329 Pyles et al. Jun 2008 A1
20080183224 Barolat Jul 2008 A1
20080200749 Zheng et al. Aug 2008 A1
20080207985 Farone Aug 2008 A1
20080215113 Pawlowicz Sep 2008 A1
20080221653 Agrawal et al. Sep 2008 A1
20080228241 Sachs Sep 2008 A1
20080228250 Mironer Sep 2008 A1
20080234791 Arle et al. Sep 2008 A1
20080279896 Heinen et al. Nov 2008 A1
20090012436 Lanfermann et al. Jan 2009 A1
20090093854 Leung et al. Apr 2009 A1
20090112281 Miyazawa et al. Apr 2009 A1
20090118365 Benson, III et al. May 2009 A1
20090157141 Chiao et al. Jun 2009 A1
20090198305 Naroditsky et al. Aug 2009 A1
20090204173 Fang et al. Aug 2009 A1
20090270960 Zhao et al. Oct 2009 A1
20090281599 Thacker et al. Nov 2009 A1
20090299166 Nishida et al. Dec 2009 A1
20090299167 Seymour Dec 2009 A1
20090306491 Haggers Dec 2009 A1
20100004715 Fahey Jan 2010 A1
20100023103 Elborno Jan 2010 A1
20100042193 Slavin Feb 2010 A1
20100070007 Parker et al. Mar 2010 A1
20100114239 McDonald et al. May 2010 A1
20100125313 Lee et al. May 2010 A1
20100137938 Kishawi et al. Jun 2010 A1
20100145428 Cameron et al. Jun 2010 A1
20100152811 Flaherty Jun 2010 A1
20100185253 Dimarco et al. Jul 2010 A1
20100198298 Glukhovsky et al. Aug 2010 A1
20100217355 Tass et al. Aug 2010 A1
20100241191 Testerman et al. Sep 2010 A1
20100268299 Farone Oct 2010 A1
20100274312 Alataris et al. Oct 2010 A1
20100305660 Hegi et al. Dec 2010 A1
20100318168 Bighetti Dec 2010 A1
20100331925 Peterson Dec 2010 A1
20110029040 Walker et al. Feb 2011 A1
20110040349 Graupe Feb 2011 A1
20110054567 Lane et al. Mar 2011 A1
20110054568 Lane et al. Mar 2011 A1
20110054579 Kumar et al. Mar 2011 A1
20110125203 Simon et al. May 2011 A1
20110130804 Lin et al. Jun 2011 A1
20110152967 Simon et al. Jun 2011 A1
20110160810 Griffith Jun 2011 A1
20110166546 Jaax et al. Jul 2011 A1
20110184488 De Ridder Jul 2011 A1
20110184489 Nicolelis et al. Jul 2011 A1
20110218594 Doran et al. Sep 2011 A1
20110224665 Crosby et al. Sep 2011 A1
20110224752 Rolston et al. Sep 2011 A1
20110224753 Palermo et al. Sep 2011 A1
20110224757 Zdeblick et al. Sep 2011 A1
20110230701 Simon et al. Sep 2011 A1
20110245734 Wagner et al. Oct 2011 A1
20110276107 Simon et al. Nov 2011 A1
20110288609 Tehrani et al. Nov 2011 A1
20110295100 Rolston et al. Dec 2011 A1
20120006793 Swanson Jan 2012 A1
20120029528 Macdonald et al. Feb 2012 A1
20120035684 Thompson et al. Feb 2012 A1
20120101326 Simon et al. Apr 2012 A1
20120109251 Lebedev et al. May 2012 A1
20120109295 Fan May 2012 A1
20120123293 Shah et al. May 2012 A1
20120126392 Kalvesten et al. May 2012 A1
20120165899 Gliner Jun 2012 A1
20120172946 Altaris et al. Jul 2012 A1
20120179222 Jaax et al. Jul 2012 A1
20120185020 Simon Jul 2012 A1
20120197338 Su et al. Aug 2012 A1
20120221073 Southwell et al. Aug 2012 A1
20120232615 Barolat et al. Sep 2012 A1
20120252874 Feinstein et al. Oct 2012 A1
20120259380 Pyles Oct 2012 A1
20120277824 Li Nov 2012 A1
20120277834 Mercanzini et al. Nov 2012 A1
20120283697 Kim et al. Nov 2012 A1
20120283797 De Ridder Nov 2012 A1
20120302821 Burnett Nov 2012 A1
20120310305 Kaula et al. Dec 2012 A1
20120310315 Savage et al. Dec 2012 A1
20120330391 Bradley et al. Dec 2012 A1
20130013041 Glukhovsky et al. Jan 2013 A1
20130030319 Hettrick et al. Jan 2013 A1
20130030501 Feler et al. Jan 2013 A1
20130053734 Barriskill et al. Feb 2013 A1
20130066392 Simon et al. Mar 2013 A1
20130085317 Feinstein Apr 2013 A1
20130110196 Alataris et al. May 2013 A1
20130123568 Hamilton et al. May 2013 A1
20130123659 Bartol et al. May 2013 A1
20130165991 Kim et al. Jun 2013 A1
20130197408 Goldfarb et al. Aug 2013 A1
20130253299 Weber et al. Sep 2013 A1
20130253611 Lee et al. Sep 2013 A1
20130268016 Xi et al. Oct 2013 A1
20130268021 Moffitt Oct 2013 A1
20130281890 Mishelevich Oct 2013 A1
20130289446 Stone et al. Oct 2013 A1
20130303873 Voros et al. Nov 2013 A1
20130304159 Simon et al. Nov 2013 A1
20130310911 Tai et al. Nov 2013 A1
20140031893 Walker et al. Jan 2014 A1
20140046407 Ben-Ezra et al. Feb 2014 A1
20140058490 DiMarco Feb 2014 A1
20140066950 Macdonald et al. Mar 2014 A1
20140067007 Drees et al. Mar 2014 A1
20140067354 Kaula et al. Mar 2014 A1
20140081071 Simon et al. Mar 2014 A1
20140100633 Mann et al. Apr 2014 A1
20140107397 Simon et al. Apr 2014 A1
20140107398 Simon et al. Apr 2014 A1
20140114374 Rooney et al. Apr 2014 A1
20140163640 Edgerton et al. Jun 2014 A1
20140180361 Burdick et al. Jun 2014 A1
20140213842 Simon et al. Jul 2014 A1
20140236257 Parker et al. Aug 2014 A1
20140296752 Edgerton et al. Oct 2014 A1
20140303901 Sadeh Oct 2014 A1
20140316484 Edgerton et al. Oct 2014 A1
20140316503 Tai et al. Oct 2014 A1
20140324118 Simon et al. Oct 2014 A1
20140330067 Jordan Nov 2014 A1
20140330335 Errico et al. Nov 2014 A1
20140357936 Simon et al. Dec 2014 A1
20150065559 Feinstein et al. Mar 2015 A1
20150165226 Simon et al. Jun 2015 A1
20150182784 Barriskill et al. Jul 2015 A1
20150190634 Rezai et al. Jul 2015 A1
20150231396 Burdick et al. Aug 2015 A1
20150265830 Simon et al. Sep 2015 A1
20160030737 Gerasimenko et al. Feb 2016 A1
20160030748 Edgerton et al. Feb 2016 A1
20160045727 Rezai et al. Feb 2016 A1
20160045731 Simon et al. Feb 2016 A1
20160074663 De Ridder Mar 2016 A1
20160121109 Edgerton et al. May 2016 A1
20160121114 Simon et al. May 2016 A1
20160121116 Simon et al. May 2016 A1
20160175586 Edgerton et al. Jun 2016 A1
20160220813 Edgerton et al. Aug 2016 A1
20160235977 Lu et al. Aug 2016 A1
20160339239 Yoo et al. Nov 2016 A1
20170157389 Tai et al. Jun 2017 A1
20170165497 Lu Jun 2017 A1
20170246450 Liu et al. Aug 2017 A1
20170246452 Liu et al. Aug 2017 A1
20170274209 Edgerton et al. Sep 2017 A1
20170296837 Jin Oct 2017 A1
20180185642 Lu Jul 2018 A1
20180256906 Pivonka et al. Sep 2018 A1
20180280693 Edgerton et al. Oct 2018 A1
20180361146 Gerasimenko et al. Dec 2018 A1
20190022371 Chang et al. Jan 2019 A1
20190167987 Lu et al. Jun 2019 A1
20190381313 Lu Dec 2019 A1
Foreign Referenced Citations (53)
Number Date Country
2012204526 Jul 2013 AU
2 823 592 Jul 2012 CA
2661307 Nov 2013 EP
2968940 Jan 2016 EP
2130326 May 1999 RU
2141851 Nov 1999 RU
2160127 Dec 2000 RU
2178319 Jan 2002 RU
2192897 Nov 2002 RU
2001102533 Nov 2002 RU
2226114 Mar 2004 RU
2258496 Aug 2005 RU
2361631 Jul 2009 RU
2368401 Sep 2009 RU
2387467 Apr 2010 RU
2396995 Aug 2010 RU
2397788 Aug 2010 RU
2445990 Mar 2012 RU
2471518 Jan 2013 RU
2475283 Feb 2013 RU
WO 97047357 Dec 1997 WO
WO 03026735 Apr 2003 WO
WO 03092795 Nov 2003 WO
WO 2004087116 Oct 2004 WO
WO 2005051306 Jun 2005 WO
WO 2005087307 Sep 2005 WO
WO 2007007058 Jan 2007 WO
WO 2007107831 Sep 2007 WO
WO 2008109862 Sep 2008 WO
WO 2008121891 Oct 2008 WO
WO 2009042217 Apr 2009 WO
WO 2009111142 Sep 2009 WO
WO 2010055421 May 2010 WO
WO 2010114998 Oct 2010 WO
WO 2010124128 Oct 2010 WO
WO 2012094346 Jul 2012 WO
WO 2012100260 Jul 2012 WO
WO 2012129574 Sep 2012 WO
WO 2013071307 May 2013 WO
WO 2013071309 May 2013 WO
WO 2014144785 Sep 2014 WO
WO 2015048563 Apr 2015 WO
WO 2016029159 Feb 2016 WO
WO 2016033369 Mar 2016 WO
WO 2016033372 Mar 2016 WO
WO 2017011410 Jan 2017 WO
WO 2017024276 Feb 2017 WO
WO 2017035512 Mar 2017 WO
WO 2017044904 Mar 2017 WO
WO 2018140531 Aug 2018 WO
WO 2018217791 Nov 2018 WO
WO 2020041502 Feb 2020 WO
WO 2020041633 Feb 2020 WO
Non-Patent Literature Citations (97)
Entry
U.S. Office Action dated Apr. 8, 2015 issued in U.S. Appl. No. 14/355,812.
U.S. Final Office Action dated Sep. 21, 2015 issued in U.S. Appl. No. 14/355,812.
U.S. Notice of Allowance dated Apr. 13, 2016 issued in U.S. Appl. No. 14/355,812.
U.S. Office Action dated Jul. 13, 2016 issued in U.S. Appl. No. 14/775,618.
PCT International Search Report dated Jul. 30, 2012 issued in PCT/US2012/020112.
PCT International Preliminary Report on Patentability and Written Opinion dated Jul. 10, 2013 issued in PCT/US2012/020112.
PCT International Search Report and Written Opinion dated Mar. 19, 2013 issued in PCT/US2012/064878.
PCT International Preliminary Report on Patentability dated May 22, 2014 issued in PCT/US2012/064878.
Australian Patent Examination Report No. 1 dated Jul. 11, 2016 issued in AU 2012334926.
European Communication pursuant to Rule 114(2) EPC regarding observations by a third party dated Mar. 27, 2015 issued in EP 12 847 885.6.
European Extended Search Report dated May 6, 2015 issued in EP 12 847 885.6.
European Office Action dated Apr. 15, 2016 issued in EP 12 847 885.6.
European Reply to Communication of Apr. 15, 2016 dated Oct. 24, 2016 in EP 12 847 885.6.
European Second Office Action dated Feb. 16, 2017 issued in EP 12 847 885.6.
PCT Declaration of Non-Establishment of International Search Report and Written Opinion dated Dec. 24, 2014 issued in PCT/US2014/057886.
PCT International Preliminary Report on Patentability and Written Opinion dated Apr. 7, 2016 issued in PCT/US2014/057886.
PCT International Search Report and Written Opinion dated Aug. 6, 2014 issued in PCT/US2014/029340.
PCT International Preliminary Report on Patentability dated Sep. 24, 2015 issued in PCT/US2014/029340.
European Extended Search Report dated Nov. 8, 2016 issued in EP 14 76 5477.6.
PCT International Search Report and Written Opinion dated Dec. 5, 2016 issued in PCT/US2016/045898.
PCT International Search Report and Written Opinion dated Dec. 8, 2015 issued in PCT/US2015/047268.
PCT International Preliminary Report on Patentability and Written Opinion dated Feb. 28, 2017 issued in PCT/US2015/047268.
PCT International Search Report and Written Opinion dated Dec. 3, 2015 issued in PCT/US2015/047272.
PCT International Preliminary Report on Patentability and Written Opinion dated Feb. 28, 2017 issued in PCT/US2015/047272.
PCT Declaration of Non-Establishment of International Search Report and Written Opinion dated Dec. 1, 2015 issued in PCT/US2015/046378.
PCT International Preliminary Report on Patentability and Written Opinion dated Feb. 21, 2017 issued in PCT/US2015/046378.
PCT International Search Report and Written Opinion dated Dec. 5, 2016 issued in PCT/US2016/049129.
PCT International Search Report dated Mar. 19, 2013 issued in PCT/US2012/064874.
PCT International Search Report dated Mar. 19, 2013 issued in PCT/US2012/064878.
PCT International Search Report dated Sep. 3, 2012 issued in PCT/US2012/022257.
PCT International Search Report dated Oct. 31, 2012 issued in PCT/US2012/030624.
Angeli et al. (2014) “Altering spinal cord excitability enables voluntary movements after chronic complete paralysis in humans” Brain 137: 1394-1409.
Courtine, Grégoire et al. (2007) “Modulation of multisegmental monosynaptic responses in a variety of leg muscles during walking and miming in humans,” J Physiol. 582.3:1125-1139.
Danner S.M., Hofstoetter U.S., Ladenbauer J., Rattay F., and Minassian K. (Mar. 2011) “Can the human lumbar posterior columns be stimulated by transcutaneous spinal cord stimulation? A modeling study” Europe PMC Funders Author Manuscripts, Artif Organs 35(3):257-262, 12 pp.
DeSantana et al. (Dec. 2008) “Effectiveness of Transcutaneous Electrical Nerve Stimulation for Treatment of Hyperalgesia and Pain,” Curr Rheumatol Rep. 10(6):492-499, 12 pp.
Dubinsky, Richard M. and Miyasaki, Janis, “Assessment: Efficacy of transcutaneous electric nerve stimulation in the treatment of pain in neurologic disorders (an evidence-based review),” Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology, (2010) Neurology, 74:173-176.
Fong et al. (2009) “Recovery of control of posture and locomotion after a spinal cord injury: solutions staring us in the face,” Progress in Brain Research, Elsevier Amsterdam, NL,175:393-418.
Ganley et al., (2005) “Epidural Spinal Cord Stimulation Improves Locomoter Performance in Low ASIA C, Wheelchair-Dependent, Spinal Cord-Injured Individuals: Insights from Metabolic Response,” Top. Spinal Cord Inj. Rehabil;11(2):50-63.
Gerasimenko Y., Gorodnichev R., Machueva E., Pivovarova E., Semyenov D., Savochin A., Roy R.R., and Edgerton V.R., (Mar. 10, 2010) “Novel and Direct Access to the Human Locomotor Spinal Circuitry,” J Neurosci. 30(10):3700-3708, PMC2847395.
Gerasimenko Y.P., Ichiyama R.M., Lavrov I.A., Courtine G., Cai L., Zhong H., Roy R.R., and Edgerton V.R. (2007) “Epidural Spinal Cord Stimulation Plus Quipazine Administration Enable Stepping in Complete Spinal Adult Rats,” J Neurophysiol. 98:2525-2536.
Harkema et al. (2011) “Effect of Epidural stimulation of the lumbosacral spinal cord on voluntary movement, standing, and assisted stepping after motor complete paraplegia: a case study” Lancet 377(9781): 1938-1947; NIH Public Access Author Manuscript 17 pages [doi:10.1016/S0140-6736(11)60547-3].
Herman R., He J., D'Luzansky S., Willis W., Dilli S., (2002) “Spinal cord stimulation facilitates functional walking in a chronic, incomplete spinal cord injured,” Spinal Cord. 40:65-68.
Hofstoetter, U.S. et al. (Aug. 2008) “Modification of Reflex Responses to Lumbar Posterior Root Stimulation by Motor Tasks in Healthy Subjects,” Artif Organs, 32(8):644-648.
Ichiyama et al. (2005) “Hindlimb stepping movements in complete spinal rats induced by epidural spinal cord stimulation” Neuroscience Letters, 383:339-344.
Kitano K., Koceja D.M. (2009) “Spinal reflex in human lower leg muscles evoked by transcutaneous spinal cord stimulation,” J Neurosci Methods. 180:111-115.
Minasian et al. (2010) “Transcutaneous stimulation of the human lumbar spinal cord: Facilitating locomotor output in spinal cord injury,” Conf. Proceedings Soc. for Neurosci., Abstract No. 286.19, 1 page.
Minassian et al. (Aug. 2011) “Transcutaneous spinal cord stimulation,” International Society for Restorative Neurology, http://restorativeneurology.org/resource-center/assessments/transcutaneous-lumbar-spinal-cord-stimulation/;http://restorativeneurology.org/wp-content/uploads/2011/08/Transcutaneous-spinal-cord-stimulation_long.pdf, 6 pp.
Minassian et al. (Mar. 2007) “Posterior root-muscle reflexes elicited by transcutaneous stimulation of the human lumbosacral cord,” Muscle & Nerve 35:327-336.
Nandra et al., (2014) “Microelectrode Implants for Spinal Cord Stimulation in Rats,” Thesis, California Institute of Technology, Pasadena, California, Defended on Sep. 24, 2014, 104 pages.
Nandra et al., (Jan. 23, 2011) “A Parylene-Based Microelectrode Arrary Implant for Spinal Cord Stimulation in Rats,” Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1007-1010.
Rodger et al., (2007) “High Density Flexible Parylene-Based Multielectrode Arrays for Retinal and Spinal Cord Stimulation,” Transducers & Eurosensors, Proc. of the 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, Jun. 10-14, 2007, IEEE, pp. 1385-1388.
Seifert et al. (Nov. 1, 2002) “Restoration of Movement Using Functional Electrical Stimulation and Bayes' Theorem,” The Journal of Neuroscience, 22(1):9465-9474.
Tanabe et al. (2008) “Effects of transcutaneous electrical stimulation combined with locomotion-like movement in the treatment of post-stroke gait disorder: a single-case study,” 30(5):411-416 abstract, 1 page.
Ward, Alex R. (Feb. 2009) “Electrical Stimulation Using Kilohertz-Frequency Alternating Current,” (2009) Phys Ther.89(2):181-190 [published online Dec. 18, 2008].
U.S. Office Action dated Oct. 3, 2017 issued in U.S. Appl. No. 15/025,201.
U.S. Final Office Action dated Apr. 25, 2017 issued in U.S. Appl. No. 14/775,618.
U.S. Notice of Allowance dated Jan. 18, 2018 issued in U.S. Appl. No. 14/775,618.
European Extended Search Report dated May 10, 2017 issued in EP 14849355.4.
Australian Patent Examination Report No. 1 dated May 11, 2018 issued in AU 2014228794.
PCT International Preliminary Report on Patentability and Written Opinion dated Feb. 15, 2018 issued in PCT/US2016/045898.
European Extended Search Report dated Mar. 1, 2018 issued in EP 15836927.2.
European Extended Search Report dated Apr. 4, 2018 issued in EP 15834593.4.
PCT International Search Report and Written Opinion dated Sep. 12, 2016 issued in PCT/US2016/041802.
PCT International Preliminary Report on Patentability and Written Opinion dated Jan. 25, 2018 issued in PCT/US2016/041802.
PCT International Preliminary Report on Patentability and Written Opinion dated Mar. 8, 2018 issued in PCT/US2016/049129.
U.S. Notice of Allowance dated Aug. 1, 2018 issued in U.S. Appl. No. 15/025,201.
Canadian Office Action dated Aug. 31, 2018 issued in CA 2,864,473.
Australian Examination report No. 1 dated Jan. 11, 2019 issued in AU 2014324660.
European Office Action dated Jul. 20, 2018 issued in EP 14849355.4.
European Office Action dated Nov. 14, 2018 issued in EP 14 76 5477.6.
European Extended Search Report dated Dec. 13, 2018 issued in EP 16833973.7.
PCT International Search Report and Written Opinion dated Mar. 12, 2018 issued in PCT/US2018/015098.
PCT International Search Report and Written Opinion dated Aug. 31, 2018 issued in PCT/US2018/033942.
U.S. Office Action dated Jul. 22, 2019 issued in U.S. Appl. No. 15/506,696.
U.S. Office Action dated Jun. 4, 2019 issued in U.S. Appl. No. 15/505,053.
U.S. Office Action dated Apr. 17, 2019 issued in U.S. Appl. No. 15/344,381.
Canadian Office Action dated Jul. 30, 2019 issued in CA 2,864,473.
European Office Action dated Sep. 27, 2019 issued in EP 14765477.6.
Australian Patent Examination Report No. 1 dated Jul. 18, 2019 issued in AU 2015308779.
Australian Patent Examination Report No. 1 dated Jun. 14, 2019 issued in AU 2015305237.
European Office Action dated Jul. 17, 2019 issued in EP 15834593.4.
European Extended Search Report dated Feb. 19, 2019 issued in EP 16825005.8.
PCT International Preliminary Report on Patentability and Written Opinion dated Jul. 30, 2019 issued in PCT/US2018/015098.
Andersson, et al., (2003) “CNS Involvement in Overactive Bladder.” Drugs, 63(23): 2595-2611.
Edgerton and Harkema (2011) “Epidural stimulation of the spinal cord in spinal cord injury: current status and future challenges” Expert Rev Neurother. 11(10): 1351-1353. doi:10.1586/ern.11.129 [NIH Public Access—Author Manuscript—5 pages].
U.S. Office Action dated Jan. 8, 2020 issued in U.S. Appl. No. 15/975,678.
U.S. Office Action dated Oct. 31, 2019 issued in U.S. Appl. No. 15/750,499.
U.S. Notice of Allowance dated Feb. 13, 2020 issued in U.S. Appl. No. 15/505,053.
U.S. Final Office Action dated Dec. 30, 2019 issued in U.S. Appl. No. 15/344,381.
Australian Examination report No. 2 dated Nov. 7, 2019 issued in AU 2014324660.
Australian Examination report No. 3 dated Jan. 6, 2020 issued in AU 2014324660.
Australian Patent Examination Report No. 1 dated Jan. 6, 2020 issued in AU 2019206059.
PCT International Preliminary Report on Patentability and Written Opinion dated Nov. 26, 2019 issued in PCT/US2018/033942.
PCT International Search Report and Written Opinion dated Nov. 14, 2019 issued in PCT/US2019/047777.
PCT International Search Report and Written Opinion dated Nov. 21, 2019 issued in PCT/US2019/047551.
Kapetanakis, et al. (2017) “Cauda Equina Syndrome Due to Lumbar Disc Herniation: a Review of Literature,” Folia Medial, 59(4): 377-86.
Wang, et al. (2017) “Incidence of C5 nerve root palsy after cervical surgery,” Medicine, 96(45), 14 pages.
Related Publications (1)
Number Date Country
20170007831 A1 Jan 2017 US
Provisional Applications (2)
Number Date Country
61558892 Nov 2011 US
61673661 Jul 2012 US
Continuations (1)
Number Date Country
Parent 14355812 US
Child 15208529 US