This invention relates generally to transcutaneous telemetry with an implantable biomedical device, and more specifically relates to a system which allows transcutaneous telemetry of a programmed valve opening pressure via near-infrared (NIR) light.
Fluidic shunts are commonly employed for the diversion of cerebrospinal fluid from the cranial intraventricular space to a terminus such as the peritoneal cavity in the treatment of hydrocephalus. The quantity of cerebrospinal fluid (CSF) diverted by the shunt may be altered by adjusting the opening pressure of a normally closed integral valve. Several valve designs (e.g. Codman-Hakim® valve, Medtronic Strata® valve) allow transcutaneous adjustment, or programmability, of the opening pressure via a transcutaneously applied magnetic field.
The programmed valve pressure is dependent upon the position of the external programmer relative to the implanted valve. Because the valve is implanted beneath the skin, the exact orientation of the valve is not always apparent. Malpositioning of the programmer can introduce errors into the programming process and result in erroneous pressures being programmed. Therefore, it is desirable to be able to confirm the actual programmed pressure after reprogramming or as clinical conditions warrant. By “actual” programmed pressure is meant the de facto pressure which has been set for opening of the valve as opposed to the pressure which may be assumed to have been set as a result of the operator's manual adjustment.
While the Medtronic Strata® valve provides a transcutaneous means of magnetically indicating the valve pressure setting, the Codman-Hakim valve requires the use of an x-ray to determine the valve setting. The use of x-ray to determine valve pressure is undesirable as it is costly, time-consuming, and exposes the patient to ionizing radiation.
The invention disclosed herein provides an improvement pertinent to existing programmable valve systems which allows transcutaneous telemetry of programmed valve opening pressure via near-infrared (NIR) light. NIR light easily penetrates body tissues such as the scalp, and the light beam may be modulated to encode data for transcutaneous transmission. The actual valve pressure setting is determined by an attached cam. An optical disc coaxially mounted with the cam optically encodes the valve position and these data are transmitted extracorporally via NIR light.
Light in the near-infrared spectrum is easily transmitted through the skin and is detected by an external sensor head and associated electronics. Indefinite longevity and small size is attained in the implant by not incorporating a power source within the module. Instead, power is derived inductively through rectification of a transcutaneously-applied high-frequency alternating electromagnetic field which is generated by a power source within the external coupling module, in concept much like a conventional electrical transformer. The extracorporeal components of the system calculate the actual valve opening pressure setting.
The present invention overcomes the aforementioned disadvantages of existing technologies by providing a means for telemetric conveyance of physiological data via transcutaneous projection of a near infrared light beam. The use of this technique for telemetry of intracranial pressure and other applications is set forth in my co-pending U.S. patent application Ser. No. 11/065,428 filed Feb. 24, 2005. The entire disclosure of that application is hereby incorporated herein by reference.
The NIR spectrum is defined as 750-2500 nm. Choice of the preferred NIR wavelength for transcutaneous telemetry pursuant to the present invention is dependent upon the absorption coefficients of the intervening tissues. The absorption by melanosomes dominates over the visible and near-infrared spectra to about 1100 nm, above which free water begins to dominate. Absorption by the dermis decreased monotonically over the 700-1000 nm range. Whole blood has a minimum absorption at about 700 nm but remains low over the 700-1000 nm range. The nadir in the composite absorption spectrum therefore lies in the 800-1000 nm range.
The actual wavelength utilized is therefore dictated by the optimal spectral range (as above) and the availability of suitable semiconductor emitters. Several suitable wavelengths may include, but are not limited to: 760 nm, 765 nm, 780 nm, 785 nm, 790 nm, 800 nm, 805 nm, 808 nm, 810 nm, 820 nm, 830 nm, 840 nm, 850 nm, 870 nm, 880 nm, 900 nm, 904 nm, 905 nm, 915 nm, 920 nm, 940 nm, 950 nm, 970 nm, and 980 nm. Wavelengths outside this range may be used but will be subject to greater attenuation by the intervening tissues.
The invention is diagrammatically illustrated, by way of Example, in the drawings appended hereto, in which:
“
The system of the present invention as shown in the simplified cross-sectional view of
In a typical in vivo implementation a hollow ventricular catheter 3 is placed surgically into a cerebrospinal fluid (CSF) filled ventricle 2 of the brain 6 of the patient. The CSF is communicated via the ventricular catheter 3 to the implanted component 14 where its flow is controlled by controllable pressure valve 18 (
The external programmer 16 is able to modify the rotational position of the valve 18 mechanical axis 26 via magnetic flux 28 coupling between an external magnet 30 and a magnet 32 fixedly attached to the mechanical axis 26 of the valve mechanism. The technology referenced by items 16 through 32 is described in the prior art.
In prior art valves exemplified by valve 18, detents within the valve mechanism define specific rotational angles in which the valve mechanism axis 26 may remain in a static position. In the preferred embodiment of the current invention, an optical encoder disc 34 secured to axis 26 is an optically opaque disc with radially oriented perforations (or optically transparent windows) which encode binary numerals. Each specific static rotational angle which may be assumed by the valve mechanism axis 26 has a corresponding unique encoded binary numeral, n. An NIR light beam 36 transilluminates the optical encoder disc 34 such that the binary encoded numeral, n, may be detected by photodetector array 38. In the preferred embodiment, these encoded numerals are arranged sequentially around the disc 34 ranging from 1 to ‘N’ where N is the total number of discrete static positions of the valve mechanism axis 26. A valid encoded numeral, n, is detected by the photodetector array 38 only during transillumination of the encoder disc 34 by NIR light beam 36. A “data valid” command is generated by logical OR of each of the bits of the binary encoded numeral, n, or by using a single separate photodetector with an additional optical window at each discrete static position of the valve mechanism axis 26. The “data valid” signal provides a ‘load’ command 40 to a latch 42 which stores the encoded binary numeral, n.
The encoded binary numeral, n, is used as the divisor for a modulo-n counter 44. A crystal oscillator 46 provides a stable reference frequency 48, fin, which is divided by the divisor ratio, n. Therefore, the output frequency 50, fout, is uniquely dependent upon the valve mechanism axis 26 position, and hence the pressure to valve 18. The near infrared emitter 52 is driven at the output frequency 50. The infrared beam 54 is passed through a beam-splitter mirror 56 such that a portion of the infrared light beam 36 is used to transilluminate the optical encoder disc 34. The remainder of beam 54 travels through the skin 20 to become the transcutaneous NIR beam 58. The transcutaneous beam 58 is detected by a photodetector 82 within sensor head and processing electronics 62 after passing through a narrow bandpass filter 64. The narrow bandpass filter 64 excludes ambient light at wavelengths other than that expected from the NIR emitter 52. The frequency of the photodetector 82 output is measured at 63 and is used to index a look-up table 60 which correlates the modulation frequency 50 with the actual valve pressure setting which is then displayed at 68.
Light from the VCSEL is detected by an array of photodetectors Q1-Q6. During VCSEL illumination, the disc 34 (
Sensor head 70 is placed over the implant to deliver power and detect the optical output of the implant. A power oscillator 72 delivers a sinusoidal oscillating current with a nominal frequency of 200 kHz to a power amplifier 74 which buffers the current to an isolation transformer 76. The isolation transformer 76 provides adequate galvanic isolation for a patient-connected device. The output from the isolation transformer is fed to the sensor head coil 78 which acts as the primary winding of a transformer to electromagnetically couple energy to the implant's secondary coil L1 (
An optical bandpass filter 64 with center frequency equal to the emission frequency of the VCSEL, excludes ambient light from the photodetector 82. Light from the implant VCSEL is transmitted through bandpass filter 64 and converted to an electrical current by photodetector 82. This current is roughly a square wave with the same fundamental frequency as the VCSEL pulses. This signal is amplified by pre-amp 84 and automatic gain amplifier 86, then converted to a digital signal by Schmitt trigger 88. A serial data stream 90, consisting of square-wave pulses, is fed to microprocessor 92 which measures the frequency of the aforementioned pulses. The frequency data is then used to index a look-up table 60 (
A bi-colored Light Emitting Diode, or LED, is also included in the sensor head 70 to aid positioning of the sensor head over the implant. In the default state, the red LED 96 is illuminated to indicate that the sensor head is not over the implant. When the sensor head is properly aligned over the implant, the implant begins to receive power through the inductive coupling between coil 78 of the sensor head and L1 of the implant. Once power is applied to the implant, the VCSEL begins to illuminate in synchrony with the programmable divider (U2) output. When the External device begins to detect the VCSEL, e.g. oscillations present on the ‘serial data’ output of Schmitt Trigger 88, the microprocessor 92 turns off the red LED 96 and illuminates the green LED 94.
While the present invention has been described in terms of specific embodiments thereof, it will be understood in view of the present disclosure, that numerous variations upon the invention are now enabled to those skilled in the art, which variations yet reside within the scope of the present teaching. Accordingly, the invention is to be broadly construed, and limited only by the scope and spirit of the claims now appended hereto.
This application claims priority from U.S. Provisional Applications 60/547,691 filed Feb. 25, 2004; 60/577,807 filed Jun. 8, 2004; and 60/582,337 filed Jun. 23, 2004.
Number | Name | Date | Kind |
---|---|---|---|
3672252 | Summers | Jun 1972 | A |
3672352 | Summers | Jun 1972 | A |
4387715 | Hakim et al. | Jun 1983 | A |
4595390 | Hakim et al. | Jun 1986 | A |
4660568 | Cosman | Apr 1987 | A |
4677982 | Llinas et al. | Jul 1987 | A |
4772257 | Hakim et al. | Sep 1988 | A |
4787886 | Cosman | Nov 1988 | A |
4807662 | Verne | Feb 1989 | A |
4885002 | Watanabe et al. | Dec 1989 | A |
5704352 | Tremblay et al. | Jan 1998 | A |
5741246 | Prescott | Apr 1998 | A |
5852413 | Bacchi et al. | Dec 1998 | A |
5873840 | Neff | Feb 1999 | A |
5928182 | Kraus et al. | Jul 1999 | A |
6049727 | Crothall | Apr 2000 | A |
6050969 | Kraus | Apr 2000 | A |
6126595 | Amano et al. | Oct 2000 | A |
6162238 | Kaplan et al. | Dec 2000 | A |
6241660 | Dolle | Jun 2001 | B1 |
6243608 | Pauly et al. | Jun 2001 | B1 |
6413267 | Dumoulin-White et al. | Jul 2002 | B1 |
6439538 | Ito | Aug 2002 | B1 |
6533733 | Ericson et al. | Mar 2003 | B1 |
20050010159 | Reich et al. | Jan 2005 | A1 |
20050038371 | Reich et al. | Feb 2005 | A1 |
20050085763 | Ginggen et al. | Apr 2005 | A1 |
20050148925 | Rottenberg et al. | Jul 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20050187509 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60547691 | Feb 2004 | US | |
60577807 | Jun 2004 | US | |
60582337 | Jun 2004 | US |