This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2017-023274, filed on Feb. 10, 2017; the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a transducer and a transducer array.
It is desirable to increase the bandwidth of a transducer using a piezoelectric body.
According to one embodiment, a transducer includes a first electrode, a second electrode, a third electrode, a first piezoelectric portion, and a second piezoelectric portion. A resistor and an inductor are connected to the second electrode. The third electrode is provided between the first electrode and the second electrode. The first piezoelectric portion is provided between the first electrode and the third electrode. The second piezoelectric portion is provided between the second electrode and the third electrode. A ratio of the absolute value of a difference between a first resonant frequency and a second resonant frequency to the first resonant frequency is 0.29 or less. The first resonant frequency is mechanical. The first resonant frequency is of the first piezoelectric portion and the second piezoelectric portion. The second resonant frequency is of a parallel resonant circuit. The parallel resonant circuit includes an electrostatic capacitance, the inductor, and the resistor. The electrostatic capacitance is between the second electrode and the third electrode.
Embodiments of the invention will now be described with reference to the drawings.
The drawings are schematic or conceptual; and the relationships between the thicknesses and widths of portions, the proportions of sizes between portions, etc., are not necessarily the same as the actual values thereof. The dimensions and/or the proportions may be illustrated differently between the drawings, even in the case where the same portion is illustrated.
In the drawings and the specification of the application, components similar to those described thereinabove are marked with like reference numerals, and a detailed description is omitted as appropriate.
As Illustrated in
The first electrode 11 and the second electrode 12 are separated in a first direction from the second electrode 12 toward the first electrode 11. The first direction is, for example, a Z-direction illustrated in
For example, the first electrode 11 is connected to a transmitting circuit 40 as illustrated in
The ratio of the absolute value of the difference between a first resonant frequency and a second resonant frequency to the first resonant frequency is set to be 0.29 or less; the first resonant frequency is mechanical and is of the first piezoelectric portion 21 and the second piezoelectric portion 22; the second resonant frequency is of a parallel resonant circuit including an electrostatic capacitance, the inductor 42, and the resistor 41; and the electrostatic capacitance is between the second electrode 12 and the third electrode 13.
According to the embodiment, the bandwidth of the transducer 1 can be widened.
The transducer 1 according to the first embodiment will now be described more specifically.
A portion of the first piezoelectric portion 21 does not overlap at least one of the first electrode 11 or the third electrode 13 in the first direction. A portion of the second piezoelectric portion 22 does not overlap at least one of the second electrode 12 or the third electrode 13 in the first direction. The first piezoelectric portion 21 and the second piezoelectric portion 22 may be formed as one body; and the third electrode 13 may be provided inside the first piezoelectric portion 21 and the second piezoelectric portion 22.
The outer edge of the second piezoelectric portion 22 overlaps the holder 30 in the first direction. For example, the holder 30 is provided along the outer edge of the second piezoelectric portion 22. Multiple holders 30 may be provided along the outer edge of the second piezoelectric portion 22. The holder 30 may be provided as one body with the second piezoelectric portion 22 or may be provided separately.
The holder 30 overlaps the base body 31 in the first direction. The holder 30 is positioned between the base body 31 and the second piezoelectric portion 22 in the first direction. The bending vibrator V is held by the base body 31 via the holder 30. The resistor 41 and the inductor 42 may be provided on the base body 31.
The second electrode 12 is positioned between the second piezoelectric portion 22 and the holder 30. A space SP is formed between the second electrode 12 and the base body 31. The second electrode 12, the second piezoelectric portion 22, the holder 30, and the base body 31 are provided around the space SP.
As illustrated in
The first electrode 11, the second electrode 12, and the third electrode 13 include, for example, metal materials such as copper, aluminum, nickel, etc. For example, the first piezoelectric portion 21, the second piezoelectric portion 22, and the holder 30 are formed as one body and include a piezoelectric material such as titanium oxide, barium oxide, etc. The first piezoelectric portion 21 and the second piezoelectric portion 22 have, for example, disc configurations. The base body 31 includes at least one of a metal material, a semiconductor material, or an insulating material. The configuration, material, etc., of the base body 31 are modifiable as appropriate as long as the base body 31 can hold the bending vibrator V. The base body 31 is, for example, a silicon substrate or a printed circuit board.
In the case where a sound wave is transmitted by the transducer 1, an alternating current voltage is applied to the first electrode 11 by the transmitting circuit 40. The transducer 1 vibrates due to the first piezoelectric portion 21 deforming according to the electric field between the first electrode 11 and the third electrode 13; and a sound wave is radiated in the Z-direction illustrated in
In the case where a sound wave is received by the transducer 1, a voltage is generated between the first electrode 11 and the third electrode 13 by the transducer 1 vibrating due to the sound wave received by the transducer 1. The sound wave can be sensed by measuring the voltage by using a not-illustrated receiving circuit connected to the first electrode 11.
In particular, the transducer 1 is used favorably to transmit and receive an ultrasonic wave.
The second electrode 12 and the third electrode 13 overlap each other with the second piezoelectric portion 22 interposed in the first direction. Accordingly, an electrostatic capacitance exists between the second electrode 12 and the third electrode 13. In the transducer 1, the electrostatic capacitance, the resistor 41, and the inductor 42 are included in a parallel resonant circuit.
When the transducer 1 transmits the sound wave, the mechanical energy at the resonant frequency vicinity of the bending vibrator V is converted into electrical energy by the piezoelectric effect of the second piezoelectric portion 22. On the other hand, at the resonant frequency, the impedance and the resistance of the parallel resonant circuit are equal. Therefore, the parallel resonant circuit acts as a resistor at the resonant frequency vicinity of the bending vibrator V of the transducer 1. As a result, the electrical energy that is converted by the piezoelectric effect of the second piezoelectric portion 22 is consumed by the resistor 41. Accordingly, a loss of the mechanical energy of the vibration occurs; damping of the vibration occurs; and the bandwidth of the transducer 1 is widened.
The functions of the transducer according to the first embodiment will now be described more specifically while referring to a transducer according to a reference example.
Compared to the transducer 1 according to the first embodiment, the transducer 1a according to the reference example illustrated in
F=Pt·S, where the transmission sound pressure is Pt, and the surface area of the bending vibrator V along a plane perpendicular to the first direction is S. The transmission sensitivity is represented by the following Formula (1), where the transmission voltage is Vt.
In Formula (1), ω is the angular frequency; and a is the resonance angular frequency. ωr is represented by the following Formula (2).
In Formula (1), ζa and ζea are constants called damping ratios. ζa and ζea are represented respectively by the following Formula (3) and Formula (4).
In the equivalent circuit when receiving illustrated in
ωa is the antiresonant frequency. The following Formula (6) to Formula (8) hold for k′e, ωa, and ζ′ea.
The transmission/reception sensitivity is obtained from the product of Formula (1) and Formula (5). Here, ωa≈ωr and ζea≈ζea, where k′e≈ke. In such a case, it can be seen that the profile (the bandwidth) of the frequency is determined by the damping ratio ζea from Formula (1) and Formula (5).
Generally, a transducer that includes a bending vibrator using a piezoelectric body has a narrow bandwidth. This is because the acoustic load ra of the medium (e.g., air) is small; and the damping ratio ζea is small.
In
Comparing the equivalent circuits of
An impedance Z of the RLC parallel resonant circuit illustrated in
The impedance Z of Formula (9) is Z=R at the resonance angular frequency represented by the following Formula (10).
Accordingly, the impedance Z of the RLC parallel resonant circuit becomes R at the mechanical resonant frequency vicinity of the bending vibrator V by setting the inductance L so that ω0 matches ωr. Then, the corresponding mechanical impedance is ηl2·R. This means that the damping ratio ζea increases by the amount represented by the following Formula (11).
The transducer that is included in the bending vibrator V has a narrow bandwidth because the damping ratio ζea is small. Formula (11) shows that widening the bandwidth is possible by increasing the damping ratio ζea. The bandwidth in which the RLC parallel resonant circuit operates as a resistor is represented by the following Formula (12).
As a result of investigations, the inventor discovered that in the case where ω0 is set to match ωr, the dependence on the bending vibrator V of the inductance L and the resistance R from Formula (10) and Formula (11) is represented by the following Formula (13) and Formula (14).
In other words, if the value of the inductance L necessary for widening the bandwidth is dependent on only the resonant frequency of the bending vibrator V, for the same resonant frequency, the value of the inductance L necessary for widening the bandwidth is independent of the size of the bending vibrator V. The value of the resistance R necessary for widening the bandwidth is independent of the resonant frequency and is dependent on only the desired damping ratio. From these results and Formula (12), the bandwidth in which the RLC parallel resonant circuit acts as a resistor is represented by the following Formula (15).
In other words, it was found that similarly to the resistance R, the bandwidth in which the RLC parallel resonant circuit acts as the resistor is independent of the resonant frequency and is dependent on only the desired damping ratio. From Formula (14) and Formula (15), it can be seen that the bandwidth Δf/fr in which the RLC parallel resonant circuit acts as the resistance R becomes narrow when a damping ratio ζR is increased and the resistance R is increased to widen the bandwidth. Accordingly, it can be seen that there is a desirable range for the resistance R.
In the case where the technical idea described above is applied to a typical piezoelectric air-coupled ultrasonic transducer, the inductance L and the resistance R are as follows. The frequency range of an ultrasonic wave in air is not less than 100 kilohertz (kHz) and not more than 1 megahertz (MHz). The inductance L is determined based on only the resonant frequency and is not less than 1.2 millihenries (mH) and not more than 12 mH.
In the transducer 1a according to the reference example as illustrated in
Comparing
The definitions of the bandwidth Δf/fr, Vmin, and Vmax are shown in
From
From
In
From
As described above, according to the embodiment, the mechanical energy of the vibration is converted into electrical energy at the resonance point vicinity by the piezoelectric effects of the second piezoelectric portion 22 and the RLC parallel resonant circuit including the resistor 41, the inductor 42, and the capacitor between the second electrode 12 and the third electrode 13. Then, the electrical energy that is converted is consumed by the resistor 41; thereby, a loss of the mechanical energy of the vibration occurs; damping of the vibration occurs; and the transducer 1 having a wide bandwidth is realized.
As described above, the inventor discovered that more desirable characteristics are obtained for the transducer 1 when the resistance value of the resistor 41 is 39 kΩ or less, and the inductance of the inductor 42 is not less than 1.2 mH and not more than 12 mH.
As illustrated in
The first electrode 11, the second electrode 12, the third electrode 13, the first piezoelectric portion 21, and the second piezoelectric portion 22 each are multiply provided in the second direction crossing the first direction. The first electrode 11, the second electrode 12, and the third electrode 13 each may be multiply provided further in a third direction. The third direction crosses the first direction and the second direction and is, for example, a Y-direction illustrated in
The multiple first piezoelectric portions 21 are provided respectively between the multiple first electrodes 11 and the multiple third electrodes 13 in the first direction. The multiple second piezoelectric portions 22 are provided respectively between the multiple second electrodes 12 and the multiple third electrodes 13 in the first direction. The multiple first piezoelectric portions 21 and the multiple second piezoelectric portions 22 may be provided as one body or may be provided individually. The resistor 41 and the inductor 42 are connected to the multiple second electrodes 12. The transmitting circuit 40 or a not-illustrated receiving circuit is connected to the multiple first electrodes 11.
Here, for the transducer 1 according to the first embodiment illustrated in
Similarly, in the case where N bending vibrators are electrically connected in parallel, the values of the necessary inductance and resistance are 1/N times those of the first embodiment. For example, the value of the necessary inductance L is 4 mH in the case where the resonant frequency of the transducer is 300 kHz, the size of the transducer is 3 mm×3 mm, and the transducer includes one bending vibrator V having a diameter of 3 mm. On the other hand, in the case where the diameter of the bending vibrator V is 0.5 mm, the transducer can hold thirty-six bending vibrators. In such a case, the value of the necessary inductance L is 110 μH.
An inductor that has a mH-order inductance is large and expensive, and may cause a larger size and a higher cost of the circuit board. However, an inductor that has a μH-order inductance is small and inexpensive; therefore, a smaller size and a lower cost of the circuit board are possible. Accordingly, it is desirable to configuration the transducer using the multiple bending vibrators V.
As illustrated in
The second electrode 12 is separated from the first electrode 11 in the second direction and the third direction. The second electrode 12 is provided around the first electrode 11 along the second direction and the third direction. The third electrode 13 is separated from the first electrode 11 and the second electrode 12 in the first direction. The first piezoelectric portion 21 is provided between the first electrode 11 and the third electrode 13 and between the second electrode 12 and the third electrode 13 in the first direction.
The first semiconductor portion 51 and the second semiconductor portion 52 include semiconductor materials such as silicon, etc. The insulating portion 53 includes an insulating material such as silicon oxide, etc. Another member that is elastic may be provided instead of the first semiconductor portion 51. Another member that holds the outer edge of the first semiconductor portion 51 may be provided instead of the second semiconductor portion 52 and the insulating portion 53.
In the transducer 3, the first electrode 11, the third electrode 13, and the first piezoelectric portion 21 between these electrodes perform the transmission/reception of the sound waves; and the second electrode 12, the third electrode 13, and the first piezoelectric portion 21 between these electrodes perform the damping of the vibration.
The transducer 3 according to the embodiment may be formed without stacking multiple piezoelectric portions as in the transducer 1 according to the first embodiment. For example, the transducer 3 according to the embodiment is made using piezoelectric thin film formation technology and MEMS technology. Such a structure is called a pMUT (piezoelectric micro-machined ultrasonic transducer). In the case where the transducer 3 is made using an SOI substrate, the first semiconductor portion 51 is a Si layer; the second semiconductor portion 52 is a Si substrate; and the insulating portion 53 is a silicon oxide layer. The space SP is formed by reactive ion etching of the Si substrate.
As illustrated in
The first electrode 11, the second electrode 12, and the third electrode 13 each are multiply provided in the second direction crossing the first direction. Further, the first electrode 11, the second electrode 12, and the third electrode 13 each may be multiply provided in the third direction. The multiple second electrodes 12 are provided respectively around the multiple first electrodes 11 along the second direction and the third direction. The multiple first piezoelectric portions 21 are provided between the multiple first electrodes 11 and the multiple third electrodes 13 and between the multiple second electrodes 12 and the multiple third electrodes 13 in the first direction. The resistor 41 and the inductor 42 are connected to the multiple second electrodes 12. The transmitting circuit 40 or a not-illustrated receiving circuit is connected to the multiple first electrodes 11.
According to the embodiment, similarly to the second embodiment, the inductance of the inductor 42 necessary to obtain the desired characteristics can be reduced.
The inspection apparatus 5 according to the embodiment includes a transmitter module 61, a receiver module 62, and rollers 63 as illustrated in
The transmitter module 61 and the receiver module 62 are separated in the first direction. The rollers 63 convey the paper 64 in the second direction so that the paper 64 passes between the transmitter module 61 and the receiver module 62. An ultrasonic wave is radiated from the transmitter module 61 toward the receiver module 62 when a voltage is applied to the transmitter module 61. The ultrasonic wave that is radiated passes through the paper and is received by the receiver module 62. As the thickness of the paper 64 increases, the attenuation of the ultrasonic wave when passing through the paper 64 increases; and the intensity of the received signal at the receiver module 62 decreases. Accordingly, the thickness of the paper 64 can be confirmed based on the intensity of the received signal.
As illustrated in
As illustrated in
Here, the distribution of the thickness of the paper 64 is inspected using a feed velocity v of the paper 64, and a spacing δx along the feed direction of the paper 64. In such a case, it is necessary to perform the transmission and reception of the ultrasonic pulse in a time interval of δt=δx/v. The time interval δt decreases as the measurement interval δx decreases. Therefore, in the case where the transducer array 2 has a narrow bandwidth and the pulse length is long, the pulse is not settled within the interval δt. Accordingly, to reduce the measurement interval δx, it is desirable to use a transducer having a wide bandwidth and a shorter pulse length. In other words, it is possible to increase the inspection speed by the inspection apparatus 5 including the transducers or the transducer arrays according to the embodiments.
According to the embodiments described above, it is possible to increase the bandwidth of a transducer and a transducer array.
In the specification of the application, “perpendicular” and “parallel” refer to not only strictly perpendicular and strictly parallel but also include, for example, the fluctuation due to manufacturing processes, etc. It is sufficient to be substantially perpendicular and substantially parallel.
Hereinabove, embodiments of the invention are described with reference to specific examples. However, the invention is not limited to these specific examples. For example, one skilled in the art may similarly practice the invention by appropriately selecting specific configurations of components included in the transducer such as the first electrode 11, the second electrode 12, the third electrode 13, the first piezoelectric portion 21, the second piezoelectric portion 22, the holder 30, the base body 31, the transmitting circuit 40, the resistor 41, the inductor 42, the first semiconductor portion 51, the second semiconductor portion 52, the insulating portion 53, etc., from known art; and such practice is within the scope of the invention to the extent that similar effects can be obtained.
Further, any two or more components of the specific examples may be combined within the extent of technical feasibility and are included in the scope of the invention to the extent that the purport of the invention is included.
Moreover, all transducers and transducer arrays practicable by an appropriate design modification by one skilled in the art based on the transducers and the transducer arrays described above as embodiments of the invention also are within the scope of the invention to the extent that the spirit of the invention is included.
Various other variations and modifications can be conceived by those skilled in the art within the spirit of the invention, and it is understood that such variations and modifications are also encompassed within the scope of the invention.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2017-023274 | Feb 2017 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4703213 | Gäsler | Oct 1987 | A |
5638822 | Seyed-Bolorforosh | Jun 1997 | A |
5757104 | Getman et al. | May 1998 | A |
20050162040 | Robert | Jul 2005 | A1 |
20090001853 | Adachi et al. | Jan 2009 | A1 |
20100201222 | Adachi | Aug 2010 | A1 |
20110261652 | Horsky et al. | Oct 2011 | A1 |
20150304780 | Onishi | Oct 2015 | A1 |
20160107194 | Panchawagh et al. | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
0 706 835 | Apr 1996 | EP |
2 381 271 | Oct 2011 | EP |
2 928 208 | Oct 2015 | EP |
3-79199 | Apr 1991 | JP |
2961198 | Oct 1999 | JP |
WO 201517122 | Nov 2015 | WO |
WO 2016175013 | Nov 2016 | WO |
Entry |
---|
Koji Ibata, et al., “An Air-Coupled Ultrasonic Sensor Applying a Bimorph Structure”, The 2012 IEICE Society Conference, The Institute of Electronics; Information and Communication Engineers (IEICE), 2012. 3 Pages (Machine Generated English Translation). |
Number | Date | Country | |
---|---|---|---|
20180229267 A1 | Aug 2018 | US |