Transducer arrangement for screed control

Information

  • Patent Grant
  • 6729796
  • Patent Number
    6,729,796
  • Date Filed
    Wednesday, April 16, 2003
    21 years ago
  • Date Issued
    Tuesday, May 4, 2004
    20 years ago
Abstract
A transducer arrangement and method that generates control signals indicating relative positions of the ends of a hydraulically movable screed head. The generated control signals of the present invention are used by a conventional control circuit controlling the hydraulically movable screed head with laser receivers in a column block situation, which interrupts the reception of a laser beam from a laser transmitter by one of the laser receivers, to provide an estimated absolute position of the interrupted receiver side of the screed head until the column block situation clears. Normally, absolute measurements are available on both sides of the screed head via the laser receivers receiving the laser beam. The transducer arrangement of the present invention provides an additional control signal that in a column blocked situation the control system uses to maintain a relative elevation position of the interrupted receiver side to the absolute position of the uninterrupted receiver side until both receiver can reacquire the elevational reference of the laser transmitter.
Description




BACKGROUND OF THE INVENTION




The present invention relates to a transducer arrangement for screed control, and more specifically, to a screed control system of a screed head carried by a machine having laser receivers receiving actual elevational positions of the ends of the screed head from an external laser transmitter, and a transducer arrangement providing relative elevational positions of the ends of the screed head to each other.




In using a screed machine for screeding applications, typically, a hydraulic cylinder is connected at each end of a screed head to raise or lower each end of the screed head independently. Accordingly, the two sides of the screed head must be controlled. This is done presently by attaching a pair of laser receivers, one to each side, to the screed head. The elevation feedback provided by the pair of laser receivers drives the hydraulics controlling the elevation of each side of the screed head.




The elevational feedback of each end of the screed head is based upon the pair of laser transmitter detecting a rotating reference beam of laser light that defines a reference plane. This reference plane, emitted by a laser transmission, thus indicates a designated elevation. During a screeding operation, each of the receivers provides elevation feedback to drive the hydraulics controlling the elevation of each side of the screed head in order to maintain the elevational reference.




A problem may arise, however, if the reception of the elevational reference by one the receivers is blocked or interrupted by something of an appreciable height, such as, for example, a support column in a building, or is disrupted. When a blockage or interruption occurs, there is a need to maintain the relative elevation of the ends of the screed head until the elevational reference can be reacquired by both receivers. There is also a need to be able to pull the screed head along a straight path, while maintaining the chosen thickness of the layer and matching forms or existing surfaces during the screeding operation.




One approach to this problem is to set up two external laser transmitters at the same elevation on opposite sides of the screed head. In this way, if a column blocks one of the laser transmitters, the other external laser transmitter is likely to be illuminating the laser receivers at the ends of the screed head, thereby compensating for the interruption. Essentially, the prior art method is to eliminate all blind spots around the receivers. However, this prior art method adds an additional cost in providing and setting up the second external laser transmitter in order to eliminate the possibility of a column block situation.




Another approach to this problem is to use a gravity-based cross slope sensor, which detects the angular shifts of the screed head as the screed head tilts up and down. Additionally, the gravity-based cross slope sensor may be used as a reference for set up and control in a super flat, or plumb, floor application. Accordingly, when both sides of the screed head are within the appropriate dead band, the desired grade of the cross slope sensor is measured and stored in memory of the screed head's control system. When one laser receiver loses reception of the elevational reference, the cross slope sensor detects the height of the interrupted receiver side of the screed head relative to its uninterrupted receiver side. That is, the cross slope sensor provides a relative measurement of the interrupted laser receiver which, when coupled with the absolute measurement of the uninterrupted laser receiver, provides an estimate of the absolute position of the interrupted laser receive. The control system of the screed head uses the provided absolute and estimated absolute positions to control the elevation of ends of the screed head. However, several disadvantages exist in the cross slope sensor arrangement described above.




First, the gravity-based cross slope sensor is vulnerable to accelerations along its sensitive axis, resulting in miscalculations of the screed head's slope. In screeding operations, it is quite common for the operator to ‘side shift’ the screed head around columns as he pulls the screed head back. Since the sensitive axis of the gravity-based cross slope sensor is parallel to the length of the screed head, this side shifting can cause noticeable acceleration along the sensitive axis of measurement, thus dramatically affecting the feedback of the cross slope sensor. Second, harmonics of the machine boom carrying the screed head, which do not cause significant enough elevation shifts to be seen in the laser receivers at both ends of the screed head, are detectable by gravity-base cross slope sensor since it measures acceleration and not machine movement. Third, in order to reduce the effects of noise and to compensate for some of the low frequency harmonics of the machine vibration, considerable low pass filtering of the cross slope sensor is required. The use of low pass filters on the output of the gravity-based cross slope sensor adds an inherent time lag to the system, which degrades the bandwidth performance of the blocked side. Finally, separate control gains for the cross slope sensor are used to compensate for the time lag. Additionally, changes in loop gain are required to accommodate angular and positional feedback.




Therefore, there is a need for providing a screed control system that does not require setting up a second external laser transmitter in order to maintain the elevation of the ends of the screed head in a block receiver situation.




There is also a need for providing a screed control system that does not require a gravity-based cross slope sensors to maintain the relative elevation of the blocked receiver end of the screed head until the elevation reference can be reacquired by both receivers.




SUMMARY OF THE INVENTION




These needs are met by a transducer arrangement according to the present invention that generates control signals indicating relative positions of the ends of the screed head. The control signals of the present invention can be use by the conventional control circuit in a column block situation, which interrupts the reception of a laser beam, providing an elevational reference, from a laser transmitter by one of the laser receivers, to provide an estimated absolute position of the interrupted receiver side until the column block situation clears. Normally, as pointed out above, absolute measurements are available on both sides of the screed head via the laser receivers. Thus, in the present invention, the key to controlling the screed head in a column blocked situation is that at any given time, at least one absolute measurement for one side of the screed head and one relative elevational measurement from that side of the screed head to the blocked side of the screed head is available to the control system. Accordingly, with the generated control signals from the transducer arrangement of the present invention the control system can maintain a relative elevation position of the interrupted receiver side to the absolute position of the uninterrupted receiver side until both receivers can reacquire the elevational reference of the laser transmitter.




In one aspect, the present invention is a transducer arrangement for generating control signals used by a conventional control circuit, which controls movement of hydraulically controlled ends of a screed head with laser receivers provided at the ends, in a column block situation that interrupts the reception of a laser beam, defining a chosen elevational position, from a laser transmitter by one of the laser receivers so as to maintain the chosen elevational position of each hydraulically controlled end of the screed head, the transducer arrangement comprising a light source mounted on a first mast of the screed head; and a light detection device mounted on a second mast of the screed head, the light detection device includes a plurality of light detectors vertically arranged and associated electronics to provide an output to the conventional control circuit indicating which of the plurality of light detectors is illuminated by light from the light source thereby providing an indication of the relative height of the first and second masts, and therefore of the relative height of the ends of the screed head until the column block situation clears.




In another aspect, the present invention is a method of controlling elevational positions of hydraulically controlled ends of a screed head in relationship to a reference plane, defined by a laser transmitter and detected by laser receivers attached the end of the screed head, in a column block situation that interrupts the reception of a laser beam from the laser transmitter by one of the laser receivers, comprising the steps of emitting light from a light source mounted on a first mast of the screed head; detecting the light with a light detection device mounted on a second mast of the screed head, the light detection device includes a plurality of light detectors arranged in a vertical row; generating an output indicating which of the plurality of light detectors is illuminated by light from the light source; and using the output of the light detection device to maintain a relative height between the first and second mast until the column block situation clears.











BRIEF DESCRIPTION OF THE DRAWINGS










FIG. 1

illustrates a screeding operation and the control arrangement of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




As illustrated generally in

FIG. 1

, a conventional screed control systems


2


for a screed machine


4


typically consist of an external laser transmitter


10


, transmitting a rotating laser beam


12


, a pair of laser receivers


14


, a control box


16


for controlling electro-hydraulic control values (not shown) of the screed machine


4


. The screed machine


4


further includes a pair of masts


18


, each carrying one of the pair of laser receivers


14


, attached with and moved generally vertically, independently, with respective ends


20


and


21


of a screed head


22


. The screed head


22


is attached to the end of a hydraulic arm or boom


23


which moves the screed head


22


in the horizontal direction x. During normal operation, the control box


16


causes actuation of the hydraulic valves such that hydraulic cylinders


24


and


25


at the ends


20


and


21


, respectively, independently raise or lower, indicated by vertical directions y and y′, the ends


20


and


21


of the screed head


22


, as needed, as it is drawn in the direction of x over the surface of uncured concrete


26


. It is to be appreciated that the raising and lowering of the screed head


22


in the vertical directions y and y′ is accomplished in response to reception of the reference laser beam


12


by the pair of laser receivers


14


. The laser beam


12


rotates about an axis, as indicated at


28


, so as to define a reference plane of laser light.




As discussed above, a difficulty arises with the conventional screed control system


2


of this type when the path of the laser beam


12


to one of the pair of receivers


14


is temporarily blocked by a column or other obstruction at a work site. In the present invention, a transducer arrangement, indicated generally by


30


, is provided to over come the above mention difficulties with the conventional screed control system


2


. The transducer arrangement


30


consists of two additional components or parts. Preferably, the two additional components are mounted directly underneath the pair of laser receivers


14


in order to reference movement from one side of the screed head


22


to the other. Alternatively, the two additional components could be includes as additional components or parts of the laser receivers. The first component of the transducer arrangement


30


is a light detection device


32


, and basically consists of any conventional device that has the sufficient electronics to detect a reference light beam


34


, such as a laser, and to output a feedback signal indicating the light beam's relative position detected. In the preferred embodiment, light detection device


32


includes a plurality of photo cells


36


arranged in a vertical row, or alternatively, split cells. Additionally, the light detection device


32


includes the associated electronics to provide an output indicating which of the photo cells


36


is illuminated by light beam


34


from the second component, a light source


38


. The light source


38


, and is preferably a laser transmitter, such as striped laser or alternatively, any other non-coherent light sources, such as a flash light. The light source


38


is mounted on the other side of the screed head


22


so that the reference light beam


34


it generates hits the photo cells


36


of the light detection device


32


on the other side of the screed head. Accordingly, the light source


38


projects the light beam


34


toward the light detection device


32


for illumination of one of the plurality of photo detectors


36


. Since the light beam


34


only diverges slightly in the horizontal direction x, the criticality of the alignment of the light source


38


is greatly reduced. The transducer arrangement


30


, in a similar manner as the pair of laser receivers


14


, is electrical coupled to the control system


16


via electrical lines


40


, which also provides power to the light source


38


. Thus, after an initial calibration, the transducer arrangement


30


, via one of the electrical lines


40


, provides to the control system


16


an output signal, which indicates the relative height between the pair of masts


18


.




The control system


16


uses the output signal of the transducer arrangement


30


to determine and therefore control the relative height of the two ends


20


and


21


of the screed head


22


when one of the normally absolute measurements provided by the pair of laser receivers


14


is unavailable due to a column block situation. In the column block situation, where reception of the laser beam


12


from the laser transmitter


10


by one of the pair of laser receivers


14


is disrupted, the control system maintains the relative elevational position of the blocked side end


20


or


21


to the actual elevational position of the unblocked side end until the laser beam


12


can be reacquired by both pairs of laser receivers


14


.




The present invention provides a number of advantages. First, since the transducer arrangement


30


measures true movement and not just acceleration, it is not as vulnerable to possible machine vibration as would be the case with a gravity-based cross slope sensor. Essentially, the transducer arrangement


30


is no more sensitive to machine vibration than the pair of laser receivers


14


. As a consequence, extensive low pass filtering of the output signal from the transducer arrangement


30


at low frequencies is not needed. Hence, the light detection device


32


of the transducer arrangement


30


induces no appreciable time lag in it output signal into the control system


16


, and thus is not limited to being sampled at 10 Hz, as is with the pair of conventional laser receivers


14


. If desired, the output signal of the transducer arrangement


30


may be sampled at a much higher rate and low pass filtered into a 10 Hz signal to eliminate aliasing in the control system


16


and to provide the control system


16


with a signal that mimics the behavior of a laser receiver. Additionally, the output of the sensor is provided in the same units as the output of a laser receiver. As a consequence, the control feedback loop in the control system


16


uses the same gains with the feedback from the light detection device


32


as it does with the pair of laser receiver


14


, therefore requiring no special calibration adjustments to maintain performance. Further, a user display


42


of the control system


16


, easily communicates with the transducer arrangement


30


for modes of operation where adjusting the elevation of the blocked side is desired (i.e. an indicate mode). Finally, the present invention is not vulnerable to errors being induced by lateral shifting of the screed head.



Claims
  • 1. A method for automatically controlling the height of a tool hydraulically carried by a machine, comprising:providing a first sensor that outputs a first-side output signal indicative of the height of a first side of the tool; providing a second sensor that outputs a second-side output signal indicative of the height of a second side of the tool; providing a controller that is responsive to the first-side output signal for controlling the height of the first side of the tool, and is responsive to the second-side output signal for controlling the height of the second side of the tool; operating the controller to control the height of the tool hydraulically carried by the machine by responding to the first-side and second-side output signals when both are available; and if the first-side or second-side output signal is unavailable, then automatically using an alternative sensor to control the height of the tool on the side of the unavailable output signal, said alternative sensor being insensitive to movement of the tool in the horizontal direction,wherein the alternative sensor is a transducer arrangement comprising a detection device provided at one end of the tool and a source provided at the other end of the tool providing a reference beam, the output signal indicating the relative height between the ends of the tool from the detection device detecting the reference beam.
  • 2. The method as recited in claim 1 further comprising ceasing to use the alternative sensor when the unavailable output signal becomes available again.
  • 3. The method as recited in claim 1 wherein said automatically using an alternative sensor includes using an output signal of a third sensor to control the side of the tool having an unavailable output signal.
  • 4. The method as recited in claim 3 further including monitoring the output signal of the third sensor while the first-side and second-side output signals are available, and using the monitored value of the output signal of the third sensor when the first-side or second-side output signal becomes unavailable.
  • 5. The method as recited in claim 1 wherein the alternative sensor measures the relative height between the first and second sides of the tool.
  • 6. The method as recited in claim 1 wherein the first and second sensors provide absolute measurements of the positions of the sides of the tool.
  • 7. The method as recited in claim 1 wherein the first and second sensors are laser receivers.
  • 8. The method as recited in claim 1 wherein the tool is a concrete screed.
  • 9. The method as recited in claim 1 wherein the detection device is a light detection device and said source is a light source.
  • 10. The method as recited in claim 1 wherein the detection device comprises a plurality of photocells and associated electronics, and the source provides a light beam as the reference beam, and wherein the associated electronics provide the output signal indicating which one of the photo cells is illuminated by the light beam.
  • 11. The method as recited in claim 1 wherein the source is a light source providing light selected from the group consisting of coherent and noncoherent light.
  • 12. A method for controlling the height of a tool hydraulically carried by a machine, comprising:providing a first sensor to the tool that outputs a first-side output signal indicative of the height of a first side of the tool; providing a second sensor to the tool that outputs a second-side output signal indicative of the height of a second side of the tool; providing a third sensor to the tool that outputs a reference signal, said third sensor being insensitive to movement of the tool in the horizontal direction, wherein the third sensor comprises a detection device provided at one end of the tool and a source provided at the other end of the tool providing a reference beam, the reference signal indicating the relative height between the ends of the tool from the detection device detecting the reference beam; providing a controller that is responsive to the first-side output signal for controlling the height of the first side of the tool and is responsive to the second-side output signal for controlling the height of the second side of the tool; operating the controller to control the height of the tool by responding to the first-side and second-side output signals when both are available; and if the first-side or second-side output signal is unavailable, then automatically using the reference signal to control the side of the tool having an unavailable output signal.
  • 13. The method as recited in claim 12 further comprising ceasing to use the reference signal when the unavailable output signal becomes available again.
  • 14. The method as recited in claim 12 wherein the third sensor measures the relative height between the first and second sides of the tool.
  • 15. The method as recited in claim 12 wherein the first and second sensors provide absolute measurements of the positions of the end of the tool.
  • 16. The method as recited in claim 12 wherein the first and second sensors are laser receivers.
  • 17. The method as recited in claim 12 wherein the tool is a concrete screed.
  • 18. The method as recited in claim 12 wherein the detection device is a light detection device and said source is a light source.
  • 19. The method as recited in claim 12 wherein the detection device comprises a plurality of photocells and associated electronics, and the source provides a light beam as the reference beam, and wherein the associated electronics provide the reference signal indicating which one of the photo cells is illuminated by the light beam.
  • 20. The method as recited in claim 12 wherein the source is a light source providing light selected from the group consisting of coherent and noncoherent light.
  • 21. A method for controlling the height of a tool hydraulically carried by a machine, comprising:providing a first sensor to the tool that outputs a first-side output signal indicative of the absolute position of a first side of the tool; providing a second sensor to the tool that outputs a second-side output signal indicative of the absolute position of a second side of the tool; providing a third sensor to the tool that outputs a reference signal indicating the relative height between the first and second sides of the tool, said third sensor being insensitive to movement of the tool in the horizontal direction, wherein the third sensor is a transducer arrangement comprising a detection device provided at one end of the tool and a source provided at the other end of the tool providing a reference beam, the reference signal indicating the relative height between the ends of the tool from the detection device detecting the reference beam; providing a controller that is responsive to the first-side output signal for controlling the height of the first side of the tool and is responsive to the second-side output signal for control the height of the second side of the tool; operating the control to control the height of the tool by responding to the first-side and second-side output signals when both are available; if the first-side or second-side output signal is unavailable, then automatically using the reference signal to control the height of the tool on the side of the unavailable output signal.
  • 22. The method as recited in claim 21 wherein the first and second sensors are laser receivers.
  • 23. The method as recited in claim 21 wherein the tool is a concrete screed.
  • 24. The method as recited in claim 21 wherein the detection device is a light detection device and said source is a light source.
  • 25. The method as recited in claim 21 wherein the detection device comprises a plurality of photocells and associated electronics, and the source provides a light beam as the reference beam, and wherein the associated electronics provide the reference signal indicating which one of the photo cells is illuminated by the light beam.
  • 26. The method as recited in claim 21 wherein the source is a light source providing light selected from the group consisting of coherent and noncoherent light.
  • 27. The method as recited in claim 21 further comprising ceasing to use the reference signal when the unavailable output signal becomes available again.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 09/492,061, filed Jan. 27, 2000 now U.S. Pat. No. 6,530,720, which claims the benefit of U.S. Provisional Application No. 60/118,085, filed Jan. 27, 1999, which is incorporated herein by reference.

US Referenced Citations (16)
Number Name Date Kind
4025194 Teppo May 1977 A
4559445 Hedin et al. Dec 1985 A
4655633 Somero et al. Apr 1987 A
4752156 Owens Jun 1988 A
4930935 Quenzi et al. Jun 1990 A
4978246 Quenzi et al. Dec 1990 A
5039249 Hansen et al. Aug 1991 A
5098185 Watanabe et al. Mar 1992 A
5129803 Nomura et al. Jul 1992 A
5288166 Allen et al. Feb 1994 A
5288167 Gaffard et al. Feb 1994 A
5556226 Hohmann, Jr. Sep 1996 A
5771978 Davidson et al. Jun 1998 A
5951613 Sahm et al. Sep 1999 A
6171018 Ohtomo et al. Jan 2001 B1
6227761 Kieranen et al. May 2001 B1
Provisional Applications (1)
Number Date Country
60/118085 Jan 1999 US
Continuations (1)
Number Date Country
Parent 09/492061 Jan 2000 US
Child 10/414998 US