Transducer for a position sensor

Information

  • Patent Grant
  • 8570028
  • Patent Number
    8,570,028
  • Date Filed
    Monday, April 28, 2008
    16 years ago
  • Date Issued
    Tuesday, October 29, 2013
    11 years ago
Abstract
A transducer has a magnetic field concentrating member a first coil to couple with a first portion of the magnetic field concentrating member positioned adjacent the first coil and a second coil to couple with a second portion of the magnetic field concentrating member positioned adjacent the second coil, the second portion being spaced along the magnetic field concentrating member from the first portion. The transducer comprises a resonator having a coil wound around a portion of said magnetic field concentrating member which is located between said first and second portions. The transducer is arranged so that the electromagnetic coupling between the resonator and at least one of the first and second coils varies as a function of the relative position between the elongate field concentrating member and that coil. In this way, separate processing electronics can process the signals obtained from the transducer to determine the desired position information.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a U.S. National Phase application under 35 U.S.C. 371 of International Application No. PCT/GB2008/050305, filed on Apr. 28, 2008, entitled TRANSDUCER, which claims priority to Great Britain patent application number 0708981.6, filed May 10, 2007, and Great Britain patent application number 0713942.1, filed Jul. 18, 2007.


FIELD

The present invention relates to a transducer for use in an inductive position sensor. The invention has particular relevance to transducers for linear and rotary position sensor systems which are applicable to machines, robotics, front panel controls and instrumentation, and other applications where such position measurements are required.


BACKGROUND

Various electromagnetic transducers have been proposed for use in sensing position. A traditional approach is the use of optical encoders. However these devices are expensive and prone to dirt contamination unless housed, at added cost. More recently Hall-effect based sensors have become available, dedicated to the task of absolute position sensing. These are exemplified by Austria Microsystems' AS5030 integrated circuit, which measures the angular position of a magnet positioned above. However these sensors are relatively sensitive to DC magnetic fields present in their operating environment, for example due to their proximity to motors and/or the presence of magnets. They are also sensitive to misalignment of the magnet's rotation axis relative to their own central axis, which can cause errors in their reported position. Such misalignment arises through tolerances at manufacture. It is possible to calibrate out the resulting errors, but the resulting calibration time is costly. It is possible to mechanically trim out the misalignment, but the trimming step is costly. It is possible to tighten the tolerances, but this usually results in the need for more expensive components.


Inductive sensors such as those described in U.S. Pat. No. 6,522,128 (the contents of which are incorporated herein by reference) overcome the problem of DC magnetic field sensitivity by operating with AC fields. Many of these known inductive sensors use excitation and sensor coils that are inductively coupled, in use, to a resonator coil. To keep manufacturing costs down, the coils, including the resonator coil, are manufactured from conductive tracks mounted on printed circuit boards. This can result in relatively low Q factor and hence poor signal levels and hence poor signal to noise for a given drive power.


SUMMARY

The present invention aims to provide an alternative transducer design that can be used in an electromagnetic position sensor.


According to one aspect, the present invention provides a transducer for use in a position sensor, the transducer comprising: a magnetic field concentrating member; a first coil operable, in use, to couple with a first portion of the magnetic field concentrating member positioned adjacent the first coil; a second coil operable, in use, to couple with a second portion of the magnetic field concentrating member positioned adjacent the second coil, the second portion being spaced along the magnetic field concentrating member from the first portion; and a resonator having a coil wound around a portion of said magnetic field concentrating member which is located between said first and second portions; wherein, during use, the electromagnetic coupling between the resonator coil and at least one of the first and second coils varies as a function of the relative position between the resonator and that coil. In this way, separate processing electronics can process the signals obtained from the transducer to determine the desired position information.


The electromagnetic coupling between the resonator and both the first and second coils varies as a function of the relative position between the resonator and those coils.


A third coil may be provided for coupling with a third portion of the elongate magnetic field concentrating member positioned adjacent the third coil, the first portion being positioned between said second and third portions. In this case, the second and third coils can be connected in series, preferably so that signals induced in the second coil by a background magnetic field oppose the signals induced in the third coil by the same background magnetic field.


The arrangement of the resonator and the coils is preferably such that, during use, an electromagnetic field generated by the resonator couples with a first polarity with the second coil and couples with a second, opposite, polarity with the third coil.


In one embodiment, the field concentrating member is rotatable about an axis which passes through or near said first portion and the resonator coil is mounted asymmetrically on the field concentrating member. In this case, the second and third coils can be symmetrically arranged about an axis which is substantially coaxial with the rotational axis of the field concentrating member.


In a preferred embodiment, the first and second coils are substantially planar and the magnetic field concentrating member is oriented so that a longitudinal axis of the magnetic field concentrating member lies in a plane that is substantially parallel with said planar coils. The planar coils can be formed, for example, from conductor tracks on a printed circuit board or from conductive inks on a substrate.


Another aspect provides a rotational position sensor comprising a resonant element mounted for relative rotational motion about an axis of rotation and which is operable to generate substantially equal and opposite magnetic fields on opposing sides of said axis of rotation in response to a substantially rotationally symmetric excitation magnetic field.


The resonant element may be formed from an inductor and capacitor or from a mechanical type resonator such as a magnetostrictive element. If formed from an inductor and capacitor, the inductor may include a coil wound onto a permeable member, such as a ferrite rod. In one embodiment, the coil is asymmetrically positioned on the ferrite rod relative to the rotation axis of the resonant element.


If required, the permeable member may be tilted relative to substantially planar sensor coils to ensure that the field magnitudes are equalised on opposing sides of the rotational axis.


This aspect also provides a system for inductively measuring the angular position of the above resonant element. The system may include one or more patterned sensor coils for the detection of resonator angle. The patterning of the sensor coils may be arranged to generate a substantially sinusoidally varying amplitude with angle in response to resonator rotation.


The system may include a processor for combining coupling information from multiple sensor coils to deliver a position indication substantially immune to misalignment of the resonator and sensor coils.


The system may include a substantially rotationally symmetric coil for powering the resonator. Alternatively, the resonator may be powered from the patterned coils.





BRIEF DESCRIPTION OF THE DRAWINGS

These and various other aspects of the invention will become apparent from the following detailed description of exemplary embodiment described with reference to the accompanying drawings in which:



FIG. 1 is a schematic illustration of a rotary position sensor for determining the angular position of a rotor relative to stator;



FIG. 2
a schematically illustrates a SIN sensor winding used in the position sensor shown in FIG. 1;



FIG. 2
b schematically illustrates a COS sensor winding and an excitation winding used in the position sensor shown in FIG. 1;



FIG. 3 schematically illustrates the magnetic interaction between a resonator mounted on the rotor and an excitation winding and sensor winding mounted on the stator;



FIG. 4 schematically illustrates the way in which the signals obtained from the SIN and COS sensor winding varies with the rotation angle of the resonator;



FIG. 5
a schematically illustrates an error in reported position caused by an offset between a resonator and the excitation and sensor windings;



FIG. 5
b schematically illustrates how the offset shown in FIG. 5a is overcome using the resonator design shown in FIG. 1;



FIGS. 6
a to 6d illustrate the conductive tracks formed on the four layers of the sensor board which form the COS sensor winding;



FIGS. 7
a to 7d illustrate the conductive tracks formed on the four layers of the sensor board which form part of the excitation winding;



FIGS. 8
a to 8d illustrate all of the conductive tracks on the four layers of the sensor printed circuit board;



FIG. 9 is a block diagram illustrating the excitation and processing circuitry used to drive the excitation winding and used to process the signals obtained from the sensor windings to determine the position of the rotor;



FIG. 10 schematically illustrates an alternative design of sensor winding;



FIG. 11 schematically illustrates an alternative design of resonator having first and second orthogonally mounted coils;



FIG. 12 schematically illustrates an alternative design of resonator having four coaxial coils;



FIG. 13 schematically illustrates an alternative design of resonator having three coaxial coils;



FIG. 14 schematically illustrates an alternative resonator system that uses a magnetostrictive resonator; and



FIG. 15 schematically illustrates a linear embodiment for sensing the position of a resonator element along a linear measurement path.





DETAILED DESCRIPTION

Overview


One embodiment of the invention is illustrated in FIG. 1. A resonator 1 is built from a coil 3 wound around a ferrite rod 4, with the ends of the coil 3 being connected in parallel with a capacitor 5 to form an LC resonant circuit. As shown, the resonator coil 3 is mounted asymmetrically along the length of the ferrite rod 4. The length of the ferrite rod 4 is approximately 20 mm with a diameter of about 2 mm and the outer diameter of the resonator coil 3 is about 3 mm. The use of a relatively long thin field concentrating member (ferrite rod 4) wound with a coil 3 of relatively small diameter means that the resonator 1 has a very high Q-factor. The resonator 1 is mounted for angular motion (represented by arrow 7) relative to a sensor circuit board 9, such that the axis of the coil 3 is substantially parallel with the plane of the circuit board 9. The axis of rotation of the resonator 1 is the centre of the ferrite rod 4, which is nominally aligned with the centre of the sensor board 9. The resonator 1 may, for example, be mounted on a rotor of a motor and the sensor board 9 may be mounted on the stator.


The resonator 1 is powered by an excitation coil 11 integrated onto the sensor board 9. This excitation coil 11 generates an approximately uniform and rotationally symmetric field concentrated near the centre of the resonator's ferrite rod 4. The excitation field is concentrated by the ferrite rod 4. The asymmetric placement of the resonator coil 3 on the ferrite rod 4 means that it couples with the resulting concentrated field. The coupling factor is largely immune to the rotational angle of the resonator 1, due to the radially symmetric nature of the excitation field. The resonator 1 is therefore forced to resonate at all angular positions Az, and with a phase relationship to the excitation field which is largely independent of that angle.


Once powered to resonance by the excitation field, the resonator 1 generates its own AC magnetic fields in response. This field passes along the ferrite rod 4, such that the field at the end of the rod furthest from the coil 3 (“long end”) is approximately equal and opposite to the field at the end closest to the coil 3 (“short end”). This resonator field couples into sensor coils 13 located adjacent the ends of the ferrite rod 4. In this embodiment, the sensor coils 13 are patterned so that the coupling of this resonator field with the sensor coils 13 varies with the angular position of the resonator 1 relative to the sensor coils 13.


This resonator 1 can be used in conjunction with a wide range of sensor coil 13 geometries. The fact that the fields from its two ends have opposite polarity mean that there is no rotational symmetry so that it is possible for sensing electronics to determine the resonator's angular position unambiguously over 360°. The fact that these fields are approximately equal in strength and opposite in polarity means that the sensor can be highly immune to misalignments between the resonator 1 and the sensor circuit board 9, provided that the sensor coils 13 used have equal and opposite sensitivity to the individual misalignment of field from the long and short ends of the ferrite rod 4.


One possible sensor coil geometry is illustrated in FIG. 2a, which shows a one period “SIN” sensor coil 13-1. As shown, the SIN coil 13-1 is formed from two sets of conductor loops 15-1 and 15-2, which are connected in series but wound in the opposite sense. FIG. 2b illustrates the excitation coil 11 and a one period “COS” sensor coil 13-2, which is similar to the SIN sensor coil 13-1 except rotated by 90°. Each sensor coil 13 has equal and opposite sensitivity to fields at opposing points equidistant from the sensor's central axis. This is because of the two sets of loops 15 of each sensor winding 13 are connected in series so that they are wound in the opposite direction. In the following description, one set of loops will be referred to as the S+ or C+ set of loops and the other will be referred to as the S− or C− set of loops and these are illustrated in FIG. 2. This means that the field from the long end of the resonator of FIG. 1 will couple in the same sense into each sensor coil 13 as field from its short end.


The SIN coil 13-1 is shown separately for clarity, but its centre actually coincides with the centres of the COS coil 13-2 and the excitation coil 11. For clarity the number of turns in each coil has been simplified: the number of turns in each coil is larger in the actual pattern, and cross connections are less pronounced.


Operation


The operation of the sensor will now be described with reference to FIG. 3, which shows the resonator 1, a simplified representation of the excitation coil 11 and two test coils 18-1 and 18-2 positioned either side of the excitation coil 11. The sensor's excitation coil 11 is located close to the axis of rotation of the ferrite rod 4. Since the resonator's coil 3 is offset from this axis of rotation, there is a constant coupling between the excitation coil 11 and the resonator 1 independent of resonator angle. When the resonator 1 is resonating, the AC field generated by the resonator 1 approximates that of a bar magnet. Field emerges from the short end 16 of the resonator and “flows” to the long end 18. Since the field is AC, it can be detected by measuring the EMF developed in coils which couple with the field. Test coils 20 placed under the short and long ends of the resonator in the plane of the sensor board 9, would detect equal and opposite EMFs. In reality there are no such test coils 20, instead the resonator 1 interacts with the COS and SIN coils 13 illustrated above.


When the resonator 1 is aligned at 0° so that its short end 16 is centered on C+ (the positive set of loops of the COS coil 13-2 illustrated in FIG. 2b), it couples in the positive direction with the COS coil 13-2. This situation is illustrated at the centre of FIG. 4. At the same time, the long end 18 of the resonator 1 is aligned with the C− set of loops of the COS coil 13-2, whose winding direction is opposite to the C+ set of loops. This end also couples positively with the COS coil 13-2, since the field direction at the long end 18 of the ferrite rod 4 is opposite to that at the short end 16. The net effect is a large positive coupling between the resonator 1 and the COS coil 13-2 (kCOS). The coupling between the resonator 1 and SIN coil 13-1 (kSIN) is zero at 0°, because any EMF developed by the resonator in the S+ set of loops is connected in series with an equal and opposite EMF developed in the S− set of loops.


The situation is reversed at −180° (which is identical to +180° in this case). Here the short end 16 of the resonator 1 and the C+ set of loops of the COS coil 13-2 coincide, and the long end 18 and the C− set of loops of the COS coil 13-2 coincide. kCOS is therefore now a large negative value. kSIN remains zero.


At 90° the short end 16 of the resonator 1 coincides with the S+ set of loops and the long end 18 with the S− set of loops. kSIN is therefore a large positive value, and KCOS is zero.


The graph in FIG. 4 illustrates the full relationship between the two sensor coil coupling factors and resonator angle. As shown, kSIN has a sinusoidal form, and kCOS its cosine counterpart. As those skilled in the art will appreciate, although the geometry of the sensor coils 13 are designed so that these coupling factors will vary in a substantially sinusoidal manner, in practice they will not vary exactly sinusoidally. However, this will simply introduce a slight error into the measurements.


Misalignment Immunity


We will now consider the effect of a misalignment (Mx) in the x-direction and (My) in the y-direction for the resonator 1 shown in FIG. 1 and for an alternative design of resonator, where a shorter ferrite rod 4′ is used and the resonator is symmetrically positioned along the length of the ferrite rod 4′. These misalignments in the x and y directions are illustrated in FIGS. 5a and 5b by the vector rm. With the resonator design shown in FIG. 5a, the misalignment (rm) between the resonator's axis of rotation 31 and the sensor board axis 33 will result in an error in the measured angle. However, with the resonator design shown in FIG. 1, this measurement error will, to a first approximation, average out due to the interaction between the opposite ends of the resonator 1 with the different sets of loops forming the sensor coils 13.


The reason for this will now be explained. A processing circuit (not shown) connected to the sensor coils 13 determines position from the relative amplitude of the signals (Acos and Asin) detected in the COS and SIN sensor coils 13 respectively:

Az_estimate=a tan 2(A cos, A sin)


The signals induced in the sensor coils 13 will be AC signals at the excitation frequency. The processing circuit will therefore process these signals to determine their relative amplitudes so that they can be used in the above 4 quadrant arctangent calculation.


If we now consider the detected signals as being obtained by two components—one for the field due to the long end of the resonator 1 and one due to the field from the short end of the resonator 1, then:

Az_estimate=a tan 2(A cos_short+A cos_long, A sin_short+A sin_long)


Provided the magnitude of the vector rm is small (ie the misalignments in the x and y directions are small) enough that detected signals from the short and long ends of the resonator 1 remain approximately the same, then this can be approximated by:

Az_estimate=0.5×[a tan 2(A cos_short, A sin_short)+a tan 2(A cos_long, A sin_long)]


Denoting:

Az_estimate_short=a tan 2(A cos_short, A sin_short)
Az_estimate_long=a tan 2(A cos_long, A sin_long)


which are the effective angular positions of the resonator's short and long ends (which the system can not individually detect since the underlying signals are summed together by virtue of the series connection of the sets of loops 15 forming the sensing coils 13), then we can then write:

Az_estimate=0.5×[Az_estimate_short+Az_estimate_long]


Thus the system's reported position is the average of the effective angular position of the resonator's short and long ends. By symmetry, if misalignments Mx and My cause an angular error of Az_error_short in Az_estimate_short, then an equal and opposite angular error Az_error_long=−Az_error_short will be caused in Az_estimate_long. The net effect on the value of Az_estimate reported by the system will therefore be zero, yielding a system that is largely immune to misalignments.


Sensor Board Design


In this embodiment, the sensor coils 13 and the excitation coil 11 are formed from conductor tracks formed on a four layer printed circuit board 9. FIGS. 6a to 6d illustrate the conductors on the four layers which, when connected together at the illustrated via holes, form the above described COS sensor coil 13-2; FIGS. 7a to 7d illustrate some of the conductor tracks that define the above described excitation winding 11; and FIGS. 8a to 8d illustrate the four layers of conductor tracks (showing all tracks).



FIG. 6
a illustrates a portion of the COS coil 13-2 described above, implemented on layer 1 of the 4 layer PCB 9. FIG. 6b illustrates another small portion of the COS coil 13-2—a small trace connecting two vias at the top centre of the board 9 implemented on layer 2 of the PCB 9. FIG. 6c illustrates another small trace connecting two vias at the top centre of the board, implemented on layer 3 of the PCB 9. FIG. 6d illustrates the remainder of the COS coil 13-2, implemented on layer 4 of the PCB 9. The COS coil portions on layers 1 and 4 have a large number of coil turns—6 each in this case, yielding a total of 12 turns. This contrasts with some prior art approaches, where it is not possible to fit more than about 3 turns in the same diameter operating to the same design rules. These design rules include he minimum gap between conductors on the same layer and the minimum diameter for the vias.


The two small traces illustrated in FIGS. 6b and 6c are used to connect the two halves of the COS coil 13-2, and to ensure that the winding direction of the left and right hand set of loops 15 are opposite, as required.


Each main sensing set of loops of the COS coil 13-2 comprises a set of turns on layer 1 (here illustrated in FIG. 6a) and another set on layer 4 (shown in FIG. 6d). The loops on each of these layers are almost exact mirror images of each other, with a horizontal axis of symmetry passing through the centre of the patterns. This symmetry improves the symmetry of the relationship between resonator angle and output signal, to improve accuracy.


The two sets of loops are connected by only a few vias. The use of such a small number of vias means that a maximum amount of space can be afforded to conductor traces, and hence a maximum number of turns. This is especially important in the design presented here, since it is implemented on four layers. Each via therefore occupies space not only on the layers it is connecting, but also on the layers occupied by other traces to which appropriate clearance is required.


The SIN coil 13-1 is almost identical to the COS coil 13-2, only rotated through 90° and implemented mainly on layers 2 and 3. FIGS. 8a to 8d show all four layers of the PCB 9 separately, and illustrate how the SIN, COS and excitation coils, and their respective cross connections and vias, fit together without clashing. Once again it is important that the COS coil 13-2 be almost identical to the SIN coil 13-1, for symmetry reasons that yield greatest accuracy.


As shown, the SIN and COS coils 13 are largely implemented on different layers of the PCB 9. The problem of different sensing amplitudes is solved by having the SIN and COS coils 13 each implemented on multiple layers, such that their mean depth within the PCB stack-up is nominally identical.


The excitation coil 11 is concentrated towards the centre of the board 9. FIG. 7a illustrates a first section of the sensor board's excitation coil 11, extending from the EA connection at the right of the board to a via at the top right of the coil's interior. A second section is illustrated in FIG. 7b, extending from that via to another above the excitation coil 11. A third section is illustrated in FIG. 7c, extending from that via to another at the top left of the coil's interior. A fourth section is illustrated in FIG. 7d, extending from that via to another to the left of the excitation coil 11. A further 4 sections (not shown in FIG. 7) of the excitation coil 11 connect in a similar way, using the two remaining vias at the centre of the excitation coil 11 and the via to the bottom of the coil, and culminating in a trace connecting to the EB connection on the right of the board 9.


The design presented here yields an excitation coil 11 whose diameter is maximised without clashing with SIN and COS coils 13, to further increase efficiency and hence output EMF. This is made possible by eliminating vias positioned between the sensor coils 13 and the excitation coil 11. Vias used for connecting different sections of the excitation coil 11 are instead positioned within the turns of and between the SIN and COS coils 13, where there is plenty of space, or inside the excitation coil 11, where additional excitation turns have less effect on efficiency.



FIG. 8 illustrates how the excitation coil 11 is implemented using the same physical layers as the SIN and COS coils 13 without clashing. For example, FIG. 8a illustrates layer 1, which comprises half of the COS coil 13-2 and the second and sixth sections of the excitation coil 11. These sections of the excitation coil 11 are designed in such a way that their outer connections occur on layer 1, where they may pass over the SIN coil 13-1 connections on layers 2 and 3 and between the two sets of loops of the COS coil 13-2 on layer 1. In order to connect in this special way, the excitation coil 11 is a two-start spiral, with each arm having 5.25 turns.


The excitation coil 11 can be seen to have substantial symmetry. In particular, its field patterns are highly symmetric under rotations of 90° and 180°, which means that coupling between the excitation coil and SIN and COS coils 13 is minimised. This reduction in stray coupling yields high accuracy, especially when the sensor is operated with excitation current applied continuously.



FIG. 9 schematically illustrates the excitation and processing circuitry 51 used in this embodiment to determine the position of the resonator relative to the sensor windings 13. As shown, the circuitry 51 includes excitation drive circuitry 53 for generating an excitation signal for application to the excitation winding 11 and analogue front end processing circuitry 55 for processing the signals induced in the sensor windings 13. The circuitry 51 also includes a microprocessor 57 for controlling the excitation drive circuitry and for processing the signals received from the analogue front end circuitry to determine the desired position information, which it then outputs, for example to a host device. As those skilled in the art will appreciate, various different ways of driving the excitation winding 11 and of processing the signals obtained from the sensor windings 13 are described in the literature and may be used with the sensing transducer described above. A further description of this circuitry 51 will therefore be omitted.


Modifications and Alternatives


The one period sensor windings 13 illustrated in FIG. 2 have angular accuracy and resolution limited to a certain fraction of its repeat angle, 360°. For greater accuracy and resolution multi-period sensor coils can be used instead of or in addition to the sensor coils 13 discussed above. In order to couple with the resonator 1, the opposing fields from the short and long ends of the resonator 1 should couple with loops wound in opposite senses. This can be achieved by using sensor coils 13 having an odd number of periods in 360°, for example the 3-period windings shown in FIG. 3a of U.S. Pat. No. 6,534,970, the content of which is incorporated herein by reference. Only the one of the windings is schematically shown. A similar winding, except rotated by 30° (one quarter of one third of 360°) could also be provided.


As noted above such a 3-period sensor does not detect angular position unambiguously over 360°. To do this, the sensor coils of FIG. 2 can be combined onto the same sensor board. The electronic circuitry 51 connected to the sensor coils would then combine the unambiguous yet relatively inaccurate data from the one period sensor coils 13 and the accurate yet ambiguous data from the three period sensor coils to yield data which is accurate and unambiguous over 360°.


This approach can be deployed with other sensor coil combinations. For example the data from three period and seven period sensor coils can be combined in the same way to yield data which is accurate and unambiguous over 360°.


The description above is for sensors having two phase (SIN,COS) sinusoidal sensors. The use of a two phase system is not necessary; the invention works with three or more phases.


The description above is for sensor coils that are balanced, ie where each coil comprises individual coil segments which are wound in opposite senses. This is not a necessary requirement, as illustrated by the sensor in FIG. 10. Here there are three sensor loops a, b and c, each rotational copies of a simple wound sensor coil. This sensor can be used to detect the position of the resonator of FIG. 1. In such an embodiment, an electronic processor would detect the amplitude of signals induced by the resonator 1 in each loop, respectively Aa, Ab and Ac, and use these to determine the resonator position using an appropriate interpolation algorithm. For example the following may be used:

Az_estimate=a tan 2[Aa−(Aa+Ab+Ac)/3, (Ab−Ac)/sqrt(3)]


Similarly, sensors having a different number of arrayed coils may be used, in conjunction with interpolation routines appropriate to the sensor and resonator geometry.


We noted above that a sensor coil patterned to generate an odd number of sinusoidal repeats over a circle has equal and opposite sensitivities to fields generated at points on opposing sides of its axis, and therefore couples with the resonator of FIG. 1. This approach will not work for a sensor coil pattern having an even number of repeats, since these have equal sensitivity at the same phase for points diametrically opposing. Fields from the short and long ends of the resonator shown in FIG. 1 therefore cancel out when it is placed across the sensor's diameter. Instead, the resonator 1 may be placed slightly off the diameter, such that its short and long ends always coincide with areas where the sensor has equal and opposite field sensitivity.


We described above an excitation coil 11 that is wound within the inner portions of sensor coils 13. The excitation coil may instead overlap sensor coils as illustrated in U.S. Pat. No. 6,522,128, or it may be wound around the sensor's outer portion, or a combination of such positions. The excitation coil 11 may be wound in different senses. For example it may be implemented in two parts, one wound clockwise within the sensor coils and one anticlockwise outside. By appropriately selecting the number of turns in each portion, the fields from the two portions may cancel at some distance and beyond, to minimise emissions that may otherwise cause interference.


We described sensor boards 9 built from conductors printed on circuit boards (PCBs) above. They may instead be built from appropriately patterned windings of wire. They may also optionally be wound onto formers, which may optionally be magnetically permeable formers to concentrate the field to improve signal levels and/or accuracy.


We described a resonator 1 above, having a single offset winding 3 (which may optionally be tilted), to create equal and opposite fields at its two ends in response to an excitation field that is substantially uniform under rotation. This can also be achieved with the resonator of FIG. 11. Here there are two coils 3-1 and 3-2 connected in series, one around the ferrite rod 4 for creating equal and opposite fields at the ferrite rod's ends and one wound around the sense angle axis 59 for relatively uniform coupling with the sensor board's excitation coil 11. The series connected coils 3 are placed in parallel with the capacitor 5 as before, to create a resonant circuit.


The ferrite rod 4 of FIG. 1 is wound with a single coil 3. It may instead be built using multiple connected coils 3 to achieve its function, for example as illustrated in FIG. 12. In this case the winding directions (represented by the direction of the arrows 61-1 and 61-2) of coils 3-1 and 3-2 towards the centre of the ferrite rod 4 are opposed to couple with excitation field 63, while those at opposite ends (coils 3-3 and 3-4) are in the same direction (represented by arrows 61-3 and 61-4) to create equal and opposite fields at those ends for coupling with sensor coils as before.


The resonators described above were designed to couple with an excitation field applied near their centres, and to generate equal and opposite fields at their ends in order to couple with sensor coils. These positions can be modified. For example the resonator of FIG. 13 is excited at its ends and still creates equal and opposite fields at points on opposite and equidistant sides of the sense axis 63 in response. In particular, the resonator shown in FIG. 13 includes 3 series connected portions 3-1 to 3-1, with outer portions 3-1 and 3-3 being wound in opposite sense for coupling with an excitation coil 11′ mounted outside of sensor coils (not shown). The centre portion 3-2 of the resonator coil 3 is wound in one direction so that this portion of the coil 3 will generate a resonator field 65 that has equal and opposite fields at different points either side of the sense axis 63.


We described magnetically coupled resonators above which were implemented with a wound coil in parallel with a capacitor, where energy is exchanged between magnetic (current in a coil) and electrostatic (electric field across capacitor plates) forms. The magnetically coupled resonance may be achieved in different ways. For example, a strip 67 of appropriately biased magnetostrictive material may be mounted to permit mechanical oscillation 68 as illustrated in FIG. 14. An excitation field is concentrated inside the magnetostrictive element 67. A bias element 69 is also provided which interacts with the excitation field to create mechanical strains 68 near the centre of the magnetostrictive element 67. The strains shown are equal in size and the same polarity due to the reversal in the bias field near the centre. They are relatively uniform across rotation of the magnetostrictive element 67 about the sense angle axis represented by the dashed line. The excitation field's frequency is chosen to coincide with an appropriate mechanical resonant mode of the magnetostrictive element 67. The mode shown to the right of FIG. 14 is the fundamental. In combination with bias fields near the ends of the magnetostrictive elements 67, this resonance induces fields at these points which are equal and opposite, as for the resonators of FIGS. 1, 11 and 12.


The resonators described above may be used in conjunction with shielding material on the side opposite to the sensor, to minimise field distortion and interference from objects behind. This shielding may be built from magnetically permeable material and/or from conductive material.


The systems described above sensed position by powering a resonator with an approximately uniform field and detecting the response in two or more patterned sensor coils. However what is fundamental is the measurement of the relative coupling factors from the resonator to the patterned sensor coils. These coupling factors may also be derived from a measurement in the “reverse” direction. In this case current is passed through the patterned coils (eg coils 13 shown in FIG. 2) to power the resonator 1 and detected by a coil with relatively uniform coupling (eg coil 11 shown in FIG. 2). Coupling factors may be established by amplitude measurements taken by powering each patterned coil in turn, or by modulating the excitation amplitude and/or phase driven into each patterned coil such that the combined signal out of the uniform coil may be decoded to separate out the individual coupling components. Patterned coils may also be used for both energising the resonator and for sensing the resonator signal, in a similar manner to the way taught in U.S. Pat. No. 6,489,899, the content of which is incorporated herein by reference.


In the previous embodiments, the resonator has been mounted for rotation relative to the sensor and excitation windings. The invention is also applicable to linear embodiments, such as the one illustrated in FIG. 15. In particular, FIG. 15 shows a resonator 1′ which is mounted for movement along the illustrated x-axis, as illustrated by the arrow 71. As shown, in this embodiment, the resonator coil 3 is symmetrically mounted on the ferrite rod 4. the resonator 1′ is mounted so that the lower end 73 moves adjacent the excitation winding 11′ and the upper end 75 moves adjacent the SIN and COS sensor windings 13′-1 and 13′-2. As shown, in this embodiment, the resonator 1′ moves such that its axis 77 is substantially perpendicular to the measurement path.


The operation of this embodiment is similar to the previous embodiments. In particular, when excitation current is applied to the excitation winding 11′, excitation magnetic field couples into the lower end 73 of the ferrite core 4, which in turn causes the resonator 1′ to resonate. The magnetic field generated by the resonator 1 will emerge from the lower end 73 of the resonator and “flows” to the upper end 18, thereby coupling with the SIN and COS sensor windings 13′. FIG. 14 also illustrates the way in which the amplitudes of the signals induced in the sensor windings 13′ vary with the position of the resonator 1′ along the x-axis. As before, the amplitudes vary approximately sinusoidally with position.


In an alternative linear embodiment, a second set of sensor windings may be arranged below the excitation winding 11′. In this case, the resonator coil 3 would remain in its current position, but the ferrite rod 4 would be extended so that the lower end 73 was positioned over the second set of sensor windings. The signals from the two sets of sensor windings can then be combined and processed to determine the desired position information. For example, if the additional set of sensor windings are exact copies of the windings illustrated in FIG. 15, then the signals from the two SIN windings can be subtracted and the signals from the two COS windings can be subtracted to leave signals that vary in the desired manner. The subtraction can be performed in the processing electronics or by connecting the two SIN windings in series and the two COS windings in series. As the resonator field will couple into the lower set of sensor windings with opposite polarity to that of the upper set of windings, this subtraction will result in the addition of the desired positionally varying signals, whilst removing any common interference. Additionally, this arrangement will provide the sensor with some immunity to variations of reported position due to slight rotation of the resonator 1′ about an axis orthogonal to the page. This is because any such rotation will result in equal and opposite position shifts in the sensor signals that are combined and therefore, these shifts will approximately cancel each other out. In such an embodiment, of course, the second set of sensor windings do not need to be identical to the first set of sensor windings. The second set of windings may, for example, have different periodicities so that the two sets of signals can be combined to overcome the ambiguity problem associated with windings that repeat.

Claims
  • 1. A transducer for use in a position sensor, the transducer comprising: a resonator having an elongate magnetic field concentrating member and a resonator coil wound around the magnetic field concentrating member;a first coil operable, in use, to couple more strongly with a first portion of the magnetic field concentrating member positioned adjacent the first coil than with a second portion of the magnetic field concentrating member; anda second coil operable, in use, to couple more strongly with the second portion of the magnetic field concentrating member positioned adjacent the second coil than with the first portion of the magnetic field concentrating member, the second portion being spaced along the magnetic field concentrating member from the first portion;wherein the resonator is electrically separate from said first and second coils, and the resonator coil is wound around a third portion of said magnetic field concentrating member which third portion is located between said first and second portions;wherein one of the first and second coils is for exciting the resonator and the other one of the first and second coils is for sensing a signal generated by the resonator when excited;wherein, during use, the resonator and at least one of the first and second coils are relatively moveable along a measurement path that is different from a longitudinal axis of the elongate magnetic field concentrating member;wherein said at least one of the first and second coils extends along the measurement path and is patterned so that electromagnetic coupling between the resonator and said at least one of the first and second coils varies as a function of the relative position between the resonator and said at least one of the first and second coils along the measurement path.
  • 2. A transducer according to claim 1, wherein the electromagnetic coupling between said resonator and the first coil varies as a function of the relative position between the resonator and the first coil.
  • 3. A transducer according to claim 1, wherein the electromagnetic coupling between said resonator and the second coil varies as a function of the relative position between the resonator and the second coil.
  • 4. A transducer according to claim 1, comprising a third coil operable, in use, to couple with a fourth portion of the magnetic field concentrating member positioned adjacent the third coil, the first portion being positioned between said second and fourth portions.
  • 5. A transducer according to claim 4, wherein said second and third coils are connected in series.
  • 6. A transducer according to claim 5, wherein said second and third coils are connected in series so that signals induced in the second coil by a background magnetic field oppose the signals induced in the third coil by the same background magnetic field.
  • 7. A transducer according to claim 5, wherein, during use, an electromagnetic field generated by said resonator couples with a first polarity with said second coil and couples with a second, opposite, polarity with said third coil.
  • 8. A transducer according to claim 4, wherein said resonator coil is mounted asymmetrically on said field concentrating member.
  • 9. A transducer according to claim 1, for use in a rotary position sensor and wherein the resonator is rotatable about an axis which passes through or near said first portion and which is transverse to the longitudinal axis of the magnetic field concentrating member.
  • 10. A transducer according to claim 9, comprising a third coil operable, in use, to couple with a fourth portion of the elongate magnetic field concentrating member positioned adjacent the third coil, the first portion being positioned between said second and fourth portions and wherein said second and third coils are symmetrically arranged about an axis and wherein said rotation axis is substantially coaxial with said axis of symmetry.
  • 11. A transducer according to claim 1, wherein said first portion is located approximately midway along the length of the magnetic field concentrating member and wherein the second portion is located approximately at one end of the field concentrating member.
  • 12. A transducer according to claim 1, wherein said first and second coils are substantially planar and wherein the magnetic field concentrating member is oriented so that said longitudinal axis of the magnetic field concentrating member lies in a plane that is substantially parallel with said planar coils.
  • 13. A transducer according to claim 1, wherein said first and second coils are formed from conductor tracks on a printed circuit board or conductive inks on a substrate.
  • 14. A transducer according to claim 1, wherein said first coil is for exciting the resonator and the second coil is for sensing a signal generated by the resonator when excited.
  • 15. A transducer according to claim 1, wherein said second coil is for exciting the resonator and the first coil is for sensing a signal generated by the resonator when excited.
  • 16. A transducer according to claim 1, wherein coupling between the resonator and the first and/or second coil varies with position in a direction that is substantially orthogonal to said longitudinal axis of the magnetic field concentrating member.
  • 17. A transducer according to claim 1, wherein said measurement path extends in a direction that is substantially perpendicular to said longitudinal axis of the magnetic field concentrating member.
  • 18. A transducer according to claim 1, wherein said at least one of the first and second coils is patterned so that the electromagnetic coupling between the resonator and said at least one of the first and second coils varies substantially sinusoidally with the relative position between the resonator and said at least one of the first and second coils.
  • 19. A position sensor for sensing the relative position of first and second relatively moveable members, the position sensor comprising a transducer for use in a position sensor, the transducer comprising: a resonator having an elongate magnetic field concentrating member and a resonator coil wound around the magnetic field concentrating member;a first coil operable, in use, to couple more strongly with a first portion of the magnetic field concentrating member positioned adjacent the first coil than with a second portion of the magnetic field concentrating member; anda second coil operable, in use, to couple more strongly with the second portion of the magnetic field concentrating member positioned adjacent the second coil than with the first portion of the magnetic field concentrating member, the second portion being spaced along the magnetic field concentrating member from the first portion;wherein the resonator is electrically separate from said first and second coils, and the resonator coil is wound around a third portion of said magnetic field concentrating member which third portion is located between said first and second portions;wherein one of the first and second coils is for exciting the resonator and the other one of the first and second coils is for sensing a signal generated by the resonator when excited;wherein, during use, the resonator and at least one of the first and second coils are relatively moveable along a measurement path that is different from a longitudinal axis of the elongate magnetic field concentrating member; wherein said at least one of the first and second coils extends along the measurement path and is patterned so that electromagnetic coupling between the resonator and at least one of the first and second coils varies as a function of the relative position between the resonator and said at least one of the first and second coils along the measurement path;and excitation and processing circuitry for exciting one of the first and second coils and for processing the signal obtained in the other one of the first and second coils to determine the relative position of said relatively moveable members.
  • 20. A transducer according to claim 17, wherein said first and second coils are substantially planar and wherein the magnetic field concentrating member is oriented so that said longitudinal axis of the magnetic field concentrating member lies in a plane that is substantially parallel with said planar coils.
Priority Claims (2)
Number Date Country Kind
0708981.6 May 2007 GB national
0713942.1 Jul 2007 GB national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/GB2008/050305 4/28/2008 WO 00 10/19/2010
Publishing Document Publishing Date Country Kind
WO2008/139216 11/20/2008 WO A
US Referenced Citations (202)
Number Name Date Kind
2145742 Wechsung Jan 1939 A
2867783 Childs Jan 1959 A
2942212 Mynall Jun 1960 A
3219956 Newell et al. Nov 1965 A
3297940 Mulligan et al. Jan 1967 A
3482242 Hargrove Dec 1969 A
3579023 Fox May 1971 A
3647963 Bailey Mar 1972 A
3772587 Farrand et al. Nov 1973 A
3812481 Stedtnitz May 1974 A
3851242 Ellis Nov 1974 A
3873770 Ioannou Mar 1975 A
3895356 Kraus Jul 1975 A
3898635 Kulterman Aug 1975 A
3906436 Kurauchi et al. Sep 1975 A
3925610 French et al. Dec 1975 A
3962663 Visser Jun 1976 A
4005396 Fujiwara et al. Jan 1977 A
4014015 Gundlach Mar 1977 A
4065850 Burr et al. Jan 1978 A
4081603 Davis et al. Mar 1978 A
4092852 Fowler et al. Jun 1978 A
4094572 Burr et al. Jun 1978 A
4097684 Burr Jun 1978 A
4150352 Pomella et al. Apr 1979 A
4156192 Schedrovitsky et al. May 1979 A
4205199 Mochizuki May 1980 A
4210775 Rodgers et al. Jul 1980 A
4223300 Wiklund Sep 1980 A
4255617 Carau, Sr. et al. Mar 1981 A
4341385 Doyle et al. Jul 1982 A
4358723 Scholl et al. Nov 1982 A
4387509 Dechelette Jun 1983 A
4423286 Bergeron Dec 1983 A
4425511 Brosh Jan 1984 A
4482784 Whetstone Nov 1984 A
4504832 Conte Mar 1985 A
4507638 Brosh Mar 1985 A
4532376 Rockwell Jul 1985 A
4577057 Blesser Mar 1986 A
4577058 Collins Mar 1986 A
4593245 Viertl et al. Jun 1986 A
4609776 Murakami et al. Sep 1986 A
4642321 Schoenberg et al. Feb 1987 A
4672154 Rodgers et al. Jun 1987 A
4686501 Palmier et al. Aug 1987 A
4693778 Swiggett et al. Sep 1987 A
4697050 Farel et al. Sep 1987 A
4697144 Howbrook Sep 1987 A
4697244 Murakami et al. Sep 1987 A
4704501 Taguchi et al. Nov 1987 A
4709209 Murakami et al. Nov 1987 A
4711026 Swiggett et al. Dec 1987 A
4711977 Miyamori et al. Dec 1987 A
4723446 Saito et al. Feb 1988 A
4734546 Landmeier Mar 1988 A
4737698 McMullin et al. Apr 1988 A
4748295 Rogers May 1988 A
4752655 Tajiri et al. Jun 1988 A
4786765 Yamanami et al. Nov 1988 A
4820961 McMullin Apr 1989 A
4821002 Luly Apr 1989 A
4848496 Murakami et al. Jul 1989 A
4868443 Rossi Sep 1989 A
4878553 Yamanami et al. Nov 1989 A
4891590 Hammel et al. Jan 1990 A
4893077 Auchterlonie Jan 1990 A
4902858 Yamanami et al. Feb 1990 A
4963703 Phillips et al. Oct 1990 A
4975546 Craig Dec 1990 A
4985691 Pulyer et al. Jan 1991 A
4988837 Murakami et al. Jan 1991 A
4999461 Murakami et al. Mar 1991 A
5004872 Lasley Apr 1991 A
5013047 Schwab May 1991 A
5023408 Murakami et al. Jun 1991 A
5028745 Yamanami et al. Jul 1991 A
5041785 Bogaerts et al. Aug 1991 A
5045645 Hoendervoogt et al. Sep 1991 A
5059180 McLees Oct 1991 A
5066833 Zalenski Nov 1991 A
5082286 Ryan et al. Jan 1992 A
5088928 Chan Feb 1992 A
5122623 Zank et al. Jun 1992 A
5129654 Bogner Jul 1992 A
5134388 Murakami et al. Jul 1992 A
5134689 Murakami et al. Jul 1992 A
5136125 Russell Aug 1992 A
5177389 Schalk Jan 1993 A
5188368 Ryan Feb 1993 A
5206785 Hukashima Apr 1993 A
5218174 Gray et al. Jun 1993 A
5225637 Rodgers et al. Jul 1993 A
5239489 Russell Aug 1993 A
5245336 Chen et al. Sep 1993 A
5247137 Epperson Sep 1993 A
5247138 Landmeier Sep 1993 A
5274198 Landmeier Dec 1993 A
5342136 Fukami Aug 1994 A
5349139 Verrier et al. Sep 1994 A
5357062 Rockwell et al. Oct 1994 A
5369227 Stone Nov 1994 A
5381091 Kobayashi et al. Jan 1995 A
5396443 Mese et al. Mar 1995 A
5406155 Persson Apr 1995 A
5434372 Lin Jul 1995 A
5461204 Makinwa et al. Oct 1995 A
5486731 Masaki et al. Jan 1996 A
5525981 Abernethy Jun 1996 A
5554827 Oda Sep 1996 A
5557076 Wieczorek et al. Sep 1996 A
5571997 Gray et al. Nov 1996 A
5600105 Fukuzaki et al. Feb 1997 A
5619431 Oda Apr 1997 A
5625239 Persson et al. Apr 1997 A
5635683 McDermott et al. Jun 1997 A
5646496 Woodland et al. Jul 1997 A
5657011 Komatsu et al. Aug 1997 A
5691513 Yamamoto et al. Nov 1997 A
5691748 Fukuzaki Nov 1997 A
5693913 Sudo et al. Dec 1997 A
5693993 Ito et al. Dec 1997 A
5748110 Sekizawa et al. May 1998 A
5751229 Funahashi May 1998 A
5764052 Renger Jun 1998 A
5783940 Kolomeitsev Jul 1998 A
5815091 Dames et al. Sep 1998 A
5818091 Lee et al. Oct 1998 A
5818431 Oh et al. Oct 1998 A
5826473 Saka et al. Oct 1998 A
5831431 Gottfried-Gottfried et al. Nov 1998 A
5854449 Adkins Dec 1998 A
5864098 Shinohe Jan 1999 A
5866847 Saka et al. Feb 1999 A
5895895 Ono et al. Apr 1999 A
5914735 Yamamoto et al. Jun 1999 A
5939878 Dong Aug 1999 A
5943044 Martinelli et al. Aug 1999 A
6002387 Ronkka et al. Dec 1999 A
6005555 Katsurahira et al. Dec 1999 A
6054851 Masreliez et al. Apr 2000 A
6124708 Dames Sep 2000 A
6131457 Sato Oct 2000 A
6236199 Irle et al. May 2001 B1
6239789 Sekizawa et al. May 2001 B1
6249135 Maruyama et al. Jun 2001 B1
6249234 Ely et al. Jun 2001 B1
6249235 Iwasaki Jun 2001 B1
6255810 Irle et al. Jul 2001 B1
6262684 Stewart et al. Jul 2001 B1
6271744 McCarthy Aug 2001 B1
6288710 Lee et al. Sep 2001 B1
6291907 Haigh et al. Sep 2001 B1
6304014 England et al. Oct 2001 B1
6304076 Madni et al. Oct 2001 B1
6310473 Zhao Oct 2001 B1
6393912 Pchelnikov et al. May 2002 B2
6489899 Ely et al. Dec 2002 B1
6513943 Fukuyoshi Feb 2003 B2
6522128 Ely et al. Feb 2003 B1
6534970 Ely et al. Mar 2003 B1
6650106 Daalmans et al. Nov 2003 B2
6667740 Ely et al. Dec 2003 B2
6705511 Dames et al. Mar 2004 B1
6713981 Nakajima Mar 2004 B2
6788221 Ely et al. Sep 2004 B1
6797895 Lapstun et al. Sep 2004 B2
6798404 Sharma Sep 2004 B2
6888538 Ely et al. May 2005 B2
6909281 Gassman et al. Jun 2005 B2
6969987 Schwartzbart Nov 2005 B2
6977594 Hudman et al. Dec 2005 B2
6980134 Ely et al. Dec 2005 B2
7005847 Gassman et al. Feb 2006 B2
7019672 Ely Mar 2006 B2
7219547 Suzuki May 2007 B2
7301333 Kuwahara Nov 2007 B2
7305882 May Dec 2007 B1
7511705 Silk et al. Mar 2009 B2
8058865 May Nov 2011 B2
20010001430 Ely et al. May 2001 A1
20010006369 Ely Jul 2001 A1
20010045858 Alhoussami Nov 2001 A1
20010052823 Hirano et al. Dec 2001 A1
20020163331 Sekiya et al. Nov 2002 A1
20020179339 Ely et al. Dec 2002 A1
20030006760 Valles Jan 2003 A1
20030062889 Ely et al. Apr 2003 A1
20040035221 May Feb 2004 A1
20040169594 Ely et al. Sep 2004 A1
20040232913 Schott et al. Nov 2004 A1
20040233178 Silk et al. Nov 2004 A1
20050021269 Ely et al. Jan 2005 A1
20050171714 Ely et al. Aug 2005 A1
20050174259 Ely Aug 2005 A1
20060244464 Kreit Nov 2006 A1
20090102463 May Apr 2009 A1
20090237073 Uchiyama et al. Sep 2009 A1
20100301840 Filatov Dec 2010 A1
20110043196 Fujita et al. Feb 2011 A1
20110109304 Suzuki et al. May 2011 A1
20130113467 Sasada May 2013 A1
Foreign Referenced Citations (62)
Number Date Country
1 134 848 Aug 1962 DE
35 00 121 Jul 1986 DE
36 20 412 Dec 1987 DE
0 159 191 Oct 1985 EP
0 182 085 May 1986 EP
0 182 085 May 1986 EP
0 209 513 Jan 1987 EP
0 218 745 Apr 1987 EP
0 307 667 Mar 1989 EP
0 313 046 Apr 1989 EP
0 499 641 Aug 1992 EP
0 511 406 Nov 1992 EP
0 537 458 Apr 1993 EP
0 552 001 Jul 1993 EP
0 554 900 Aug 1993 EP
0 607 694 Jul 1994 EP
0 657 917 Jun 1995 EP
0 672 997 Sep 1995 EP
0 675 581 Oct 1995 EP
0 680 009 Nov 1995 EP
0 709 648 May 1996 EP
0 716 390 Jun 1996 EP
0 743 508 Nov 1996 EP
0 772 149 May 1997 EP
0 915 429 May 1999 EP
1 325 017 Apr 1963 FR
2 298 082 Aug 1976 FR
2 682 760 Apr 1993 FR
851 543 Oct 1960 GB
1 122 763 Aug 1968 GB
1 452 132 Oct 1976 GB
2 012 431 Jul 1979 GB
2 021 273 Nov 1979 GB
2 042 183 Sep 1980 GB
2 059 593 Apr 1981 GB
2 064 125 Jun 1981 GB
2 074 736 Nov 1981 GB
1 604 824 Dec 1981 GB
2 103 943 Mar 1983 GB
2 141 235 Dec 1984 GB
2231161 Nov 1990 GB
60-165512 Aug 1985 JP
60-189231 Sep 1985 JP
63-211014 Sep 1988 JP
02-248816 Oct 1990 JP
02-275314 Nov 1990 JP
60-51905 Feb 1994 JP
287267 Oct 1996 TW
347542 Dec 1998 TW
WO 9212401 Jul 1992 WO
WO 9425829 Nov 1994 WO
WO 9425829 Nov 1994 WO
WO 9531696 Nov 1995 WO
WO 9603188 Feb 1996 WO
WO 9714935 Apr 1997 WO
WO 9800921 Jan 1998 WO
WO 9854545 Dec 1998 WO
WO 9858237 Dec 1998 WO
WO 9919691 Apr 1999 WO
WO 9934171 Jul 1999 WO
WO 9961868 Dec 1999 WO
WO 0033244 Jun 2000 WO
Non-Patent Literature Citations (13)
Entry
Patents Act 1977: Search Report under Section 17 for GB 0416614.6, 1 pg., (Oct. 21, 2004).
PCT International Search Report for PCT/GB2004/003639, 2 pgs., (Apr. 11, 2005).
PCT International Search Report for PCT/GB1999/003989, 5 pgs., (Aug. 23, 2000).
PCT International Search Report for PCT/GB2003/002432, 3 pgs., (May 11, 2004).
PCT International Search Report for PCT/GB2002/005247, 5 pgs., (May 23, 2005).
PCT International Search Report for PCT/GB2002/002387, 5 pgs., (Jan. 8, 2004).
Pulle, et al., “A New Magnetoresistive Based Sensor for Switched Reluctance Drives”, Proceedings of the Annual Power Electronics Specialists Conference, PESC '92 Record., vol. 2, No. 23, 23rd Annual IEEE, pp. 839-843, (Jun. 29-Jul. 3, 1992).
Gordon, “Digitial xy Position Indicator using Walsh Functions”, Electronics Letters, vol. 11, No. 1, pp. 5-6, (Jan. 9, 1975).
Patents Act 1977: Examination Report under Section 18(3) for GB 0422091.9, 4 pgs., (Jun. 1, 2005).
PCT Notification of Transmittal of International Search Report and Written Opinion for PCT Counterpart Application No. PCT/GB2008/050305 containing Communication relating to the Results of the Partial International Search Report, 13 pgs., (Feb. 12, 2009).
D. McDonnell, “The Use of Inductosyn to Digital Converters in Linear Control Systems”, Automation, vol. 10, No. 11-12, pp. 31-32, (Nov./Dec. 1975), XP-002077774.
Robert W. Klatt, “Phase of Digital Fixes Shaft Angle”, Electrical Design News, vol. 16, No. 12, pp. 53-56, (Jun. 15, 1971), XP002045871.
“Physics 2CL Lab Manual” Online! 1999, retrieved from the Internet on May 11, 2005: http://hep.ucsd.edu/dbmacf/1998-1999/2cl/manual/experiment3.pdf, pp. 51-61, XP00232778.
Related Publications (1)
Number Date Country
20120098527 A1 Apr 2012 US