An embodiment of the invention is directed to a transducer, for example a speaker, having a compliant suspension member that provides an electrical connection between the voice coil and transducer electrical terminals. Other embodiments are also described and claimed.
In modern consumer electronics, audio capability is playing an increasingly larger role as improvements in digital audio signal processing and audio content delivery continue to happen. In this aspect, there is a wide range of consumer electronics devices that can benefit from improved audio performance. For instance, smart phones include, for example, electro-mechanical transducers which convert an electrical audio signal into a corresponding sound. More specifically, speakerphone loudspeakers and earpiece receivers that can benefit from improved audio performance. Smart phones, however, do not have sufficient space to house much larger high fidelity sound output devices. This is also true for some portable personal computers such as laptop, notebook, and tablet computers, and, to a lesser extent, desktop personal computers with built-in speakers. Many of these devices use what are commonly referred to as “microspeakers.” Microspeakers are a miniaturized version of a loudspeaker, which use a moving coil motor to drive sound output. The moving coil motor may include a diaphragm, voice coil and magnet assembly positioned within a frame. The voice coil typically includes lead wires that extend from ends of the coil and may be connected to terminals or circuitry within the speaker frame. Due to the strain on these lead wires caused by diaphragm excursion, however, the wires can break leading to reliability issues in the field.
Embodiments of the invention improve transducer reliability by using a stretchable conductive material to electrically connect the moving voice coil to stationary terminals outside the transducer. In particular, instead of lead wires extending from the voice coil to the terminals, the suspension member used to suspend the diaphragm and voice coil within the frame may include a conductive component other than a wire to electrically connect the voice coil to the terminals. The conductive component may, in one embodiment, be an electrically conductive biphasic material that is formed on or within the suspension member. The biphasic material may be considered “biphasic” in that it contains a solid component and a liquid component. For example, the biphasic material may include a solid layer or film of a conductive alloy such as gold-gallium and a liquid layer of a conductive material such as gallium formed on the solid layer. The gallium may be in a liquid form and formed as discrete bulges, deposits or protrusions along the solid layer.
Incorporating such a biphasic material into a transducer suspension member to provide an electrical connection to the voice coil has several advantages. For example, the biphasic material has been shown to have good reliability in high cycle fatigue and therefore provides better mechanical robustness than a wire. In particular, due to the solid-liquid nature of the biphasic material, it can accommodate high strain caused by movement (e.g., stretching) of the suspension member without fracture. Moreover, the liquid component supplies negligible stiffness. Thus, the integration of the biphasic material into the suspension member does not significantly impact the overall stiffness of the suspension member, which must be symmetrical in order to avoid exciting rocking modes or introducing undesirable distortion which is deleterious to performance. Still further, the electrical properties of the biphasic material can be used to protect the diaphragm and monitor diaphragm displacement. In particular, the electrical resistance of the biphasic material varies proportionally with the strain. Thus, as the driver, and associated diaphragm, excursion is reaching its maximum limit, the strain in the electrical path between the voice coil and the terminals will gradually rise. If the transducer is driven from a voltage source as is commonly done, this would reduce the amount of current being delivered through the biphasic material to the voice coil and prevent excursion beyond a maximum desired limit. If driven from a current source, the strain experienced by the biphasic material would lead to corresponding variations in the voltage drive level, an effect which could similarly be used either to sense or control excursion. The biphasic material is therefore considered to provide a self-limiting mechanism that may be used to prevent excessive diaphragm excursion. In addition, the gauge factor (e.g., relative change in electrical resistance to the mechanical strain) of the biphasic material is one (1). Thus, the linear behavior of the electrical resistance versus strain behavior of the biphasic material can be detected by circuitry associated with the device and used as a strain gauge, e.g., a sensor to determine the instantaneous diaphragm position. It should further be understood that biphasic materials as previously discussed, may be used with any transducer which requires physical electrical connections to a moving coil, including dynamic microphones, actuators, and loudspeakers, though for simplicity, reference will usually be made to the loudspeaker application herein.
Representatively, one embodiment of the invention is directed to a speaker including a frame having a terminal coupled thereto. A magnet assembly may be coupled to the frame and the magnet assembly may form an air gap through which a magnetic flux is directed. The speaker further includes a voice coil suspended in the air gap, a diaphragm coupled to the voice coil, a compliant suspension member for suspending the voice coil within the air gap. The suspension member may include an electrically conductive biphasic member for providing an electrical connection between the voice coil and the terminal. In one embodiment, the electrically conductive biphasic member includes a solid component formed on the suspension member and a liquid component formed on the solid component. The solid component may include a gold-gallium alloy and the liquid component may include liquid gallium deposits. In some embodiments, the electrically conductive biphasic member includes a film of biphasic material, and the film of biphasic material is formed on a surface of the suspension member. In still further embodiments, the electrically conductive biphasic member includes a layer of gold-gallium alloy formed on the suspension member and a plurality of liquid gallium protrusions formed on the layer of gold-gallium alloy. In some cases, the speaker further includes a circuit electrically connected to the terminal, and the circuit may be a diaphragm displacement sensing circuit operable to detect a displacement of the diaphragm by detecting an electrical resistance resulting from a strain on the electrically conductive biphasic member as the diaphragm is displaced.
Another embodiment of the invention is directed to a transducer (e.g., a speaker or actuator) including a stationary portion having a terminal coupled thereto. The transducer further includes a moving portion that is operable to move in response to a Lorentz force and generate a physical vibration or sound. In addition, the transducer includes a compliant suspension member for suspending the moving portion from the stationary portion and a biphasic electrode layer coupled to the compliant suspension member. The biphasic electrode layer is operable to provide an electrical connection between the moving portion and the terminal coupled to the stationary portion. The biphasic electrode layer may include a first section extending along a first side of the voice coil and a second section extending along a second side of the voice coil, and the first section is electrically isolated from the second section. In some cases, the first section is electrically connected to an outer wire layer of the voice coil and the second section is electrically connected to an inner wire layer of the voice coil. In some embodiments, the stationary portion is a frame and the moving portion is a voice coil connected to a diaphragm, and which are suspended within the frame by the suspension member. The biphasic electrode layer may include a solid layer of a conductive alloy deposited on a surface of the suspension member and a liquid layer comprising conductive projections formed on the solid layer. In some embodiments, the transducer further includes circuit electrically connected to the terminal. The circuit may be operable to detect a strain on the biphasic electrode layer and determine a displacement of the diaphragm. In still further embodiments, the biphasic electrode layer is operable to modify an excursion of the diaphragm depending upon a strain on the biphasic electrode layer.
Another embodiment of the invention is directed to a speaker suspension member having a compliant membrane and a biphasic electrode. The suspension member is dimensioned to suspend a speaker diaphragm and voice coil from a speaker frame. The biphasic electrode includes a solid layer connected to the compliant membrane and a liquid layer connected to the solid layer. In one embodiment, the solid layer includes a gold-gallium alloy film formed directly on the compliant membrane. The liquid layer may include a plurality of discrete liquid gallium deposits formed directly on the solid layer. The biphasic electrode may include at least one conductive trace line patterned to electrically connect the voice coil to a circuit. In some embodiments, the biphasic electrode is a first biphasic electrode, and the speaker suspension member further comprises a second biphasic electrode coupled to the compliant membrane, and the first biphasic electrode is spaced a distance from the second biphasic electrode.
A further embodiment of the invention is directed to a planar magnetic transducer, which uses a series of conductive traces embedded or otherwise attached to the diaphragm. This method of constructing an electromechanical transducer has some advantages for form factor and performance, for example, allowing very thin and flat aspect ratio transducers which may be more suited to particular applications. Besides the form factor, the planar transducer has additional advantages in that a larger portion of the moving surface of the diaphragm can be more evenly driven, as opposed to the typical voice-coil based transducers which are driven only at the location where the voice coil is attached to the diaphragm, usually near the outer perimeter.
The above summary does not include an exhaustive list of all aspects of the present invention. It is contemplated that the invention includes all systems and methods that can be practiced from all suitable combinations of the various aspects summarized above, as well as those disclosed in the Detailed Description below and particularly pointed out in the claims filed with the application. Such combinations have particular advantages not specifically recited in the above summary.
The embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and they mean at least one.
In this section we shall explain several preferred embodiments of this invention with reference to the appended drawings. Whenever the shapes, relative positions and other aspects of the parts described in the embodiments are not clearly defined, the scope of the invention is not limited only to the parts shown, which are meant merely for the purpose of illustration. Also, while numerous details are set forth, it is understood that some embodiments of the invention may be practiced without these details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the understanding of this description.
Transducer 100 may include a moving portion and a stationary portion. For example, the moving portion may be a sound radiating surface (SRS) or diaphragm 102 that moves with respect to a stationary frame 104. Diaphragm 102 may be any type of diaphragm or sound radiating surface capable of vibrating in response to an acoustic signal to produce acoustic or sound waves. In this aspect, diaphragm 102 may have any size and shape suitable for radiating sound, for example, circular, square, or rectangular.
Diaphragm 102 (e.g., a moving portion) may be suspended within frame 104 (e.g., a stationary portion) of transducer 100 by suspension member 106. Representatively, in one embodiment, suspension member 106 may include a sheet of compliant material (e.g., a membrane) which is positioned across an opening in frame 104 and diaphragm 102 is a layer of stiffening material attached to a top side or surface 108 of suspension member 106. For example, suspension member 106 may be a thermoformed silicone membrane having an outer edge 110 that is attached (e.g., molded, adhered or chemically bonded), or otherwise sealed, to the frame 104. The suspension member 106 may be of a suitable size, thickness, compliance, etc., to allow for vibration of the diaphragm 102 attached thereto. For example, suspension member 106 may have a “rolled” configuration in that it has a bowed or curved region to allow for greater compliance and/or excursion in a z-direction (e.g., direction parallel to an axis of the suspension member 106). It should further be understood that materials other than silicone may be used to form the suspension member 106, for example, a thermoformable plastic material such as polyurethane (PU), thermoplastic polyurethane (TPU), polyether ether ketone (PEEK) or the like. The diaphragm 102 may be formed by a polymeric layer attached (e.g., molded, adhered or chemically bonded) to a center portion of surface 108 of the suspension member 106. For example, the diaphragm 102 may be made of a polymer membrane formed using polyethylene naphthalate (PEN), polyimide (PI) or polyethylene terephthalate (PET). In addition, it should further be understood that while in
Transducer 100 may also include a voice coil 114 positioned along a bottom side or surface 116 of suspension member 106 (i.e., a face of suspension member 106 facing magnet assembly 126) such that it is below diaphragm 102. For example, in one embodiment, voice coil 114 includes an upper end 122 and a lower end 124. The upper end 122 may be directly attached to surface 116 of suspension member 106, such as by chemical bonding or the like. In another embodiment, voice coil 114 may be wrapped around a former or bobbin and the former or bobbin is directly attached to the surface 116 of suspension member 106. In one embodiment, voice coil 114 may have a similar profile and shape to that of diaphragm 102. For example, in a plan view, diaphragm 102 may have a square, rectangular, racetrack, or circular profile, voice coil 114 may have a corresponding square, rectangular, racetrack, or circular profile. Voice coil 114 may include conductive wires or windings that form conductive paths, e.g., wires, traces, etc., that convey electrical current. The conductive paths may permit current to flow in a given direction relative to a corresponding magnetic field such that a Lorentz force is generated to move voice coil 114 and any member to which it is attached, e.g., diaphragm 102, with respect to a stationary component (e.g. frame 104).
Returning again to suspension member 106, suspension member 106 may further include an electrically conductive biphasic material layer 118 (also referred to herein as a “biphasic material layer”, “biphasic member” or “biphasic electrode”) that electrically connects voice coil 114 to terminals 140 associated with frame 104 of transducer 100. Terminals 140 may, for example, be contact points which are electrically connected to the ends of wires 136, or may be the ends of wires 136 themselves, and which provide a point of electrical connection to circuit 112. It should further be understood that while terminals 140 are shown formed where biphasic material layer 118 interfaces with frame 104, they may be formed at other positions along frame 104 (e.g., at any position where another component interfaces with frame 104). In addition, in some embodiments, only terminals 140 may be present on frame 104, and wires 136 and/or circuit 112 omitted or assembled separately from transducer 100. For example, in one embodiment, wires 136 may be omitted and the biphasic material layer 118 itself may extend along frame 104 to a terminal near circuit 112.
Returning now to
As can be understood from
In addition, as previously discussed, the electrical properties of the biphasic material can be used to protect diaphragm 102 from excessive excursion and monitor diaphragm displacement. In particular, since the electrical resistance of the biphasic material layer 118 varies proportionally with the strain, as the excursion of diaphragm 102 is reaching its maximum limit, the strain in the biphasic material layer 118 and associated electrical path through biphasic material layer 118 will gradually rise. This, in turn, will reduce the amount of current being delivered through biphasic material layer 118 to voice coil 114 and in turn the excursion of diaphragm 102. The biphasic material layer 118 therefore provides a self-limiting mechanism that prevents or modifies diaphragm excursion depending upon a strain on the biphasic material layer 118. Moreover, because the gauge factor (e.g., relative change in electrical resistance to the mechanical strain) of the biphasic material layer 118 is approximately one, linear behavior of the electrical resistance versus strain behavior of the biphasic material layer 118 can be detected by circuit 112 and serve as a strain gauge or a sensor for monitoring diaphragm position. For example, circuit 112 may be used to detect a displacement or position of the diaphragm by detecting an electrical resistance resulting from a strain on the electrically conductive biphasic material layer 118 as the diaphragm 102 is displaced. In this aspect, circuit 112 may include a displacement sensing circuit having circuitry and/or electrical components to facilitate diaphragm displacement monitoring. In addition, circuit 112 may include speaker circuitry for driving speaker operations, for example, providing an electrical current to voice coil 114. Additional details of the biphasic material layer 118 will be discussed in reference to
Transducer 100 may further include a magnet assembly 126 positioned below the diaphragm 102, suspension member 106 and voice coil 114. Magnet assembly 126 may include a magnet 128 (e.g., a NdFeB magnet), with a top plate 130 and a yoke 132 for guiding a magnetic circuit generated by magnet 128. Magnet assembly 126, including magnet 128, top plate 130 and yoke 132 may be positioned below diaphragm 102, in other words, magnet assembly 126 is positioned between diaphragm 102 and frame 104. In one embodiment, magnet 128 may be a center magnet positioned entirely within an open center of voice coil 114. In this aspect, magnet 128 may have a similar profile as voice coil 114 and voice coil 114 may be suspended within a magnetic gap or air gap 134 formed between magnet 128 and yoke 132 to drive movement of voice coil 114, and through which a magnetic flux is directed. It should be understood, however, that
The specific details of the suspension member 106 and biphasic material layer 118 arrangement will now be described in more detail in reference to
Referring in more detail to voice coil 114, voice coil 114 may be a double wound coil having an outer coil layer 114A terminating at a positive voice coil terminal and an inner coil layer 114B terminating at a negative voice coil terminal. In this aspect, biphasic material layer 118 may include a conductive break so as not to short circuit an electrical current through voice coil 114. The conductive break may be, for example, an area of non-conductivity between, for example, a left and right side, or a top and bottom, of the biphasic material layer 118. For example, as shown in
In this embodiment, a first section 118A and a second section 118B of the biphasic material layer 118 are formed as sheet like structures and are positioned on the bottom 116 of suspension member 106. For example, first section 118A has a substantially rectangular or square shape having a length (L) dimension and a width (W) dimension. In one embodiment, the length (L) dimension is longer than the width (W) dimension such that first section 118A covers a substantial area of suspension member 106. The width (W) dimension may be substantially the same as a distance between voice coil 114 and edge 402 of suspension member 106 so that first section 118A extends between the two. Representatively, edge 408 of first section 118A may be in contact with, and electrically connected to, outer voice coil layer 114A and the opposing edge 406 may be in contact with, and electrically connected to, stationary terminal 140 and wire 136 positioned near edge 402 of suspension member 106. Second section 118B may have similar dimensions to that of first section 118A, but be spaced a distance (D) from first section 118A to provide a conductive break. For example, second section 118B may have an edge 412 that is in contact with, and electrically connected to, terminal 140 and wire 136 positioned near edge 404 of suspension member 106, and an opposing edge 410 that is in contact with, and electrically connected to, inner voice coil layer 114B. It should be noted that in embodiments where first and second sections 118A, 118B are sheets of material, it is desirable for each of sections 118A, 118B to cover a large surface area of suspension member 106 in order to reduce the electrical resistance and lower the stresses within the biphasic material. Thus, it is contemplated that although rectangular sections 118A and 118B are shown, they may have other shapes and sizes which increase their surface area, for example, they may be “C” or “U” shaped sections which surround voice coil 114 and cover a substantial surface area of suspension member 106. It should be noted, however, that to maintain a conductive break, at least some sort of gap or spacing should be formed between the conductive biphasic material of the biphasic material layer sections 118A, 118B. Thus, in most cases, the combination of sections 118A, 118B will cover less than an entire perimeter of suspension member 106. The substantial surface area of the suspension member 106 also serves to counteract any limitations on the practical thickness of the biphasic material layer 118, which may be limited to rather thin cross sections depending on the method of deposition or application.
A voice coil 514 may be integrated with diaphragm 504. More particularly, voice coil 514 may be formed from electrical wiring disposed on, and running over or along, dielectric surface of diaphragm 504. The electrical wiring may form one or more conductive windings 516 on diaphragm 504. More generally, conductive windings 516 may be conductive paths, e.g., wires, traces, etc., that convey electrical current. Thus, while the conductive paths are referred to throughout the following description as conductive windings, wire segments, etc., it shall be understood that conductive windings 516 may be any conductive material formed using known techniques to permit current to flow in a given direction relative to a corresponding magnetic field such that a Lorentz force is generated to move the conductive windings 516 and any substrate to which the windings are attached, e.g., a diaphragm. A conductive winding 516 may have one or more turns within an outer perimeter of diaphragm 504, i.e., the conductive winding 516 may run continuously along and entirely over a surface of diaphragm 504. As such, each turn may be separated from the perimeter of diaphragm 504 by a distance such that the turns are suspended inward from frame 502 on a moveable portion (along a central axis) of diaphragm 504. The turns may include a winding segment parallel to a longitudinal axis of corresponding magnetized portions 512, e.g. a winding length, and a winding segment transverse to the longitudinal axis, e.g., a winding width.
Each conductive winding may be a portion of voice coil 514 that includes one or more loops running along dielectric surface 508. Each loop may have an outer profile or perimeter that is within an outer perimeter of diaphragm 504, i.e., each loop may run continuously along and entirely over a surface of diaphragm 504. Furthermore, the respective loops of each conductive winding may be coplanar. For example, a conductive winding may have several loops that are continuously formed in a spiral from an outer loop with a larger diameter to an inner loop with a smaller diameter. All of the loops may be within a coil plane. Furthermore, the coil plane may be parallel to the surface of diaphragm, and thus, the loops may run around and surround an axis that runs orthogonal to the coil plane. The conductive windings may be formed on diaphragm 504 by printing or etching the windings on dielectric surface using known manufacturing techniques.
Each coil may be formed with alternative topologies that do not include loops. For example each coil may include wire segments that are adjacent but do not directly form a loop as long as the current in each segment runs in the proper direction for sufficiently useful Lorentz force. The wire segments or turns may be generally centered over a portion of the magnet array where the magnetic field lines are coplanar with the plane of the windings, wire segments, turns, etc.
In an embodiment, the conductive windings of voice coil 514 may be in series with one another. For example, a first conductive winding may be electrically connected to a positive lead, and a second conductive winding may be electrically connected to a negative lead, and the positive lead and the negative lead may be electrically connected through the first and second conductive windings. Alternatively, the conductive windings may be electrically connected in parallel. An alternate embodiment consists of effectively forming multiple voicecoils on diaphragm 504 since each set of conductive windings may be separately actuated, i.e., be subjected to different electrical currents through different electrical circuits. The electrical leads may extend from the conductive windings 516 suspended inward from frame 502 to the outer perimeter of diaphragm 504, and thus, may traverse the distance between the turns of conductive windings 516 and the outer perimeter or edge of diaphragm 504. A combination of these connections (series-parallel) may also be used.
Frame 502 may support diaphragm 504 relative to magnetic arrays 506 using suspension member 518. Suspension member 518 may be substantially similar to suspension member 518 described in reference to
Frame 502 may also hold substrate 510 around an edge of the substrate 510, and each magnetic array may be located on a face of substrate 510 such that a top face of the magnetic arrays is facing toward a respective conductive winding of voice coil 514. Substrate 510 may be a material that is rigid enough to support the magnetic arrays. For example, substrate may be a metal or polymer, e.g., acrylonitrile butadiene styrene (ABS) or aluminum. Beneficially, since the magnetic array 506 (also referred to as Halbach magnetic arrays) inherently generates a magnetic field that is strongest on the top face opposite from the bottom face adjacent to substrate 510, substrate 510 may be formed from either nonmagnetic or ferromagnetic material without disrupting the magnetic field applied to the voicecoil during speaker driving.
Each magnetic array 506 on substrate 510 may include several magnetized portions 512. The magnetized portions may be magnetized by individually exposing different regions of a sheet of magnetic material, e.g., powdered ferrite in a binder, to different magnetic field. Alternatively, the magnetized portions may be separate magnets, e.g., magnetic bars, which are magnetized in different directions and then arranged side-by-side to effectively form a flat magnetic array with a rotating magnetic field. The effect of such rotating magnetic field is described in greater detail below.
Furthermore, diaphragm 504 and magnetic array 506 may be arranged relative to a central axis 522 such that dielectric surface 508 and a top face of magnetic array 506 are orthogonal to central axis. More particularly, conductive winding 516 of a voice coil module may be wound around central axis 522 such that the loops form a planar winding, e.g., spiraling from an outer dimension to an inner dimension. The planar winding may be parallel to the arrangement of magnetic portions 512, which may similarly be arranged in a side-by-side fashion linearly along substrate such that a longitudinal axis of each magnetized portion (as well as a transverse axis running orthogonal to the longitudinal axes through all of the magnetized portions) are orthogonal to central axis. As such, a magnetic field generated by the magnetic array, when it is directed upward along central axis, shall be directed toward conductive winding of voicecoil. Thus, when transducer 500 is located within a device such that central axis runs through magnetic array and diaphragm toward a wall of the device, when voicecoil is actuated by applying an electrical current through conductive windings, voicecoil drives diaphragm to generate sound that is emitted forward along central axis through a port in the housing wall and into a surrounding environment.
Referring now to
In one embodiment, the solid layer 602 may be a thin film layer of a gold-gallium alloy and the liquid layer 604 may be protrusions 606 including liquid gallium formed on the gold-gallium alloy film layer. The combination of the liquid gallium within protrusions 606 and the gold-gallium solid layer 602 allow for electrical continuity throughout the biphasic material layer 118, especially as the material is strained which tends to crack the solid portion, but the liquid phase effectively fills in the micro-cracks, healing the material and maintaining approximately uniform conductivity. One representative method for manufacturing the suspension member 106 and biphasic material layer 118 shown in
In this aspect, electronic device 1100 includes a processor 1112 that interacts with camera circuitry 1106, motion sensor 1104, storage 1108, memory 1114, display 1122, and user input interface 1124. Main processor 1112 may also interact with circuitry 1102, primary power source 1110, speaker 1118, and microphone 1120. Speaker 1118 may be a speaker such as that described in reference to
The processor 1112 controls the overall operation of the device 1100 by performing some or all of the operations of one or more applications or operating system programs implemented on the device 1100, by executing instructions for it (software code and data) that may be found in the storage 1108. The processor 1112 may, for example, drive the display 1122 and receive user inputs through the user input interface 1124 (which may be integrated with the display 1122 as part of a single, touch sensitive display panel). In addition, processor 1112 may send an audio signal to speaker 1118 to facilitate operation of speaker 1118.
Storage 1108 provides a relatively large amount of “permanent” data storage, using nonvolatile solid state memory (e.g., flash storage) and/or a kinetic nonvolatile storage device (e.g., rotating magnetic disk drive). Storage 1108 may include both local storage and storage space on a remote server. Storage 1108 may store data as well as software components that control and manage, at a higher level, the different functions of the device 1100.
In addition to storage 1108, there may be memory 1114, also referred to as main memory or program memory, which provides relatively fast access to stored code and data that is being executed by the processor 1112. Memory 1114 may include solid state random access memory (RAM), e.g., static RAM or dynamic RAM. There may be one or more processors, e.g., processor 1112, that run or execute various software programs, modules, or sets of instructions (e.g., applications) that, while stored permanently in the storage 1108, have been transferred to the memory 1114 for execution, to perform the various functions described above.
The device 1100 may include circuitry 1102. In one embodiment, circuitry 1102 may include communications circuitry having components used for wired or wireless communications, such as two-way conversations and data transfers. For example, circuitry 1102 may include RF communications circuitry that is coupled to an antenna, so that the user of the device 1100 can place or receive a call through a wireless communications network. The RF communications circuitry may include a RF transceiver and a cellular baseband processor to enable the call through a cellular network. For example, circuitry 1102 may include Wi-Fi communications circuitry so that the user of the device 1100 may place or initiate a call using voice over Internet Protocol (VOIP) connection, transfer data through a wireless local area network. In addition, circuitry 1102 may includer speaker circuitry and/or diaphragm displacement sensing circuitry associated with transducer 100 as previous discussed.
The device may include a microphone 1120. Microphone 1120 may be an acoustic-to-electric transducer or sensor that converts sound in air into an electrical signal. The microphone circuitry may be electrically connected to processor 1112 and power source 1110 to facilitate the microphone operation (e.g. tilting).
The device 1100 may include a motion sensor 1104, also referred to as an inertial sensor, that may be used to detect movement of the device 1100. The motion sensor 1104 may include a position, orientation, or movement (POM) sensor, such as an accelerometer, a gyroscope, a light sensor, an infrared (IR) sensor, a proximity sensor, a capacitive proximity sensor, an acoustic sensor, a sonic or sonar sensor, a radar sensor, an image sensor, a video sensor, a global positioning (GPS) detector, an RF or acoustic doppler detector, a compass, a magnetometer, or other like sensor. For example, the motion sensor 1104 may be a light sensor that detects movement or absence of movement of the device 1100, by detecting the intensity of ambient light or a sudden change in the intensity of ambient light. The motion sensor 1104 generates a signal based on at least one of a position, orientation, and movement of the device 1100. The signal may include the character of the motion, such as acceleration, velocity, direction, directional change, duration, amplitude, frequency, or any other characterization of movement. The processor 1112 receives the sensor signal and controls one or more operations of the device 1100 based in part on the sensor signal.
The device 1100 also includes camera circuitry 1106 that implements the digital camera functionality of the device 1100. One or more solid state image sensors are built into the device 1100, and each may be located at a focal plane of an optical system that includes a respective lens. An optical image of a scene within the camera's field of view is formed on the image sensor, and the sensor responds by capturing the scene in the form of a digital image or picture consisting of pixels that may then be stored in storage 1108. The camera circuitry 1106 may also be used to capture video images of a scene.
Device 1100 also includes primary power source 1110, such as a built in battery, as a primary power supply.
While certain embodiments have been described and shown in the accompanying drawings, it is to be understood that such embodiments are merely illustrative of and not restrictive on the broad invention, and that the invention is not limited to the specific constructions and arrangements shown and described, since various other modifications may occur to those of ordinary skill in the art. For example, the transducer described herein could be acoustic-to-electric transducers or sensor that converts sound in air into an electrical signal, such as for example, a microphone, a vibration motor, or other type of device that could benefit from a compliant or stretchable biphasic electrode. The description is thus to be regarded as illustrative instead of limiting.
The application is a continuation of U.S. patent application Ser. No. 15/275,065 filed Sep. 23, 2016, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3240865 | Jarnagin | Mar 1966 | A |
5003610 | Adachi | Mar 1991 | A |
6490363 | Liu | Dec 2002 | B1 |
6654476 | Guenther | Nov 2003 | B1 |
6853734 | Sahyoun | Feb 2005 | B2 |
7006651 | Ueki | Feb 2006 | B2 |
7085394 | Usuki | Aug 2006 | B2 |
7239714 | de Blok et al. | Jul 2007 | B2 |
7995788 | Funahashi et al. | Aug 2011 | B2 |
8184833 | Demuynck | May 2012 | B2 |
8290199 | Pircaro | Oct 2012 | B2 |
8295538 | Harris et al. | Oct 2012 | B2 |
8311263 | Huang | Nov 2012 | B2 |
8426735 | Troosters et al. | Apr 2013 | B2 |
8469741 | Oster et al. | Jun 2013 | B2 |
8731231 | Teske-Fischer | May 2014 | B2 |
9154883 | Wilk | Oct 2015 | B2 |
9271084 | Vieites et al. | Feb 2016 | B2 |
9288582 | Vieites et al. | Mar 2016 | B2 |
9338532 | Yan | May 2016 | B2 |
9344804 | Chen | May 2016 | B2 |
9503822 | Zhao | Nov 2016 | B2 |
9621994 | Bongiovi et al. | Apr 2017 | B1 |
9621995 | Yang | Apr 2017 | B2 |
9648406 | Zhang | May 2017 | B2 |
9723389 | Zhang | Aug 2017 | B2 |
9832557 | Park et al. | Nov 2017 | B2 |
10225664 | Shan | Mar 2019 | B2 |
10284958 | Liu | May 2019 | B2 |
10375462 | Liu | Aug 2019 | B2 |
20010011615 | Iwasa | Aug 2001 | A1 |
20030174856 | Johannsen | Sep 2003 | A1 |
20040086149 | Johannsen et al. | May 2004 | A1 |
20040141629 | Liao | Jul 2004 | A1 |
20040228494 | Smith | Nov 2004 | A1 |
20050031140 | Browning | Feb 2005 | A1 |
20050057266 | Morimoto | Mar 2005 | A1 |
20050089187 | Turnmire et al. | Apr 2005 | A1 |
20050147272 | Hyre et al. | Jul 2005 | A1 |
20050220320 | Kim | Oct 2005 | A1 |
20060098838 | Yoo et al. | May 2006 | A1 |
20060182292 | Aarts et al. | Aug 2006 | A1 |
20070071274 | Andersen | Mar 2007 | A1 |
20070172093 | Oyanagi | Jul 2007 | A1 |
20080137901 | Michno et al. | Jun 2008 | A1 |
20090074226 | Eaton et al. | Mar 2009 | A1 |
20090116682 | Suzuki et al. | May 2009 | A1 |
20090190792 | Townsend | Jul 2009 | A1 |
20090226028 | Suganuma | Sep 2009 | A1 |
20110200223 | Hiwatashi et al. | Aug 2011 | A1 |
20110274309 | Doh et al. | Nov 2011 | A1 |
20120133005 | Langeries et al. | May 2012 | A1 |
20120139367 | Funaki et al. | Jun 2012 | A1 |
20120170778 | Wei | Jul 2012 | A1 |
20120177211 | Yamkovoy et al. | Jul 2012 | A1 |
20120177215 | Bose et al. | Jul 2012 | A1 |
20120251812 | Kawka et al. | Oct 2012 | A1 |
20130016874 | Huang et al. | Jan 2013 | A1 |
20130028459 | Wang | Jan 2013 | A1 |
20140016809 | Van Doorn | Jan 2014 | A1 |
20140029784 | Kwon et al. | Jan 2014 | A1 |
20140241565 | Jin | Aug 2014 | A1 |
20140270323 | Permanian | Sep 2014 | A1 |
20150256939 | Zhao et al. | Sep 2015 | A1 |
20150357078 | Lessing et al. | Dec 2015 | A1 |
20160007121 | Hung | Jan 2016 | A1 |
20160025669 | Sun et al. | Jan 2016 | A1 |
20160173990 | Park | Jun 2016 | A1 |
20160302018 | Russell | Oct 2016 | A1 |
20160366760 | Lee et al. | Dec 2016 | A1 |
20170245057 | Grazian et al. | Aug 2017 | A1 |
20170347204 | Linghu | Nov 2017 | A1 |
20200053473 | Jacques | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
101044785 | Sep 2007 | CN |
101654524 | Feb 2010 | CN |
101835074 | Sep 2010 | CN |
102067630 | May 2011 | CN |
202050538 | Nov 2011 | CN |
202059561 | Nov 2011 | CN |
202587358 | Dec 2012 | CN |
102970642 | Mar 2013 | CN |
104640051 | May 2015 | CN |
104918195 | Sep 2015 | CN |
204887423 | Dec 2015 | CN |
105899472 | Aug 2016 | CN |
106162470 | Nov 2016 | CN |
2561848 | Sep 1985 | FR |
2006080938 | Mar 2006 | JP |
2010258495 | Nov 2010 | JP |
20110002370 | Jan 2011 | KR |
20130017552 | Feb 2013 | KR |
101588132 | Jan 2016 | KR |
WO03101149 | Dec 2003 | WO |
WO-2006043219 | Apr 2006 | WO |
WO-2011007403 | Jan 2011 | WO |
WO-2011135291 | Nov 2011 | WO |
WO2012093058 | Jul 2012 | WO |
WO-2012093058 | Jul 2012 | WO |
WO-2013007112 | Jan 2013 | WO |
WO-2014094776 | Jun 2014 | WO |
WO-2016180299 | Nov 2016 | WO |
Entry |
---|
Hirsch etal., “Intrinsically Stretchable Biphasic (Solid-Liquid) Thin Metal Films” Feb. 29, 2016, Advanced Materials, vol. 28, Issue 22, pp. 4507-4512 (Year: 2016). |
Chinese Office Action dated May 8, 2019 for related Chinese Appln. No. 201780008577.9 11 Pages. |
PCT International Preliminary Report on Patentability for PCT Appln. No. PCT/US2017/047595 dated Apr. 4, 2019; 8 pages. |
Hirsch et al., “Intrinsically Stretchable Biphasic (Solid-Liquid) Thin Metal Films” Feb. 29, 2016, Advanced Materials, vol. 28, Issue 22, pp. 4507-4512. |
Apple Inc., Notice of Allowance dated Apr. 5, 2017, U.S. Appl. No. 14/468,178. |
Apple Inc., First office action dated Jan. 5, 2017, U.S. Appl. No. 14/468,178. |
Apple Inc., International Search Report dated Sep. 26, 2017, PCT Application No. PCT/US2017/047595. |
International Search Report and Written Opinion, dated Nov. 5, 2015, Application No. PCT/US2015/043680. |
International Preliminary Report on Patentability for PCT/US20151/043680 dated Mar. 9, 2017, 8 pages. |
Chinese Office Action dated Jan. 2, 2020 for related Chinese Application No. 201780008577.9. |
Number | Date | Country | |
---|---|---|---|
20190261093 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15275065 | Sep 2016 | US |
Child | 16398015 | US |