The present invention relates generally to the field of ophthalmological instruments (such as contact tonometers or ultrasound pachymeters) equipped with and employing a transducer for registration of the target measurement data and, more specifically, to such ophthalmological instruments employing a transducer probe with a spatially-curved eye-contacting surface.
Multiple reliable instruments are being currently used in ophthalmology including, to name just a few, a tonometer (used for testing intraocular pressure) and a pachymeter (used for measurement of thickness of the cornea prior to refractive surgery, for example), both of which instruments are advantageous in screening for patients suspected of developing glaucoma, for example. Glaucoma is characterized by increase in pressure within the eye, but because the patient seldom experiences any symptoms until major damage occurs, regular testing is essential to detect glaucoma in the early state before the retinal field is seriously diminished, and ocular nerve damage has occurred.
Utilizing “contact” types of such devices—especially those that are hand-held—requires at least touching the eye surface directly with the probe of a device and, in some cases, pressing the tip against the cornea into the eye thereby indenting a portion of the cornea. (In this context, the probe of the contact instrument is understood to be that protruding part of it which is juxtaposed and/or cooperated with an eye under test. (In some of related art documents, such probe portion may also and/or interchangeably be referred to as a “tip”.) Practice shows that the use of conventionally-structured transducer-containing ophthalmological instrument—while often preferred because such use does not require any specific technical preparation and/or education of the user to assess the results of the measurements—almost always produces the values of targeted measured parameter (be it the IOP or a corneal thickness) that are substantially lower than the those identified with the use of more accurate and complex instruments (in the case of measurement of the IOP, for example—a Goldmann-type tonometer) which admittedly require much more expertise and clinical time to measure.
The invention will be more fully understood by referring to the following Detailed Description of Specific Embodiments in conjunction with the Drawings, of which:
Generally, the sizes and relative scales of elements in Drawings may be set to be different from actual ones to appropriately facilitate simplicity, clarity, and understanding of the Drawings. For the same reason, not all elements present in one Drawing may necessarily be shown in another.
Embodiments of the invention provide a transducer probe judiciously configured for use with a contact ophthalmological instrument equipped with and relying in operation on a transducer. The transducer probe contains a probe body having a tip. The probe body has a body axis; a first portion of the probe body including a front transducer surface; a second portion of the probe body circumscribing and forming a ridge above the first portion of the probe body. The probe body further has a front probe body surface that is transverse to the body axis and dimensioned to contact the cornea of an eye, the front probe body surface being inwardly shaped. In at least one case, the front transducer surface defines at least an axial portion of the front probe body surface and/or the front transducer surface is substantially opaque to light. In at least one implementation, the front transducer surface may be circumscribed with a ring-shaped layer of material different from a material of the front transducer surface; and/or the front transducer surface may be separated from the second portion of the probe body, in a radial direction, with such ring-shaped layer. Alternatively or in addition, substantially every implementation of the transducer probe may be configured to have a cornea-contacting surface of the second portion of the probe body that has a first radius in a plane transverse to the body axis and a first non-zero surface curvature with a first sign, and/or that is dimensioned to be substantially tangentially-parallel with the front transducer surface along a perimeter of the front transducer surface.
Practically every implementation of the transducer probe can optionally be configured such that the second portion of the probe body is reversibly separable and removable from the first portion of the probe body. In this case, for example, the second portion of the probe body may include an article of manufacture having an article body with an article axis and a front surface of the article body; and a hollow in the article body that extends throughout the article body along the article axis and defines an aperture in the front surface of the article body. (Optionally, the article body in this case may have a substantially cylindrical outer surface and/or a substantially conical outer surface. Optionally, in this case, the hollow of the article body may be substantially cylindrically shaped; and/or a surface of the hollow and a surface of an outer surface of the article may be substantially co-axial with one another; and/or a front surface of the article body may be rotationally-symmetric about the article axis.) The hollow of the article body may be dimensioned to accommodate at least the first portion of the probe body therein.
Alternatively or in addition, and substantially in every implementation, the front transducer surface may incorporate or be connected with a piezo or pressure sensor element; and/or have a second radius in a plane transverse to the body axis and a second non-zero surface curvature with the first sign. Alternatively or in addition, a surface of the second portion of the probe body and the front transducer surface may be dimensioned to be tangentially parallel to one another substantially at every point of a perimeter of the front transducer surface.
Preferably, the first sign is equal to a sign of a curvature of a surface of the cornea.
and/or each of the front probe body surface and the front transducer surface is axially-symmetric about the probe body axis (optionally, the front transducer surface defines a portion of a spherical surface).
In at least one specific embodiment, a front surface of the ridge surrounding the first portion of the transducer probe has a third surface curvature with a third sign, the third sign being opposite to the first sign, the front surface of the ridge being substantially co-axial with the front transducer surface and/or the front transducer surface is made substantially opaque to light when the probe configured as a tonometer probe for use with a hand-held portable contact tonometer.
In at least one case, when the probe configured as a probe for use with a hand-help portable ultrasound pachymeter, the front transducer surface is made substantially transparent to ultrasound.
Embodiments of the invention additionally provide a method for measuring an intraocular pressure (TOP) of an eye, which method includes using a contact tonometer with a transducer probe structured according to any of the above-identified embodiments (or equipping a contact tonometer with such transducer probe and then using the so-equipped contact tonometer); mechanically connecting at least the front surface of the transducer probe (which represents the front transducer surface) with the cornea; and operating the transducer to take a measurement of the IOP (without transmitting light through the front transducer surface and/or a first portion of a probe body and/or a second portion of the probe body towards the cornea). The step of equipping may include includes removably positioning the first portion of the probe body into an axially-extending hollow of a second portion of the probe body such that a) a portion of a front surface of the first portion of the probe body is substantially in contact with a reference element of the hollow and/or b) the second portion of the probe body is located to circumscribe the first portion of the probe body and to form a ridge above at least the front transducer surface. Alternatively or in addition—and substantially in every implementation of the method—the step of equipping may include placing a front surface of the second portion of the probe body to be substantially tangentially-parallel with the front transducer surface along a perimeter of the front transducer surface and/or the method may optionally include a step of forming a barrier to transfer of microorganisms between the eye and the probe body.
The latter step, when present, may be carried out by removably positioning an elastic cover over the transducer probe to spatially-coordinate a first central area of the elastic cover with a front surface of the probe body surface. (Here, the elastic cover may be structured as a flexible thin film tubular body having an open end and a closed end, a tip portion defining the closed end of the tubular body, and a wall portion connecting the closed end with the open end. The tip portion of the tubular body includes a first central area that has an inner surface and an outer surface, the outer surface being concave.) In one specific case, the step of removably positioning may optionally additionally include securing the elastic cover on the probe body by placing a retention ring of the elastic cover into a groove of the probe body.) In at least one case, the inner surface of the first central area of the tip portion of the elastic cover may outwardly shaped as seen from the open end of the elastic cover, in which case the step of removably repositioning includes placing the front probe body surface (that is inwardly shaped) substantially in contact with the outwardly curved inner surface of the first central area. Generally, the inner surface of the first central area is dimensioned to be substantially convex and the front probe body surface is substantially concave, in which case the step of removably repositioning includes substantially congruently superimposing such inner surface with the front probe body surface.
The step of operating of the contact tonometer includes repositioning the front transducer surface with respect to the cornea and/or repositioning both the first portion of the probe body and the second portion of the probe body with respect to the cornea and/or pressing the front transducer surface and the second portion of the probe body into the cornea. Substantially in every implementation, the method is configured to have a step of mechanically connecting at least the front surface of the transducer probe with the cornea include (i) establishing a direct physical contact between the front transducer surface and the cornea; or (ii) mechanically connecting the at least transducer surface with the cornea through a thin-film of elastic material disposed therebetween. Substantially in every embodiment of the method, the step of equipping the contact tonometer with the embodiment of the transducer prober may include equipping the contact tonometer with the probe having such a front surface that is substantially opaque to light.
Embodiments also provide a contact tonometer system, which system includes a transducer probe that structured according to any of the above-identified embodiments and—in at least one specific case—optionally contains a disposable article of manufacture dimensioned to cover the transducer probe. (Such disposable article, when present, may include a flexible thin film tubular body having an open and a closed end, a tip portion defining the closed end of the body, and a wall portion connecting the closed end with the open end. Here, the tip portion includes a first central area that has an inner surface and an outer surface, the outer surface being concave. Such article is configured to create a barrier, when installed onto the probe tip, to transfer of microorganism between an eye of a patient and the tip of a probe of the contact instrument during a contact ophthalmological examination while at the same time not impeding a measurement of a target parameter of the eye through such article.) Alternatively or in addition—an in at least one embodiment of the contact tonometer system—(a) the inner surface is either convex or substantially planar as viewed internally to tubular body from the open end; or (b) the inner surface is concave as viewed internally to the tubular body from the open end (and, in either of these two cases, the outer surface of the first central area of the tip portion is dimensioned to substantially conform to the corneal surface of an eye). Generally—and substantially in every implementation when the disposable article of manufacture is used, such disposable article may be configured to have an ultimate elongation from about 500% to about 1000% and/or a tensile strength from about 1000 psi to about 5500 psi and/or a modulus of elasticity at 100% strain from about 50 psi to about 2000 psi; and/or be formed from a material including one or more of the following: polyurethane, polyethylene, polypropylene, polyisoprene, polychloroprene, nitrile, and silicone.
Embodiments of the invention additionally provide a method for measuring a thickness of the cornea of an eye, the method including a step of either equipping an ultrasound pachymeter with a transducer probe structured according to those of the embodiments discussed above that satisfy the requirements of ultrasonic pachymetric or using the ultrasonic pachymeter already equipped with the appropriate transducer probe. The method further requires establishing a mechanically connection between a front probe body surface with the cornea, and transmitting an ultrasound wave through the front probe body surface into the eye. Finally, the method includes the step—performed with the use of a programmable processor—of determining a value of the thickness of the cornea based on ultrasound pulses reflected back to and received by the transducer from a surface of the eye and through the front probe body surface. The step of equipping may include removably positioning the first portion of a probe body of the transducer probe into a hollow axially extending throughout a second portion of the probe body of such probe and/or placing a front surface of the second portion of the probe body to be substantially tangentially-parallel with the front transducer surface along a perimeter of the front transducer surface (present at the front surface of the first portion of the probe). Alternatively or in addition—and substantially in every implementation—the method may include a step of removably positioning an elastic cover over the transducer probe to spatially-coordinate a first central area of the elastic cover with a front probe body surface. Here, the elastic cover is configured as a flexible thin film tubular body having an open end and a closed end, a tip portion defining the closed end of the tubular body, and a wall portion connecting the closed end with the open end (the tip portion of the tubular body includes a first central area that has an inner surface and an outer surface, the outer surface being concave). When such elastic cover is used, the step of removably positioning such cover may include securing the elastic cover on the probe body by placing a retention ring of the elastic cover into a groove of the probe body. The inner surface of the first central area of the tip portion of the elastic cover may be outwardly shaped (as seen from the open end of the elastic cover), in which case the step of removably repositioning may include placing the front probe body surface that is inwardly shaped substantially in contact with the outwardly curved inner surface of the first central area. Alternatively or in addition, and substantially in every implementation of the method the mechanically connecting may include either establishing a direct physical contact between the front transducer surface and the cornea or mechanically connecting at least the transducer surface with the cornea through a thin-film of elastic material disposed therebetween.
Embodiments also provide an ultrasound pachymeter comprising a transducer probe configured according to each of the above-discussed embodiments that lend themselves for use with the ultrasound pachymeter. In at least one specific case, such ultrasound pachymeter may additionally be equipped with a disposable article of manufacture dimensioned to cover such transducer probe (the disposable article includes a flexible thin film tubular body having an open and a closed end, a tip portion defining the closed end of the tubular body, and a wall portion connecting the closed end with the open end; and the tip portion includes a first central area that has an inner surface and an outer surface, the outer surface being concave. The disposable article is configured to create a barrier (when installed onto the probe tip) to transfer of microorganism between an eye of a patient and the tip of a probe of the contact instrument during a contact ophthalmological examination while at the same time not impeding a measurement of a target parameter of the eye through such disposable article. In at least one implementation of the ultrasound pachymeter employing the disposable article, the inner surface of the first central area of the tip portion of the article may be convex or substantially planar as viewed internally to tubular body from the open end, while the outer surface of the same first central area is dimensioned to substantially conform to the corneal surface of an eye. Substantially in every implementation of the ultrasound pachymeter employing such disposable article, the disposable article may be configured to have an ultimate elongation from about 500% to about 1000% and/or a tensile strength from about 1000 psi to about 5500 psi and/or a modulus of elasticity at 100% strain from about 50 psi to about 2000 psi and/or be formed from a material including one or more of the following: polyurethane, polyethylene, polypropylene, polyisoprene, polychloroprene, nitrile, and silicone.
A skilled artisan will readily appreciate and understand further details of the embodiments of the invention from the discussion(s) below.
As was already alluded to above, the measurements of the IOP and the corneal thickness provide two very important data readings that serve to derive conclusions about the status of health of the eye.
Regardless of whether a hand-held contact tonometer (of a TonoPen® or Mackay Marg variety, for example) or a Goldmann-type tonometer is used for measurement of the intraocular pressure, the measurement is performed according to the principle of applanation tonometry, in which the IOP is inferred from the force required to flatten (applanate) a pre-defined area of the cornea with the tip of the probe of the tonometric instrument. It is the contact pressure required for flattening of such area of the cornea that is used as a measure of the IOP.
The use of an electronic Tono-Pen®-type portable tonometer, for example (an image of which is presented in
While various incarnations of the contact hand-held tonometers exist, the tips of the probes such devices are typically structured according to the same principle that is illustrated schematically in
This small functional gap 218 may be generally filled with a pre-defined material. However, and regardless of the specifics of the material structure of the functional gap 218, the space between the portions 220 and 224 of the tip 200 is configured to facilitate the operation of the device. For the purposes of this disclosure, the term transducer is defined to denote a device that receives a signal in the form of one type of energy and converts it to a signal in another form. Such transducer, depending on the specifics of a particular implementation, may include a plunger or piston of sorts (which may be made repositionable within the body 204) and/or the transducer may be configured as a pressure transducer and include a piezo element separated from the outer body portion 210 at least with the ring of the predefined material perceived from outside of the probe as the ring-shaped region 218.
As shown in
The surface 208 (including regions 218, 220, 224) is substantially optically opaque, and no light is used in operation of the tonometer 100 (or a similar tonometer). Instead, in operation, the tip 200 of the probe of the transducer of the tonometer is brought in contact with the cornea at the surfaces 208, 220, 224, and the pressure applied to the cornea by the surface 224 of the transducer and by the transducer-surrounding surface 220 causes applanation of the cornea. The transducer data is further related to the instrument through the available electronic paths (optionally built-in the body of the embodiment 200; not shown) and, with the use of the appropriately programmed electronic circuitry such as a programmable processor, the calculations of the IOP are then performed as required.
The tip 200 or a tip of the transducer probe of a contact tonometer structured substantially similarly to the tip 200 will be referred herein as an original tip or a conventional tip. Similarly, the transducer probe having such a tip may be referred to as an original probe or a conventional probe.
As far as the measurement of the corneal thickness is concerned, a typical conventional ultrasound pachymeter (such as the one fabricated by the DGH technology, Inc., for example; see dghtechnology.com/Auriga/wp-content/uploads/2020/08/DGH-55B-INS-OMENG-R3-DGH-55B-Operator-Manual-English.pdf, which publicly available document is incorporated herein by reference) shown in
A tip of the transducer probe of a contact ultrasound pachymeter structured substantially similarly to the probe 310 may be referred herein as an original probe or a conventional probe. Similarly, the tip of such conventional probe may be referred to as an original tip or a conventional tip.
The general principle of operation of such pachymeter is as follows: The planar surface of the (often polystyrene) tip of the ultrasonic transducer probe is placed in contact with the patient's cornea, which automatically initiates a measurement cycle. At the start of the measurement cycle, the electronic circuit board transmits voltage pulses to the ultrasonic transducer (probe). The piezoelectric element in the transducer converts these voltage pulses into ultrasonic energy, sending a pulse of a high frequency sound waves (20 MHz damped to 13 MHz, for example) through the eye, and reflected pulses (echoes) are received back to the transducer and are converted to voltage pulses. The first echo to be received comes from the anterior corneal surface. If an echo spike from the anterior corneal surface is received within an anticipated time window, the device then prepares to receive an echo spike from the posterior corneal surface. Only anterior and posterior echo spikes that fall within specified voltage limits that ensure that the probe tip is perpendicular to the cornea surface are accepted for processing. The time interval between the accepted anterior and posterior echo spikes represents the thickness of the cornea. The time interval is converted to a corresponding distance, or thickness, based on the acoustic velocity through the cornea.
There are two methods by which pachymeter creates an average reading. (1) A pulse locked method: here, the device will record all readings that are made with the pachymeter tip being within about 5 degrees to 10 degrees of deviation with respect to the normal to the cornea, rejecting those outside the range; and (2) a fixed number of consecutive readings is taken with the above-specified angular orientation of the tip before the results are averaged. If the probe is not perpendicular or the readings are too disparate, the series of measurements data point is rejected, and the measurement must be re-taken.
As explicitly discussed by the manufacturer of the device, proper applanation of the cornea is necessary for obtaining an accurate measurement. Proper applanation occurs when the flat tip of the probe comes into full contact with the cornea perpendicular to the cornea surface. The user generally should ensure that pressure against the cornea is minimized, however.
Ultrasound pachymetry is known as a methodology for a quick measurement of the thickness of the cornea in the eye clinic, completed by the technician. The errors produced by ultrasound pachymetry measurement are almost always significantly greater than those of the more accurate OCT-based pachymetry measurement (the latter approach requiring much more expense and clinic time to be completed).
As a skilled person will readily recognize, during the process of applanation of the cornea with the use of substantially any device—whether the ultrasound pachymeter 300 of
This buckling of the cornea tends to pull the cornea away from the applanating surface in the center, thereby not only resulting in a substantially non-uniform pressure applied by the surface of the tip of the tonometer's probe to the cornea (and vice versa, when the tonometric measurement is performed)—lower in the center, higher in a peripheral portion of the cornea-contacting surface of the tip of the probe—but also causing the actually measured values of intraocular pressure to be understandably reduced. Even notwithstanding this practical evidence, the very process of the IOP measurement with the use of a Tono-Pen® type portable tonometer 100, for example, remains operator dependent: the harder a less-trained operator pushes on the cornea, the more the device underestimates the value of the IOP as compared to the measurement performed with the use of a Goldmann-type tonometer. Similarly, this unpredictable deformation of the cornea during the use of a conventional ultrasound pachymeter 300 not only introduces the error in the measurement of the corneal thickness but necessarily makes the results of the measurement operator-dependent: the harder a less-trained operator pushes on the cornea, the more “buckling” of the cornea and, therefore, error of the measurement, occurs.
Embodiments structured according to the idea of the invention address the above-identified problems persistently present when either the contact hand-held tonometer is used or when an ultrasound pachymeter is used.
Accordingly, the problem of performing the measurement of intraocular pressure with the use of a contact Tono-Pen® type tonometer in absence of light reflected from the eye through the probe and/or tip of the probe (for example, with the use of a pressure transducer) and without the need to correct for the contribution of (at least) corneal thickness and stiffness is solved by devising a transducer probe the cornea-contacting front portion of which includes surface(s) that generally define an inwardly-caved or inwardly-shaped shape (that is such a shape of the cornea-contacting front portion that defines a cave in a body of the transducer probe, is scooped in, or caved in in the central axial portion of the probe as compared to a radially-extended portion of the probe). In other words, the tip of the probe is shaped to have a radially-extended cornea-contacting surface of the tip be raised above a central, axial portion of the cornea-contacting surface of the tip that corresponds to the location of the probe sensor/transducer. (In one specific case, the tip is appropriately shaped to have a first portion having a concave shape. In another related case, a portion of the tip configured to surround the central, axial portion of the front surface of the tip of the transducer probe as a ridge elevated over such central portion.) In a similar fashion is solved the problem of errors of the measurement of the corneal thickness with the use of a contact ultrasound pachymeter, by utilizing a pachymeter probe the cornea-contacting front portion of which includes surface(s) that generally define an inwardly-caved shape.
Notably, as the skilled person will readily understand from the following discussion, the target configuration of the transducer tip of an instrument at hand is achieved in a variety of fashions, including, in one case, a direct modification of the shape of the original tip of the probe itself. In another case, a hybrid/composite/compound tip of the transducer probe is formed by complementing the already existing conventional flat front surface tip of the probe with a judiciously shaped add-on contraption to produce a hybrid/composite/compound transducer probe with a hybrid/composite/compound tip the front surface of which is desirably inwardly shaped.
As described in the following disclosure in more detail on the specific examples, an embodiment of an invention (pertaining to a contact ophthalmological instrument such as either the ultrasound pachymeter or a contact hand-held tonometer, each of which necessarily employs a transducer) provides a probe of the transducer of the instrument that has a tip and that is configured for use with such contact ophthalmological instrument. The probe of or for the transducer of such instrument includes a probe body that has a body axis. In stark contradistinction with a probe configured for use with a Goldmann-type tonometer (which by the very nature of it is devoid of a transducer, as the principle of operation of the Goldmann tonometer does not utilize transformation of an input signal in the form of optical energy into a signal in another form of enemy), an embodiment of the discussed probe includes a transducer (that is, a device in operation transforming a signal in one form of energy to a signal in another). The transducer probe also includes a first portion of the probe body and a second portion of the probe body circumscribing and forming a ridge above the first portion of the probe body. A front probe body surface is inwardly shaped and transverse to the body axis and is dimensioned to contact the cornea of an eye. Substantially in every implementation, at least an axial portion of the front probe body surface may be structured to define the front surface of the transducer (interchangeably referred to as a front transducer surface), and in at least one specific case the front transducer surface may be configured to be substantially opaque to light.
It is understood that, going forward, a discussed embodiment of the probe of the transducer of a contact ophthalmological instrument is considered to represent a probe of either a contact tonometer or an ultrasound pachymeter unless expressly stated otherwise.
Considering now only a specific case of when a second portion of the probe body (circumscribing the central, axial area of the front surface of the embodiment of the probe) has an inwardly shaped or even specifically concave front surface, such front surface of the second portion of the probe body may be shaped to be tangentially-parallel with the front surface of the transducer at least along the perimeter of the surface of the transducer. In at least one case, the front surface of the transducer may be also curved such that the signs of curvatures of the front surface of the transducer and the front surface of the second portion of the probe body are the same. In a rather specific case, the second portion of the probe body may additionally include a peripheral surface portion encircling the curved front surface of the second portion and having a curvature with a sign opposite to the sign of the curvature of the first portion. In this specific case, the curved front surface of the second portion of the probe body and the curved peripheral surface portion are configured to merging tangentially with one another along a closed plane curve.
To this end,
In operation, at least the surface 524 is brought in contact with the cornea of an eye subject to the tonometric measurement (whether directly, by touching immediately, or indirectly, with a film of the cover such as the cover 122 between the tip 500, 550 and the cornea, when present). After, the portable tonometer of which the tip 500, 550 is a part is operated in a conventional fashion to measure the IOL with the use of the contact transducer-containing tonometer.
In operation, at least the surface 624 is brought in contact with the cornea of an eye subject to the tonometric measurement (whether directly, by touching immediately, or indirectly, with a film of the cover such as the cover 122 between the tip 600, 650 and the cornea, when present). After, the portable tonometer of which the tip 600, 650 is a part is operated in a conventional fashion to measure the IOL with the use of the contact transducer-containing tonometer.
The embodiment 650 of
By analogy with shaping of the front surface of the transducer probe of a contact tonometer discussed above in reference to
The schematic representations of the related solutions for the transducer probe of the pachymeter are shown in
The embodiment 750 of
Understandably, the axial portions of the embodiments 700, 750 of the transducer probe of the invention corresponding to and containing the surfaces 720, 724 respectively represent first portions of the probe body, while the portions lying outside of the radial limits defined by the surfaces 720, 724 (and, therefore, containing respectively surfaces 720, 720A) represent second portions of the transducer probe body.
In this specific example, the substantially rotationally-symmetric crown or cap 810 is fittingly and removably slid (as depicted by the arrow 814) over the existing tip of the transducer probe such as to have the tip at least partially fit into the hollow 816 of the crown 810 and to have the rim or ridge 804 of the crown be appropriately raised above the level defined by the planar cornea-contacting surface (114A in case of the probe 110, 310A in case of the probe 310). The original probe thus forms a first portion of the body of the composite probe, and the crown 810 forms the second portion of the composite probe body circumscribing the first portion of the composite probe body. Notably, the front ring surface of the ridge 804 of the crown 810, when retrofitted over the tip of the conventional probe, is raised over the flat surface of the original, conventional tip. The surface of the ridge 804 is presented schematically, and can generally deviate from that depicted in
In a preferred implementation, of course, the inwardly-caved surface formed by the inner surface of the ridge 804 and the conventionally-planar surface of the tip of the conventional probe 114A, 310 may be configured to contain a generally concave surface portion. This is achieved either by shaping the inner surface of the ridge 804 to be concave (as seen into the cap/crown 810 and towards the probe), or by modifying the conventionally planar surface 114A, 310A to be concave, or both.
In reference to the specific structure of the conventional contact tonometer tip of
Accordingly, an embodiment of the invention provides a method for modifying a conventionally planar-surfaced tip of a transducer probe of a contact hand-held tonometer (of a Tono-Pen® variety or that operating according to a similar principle(s)) and/or of the conventional ultrasound pachymeter.
A skilled person having the advantage of this disclosure will appreciate that existing Tono-Pent type tonometer devices and/or existing ultrasound pachymeters of related art can be retrofitted with an embodiment of the tip structured in a fashion discussed above (
Notably, any of the embodiments 900, 950 can be configured to be disposable (that is, separable from and re-attachable to the conventional tip of the transducer probe.)
A preliminary prototype of an embodiment of the composite probe 1000, formed by adding the “crown” to and over the conventional flat-front-surface tip of the Avia Tonopen is shown in
Proof of workability of an embodiment of the invention of
Conceptual proof of workability of an embodiment of the invention with an ultrasound pachymeter was provided by measuring the central corneal thickness (CCT) of eyes of 14 patients with the conventionally used OCT-based pachymetry (considered to be the “gold standard” in related art; results are presented in column 1 in the Table 2), with the conventional DGH ultrasound pachymeter equipped with the conventional probe 310 with a conventional tip 310A (results are presented in column 2 of Table 2), and with the DGH ultrasound pachymeter the tip of which has been modified according to the idea of the present invention (and, specifically, retrofitted to possess an inwardly-caved surface; results are presented in column 3 of Table 2, denoted as “CATS”). The results obtained with the use of the ultrasound pachymeter with a tip modified according to the idea of the invention repeatedly demonstrated values that are significantly closer to those obtained with the use of the PCT-based modality that those measured by conventional, not-modified DGH ultrasound instrument. The experimental results illustrated the difference with statistical significance p=0.0003.
At least one shortcoming of the use of any eye-contacting ophthalmological device is apparent from the very nature of its operation: such devices must touch the eye, and therefore, poses a risk of transferring various pathogens from one patient to another, or from patient to health care provider. While various methods have been utilized to reduce the transmission risk—including sterilization of the probe tip between examinations, the use of sterile gloves by the tester (to reduce a chance of re-contamination of a tip/probe portion of the device that may occur when reinserting the probe into the probe holder of the device), and wiping of the probe tip surface, to name just a few—these precautions were proven to be insufficient to reliably remove pathogens and contaminations. For these reasons, a more preferred method has been to fit the probe, or contact tip, of a contact ophthalmological device with a protecting cover during the measurement process, at least in order to prevent the detrimental transmission of pathogens. Such cover can be made disposable and is often formed from materials such as natural latex rubber or various hypoallergenic materials, as discussed, for example, in U.S. Pat. No. 7,287,856 (which considers a typical cover that is dimensioned for use with a probe of a contact tonometer and structured to have a substantially and overall convex—as viewed from outside of the unfolded cover—area of the tip or closed end of the cover).
However, as a person of skill will readily appreciate upon the analysis of U.S. Pat. No. 7,287,856 (the disclosure of which is incorporated herein by reference), the embodiment of the conventionally structured flexible cover discussed in this patent will necessarily substantially negate at least some if not all advantages (that would otherwise be provided by the curved surface of the tip/probe of the ophthalmological device) during the measurement of, for example, intraocular pressure because a space, gap, and/or air bubble would remain between the inner surface of the conventionally dimensioned cover and the cornea-contacting curved surface of the probe/tip of the embodiment of the invention. The presence of gap/space/bubble quite possibly would introduce additional yet unknown and/or non-correctable errors. Accordingly, the skilled person will now appreciate the novel structures of embodiments of a flexible cover for the transducer probe that are intended to be juxtaposed with such probes.
To this end,
While specific description chosen for the presented embodiments are recited, it is to be understood that, within the scope of the invention, the values of all of parameters may vary over wide ranges to suit different applications. Disclosed aspects, or portions of these aspects, may be combined in ways not listed above. For example, and in reference to
Whether or not a specific processor/microprocessor/electronic circuitry (that may be used to control the process of operation of the refocusing of the optical system as discussed) is shown in the Drawings, such microprocessor is controlled by instructions stored in a memory. The memory may be random access memory (RAM), read-only memory (ROM), flash memory or any other memory, or combination thereof, suitable for storing control software or other instructions and data. Those skilled in the art should also readily appreciate that instructions or programs defining the functions of the present invention may be delivered to a processor in many forms, including, but not limited to, information permanently stored on non-writable storage media (e.g. read-only memory devices within a computer, such as ROM, or devices readable by a computer I/O attachment, such as CD-ROM or DVD disks), information alterably stored on writable storage media (e.g. floppy disks, removable flash memory and hard drives) or information conveyed to a computer through communication media, including wired or wireless computer networks. In addition, while the invention may be embodied in software, the functions necessary to implement the invention may optionally or alternatively be embodied in part or in whole using firmware and/or hardware components, such as combinatorial logic, Application Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays (FPGAs) or other hardware or some combination of hardware, software and/or firmware components.
For the purposes of this disclosure and the appended claims, the expression of the type “element A and/or element B” has the meaning that covers embodiments having element A alone, element B alone, or elements A and B taken together and, as such, is intended to be equivalent to “at least one of element A and element B”.
References throughout this specification to “one embodiment,” “an embodiment,” “a related embodiment,” or similar language mean that a particular feature, structure, or characteristic described in connection with the referred to “embodiment” is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment,” “in an embodiment,” and similar language throughout this specification may, but do not necessarily, all refer to the same embodiment. It is to be understood that no portion of disclosure, taken on its own and in possible connection with a figure, is intended to provide a complete description of all features of the invention. Within this specification, embodiments have been described in a way that enables a clear and concise specification to be written, but it is intended and will be appreciated that embodiments may be variously combined or separated without parting from the scope of the invention. In particular, it will be appreciated that all features described herein at applicable to all aspects of the invention.
When the present disclosure describes features of the invention with reference to corresponding drawings (in which like numbers represent the same or similar elements, wherever possible), the depicted structural elements are generally not to scale, and certain components are enlarged relative to the other components for purposes of emphasis and understanding. It is to be understood that no single drawing is intended to support a complete description of all features of the invention. In other words, a given drawing is generally descriptive of only some, and generally not all, features of the invention. A given drawing and an associated portion of the disclosure containing a description referencing such drawing do not, generally, contain all elements of a particular view or all features that can be presented is this view, at least for purposes of simplifying the given drawing and discussion, and directing the discussion to particular elements that are featured in this drawing. A skilled artisan will recognize that the invention may possibly be practiced without one or more of the specific features, elements, components, structures, details, or characteristics, or with the use of other methods, components, materials, and so forth. Therefore, although a particular detail of an embodiment of the invention may not be necessarily shown in each and every drawing describing such embodiment, the presence of this particular detail in the drawing may be implied unless the context of the description requires otherwise. In other instances, well known structures, details, materials, or operations may be not shown in a given drawing or described in detail to avoid obscuring aspects of an embodiment of the invention that are being discussed. Furthermore, the described single features, structures, or characteristics of the invention may be combined in any suitable manner in one or more further embodiments.
Moreover, if the schematic flow chart diagram is included, the depicted order and labeled steps of the logical flow are indicative of one embodiment of the presented method. Other steps and order of steps may be conceived that are equivalent in function, logic, or effect to one or more steps, or portions thereof, of the illustrated method. Without loss of generality, the order in which processing steps or particular methods occur may or may not strictly adhere to the order of the corresponding steps shown.
For the purposes of this disclosure and the appended claims, the use of the terms “substantially”, “approximately”, “about” and similar terms in reference to a descriptor of a value, element, property or characteristic at hand is intended to emphasize that the value, element, property, or characteristic referred to, while not necessarily being exactly as stated, would nevertheless be considered, for practical purposes, as stated by a person of skill in the art. These terms, as applied to a specified characteristic or quality descriptor means “mostly”, “mainly”, “considerably”, “by and large”, “essentially”, “to great or significant extent”, “largely but not necessarily wholly the same” such as to reasonably denote language of approximation and describe the specified characteristic or descriptor so that its scope would be understood by a person of ordinary skill in the art. The use of this term in describing a chosen characteristic or concept neither implies nor provides any basis for indefiniteness and for adding a numerical limitation to the specified characteristic or descriptor. As understood by a skilled artisan, the practical deviation of the exact value or characteristic of such value, element, or property from that stated may vary within a range defined by an experimental measurement error that is typical when using a measurement method accepted in the art for such purposes. As an example only, a reference to a vector or line or plane being substantially parallel to a reference line or plane is to be construed as such vector or line extending along a direction or axis that is the same as or very close to that of the reference line or plane (with angular deviations from the reference direction or axis that are considered to be practically typical in the art, for example between zero and fifteen degrees, more preferably between zero and ten degrees, even more preferably between zero and 5 degrees, and most preferably between zero and 2 degrees). A term “substantially flexible”, when used in reference to a housing or structural element providing mechanical support for a contraption in question, generally identifies the structural element the flexibility of which is higher than that of the contraption that such structural element is associated with. As another example, the use of the term “substantially flat” in reference to the specified surface implies that such surface may possess a degree of non-flatness and/or roughness that is sized and expressed as commonly understood by a skilled artisan in the specific situation at hand. For example, the terms “approximately” and about”, when used in reference to a numerical value, represent a range of plus or minus 20% with respect to the specified value, more preferably plus of minus 10%, even more preferably plus or minus 5%, most preferably plus or minus 2%.
The invention as recited in claims appended to this disclosure is intended to be assessed in light of the disclosure as a whole, including features disclosed in prior art to which reference is made.
This US Patent application claims priority from and benefit of the US Provisional Patent Applications Nos. 63/235,058 filed on Aug. 19, 2021; 63/235,024 filed on Aug. 19, 2021; 63/235,026 filed on Aug. 19, 2021; 63/242,752 filed on Sep. 10, 2021; and 63/252,472 filed on Oct. 5, 2021. This application is also a continuation from the International Patent Application No. PCT/US2022/040617 filed on Aug. 17, 2022. The disclosure of each of the above-identified patent documents is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
63252472 | Oct 2021 | US | |
63242752 | Sep 2021 | US | |
63235058 | Aug 2021 | US | |
63235026 | Aug 2021 | US | |
63235024 | Aug 2021 | US | |
63252472 | Oct 2021 | US | |
63242752 | Sep 2021 | US | |
63235058 | Aug 2021 | US | |
63235026 | Aug 2021 | US | |
63235024 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2022/040617 | Aug 2022 | US |
Child | 17890744 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17889713 | Aug 2022 | US |
Child | PCT/US2022/040617 | US |